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Interfering signals such as radio frequency interference from ubiquitous satellite constellations are
becoming an endemic problem in fields involving physical observations of the electromagnetic spectrum.
To address this we propose a novel data cleaning methodology. Contamination is simultaneously flagged
and managed at the likelihood level. It is modeled in a Bayesian fashion through a piecewise likelihood that
is constrained by a Bernoulli prior distribution. The techniques described in this paper can be implemented
with just a few lines of code.
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I. INTRODUCTION

Satellite constellations in low earth orbit such as SpaceX’s
Starlink will likely number 1,00,000 by 2030 [1].
Described in a recent Nature article as “horrifying” [2],
the impact of radio frequency interference (RFI) created by
these “megaconstellations” on astronomy is of significant
concern. Interfering signals like RFI are problematic
because they cause information in contaminated frequency
channels to be lost which can lead to significant systematic
error if not properly modeled.
The frequency bands that these satellites and other

modern telecommunications devices operate in are not
protected or reserved for astronomy. They clash with
current and next generation experiments such as the
ngVLA [3] and the SKA [4], which plan probe yet unseen
epochs of the Universe. Furthermore, the latest telescopes
operate in large regions of the sky and across wide
frequency bands, making it impossible to avoid these
satellite swarms. This is pushing astronomy to remote
corners of earth and beyond, to space [5].
However, moving projects to space is not a long term

solution. There is only a short time window until the
RFI-quiet dark side of the moon becomes contaminated by
satellites and other devices required by projects such as

LuSEE [6] and the LCRT [7] which themselves are hoping
to exploit the clear lunar skies. Furthermore, space itself is
filled with cosmic rays, which lead to RFI-like interference
and thus have been problematic for the James Web Space
Telescope’s near infrared spectrometer [6].
Consequentially, RFI is becoming the fundamental

bottleneck in modern astronomy and beyond; with modern
observations being at the forefront of many fields of
fundamental physics, such as dark matter detection. New
statistical techniques are therefore urgently required to
address this rapidly growing problem.
Furthermore, projects such as the Event Horizon

Telescope [8], Planck [9], and BICEP [10] all used
Bayesian statistics in their data analysis pipelines, but there
is currently no way to manage RFI in a Bayesian sense
forcing astronomers to patch traditional RFI mitigation
algorithms into their Bayesian systems. Modern projects
implement singular value decomposition [11] watershed
segmentation [12], deep learning methods [13–15], and
more recently Gibbs sampling [16].
Scientists are constantly searching for more elusive and

faint signals, thus data cleaning is becoming increasingly
important. The Laser Interferometer Gravitational-wave
Observatory (LIGO) [17], for example, is sensitive enough
to detect a car starting miles away and thus is extremely
sensitive to data corruption [18]. The next generation
aLIGO [19] will be even more so. As such there is a
need for novel data cleaning methodologies beyond fields
involving measurements of the electromagnetic spectrum.
In this paper we propose a data cleaning methodology

that takes a Bayesian approach, where contamination is
both flagged and managed at the likelihood level. Detailed
benchmarking of this technique will be provided when it is
applied on data from a next generation low frequency
global experiment, REACH [20], which will see first light
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this year. A usage example of the methodologies described
in this work can be found in [21].

II. THEORY

A. Bayesian inference

Bayesian methods can be used to perform parameter
estimates and model comparison. A model M uses data D
to infer its free parameters θ. Using Bayes theorem,

PðDjθÞ × PðθÞ ¼ PðθjDÞ × PðDÞ; ð1Þ

L × π ¼ P × Z; ð2Þ

the prior π is updated onto the posterior P in light of the
likelihood L and furthermore the Bayesian evidence Z can
be inferred by computing the integral

Z ¼
Z

LðθÞ × πðθÞdθ: ð3Þ

In practice, P and Z can be determined simultaneously
using a Bayesian numerical solver. We use the nested
sampling algorithm POLYCHORD [22], where a series of
points generated within π are updated such that they
sequentially contract around the peak(s) of the likelihood,
forming the posterior which can be used to generate
parameter estimates. The artefacts of this process can then
be used to computeZ, which is used for model comparison.
For a more detailed description of Bayesian inference and
nested sampling see [23].

B. Data cleaning likelihood

A sufficiently contaminated data point can be considered
corrupted. Any information relevant to the model is lost and
furthermore it cannot be modeled as Gaussian noise.
Assuming D is uncorrelated, the likelihood

L ¼ PðDjθÞ ¼
Y
i

LiðθÞ;¼
Y
i

PðDijθÞ; ð4Þ

where i represents the ith data point, is insufficient to model
such contaminated data. It is therefore necessary to model
the likelihood that each data point is corrupted.
Thus, we introduce a piecewise likelihood including the

possibility of corruption of data:

PðDijθÞ ¼
�

LiðθÞ ∶uncorrupted
Δ−1½0 < Di < Δ� ∶corrupted:

ð5Þ

Corruption is modeled as the data becoming completely
unreliable and therefore being distributed uniformly within
some rangeΔ (which, as a scale of corruption, has the same
dimensions as the data). An efficient way to write this
likelihood is

PðDjθ; εÞ ¼
Y
i

Lεi
i Δεi−1; ð6Þ

where the Boolean mask vector ε has a ith component
which takes the value 1 if the datum i is uncorrupted and
value 0 if corrupted.
We do not know before the data arrive whether or not

they are corrupted. We may infer this in a Bayesian fashion,
by ascribing a Bernoulli prior probability pi of corruption
(which has dimensions of probability); i.e.,

PðεiÞ ¼ pð1−εiÞ
i ð1 − piÞεi : ð7Þ

Both Δ and pi are required for a dimensionally consistent
analysis. It should be noted that above we assume the
a priori probability that each bin is corrupted is uncorre-
lated, i.e., PðεÞ ¼ Q

i PðεiÞ, which in practice will almost
certainly not be true. We will discuss later the extent to
which this assumption can be considered valid.
Multiplying Eqs. (6) and (7) yields

PðD; εjθÞ ¼
Y
i

½Lið1 − piÞ�εi ½pi=Δ�ð1−εiÞ ð8Þ

and to recover a likelihood independent of ε we formally
can marginalize out:

PðDjθÞ ¼
X

ε∈ f0;1gN
PðD; εjθÞ ð9Þ

¼
X

ε∈ f0;1gN

Y
i

½Lið1 − piÞ�εi ½pi=Δi�ð1−εiÞ: ð10Þ

This would require the computation of the all 2N terms in
Eq. (10). For realistic values of N, this computation
becomes impractical. However, if it is assumed that the
most likely model [i.e., the maximum term in Eq. (10)]
dominates over the next to leading order terms, we can
make the approximation

PðD; εjθÞ ≈ δεεmax × PðD; εmaxjθÞ; ð11Þ

where δij is the usual Kroneker delta function, and εmax is
the mask vector which maximizes the likelihood PðD; εjθÞ,
namely,

εmax
i ¼

�
1; Lið1 − piÞ > pi=Δi

0; otherwise:
ð12Þ

Under this approximation we find that the sum in Eq. (10)
becomes
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PðDjθÞ ≈ PðD; εmaxjθÞ: ð13Þ

In practice the approximation in Eq. (13) is only valid if
the next to leading order term is much smaller, such that

PðDjθ; εmaxÞ ≫ maxjPðDjθ; εðjÞÞ; ð14Þ

where εðjÞ is εmax with its jth bit flipped:

εðjÞk ¼
�
1 − εmax

k k ¼ j

εmax
k k ≠ j

ð15Þ

and we may use Eq. (14) as a consistency check.
To summarize, we can correct for contamination under

these approximations by replacing the original likelihood
L ¼ Q

i Li in Eq. (4) with

PðDjθÞ ¼
Y
i

½Lið1 − piÞ�εmax
i ½pi=Δ�ð1−εmax

i Þ; ð16Þ

where εmax is defined by Eq. (12).

C. Computing the posterior

The posterior and evidence are computed from Eq. (16)
via nested sampling (although any numerical Bayesian
sampling method could be used). Taking logs for conven-
ience gives

logPðDjθÞ ¼
X
i

½logLi þ logð1 − piÞ�εmax

þ ½logpi − logΔ�ð1 − εmax
i Þ; ð17Þ

yielding a masked chi squared like term which can be used
to distinguish whether there is a statistically significant
difference between the classes of data, i.e., corrupted or
noncorrupted. Furthermore, the second term in Eq. (17)
introduces an Occam penalty. Each time a data point is
predicted to be contaminated its likelihood is replaced with
the penalty rather than being completely removed. Without
this term, the likelihood where all data points are flagged
would be larger and thus “more likely” than all other
possibilities. Therefore, flagging all datum would always be
preferable.
We compute this by imposing the condition in Eq. (12)

on Eq. (17) as follows:

logPðDjθÞ ¼
�
logLi þ logð1 − piÞ; ½logLi þ logð1 − piÞ > logpi − logΔ�
logpi − logΔ; otherwise:

ð18Þ

The corrected likelihood is then updated iteratively via the
selected Bayesian sampling method, compressing the prior
onto the posterior while simultaneously correcting for
contamination. One may also notice that the condition
logLi þ logð1 − piÞ > logpi − logΔ in Eq. (18) relates to
a Logit function, such that

logLi þ logΔ > LOGITðPÞ: ð19Þ

Logit functions are used routinely as an activation function
in binary classification tasks, hinting at the potential of a
future extension of this work using machine learning.

III. TOY EXAMPLE

Wewill initially test this approach on a simple toy model
with a basic contaminant signal injected. We then move on
to a more realistic and complex case in Sec. IV.

A. Initial testing

Two simple datasets are generated for comparison
consisting of a line with m ¼ 1 and c ¼ 1 with σ ¼ 5
order Gaussian noise. One is contaminated by an RFI like
signal and the other (the ground truth) is not. They are fit in
a Bayesian sense, attempting to recover the two free

parameters m and c using the correcting likelihood in
Eq. (18) with

Li ¼ −
logð2πσ2Þ

2
−
½yi − ySðxi;m; cÞ�2

2σ2
; ð20Þ

where θ ¼ m, c, σ, yi is the simulated data and ySðxi;m; cÞ
are the parameter estimates at the ith sampling iteration used
to compute the model yi ¼ mxi þ c. We set Δ ¼ DMAX, to
encapsulate the full range of possible data values. Δ could
likely be fit as a free parameter, as will be investigated
further in future works.
Evaluating the posterior on ε we can assess how

frequently across the entire sampling run each datum was
believed to fit (noncorrupted) or not fit (corrupted) the
model. Contaminated points should make up a near zero
fraction of the posterior. Conversely, points that are not
contaminated would often fit the model and as such
contribute significantly to the final posterior distribution.
There can also be some points that lie somewhere in
between, which the model is less confident are uncontami-
nated. This may occur with datum that deviate the most
from the true signal due to higher order Gaussian noise,
for example.
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It should be emphasized that although εi is constrained to
binary values, the subsequent mask on ε is not. Unlike
traditional RFI flagging algorithms, points are not classified
in a binary manner. The mask takes the weighted mean
across the posterior. Thus, points more likely to contain RFI
will have less “impact” on the final posterior distribution
than points believed to be uncontaminated. The mask could
be thought of as being slightly opaque to these data points,
accounting for the models uncertainty. Incorporating the
models confidence in its correction directly into the sub-
sequent parameter estimates makes this approach unique in
comparison with its counterparts.

B. Model evaluation

The two aforementioned datasets are evaluated when fit
using the likelihood capable of correcting for contamina-
tion and also when using a standard likelihood, which
cannot natively account for contamination. This generates a
total of four posterior distributions for comparison. Of
these, all but the contaminated, uncorrected case would be
expected to perform similarly if RFI has been effectively
mitigated. From a Bayesian standpoint, the simplest model
will always be preferable. Thus, for the clean dataset it
would be expected that the standard likelihood would be
preferred slightly over the correcting likelihood. Figure 1
shows the parameter distributions inferred from the data.
The results are as expected; parameters in all but the “RFI
No correction” are inferred to within 1σ of their true value.
As seen in Fig. 2, the model that does not correct for RFI

is slightly preferred for uncontaminated data. Conversely
the correcting model is strongly preferred on the contami-
nated data indicating that the correction is working as
predicted.
Viewing the posterior plots of Pðyjx;DÞ in Fig. 2 it is

clear that when RFI is not corrected, the true parameter
values are outside the 1σ and sometimes 2σ confidence
bounds. Conversely the other three cases fit almost entirely

within the 1σ bounds, indicating that the RFI has been
mitigated.

C. Evaluating the log p dependence

Proper selection of the probability thresholding term
logp is essential. From a Bayesian standpoint it should be
set to represent our prior degree of belief in there being RFI
in each datum. We assess the logp dependence while
varying logp as a function of the root-mean-square error
(RMSE) on the fit generated from the parameter estimates,
the log Bayesian evidence and the mean number of points
flagged across all samples.
For high logp, the RMSE is high and we observe in

Fig. 3 that the model generates less accurate parameter
estimates. Here the threshold is so high that the model is
more confident that any of the points are RFI than non-RFI.
This matches the corresponding low evidence. The RMSE

FIG. 1. Showing the parameter distributions inferred from the dataset described in Sec. III A. The top left to bottom right panes show
probability distribution functions for m, c, and σ, respectively. Plots are generated using posterior plotting tool ANESTHETIC [24].

FIG. 2. Showing the inferred parameter estimates in a contour
plot, where darker tones indicate higher σ confidence in the
parameter estimates. Generated from the dataset described in
Sec. III A. The Bayes factor is −1.4� 0.3 for the no RFI case and
25.0� 0.4 for the RFI case. The plots are generated using the
functional posterior plotter FGIVENX [25].
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drops as logp decreases to near its minimum. The model
incorrectly flags ≈5 data points while the RMSE is low,
showing that the model is able to generate accurate
parameter estimates whilst over flagging, indicating it is
insensitive to false positives. As logp decreases further, the
model is better able to distinguish between higher order
Gaussian noise and as such the average number of points
predicted to be RFI approaches the true value. As this
happens the evidence also reaches its maximum, which
indicates that the Bayesian evidence is appropriately
showing how well each of the many models created by
different logp values fit the data.

D. To what extent is PðDjθÞ ≈ PðDjθ;εmaxÞ valid?
A key assumption is made in Eq. (13) that the

leading order term, Eq. (17), is considerably larger than
all the other possible terms for ε∈ ð0; 1ÞN. It is necessary
to test the validity of this approximation by computing
Eq. (18) and comparing the result (PMAX) with the next
leading order term (PNLO) as calculated by Eq. (14). For
−5 < logp < −0.1. These results are displayed in the
bottom panel of Fig. 3. PMAX is 18 times larger than PNLO
at peak logZ and increases linearly for logp below this.
Depending on the logp selection strategy, PMAX is at least
11 times more likely than the next leading order term.
Assuming an appropriate logp selection strategy, the ratio
would be higher, indicating that PðDjθÞ ≈ PðDjθεmaxÞ
is valid.

E. Selection strategy for log p

Various selection strategies could be taken to select the
optimal logp value. For each logp, the model changes. As
such, selecting the logp that maximizes the evidence seems
to be the most obvious selection strategy. In the case of the
toy model, the peak logZ occurs where logp ¼ −2.7.
Here, PMAX is 18 times larger than PNLO. Another possible
strategy could be to select logpwhere the number of points
flagged is at its minimum.
It is also possible to ascribe a prior to logp, fitting it as a

free parameter thus fully automating the approach. This
will be examined further in future works.

IV. REACH EXAMPLE

Finally, we examine a real use case for this method. The
REACH [20] radio telescope is designed to detect the
21 cm signal from the cosmic dawn. We select REACH as a
testing ground for our methodology because it operates in
the same low frequency ranges as the next generation of
astronomical experiments, such as the nvGLA or the SKA
and takes a Bayesian approach to data analysis [26]. The
21 cm signal is expected to take the shape of an inverted
Gaussian, so the model takes the form

fðxÞ ¼ A exp

�
−
ðx − μÞ2
2σ2

�
ð21Þ

with center frequency μ, standard deviation σ and magni-
tude A all free parameters. The four cases discussed in
Sec. III are then examined, but this time on a simulated sky
dataset containing a 21 cm signal with two RFI spikes
injected. The no RFI correction and ground truth cases are
very similar with the simpler (ground truth) case marginally
preferred as expected. The RFI corrected case is again
similar with a slightly lower evidence due to the penalties

FIG. 3. Assessing how various methods of model evaluation
vary as a function of logp. From top to bottom: the RMSE, the
log of the Bayesian evidence, then the weighted average number
of points flagged and finally the radio between PMAX and PNLO.
All dependant variables (excluding logZ) are averaged over the
weighted posterior samples. The noise observable in these plots is
sampling noise; the noise in the simulated data is seeded.

FIG. 4. Showing the results when the RFI correction is applied
on simulated data in the REACH data analysis pipeline. The
Bayes factor for the no RFI case is −0.6� 0.6 and the Bayes
factor for the RFI case is 9e7� 0.6.
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incurred during the corrections. The above is also evident
when viewing Fig. 4. The reconstructed signal is within 2σ
of the true signal for all but the RFI no correction case.

V. CONCLUSIONS

In this paper, which serves as a proof of concept, we
show that contamination can be both cleaned and corrected
in a fully Bayesian sense at the likelihood level.

We demonstrate our general approach in the context of
signal processing for astronomy, but these methods will
likely be useful beyond. Forthcoming results from current
state of the art low frequency astronomy experiments [27]
(where these methods will be benchmarked in the coming
months) and extensive testing of this approach as a general
Bayesian data cleaning methodology will be used to
provide a more detailed analysis in the future.
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