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Observations of suspected coherent elastic neutrino-nucleus scatterings by dark matter direct detection
experiments highlight the need for an investigation into the so-called “neutrino floor.” We focus on the
discovery limit, a statistical concept to identify the neutrino floor, and analyze the asymptotic behavior of
the profile binned likelihood ratio test statistic where the likelihood is constructed by variate from events in
each bin and pull terms from neutrino fluxes. To achieve the asymptotic result, we propose two novel
methods: (i) the asymptotic-analytic method, which furnishes the analytic result for large statistics, is
applicable for more extra nuisance parameters, and enables the identification of the most relevant
parameters in the statistical analysis; (ii) the quasi-Asimov dataset, which is analogous to the Asimov
dataset but with improved speed. Applying our methods to the neutrino floor, we significantly accelerate
the computation procedure compared to the previous literature, and successfully address cases where the
Asimov dataset fails. Our derivation on the asymptotic behavior of the test statistic not only facilitates
research into the impact of neutrinos on the search for dark matter, but may also prove relevant in similar
application scenarios.
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I. INTRODUCTION

The nature of dark matter (DM) is one of most alluring
fields in physics but still remains unknown with several
decades of efforts on searching for DM [1–3]. From the
perspective of DM direct detection (DD) experiments,
however, constraints on DM, particularly a popular candi-
date—weakly interacting massive particles (WIMPs),
have been improved through the dedicated efforts of DD
experiments, which inspires us to pursue increasingly
sensitive techniques for detecting recoil signals generated
by WIMPs. The recent discovery [4] of the coherent
elastic neutrino-nucleus scattering (CEνNS) process by
COHERENT collaboration represents a recent milestone
in this field. DM DD experiments, such as XENON and
PandaX [5,6], have announced their observations of
suspected solar neutrino signals generated by CEνNS.
However, as sensitivities increase, the presence of irreduc-
ible neutrino backgrounds poses a challenge to the search
for WIMPs, given the similarities between their respective
signals. As such, it is essential to quantitatively evaluate the
impact of neutrinos on direct searches for WIMPs.

Neutrino floor, proposed to systematically quantify the
discovery potential of searching for WIMPs in the presence
of neutrino backgrounds [7], is presented by a curve on the
parameter space of WIMP-nucleon cross section versus
WIMP mass, below which WIMPs cannot be detected
significantly. Formally, the neutrino floor can be defined by
discovery limits [8]: the minimum cross section required
for an experiment to have a 90% probability or 90% con-
fidence level (CL) to detect a WIMP signal with a 3σ
significance [9]. Obtaining the neutrino floor traditionally
requires Monte Carlo (MC) pseudoexperiments which can
be time consuming. Additional studies on the neutrino floor
have explored various factors such as astrophysical uncer-
tainties [10], altering the WIMP-nucleon interaction with
the nonrelativistic effective field theory formalism [11] and
modifying neutrino backgrounds with neutrino related new
physics [12–14], etc. There are several studies on how to
overcome the neutrino floor, including combining data
from experiments using different targets [9], taking advan-
tage of the annual modulation [15] or the diurnal modu-
lation [16], and adopting more realistic directional
detection strategy [17–24] with lower statistics. Recently,
a new definition on the neutrino floor has been proposed,
which does not rely on choices on detector thresholds and
exposures [25]. Instead, it uses the gradient of the discovery
limit cross section with respect to the exposure to measure
the marginal utility on the WIMP searches, resulting in the
definition of the “neutrino fog.” The neutrino floor is then
identified as a boundary of the neutrino fog, representing
the transition from statistical to systematical limits [26].
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To reduce computational costs, the confidence level in the
previous definition was adjusted to 50% and Asimov
dataset [27] was used to obtain the median discovery limit.
There appears to be some unresolved issues for deter-

mining the neutrino floor: (i) the statistic methodology for
the discovery limit lacks further investigation; (ii) the
calculation of the neutrino floor necessitates substantial
computational resources, and enhancing the stability of
the algorithm is imperative; (iii) Asimov dataset cannot
resolve cases that some specific degrees of freedom (DOFs)
such as astrophysical uncertainties are considered, and
(iv) MC pseudoexperiments increasingly cost time when
more parameters are considered. Thus, in this paper, we
infer the asymptotic behavior of the profile binned like-
lihood ratio test statistic (PBLRTS) where the likelihood
is constructed by different variables. The similar case,
where the likelihood is constructed by variables following
the same distribution, has been worked out [28,29].
Subsequently, we propose two new methods to achieve
the asymptotic result: (i) asymptotic-analytic method which
provides analytic results for large statistics, is general for
more extra nuisance parameters and affords a way to
determine the most relevant parameters in the statistical
analysis; and (ii) quasi-Asimov dataset analogous with but
faster than the Asimov dataset method. By applying our
methods to the neutrino floor, we significantly accelerate
the computation procedure used in previous literature,
investigate the neutrino fog taking into account the uncer-
tainty of the weak mixing angle, and handle the case when a
specific DOF from the astrophysical uncertainty is con-
sidered, which cannot be addressed by Asimov dataset.
Moreover, the most relevant parameters from neutrino
fluxes can be obtained by the asymptotic-analytic method,
so that MC pseudoexperiments can be boosted by neglect-
ing nondominant contributions from neutrino sources.
Furthermore, our proposed methods are not only applicable
for the neutrino floor and fog [14,19,25], but also might be
feasible in searching for the bump of the diffuse flux of
high-energy cosmic neutrinos in IceCube [30], studying
the impact of DM on DSNB in Hyper-Kamiokande experi-
ment [31], detecting time-varying DM signals with Paleo-
Detectors [32] and analyzing the daily modulation on dark
photon [33].
This paper is organized as follows. In Sec. II, we provide

some key process in obtaining the asymptotic behavior of
PBLRTS. In Sec. III, we describe the statistic method
behind the neutrino floor and provide the result from our
new methods. In addition, the asymptotic-analytic method
is used to analytically explain the evolution of the discovery
limit cross section with the exposure. In Sec. IV, we provide
the neutrino fog and floor with considering the uncertainty
of the weak mixing angle,and afford the modified discovery
limit curve for experimental configurations with consider-
ing nuisance parameter from the velocity of the local
standard of rest. Finally, in Sec. V we draw our conclusions
and outlooks.

II. ASYMPTOTIC BEHAVIOR OF PROFILE
BINNED LIKELIHOOD RATIO TEST STATISTIC

A. Derivation on asymptotic distribution

Our notation adheres to the conventions described in
the book on large sample theory [34]. To begin with, we
recall a theorem concerning the large sample distribution
of the likelihood ratio test statistic (LRTS) [28,29]. In the
context of the likelihood ratio test, we consider a para-
meter set with k DOFs denoted by θ ∈ Θ ⊂ Rk, where r
(1 ≤ r ≤ k) is the number of parameters of interest and (k-r)
is the number of nuisance parameters. The likelihood
functionLðθÞ is constructed by variables following the same
distribution. The likelihood ratio test provides a general way
for discriminating the null hypothesis H0∶ θ0 ∈ Θ0 versus
the alternative hypothesis H1∶ θ1 ∈ Θ − Θ0, whereΘ0 ⊂ Θ.
Defining the log likelihood function lðθÞ≡ logLðθÞ and

λ≡ Lðθ�Þ
Lðθ̂Þ , the null hypothesis is rejected if the likelihood ratio

test statistic −2 ln λ ¼ −2½ln lðθ�Þ − ln lðθ̂Þ� is larger than
our expectation, where θ� and θ̂ represent the maximum-
likelihood estimator (MLE) over Θ0 and Θ, respectively. In
general, Θ0 is a (k-r)-dimensional subspace of Θ, with r
constraint conditions given by: giðθÞ ¼ 0 (1 ≤ i ≤ r). Under
the assumption of large samples, if the true model θ0 satisfies
H0∶ θ0, the quantity −2 ln λ follows the chi-square distribu-
tionwith r DOFs, denoted by−2 ln λ ∼ χ2r. If θ0 deviates from
θ0, then−2 ln λ ∼ χ2rðϕÞ, whereϕ is the noncentral parameter
related to δ ¼ θ0 − θ0.
However, the aforementioned theorem should be modi-

fied to be applied to our scenario, where the binned
likelihood comprises variables that follow different distri-
butions and are accompanied by pull terms. Consequently,
it becomes imperative to extend the theorem scope. To this
end, we invoke the Lyapunov central limit theorem (CLT)
[35] to approximate some quantities to its expectation or
acquire the asymptotic distribution of some quantities,
which are constructed by random variate that might not
be from the same distribution, in our proof. Moreover, our
derivation in the following is based on the assumption that
the likelihood function is smooth and its derivatives are
bounded.
Here we simply expound upon the test statistic’s asymp-

totic formula, and please refer to Appendix A for the
detailed derivation. The asymptotic formula is constructed
by the derivative of the logarithmic likelihood function.
One is the first derivative at θ0, i.e., l̇ðθ0Þ, which follows a
multivariate normal distribution with a mean vector μ and a
covariance matrix V, denoted by N ðμ;VÞ. The other is the
expectation of the second derivative at θ0, i.e., Eð̈lðθ0ÞÞ. For
convenience, we define F ≡ −Eð̈lðθ0ÞÞ and a matrix H
which is also constructed by Eð̈lðθ0ÞÞ, and details are
provided in Appendix A. Utilizing the Taylor’s expansion,
the Lyapunov CLT and some properties of quantities, the
asymptotic formula for the test statistic can be written as:
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−2 ln λ ≈ ZTV
1
2½F−1 −H�V1

2Z; ð1Þ

where Z ∼N ðV−1
2ðμþ FδÞ; IÞ is a vector. To make the

result more explicit, we perform a diagonalization:
−2 ln λ ≈ ZTUTΛUZ ¼ YTΛY, where Λ is a diagonal
matrix, U is a special orthogonal matrix and Y ¼ UZ ∼
N ðUV−1

2ðμþ FδÞ; IÞ. As a consequence, −2 ln λ asymp-
totically follows the distribution of a sum over several
noncentral chi-square variate with varying weights:

−2 ln λ ≈
X
i

aiY2
i ; ð2Þ

where ai is the ith component of the diagonal term in Λ,
and Y2

i ∼ χ21ðϕiÞ where ϕi is the noncentral parameter. For
instance, in the case presented in the next section where H0

is true, we have δ ¼ 0 and Y ∼N ð0; IÞ. Consequently,
−2 ln λ ∼ χ21, aligning with Wilk’s theorem.1

Moreover, it is noteworthy to observe that the entries
within the matrix U signify the impact exerted by each
parameter. As a result, one can minimize the cost of MC
pseudoexperiments by selectively incorporating only the
most relevant parameters, and the criteria can be derived
from the matrix U in our asymptotic-analytic method. This
technique has been applied in our MC realizations, which is
provided in Appendix C.

B. Asymptotic-analytic method

The asymptotic-analytic method has been presented
previously, but it did not include a discussion on how to
obtain the values of μ, V, and F . Here, we provide a
concrete application.

For simplicity, we only consider the case of signal
discovery where there is only one parameter of interest
and all parameters are normalized to unity. For the
discovery of a signal, θ1 represents the signal strength,
while θiði ≥ 2Þ are nuisance parameters. In many literature,
the signal strength is always denoted by μ, while we use θ1
here for convenience. Under the null hypothesis H0: θ0, we
have θ01 ¼ 0, θ0i ¼ 1ði ≥ 2Þ. Here, the bold symbol repre-
sents a vector where the superscript marks the model, and
the normal symbol like θ0i represents the ith component of
θ0. Under the alternative hypothesis H1: θ1, we have
θ0i ¼ 1ði ≥ 1Þ. We adopt the binned likelihood with N
bins and M parameters as shown below:

Lðθ1;θ2;…;θmÞ¼
YN
i¼1

Pðnijθ1siþbiÞ
YM
j¼2

N θjð1;σjÞ; ð3Þ

where ni, si, and bi are observed, signal and background
events in ith bin, respectively. The variable ni follows a
Poisson distribution with a mean of the expected value
vi ¼ θ1si þ bi, i.e., PðnijviÞ ¼ v

nj
i e

−vi=nj!. The quantities
si and bi are dependent on the nuisance parameters
θiði ≥ 2Þ, which follows a normal distribution with a
mean of 1 and a standard deviation σj: N θjð1; σjÞ ¼

1ffiffiffiffi
2π

p
σj
exp ð− ðθj−1Þ2

2σ2j
Þ.

Furthermore, we obtain the expressions for the expect-
ation vector μ, the variance matrix V of the first derivative
of lðθÞ at θ0: l̇ðθ0Þ and the expectation of the second
derivative with a minus sign F as follows:

μα ¼

8>><
>>:

P
ij

1
2
∂
2vi
∂θ2j

σ2j
vi

∂vi
∂θα

; α ¼ 1;

P
ij

1
2
∂
2vi
∂θ2j

σ2j
vi

∂vi
∂θα

− θα−θ0α
σ2α

; 2 ≤ α ≤ M;

F αβ ¼

8>><
>>:

−
P
ij

1
2
∂
2vi
∂θ2j

σ2j
vi

∂
2vi

∂θα∂θβ
þP

ij

1
vi

�
1þ 1

2
∂
2vi
∂θ2j

σ2j
vi

�
∂vi
∂θα

∂vi
∂θβ

; α ¼ 1 or β ¼ 1;

−
P
ij

1
2
∂
2vi
∂θ2j

σ2j
vi

∂
2vi

∂θα∂θβ
þP

ij

1
vi

�
1þ 1

2
∂
2vi
∂θ2j

σ2j
vi

�
∂vi
∂θα

∂vi
∂θβ

þ δαβ
1
σ2α
; 2 ≤ α; β ≤ M;

Vαβ ¼
X
ijkl

�
1

vi
δij þ

1

2

∂
2vi
∂θ2k

σ2k
v2i

δij þ
∂vi
∂θk

∂vj
∂θk

σ2k
vivj

−
1

4

∂
2vi
∂θ2k

∂
2vj
∂θ2l

σ2kσ
2
l

vivj

�
∂vi
∂θα

∂vj
∂θβ

; 1 ≤ α; β ≤ M; ð4Þ

where δij and δαβ are the Kronecker delta symbols. Kindly
note that the aforementioned quantities must be assessed at

θ, which can be either θ0 or θ1. For more details, please
refer to Appendix B.
After completion of the aforementioned step, we can

proceed to compute the asymptotic distribution of −2 ln λ.
This procedure is what we call the asymptotic-analytic
method. Furthermore, we present a rather simple case here

1Generally speaking, explicit forms for ai and ϕi are not
readily available, and should be computed numerically by
evaluating Λ and Y.
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for better understanding. In this case, there is only one
nuisance parameter considered to modify the background,
and the expected value vi ¼ θ1si þ θ2bi. According to
Eq. (4), we have:

μ ¼ 0; F ¼

0
B@

P
i

s2i
vi

P
i

sibi
viP

i

sibi
vi

P
i

b2i
vi
þ 1

σ2
2

1
CA;

V ¼

0
B@

P
ij
ð 1vi þ

bibj
vivj

σ22Þs2i
P
ij
ð 1vi þ

bibj
vivj

σ22ÞsibiP
ij
ð 1vi þ

bibj
vivj

σ22Þsibi
P
ij
ð 1vi þ

bibj
vivj

σ22Þb2i

1
CA:

However, it is not feasible to determine the asymptotic
distribution of the statistic analytically. As demonstrated in
Section III C utilizing a numerical method, we ascertain
that the test statistic follows a chi-square distribution when
H0 is true. When we ask θ1 for being positive, the test
statistic should follows a distribution of 1

2
½δð0Þ þ χ21�. If H1

is true, −2 ln λ ∼ χ21ðϕÞ, where ϕ can be written as:

ϕ ¼
X
i

s2i
si þ bi

−
ðPi

sibi
siþbi

Þ2P
i

b2i
siþbi

þ 1
σ2
2

; ð5Þ

according to Eq. (B4).

C. Quasi-Asimov dataset method

The Asimov dataset [27] was introduced as a means to
readily obtain the median values of the test statistic like
−2 ln λmentioned previously. In this scenario of hypothesis
testing, the observations are precisely aligned with their
expected values: ni ¼ vi, where vi is determined by θ,
while the nuisance parameters in the normal distribution are
fixed at θ0. The Asimov dataset is considered an effective
approximation method in cases where the sample size is
sufficiently large, and is commonly employed in some
literature [14,19,25,30–33].
The most time-consuming aspect of implementing

Asimov dataset is the numerical search for the MLE θ�
for H0. However, Eq. (A4) provides a simple yet effective
approach to approximate:

θ� ≈ θ0 − ½1 −HF �δ: ð6Þ

Hence, we can render the acquisition of the test statistic’s
median feasible without incurring significant time expense.
Note that θ0 is consistently set to θ1, as the requirement for
Quasi-Asimov dataset method is to attain the statistic’s
median assuming the alternative hypothesis is genuine. We
call this procedure Quasi-Asimov dataset method.
However, an issue remains with both Asimov dataset

and quasi-Asimov dataset method. In the signal dis-
covery scenario, Asimov dataset fails when extra nuisance

parameters only involve si. As θ01 ¼ 0, the extra parameters
are constrained to their true values, resulting in a result that
is unaltered by their presence. For example, suppose a new
nuisance parameter, θkþ1, is introduced, with a mean of 1
and standard deviation of σkþ1, and θ0kþ1 ¼ θ1kþ1 ¼ 1. Then
θ01 ¼ 0 and the Gaussian term with σkþ1 compels θ�kþ1 ¼ 1.
Consequently, the median of the test statistic remains
unchanged regardless of the inclusion of θkþ1, which is
not our expectation. Fortunately, the asymptotic-analytic
method can handle this issue.

III. NEUTRINO FLOOR AND FOG

A. Recoil spectrum

In this section, we shall commence by delving into the
response of WIMP and neutrinos in the detector as inputs
for the neutrino floor. For the sake of simplicity, only the
spin-independent WIMP-nucleon interaction is considered
here. The differential event rates of WIMP [36] in the
detector can be expressed as follows:

dRWIMP

dEr
¼ ρ0A2

2mχμ
2
N
σ0F2ðErÞ

Z
vesc

vminðErÞ

fðv; v0Þ
v

d3v; ð7Þ

where Er is the recoil energy,mχ is the mass of WIMP, σ0 is
the spin-independent WIMP-nucleon cross section, μN is
the WIMP-nucleon reduced mass, A is the atom number
of the target nucleus, and FðErÞ is the nuclear form factor
generally presented by the Helm form [37]. The other
parameters are taken from the standard halo model
(SHM) [38,39]: the WIMP density surrounding the Earth
ρχ ¼ 0.3 GeV=cm3, the circular velocity of the local
standard of rest (LSR) v0 ¼ 220 km=s, the escape velocity
of the Milky Way vesc ¼ 544 km=s, and fðv; v0Þ is the
velocity distribution of WIMP. The quantity vminðErÞ
represents the minimum speed at which a WIMP may
cause the recoil energy Er, as limited by the kinematics.
Integrating the differential CEνNS cross section multi-

plied by the neutrino flux, we can derive the recoil spectrum
for CEνNS:

dRν

dEr
¼ 1

mN

X
i

Z
Emin
ν ðErÞ

dΦi

dEν

dσνNðEν; ErÞ
dEr

dEν; ð8Þ

where mN is the nuclear mass, Emin
ν ðErÞ is the minimum

neutrino energy to generate Er,
dΦi
dEν

is the neutrino flux from

the source labeled as i, and dσνNðEν;ErÞ
dEr

is the differential
CEνNS cross section that can be well described by the
standard model. There are numerous neutrino sources
causing recoil events in DM detectors and we adopt the
same neutrino flux model as in Table I of Ref. [19]. Here,
we briefly introduce some of the main neutrino sources.
Solar neutrinos are the principal source of CEνNS

events, which pose an obstacle to the search for the
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Oð10Þ GeV-scale WIMP. These neutrinos stem from
nuclear fusion reactions such as the pp Chains and the
CNO Cycle with energies less than about 13 MeV. They
have been meticulously comprehended with the standard
solar mode [40]. As the standard solar model is subject to
various observational constraints, the parameters governing
the model become increasingly precise. This precision
allows for the prediction of uncertainties in solar neutrino
fluxes. Experimental measurements of 8B neutrinos have
achieved a high level of precision, resulting in a mini-
mum uncertainty of 2% over solar neutrinos. Atmospheric
neutrinos produced by cosmic rays interacting with the
Earth atmosphere are more energetic but more rare. The
atmospheric neutrino flux can be computed through sim-
ulations, and the recommended theoretical uncertainty is
set at 20%. The diffuse supernova neutrino background
(DSNB) originates from the cosmological history of
core-collapse supernovae in the visible universe with
energies roughly 10–25 MeV at Earth. Due to our incom-
plete understanding of the DSNB, we set the uncertainty
associated with it at 50%.

B. Statistic method and results

The statistic method about the discovery of a positive
signal [27] aligns with our discourse on the neutrino floor.
As outlined in the Sec. II, the null hypothesis H0 represents
the neutrino background-only model, while the alternative
hypothesis H1 represents the WIMPþ neutrino model. The
likelihood ratio is given by:

λðθ1Þ ¼
Lðθ01; ˆ̂θ2;…; ˆ̂θMÞ
Lðθ̂1; θ̂2;…; θ̂MÞ

; ð9Þ

where θ01 ¼ 0 represents the signal strength in the back-
ground-only model, θiði ≥ 2Þ is the neutrino flux normali-

zation, θ̂i and
ˆ̂θi are the component of the MLE θ� and θ̂,

respectively, and M is the number of neutrino sources. The
binned likelihood has been shown as Eq. (3), in which si ¼
siðσ0Þ and bi ¼

P
j b

j
iθjðj ≥ 2Þ should be the expected

WIMP events and neutrino events in the ith bin, respec-
tively. Here, bji represents for the expected neutrino events
from the source labeled as i. More information on the
uncertainties associated with the neutrino flux can be found
in Table I of Ref. [19]. Then the test statistic can be
formulated as follows:

q0 ¼
�
−2 ln λð0Þ θ̂1 ≥ 0;

0 θ̂1 < 0:
ð10Þ

Upon closer examination, it is discernible that the test
statistic, denoted by q0, measures the discrepancy
between two hypotheses. This discrepancy is shown to
increase when the actual observations deviate from the

background-only model. According to the definition of
discovery limits, the 3σ significance of signals corresponds
to a p-value p0 ¼ 0.0027. The p-value p0 is defined by
p0 ¼

R∞
qobs

fðq0jH0Þdqobs, where fðq0jH0Þ is the distribu-
tion of the statistic under the assumption of H0 being true,
and is believed to follow a distribution of [27,28,41].
Thus, the 3σ significance corresponds to qobs ¼ 9.2 We
also demonstrate it by utilizing the asymptotic-analytic
method, and the numerical analysis reveals the existence
of only one nonzero diagonal entry within Λ with a value
of 1. Therefore, the test statistic q0 ≈ ðPi aiYiÞ2, whereP

i a
2
i ¼ 1 and Yi ∼N ð0; 1Þ, indicating that q0 should

follow the chi-square distribution. However, by incorpo-
rating the positive condition for the signal strength, the
distribution of q0 should be 1

2
½δð0Þ þ χ21�. The detailed

reason of such alteration can be found in Appendix B.
In defining the discovery limits,P%CL is often requested,

with previous literature using P% ¼ 90% [7,8] and recent
studies opting forP% ¼ 50% [14,19]. TheP%CL indicates
the percentage of experiments in which the discovery is
significant, i.e.,

R∞
qobs

fðq0jH1Þdqobs ¼ P%. To obtain the
distribution of q0 when H1 is real, one typically needs to
generate numerous pseudodata from MC simulations and
perform time-consuming computations to find the MLE. In
high-statistics analyses, however, Asimov dataset [27] pro-
vides a time-saving way to compute the median of q0 when
H1 is real. Thus, a slight modification of the CL value,
leading to a minor quantitative difference [19]. Additionally,
the asymptotic-analytic method reveals that q0 follows a
noncentral chi-square distribution, denoted as χ21ðϕÞ, with
one DOF and a noncentral parameter ϕ. Note that we
can disregard the positive condition for θ1, because most
of θ�1 and θ̂1 are positive in our case where qobs ¼ 9

and
R
∞
qobs

fðq0jH1Þdqobs ¼ P%. Surprisingly, according to
Eqs. (B1) and (B4), the asymptotic-analytic method also
afford the analytic form of ϕ:

ϕ ¼
X

i

s2i
vi

−
X

jk

�X
i

sib
j
i

vi

�
j

�X
i

bjib
k
i

vi
þ δjk
σ2k

�−1
jk

×

�X
i

sib
j
i

vi

�
k

����
θ¼1

; ð11Þ

where the quantities enclosed by the square bracket ½� � ��with
one and two subscripts represent vectors and matrices,
respectively. Besides, ½� � ��−1 represents the inverse of a
matrix, and δjk is the Kronecker delta symbol.
To demonstrate the effectiveness of our new methods, we

reproduce the neutrino floor defined by discovery limits
and make a comparison with the result from APPEC report
[42] based on MC method. Note that the neutrino floor we

2The significance Z ¼ Φ−1ð1 − p0Þ, where Φ−1 is the quantile
of the standard Gaussian [27].
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discuss here relies on the choice on the detect threshold and
the exposure. More details can be found in Appendix C.
Consequently, the asymptotic-analytic and quasi-Asimov
dataset methods are effective, except that sometimes they
fails on account of insufficient statistics. Moreover, the
asymptotic-analytic technique furnishes a means to assess
the influences attributable to individual parameters. As an
illustration, the neutrino floor atmχ ¼ 5.5 GeV, which will
be elaborated upon later, is primarily dictated by the 8B
neutrino flux.
To avoid the setting of somewhat arbitrary experimental

configurations and give the neutrino floor a single con-
sistent interpretation in statistics, a new definition [25] on
the neutrino floor has been proposed and widely recog-
nized. Since the neutrino floor relies on the experimental
configurations, it is better appreciated that neutrinos
should present a “fog”: a region of the parameter space
where a clear distinction between signal and background
is challenging. Define n as the gradient of a discovery
limit cross section σDL with respect to the exposure N:
n ¼ −ðd ln σDL=d lnNÞ−1, which is also called the “opac-
ity” of the neutrino fog. The index n alters as N increases.
Briefly, when N is small, i.e., the background-free case,
n ¼ 1. Then, as N increases, the case becomes the
Poissonian background subtraction: n ¼ 2. If we have a
larger N, WIMP signals are covered by fluctuations of
neutrino backgrounds, so that n > 2. That means it is
difficult to detect the WIMP signal when we only increase
the exposure. Therefore, it is more effective to find another
way, like the directional detection strategy, to search for
WIMPs. Eventually, as N gets large enough, the intrinsic
difference between signals and backgrounds help us dis-
cover the signal, and n ¼ 2 starts to return. In the next
section,this evolution of n can be explained analytically
with the asymptotic-analytic method. The neutrino floor is
defined as the boundary of the neutrino fog, which marks
the transition from statistical to systematical limits.
As illustrated in Fig. 1, we employ the quasi-Asimov

dataset method to showcase the neutrino floor and fog. The
outcomes from the quasi-Asimov dataset method perfectly
reproduce the neutrino floor and fog [25,26], albeit with
minor discrepancies. In terms of computational efficiency,
our methodology outperforms the Asimov dataset, taking
only about 10 seconds to calculate the neutrino fog on the
same computer, as opposed to the half-hour computation
required by the Asimov dataset. Additionally, the quasi-
Asimov dataset method exhibits superior computational
stability. More details and figures can be found in our
public code [43]. Note that we follow the calculation
techniques outlined in Ref. [25]. Thus, events are binned
for the recoil spectra in the logarithmic scale between
10−4 keV and 200 keV. We choose the former detector
threshold for the purpose of mapping the neutrino floor
down tomχ ¼ 0.1 GeV, which actually does not impact the
height of the limit at other masses.

Moreover, we also present neutrino fogs for six different
targets in the DM direct detection experiments. As shown
in Fig. 2, neutrino fogs for Xenon, Germanium and Argon
targets are similar, while the neutrino fog for the Helium
target is quite different and the neutrino floor for the
high WIMP mass emerges in the excluded space, since its
mass is too low to gain the sensitivity for WIMP with
higher mass. Neutrino fogs for composite targets also
resemble that derived from Xenon, Germanium and
Argon targets, despite of some small differences. For
instance, the region aroundmχ ≈ 20 GeV for the NaI target
is more shallow, which indicates that experiments using the
NaI target can detect a weaker signal generated by a WIMP
of about 20 GeV.

C. Analytical interpretation on sensitivity curves

When the sample size or exposure is sufficiently large,
the asymptotic-analytic and quasi-Asimov dataset methods
produce consistent results with each other. Therefore,
the evolution of the discovery limit cross section σDL
with respect to N can be analytically explained. For the
sake of simplicity, we restrict our attention to the 8B
neutrino source and mχ ¼ 5.5 GeV. As discussed before,
the noncentral parameter can be obtained from Eq. (5),
where the expected WIMP events are proportional to σDL
and N: si ∝ σDLN, the expected background events also
have a linear correlation with N: bi ∝ N, and the uncer-
tainty σ2 ¼ σν, which stands for the uncertainty of the 8B
neutrino flux.

FIG. 1. The neutrino fog for the xenon experiment is presented
in the cyan contour map, while the solid line represents the
neutrino floor for n ¼ 2. Besides, the latest excluded space is
shaded gray [44–55] (all experimental limits except the latest
exlusion limits from XENONnT and PandaX4T are taken
from Ref. [25]).
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Initially, N < 1, and WIMP signals dominate.
Because si ≫ bi and 1

σ2ν
dominates in the denominator of

the second term in Eq. (5), the noncentral parameter

ϕ ≈
P

i
s2i

siþbi
≈OðsÞ. Thus, to maintain the invariance of

ϕ, σDL ∝ N−1. As N increases and σDL decreases, si < bi
while the second term is still controlled by 1

σ2ν
.

Consequently, we obtain ϕ ≈
P

i
s2i

siþbi
≈Oðs2=bÞ, and

σDL ∝ N−1
2. Here we come to the Poissonian background

subtraction and the statistical limit as illustrated in Fig. 3.
As N increases further, the signal is lost within the

background: si ≪ bi. Then we have:

ϕ ≈
X
i

s2i
bi

−
ðPisiÞ2P

ibi

�
1 −

1

σ2ν
P

ibi

�
: ð12Þ

If there is only one bin for the data or the background
mimics the signal: si ∝ bi, the leading term is the one with

σν and ϕ ≈ ðPisiÞ2
σ2νð

P
ibiÞ2

≈Oðs2=b2Þ. Hence ϕ remains constant

as N increases: σDL ∝ N0, which causes the flatness in
Fig. 3. Moreover, since ϕ ≈ 1=σ2ν in this case, a smaller
value of the uncertainty σν corresponds to a lower σDL.
Thus, σDL ∝ σν for the flatness of the curves in Fig. 3. On
the other hand, if there are some slight differences between
the signal and background even though they are very
similar, the term with σν can be neglected and we have
ϕ ∼Oðs2=bÞ. Finally, we return to σDL ∝ N−1

2 and reach the
systematical limit as shown in Fig. 3.

IV. ADDITIONAL NUISANCE PARAMETERS

A. Weak mixing angle uncertainty

The weak mixing angle has been well measured at the
Z-pole, while it leaves a sizable uncertainties at the low
energy (the maximal momentum transfer qmax≲200MeV).

FIG. 2. The neutrino fogs for six different targets in the direct detection experiments are presented in the cyan contour map, while the
solid line represents the neutrino floor for n ¼ 2. Besides, the latest excluded space is given by the shaded gray region.

FIG. 3. The sensitivity curves about the evolution of the
discovery limit cross section with respect to an exposure for
mχ ¼ 5.5 GeV. Lines in different colors represent the sensitivity
curve with different uncertainties of the 8B neutrino flux. Here
we assume the standard uncertainty of the 8B neutrino flux
σν0 ¼ 2%.
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It might be determined by CEνNS process. Conversely,
the weak mixing angle also exerts an influence on the
response of neutrinos in the DM detector, so we shall
explore its impact on the neutrino fog in this section. The
weak mixing angle is rather flat over the low energy range,
so the neutrino background bi ∝ Q2

W , where QW ¼ N −
ð1 − 4 sin2 θWÞZ is the weak charge [14,56,57]. Note that
N and Z are the number of neutrons and protons in
the target nuclei. As in Ref. [14], we take the central
values sin2 θW ¼ 0.2387 with a 10% uncertainty. For
simplicity, we assign θMþ1 to account for the uncertainty:
QW ¼ N − ð1 − 4θMþ1 sin2 θWÞZ, where M represents the
number of nuisance parameters from neutrino fluxes. In this
case, viðθÞ ¼ θ1si þ

P
2≤j≤M θjb

j
iðθMþ1Þ. As the discus-

sion in Sec. II B, the background-only hypothesis H0

corresponds to θ0∶ θ01 ¼ 0, θ0j ¼ 1ð2 ≤ j ≤ M þ 1Þ, while
H1 corresponds to θ1∶ θ1j ¼ 1ð1 ≤ j ≤ M þ 1Þ.
Observed that l̇ðθ0ÞMþ1 ¼ 8 sin2 θWZ

Qw

P
j l̇ðθ0Þjð2 ≤ j ≤ MÞ

by making use of ∂vi
∂θMþ1

¼ 8 sin2 θWZ
Qw

P
j b

j
i , there are only M

independent components in the normal variate Z. Thus, V

has a dimension ofM ×M, while F has a larger dimension
of ðM þ 1Þ × ðM þ 1Þ, as shown in Eq. (14). To solve this
problem, we employ a matrix O to eliminate l̇ðθ0ÞMþ1,
where

O ¼

0
B@

IM×M

0;
8sin2θWZ

Qw
;…;

8sin2θWZ
Qw|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

1
CA;

where IM×M is a diagonal matrix with a dimension of

M ×M. Since δ ¼ 0 is H0 is true and δ ¼ f1; 0;…; 0
zfflfflffl}|fflfflffl{M

g if
H1 is true, we can use O to obtain Z with the correct
dimension: Z ∼N ðV−1

2Oðμþ FδÞ; IÞ. Therefore, Eq. (1)
is rewritten as:

−2 ln λ ≈ ZTV
1
2OT ½F−1 −H�OV

1
2Z: ð13Þ

According to Eq. (4) we have:

μα ¼
X
i

1

2

∂
2vi

∂θ2Mþ1

σ22
vi

∂vi
∂θα

; 1 ≤ α ≤ M þ 1;

F αβ ¼
8<
:

−
P

i
1
2

∂
2vi

∂θ2Mþ1

σ2Mþ1

vi
∂
2vi

∂θα∂θβ
þP

i
1
vi



1þ 1

2
∂
2vi

∂θ2Mþ1

σ2Mþ1

vi

�
∂vi
∂θα

∂vi
∂θβ

; α ¼ 1 or β ¼ 1;

−
P

i
1
2

∂
2vi

∂θ2Mþ1

σ2Mþ1

vi
∂
2vi

∂θα∂θβ
þP

i
1
vi



1þ 1

2
∂
2vi

∂θ2Mþ1

σ2Mþ1

vi

�
∂vi
∂θα

∂vi
∂θβ

þ δαβ
1
σ2α
; 2 ≤ α; β ≤ M þ 1;

Vαβ ¼
X
ijk

�
1

vi
δij þ

1

2

∂
2vi

∂θ2Mþ1

σ2Mþ1

v2i
δij þ

∂vi
∂θk

∂vj
∂θk

σ2k
vivj

−
1

4

∂
2vi

∂θ2Mþ1

∂
2vj

∂θ2Mþ1

σ4Mþ1

vivj

�
∂vi
∂θα

∂vj
∂θβ

; 1 ≤ α; β ≤ M; ð14Þ

where the only nonvanishing second derivative ∂
2vi

∂θ2Mþ1

is

considered, instead of summing over all the nuisance
parameters given in Eq. (4). This case is more complicate
than the case where only the uncertainties from neutrino
fluxes are considered.
Through the numerical computations discussed in

Sec. II B, the test statistic still follows the asymptotic
1
2
½δð0Þ þ χ21� distribution if H0 is real, while the distribution

of q0 is distorted by the variation of sin2 θW if H1 is real.
When H1 is real, the asymptotic-analytic method reveals
that there is only one nonzero diagonal element in Λ with
its value at 1, which means that there is only one χ2 variate,
and the coefficient is not unity. Thus, the distribution
of q0 can be expressed as q0 ∼ aχ21ðϕÞ. In Appendix C,
Monte Carlo realizations and the asymptotic-analytic
method for some benchmark points are shown. It should
be noted that although there may be slight deviations
between our results and the Monte Carlo realizations,
our method remains effective.

Similar to the scenario we present in Sec. III, quasi-
Asimov dataset method is utilized to obtain the discov-
ery limit cross section. As shown in the left panel of
Fig. 4, the uncertainty of sin2 θW significantly affect the
discovery limit. It is evident that a greater uncertainty
leads to a larger σDL at the same exposure. However, as
the exposure increases, these curves converge to the
same systematic limit. Note that we only consider the 8B
neutrino as depicted in Fig. 3, for the purpose of
comparison. Moving to the right panel of Fig. 4, the
neutrino fog considering the uncertainty of sin2 θW is
presented. One can see that the uncertainty of sin2 θW
remarkably modifies the neutrino fog shown in Fig. 1
over the low mass range (mχ ≲ 1 GeV), while the region
over the higher mass range remains unchanged. This
fact confirms the result in Ref. [14]. The neutrino floor
is elevated when compared to the neutrino floor without
considering the uncertainty of sin2 θW , thereby demon-
strating the consistency of the new definition of the
neutrino floor.
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B. Astrophysical uncertainty

As elaborated in Sec. II, a quandary regarding the
Asimov dataset still persists. In the context of the signal
discovery, when some extra nuisance parameters are only
implicated in si, the zero signal strength θ01 ¼ 0 forces the

MLEs for Lðθ01; ˆ̂θ2;…; ˆ̂θM;
ˆ̂θMþ1Þ to be indistinguishable

from the scenario where the extraneous parameters are
absent. Here, an extra nuisance parameter θMþ1 is only
involved in the signal, i.e., si ¼ θ1siðθMþ1Þ. This outcome
is contrary to our expectations, and fortunately, our
asymptotic-analytic method is adept at resolving this
predicament.
For the sake of convenience, we shall confine our

attention to the velocity of the local standard of rest
(LSR) v0 and its uncertainty as the extra nuisance param-
eter. According to the previous investigation [10], we
simply surmise that v0 is subject to a normal distribution,
with a mean of 220 km=s and a standard deviation of
50 km=s. Analogous to our handling of neutrino fluxes, the
velocity is scaled to unity, and its standard deviation is
21.2%. Denoted by θMþ1 as in Sec. IVA, this nuisance
parameter is distinguished from θj ð2 ≤ j ≤ MÞ, which

pertains to the neutrino flux. In this case, viðθÞ ¼
θ1siðθMþ1Þ þ

P
2≤j≤M θjb

j
i no longer suffices the simple

linear form as θMþ1 modifies the shape of WIMP spectrum.
Consequently, we must reexamine Eqs. (1) and (4) to elicit
the asymptotic distribution of the test statistic. In this case,
V and F has the same dimension of ðM þ 1Þ × ðM þ 1Þ,
which can be directly computed by Eq. (14) where the
dimension of V should be changed into ðMþ1Þ×ðMþ1Þ.
As the discussion in Sec. II B, the background-only

hypothesis H0 corresponds to θ0∶ θ01 ¼ 0, θ0j ¼ 1ð2 ≤
j ≤ M þ 1Þ, while H1 corresponds to θ1∶ θ1j ¼ 1ð1 ≤ j ≤
M þ 1Þ. Comparatively, utilization of the Asimov dataset
reveals that the discovery limits, with or without consid-
eration of v0, coincide, a result which is at odds with the
findings in the existing literature [10].
Instead of utilizing the laborious Monte Carlo realiza-

tions, our asymptotic-analytic method is available to
address this case. Note that we adhere to the 90% CL
for the discovery limit to illustrate the feature of our

method. In this instance, as ˆ̂θMþ1 has been firmly estab-
lished to 1, we are in fact in pursuit of the MLE for

Lð0; ˆ̂θ2;…; ˆ̂θM; 1Þwhich corresponds to the case of the two
parameters of interest. When H0 is real, the computational
outcome manifests that the test statistic still follows the
asymptotic 1

2
½δð0Þ þ χ21� distribution. While for H1 is real,

the test statistic is asymptotic distributed to the a1χ21ðϕ1Þ þ
a2χ21ðϕ2Þ distribution, where ai and ϕi (i ¼ 1; 2) can be
obtained from the numerical solution as presented in
Sec. II B. Numerically, the asymptotic distribution of q0
can be obtained by performing the inverse Fourier trans-
formation on its characteristic function. To show our
method’s effectiveness, we compare the test statistic’s
distribution from Monte Carlo realization and the asymp-
totic-analytic method for some benchmark points, which
can be found in Appendix C.
Nevertheless, it is worth noting that for extremely large

exposures, the numerical solution becomes unreliable,
since the matrices V and F are no longer positive definite.
Consequently, it is not possible to accurately present
the neutrino fog considering the uncertainty of θ2, while

FIG. 4. The sensitivity curves about the evolution of σDL with respect to an exposure for mχ ¼ 5.5 GeV, involving the uncertainty of
sin2 θW (left). Lines in different colors represent the sensitivity curve with different uncertainties of sin2 θW . The uncertainty of the 8B
neutrino flux is set to 2%. The neutrino fog for the xenon experiment is presented in the cyan contour map,involving the uncertainty of
sin2 θW (right). The solid line represents the neutrino floor for n ¼ 2, while the dashed black line represents the neutrino floor without
considering the uncertainty of sin2 θW .
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discovery limits for two benchmark scenarios are presented
instead. Note that the covariance matrixV should be always
positive definite, and a positive definite F guarantees the
stationary point is the minimum. As illustrated in Fig. 5,
we implement the asymptotic-analytic method to calculate
the discovery limit that pertains to the nuisance parameter
from v0 on the WIMP parameter space. Additionally,
we have provided the outcome that involves only the
nuisance parameters from neutrino fluxes for the purpose
of comparison. In the low mass region, mχ ≲ 10 GeV,
we adopt the optimal threshold of 0.1 eV as previously
utilized, since it facilitates the mapping of the limit down
to mχ ¼ 0.1 GeV. Besides, we choose the exposure of
1 ton × years and 10 ton × years. Generally speaking,
introducing an extra nuisance parameter should raise the
limit, as the region aroundmχ ≈ 1 GeV in Fig. 5. However,
certain interesting things have been observed around the
0.5 GeV and 6 GeV, where the limits involving an extra
parameter become lower on the contrary. We demonstrate
the feature with MC realizations which can be found in
Appendix C. The similar phenomenon has been discussed
in Ref. [10], while it still needs further investigation.
For other regions, no significant changes on the limit are
observed, while the distribution of the test statistic has
been distorted. For further information, please refer to
Appendix C.
For the larger mass range mχ ≳ 10 GeV, we adopt a

more realistic threshold at 4 keV, while it needs larger
exposures to gain enough statistics. So we choose the
exposure of 103 ton × years and 104 ton × years so that
events from atmosphere and DSNB are sufficient for
CEvNS in the same nuclear recoil energy region stand
out as clear signals. It can be seen from Fig. 5 that the

introduction of v0 significantly raises up the limit around
mχ ≈ 10 GeV, while the limit for mχ ≳ 30 GeV. This fact
indicates that the effect of the astrophysical uncertainties
cannot be ignored especially when we analyze the neutrino
floor for the WIMP mass around 10 GeV.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the asymptotic
behavior of the profile binned likelihood ratio test
statistic, in which the likelihood is constructed from
different variables and pull terms, drawing inspiration
from the seminal works of Wilk and Ward [28,29]. Based
on our findings, we have proposed two new methods:
asymptotic-analytic method, which can provide analytical
results for large statistics, handle situations involving
some specific nuisance parameters and affords a way to
determine the most relevant parameters in the statistical
analysis; and the quasi-Asimov dataset method, which is
similar to but faster than Asimov dataset. We make a
comparison on the computational speed, accuracy of
results and extensibility for four methods in Table. I.
Our proposed methods are not only applicable for the
neutrino floor and fog, but also feasible for other studies
utilizing the Asimov dataset in experimental analysis and
phenomenology. Moreover, the current methodology in
statistics will pave the way to scrutinize the origin of tiny
discrepancy in a comparison of theoretical predictions
and experimental data from the DM experiments where
new physics might be hidden [58].
We have employed our newly proposed methods on the

neutrino floor and fog. By utilizing Quasi-Asimov dataset,
we have achieved near-perfect reproduction of the neutrino

FIG. 5. Discovery limits with and without considering the extra parameter from the velocity of LSR, which are displayed in colored
and black lines. The left panel corresponds to the case where the threshold equals to 0.1 eV with two different exposures: 1 ton × years
and 10 ton × years. The right panel corresponds to the case where the threshold is 4 keV with two different exposures: 103 ton × years
and 104 ton × years. The solid and dashed lines stand for lower and higher exposures, respectively. The latest excluded limits are
also shown.
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floor and fog [25,26] with a computational speed that is
two orders of magnitude faster and improved stability.
Likewise, we also consider the uncertainty of the weak
mixing angle in the context of the neutrino fog, and
verify the consistency of the new definition of the
neutrino floor. On the other hand, the asymptotic-analytic
method provides an analytical formula to quantitatively
explain the evolution of the discovery limit cross section
with exposure, and it offers a solution for cases involving
astrophysical uncertainties that cannot be dealt with by
Asimov dataset. Additionally, our methods are capable
and effective when considering more degrees of freedom
in the context of the neutrino floor, such as the detector
efficiency, the resolution and new physics beyond the
standard model. Furthermore, MC pseudoexperiments can
be boosted by only considering the most relevant
parameters, which can be obtained by the asymptotic-
analytic method, from neutrino fluxes.
Our method with the decent derivation with an

approximation to speed up the computation has worked
very well in the context of the neutrino floor and fog, as
demonstrated by the aforementioned numerical calcula-
tions. Nevertheless, there are a few drawbacks to our
proposed methods that we should give warnings and
address carefully. First, the asymptotic-analytic method
may be out of service when the sample size is too small.
However, quasi-Asimov dataset method remains effective
in obtaining the median of the test statistic, as the
Asimov dataset does. Second, the asymptotic-analytic
method requires small uncertainties; otherwise, higher-
order corrections are necessary, which can complicate
matters.
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APPENDIX A: THE ASYMPTOTIC FORMULA
OF THE TEST STATISTIC

Assuming the log likelihood function lðθÞ can be
approximated as the quadratic function around θ̂ or θ0 in
the limit of large samples, lðθ�Þ is expanded about θ̂:

lðθ�Þ ≈ lðθ̂Þ þ l̇ðθ̂Þðθ� − θ̂Þ þ 1

2
ðθ�n − θ̂ÞT ̈lðθ̂Þðθ� − θ̂Þ

þO
�

1ffiffiffiffi
N

p
�
;

where Eð̈lðθ̂ÞÞ is the expectation of the second derivative of
the log likelihood function at θ̂, and N represents the sample
size and the last term can be safely neglected whenN is large
enough. As a rule of thumb, the total event numberN should
beOð100Þ. Otherwise, the approximation here might be out
of service. Assuming that θ̂ is close enough to θ0 for the large
sample case, we have ̈lðθ̂Þ ≈ ̈lðθ0Þ. According to the
Lyapunov CLT, ̈lðθ0Þ comprising numerous variate can
asymptotically approximate to its expectation Eð̈lðθ0ÞÞ,
i.e., ̈lðθ0Þ ≈ Eð̈lðθ0ÞÞ. Thus, with l̇ðθ̂Þ ¼ 0 from the MLE
condition and defining F ¼ −Eð̈lðθ0ÞÞ, we have:

−2 ln λ ¼ 2ðlðθ�Þ − lðθ̂ÞÞ ≈ ðθ� − θ̂ÞTF ðθ� − θ̂Þ:
Thanks to the Lyapunov CLT, we can infer that the first

derivative of the log likelihood function at θ0, i.e., l̇ðθ0Þ
follows a multivariate normal distribution, denoted by
N ðμ;VÞ. Here, μ ¼ Eðl̇ðθ0ÞÞ represents the expectation
vector, and V ¼ varðl̇ðθ0ÞÞ is the variance matrix. Since
l̇ðθ0Þ ∼N ðμ;VÞ, we better relate ðθ� − θ̂Þ with l̇ðθ0Þ to
obtain the asymptotic distribution. Expand l̇ðθ�Þ about θ̂:

l̇ðθ�Þ ≈ l̇ðθ̂Þ þ Eð̈lðθ0ÞÞðθ� − θ̂Þ ≈ −F ðθ� − θ̂Þ: ðA1Þ
Besides, denote the deviation from θ0 to θ0 as δ ¼ θ0 − θ0,
and expand l̇ðθ�Þ about θ0:

l̇ðθ�Þ ≈ l̇ðθ0Þ − F ðθ� − θ0Þ þ Fδ: ðA2Þ
Let

F ≡
�

G1ðr × rÞ G2ðr × ðk − rÞÞ
GT

2 ððk − rÞ × rÞ G3ððk − rÞ × ðk − rÞÞ

�
;

H≡
�
0 0

0 G−1
3

�
:

where G1, G2, G3 are the block matrices inside F , and r, k
represent their dimensions. Because the last k-r compo-
nents of l̇ðθ�Þ and the first r components of ðθ� − θ0Þ are
zero, multiplying H on the left side of Eq. (A2) we have
Hl̇ðθ�Þ ¼ 0 and then:

TABLE I. Comparison on the computational speed, accuracy of results and extensibility for four methods.

Speed Accuracy Extensible References

Monte Carlo simulation ∼1 day ✓ ✓ [7,9]
Asimov dataset ∼30 minutes ✓ sometimes × [14,19,25]
Asymptotic-analytic method ∼10 seconds ✓ for big statistics ✓ This work
Quasi-Asimov dataset ∼10 seconds ✓ sometimes × This work
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0 ≈Hl̇ðθ0Þ − ðθ� − θ0Þ þHFδ: ðA3Þ

Substitute it into Eq. (A2) and return to Eq. (A1), we have:

θ� − θ̂ ≈ −F−1l̇ðθ�Þ ≈ −ðF−1 −HÞðl̇ðθ0Þ þ FδÞ: ðA4Þ

Thus, with HF−1H ¼ H, we finally obtain:

−2 ln λ ≈ ðl̇ðθ0Þ þ FδÞT ½F−1 −H�ðl̇ðθ0Þ þ FδÞ: ðA5Þ

For convenience, let Z ¼ V−1
2ðl̇ðθ0Þ þ FδÞ ∼N ðV−1

2ðμþ
FδÞ; IÞ, we obtain Eq. (1):

−2 ln λ ≈ ZTV
1
2½F−1 −H�V1

2Z:

APPENDIX B: EVALUATING QUANTITIES
IN THE ASYMPTOTIC-ANALYTIC METHOD

WITH AN EXAMPLE

From Eq. (3), we obtain the log likelihood and its
derivations:

lðθÞ ¼ −
XN
i¼1

½vi − ni ln vi� −
XM
j¼1

ðθj − θ0jÞ2
2σ2j

þ const:;

l̇ðθÞα ¼
(P

N
i¼1½nivi − 1� ∂vi

∂θα
; α ¼ 1;P

N
i¼1½nivi − 1� ∂vi

∂θα
− θα−θ0α

σ2α
; 2 ≤ α ≤ M;

̈lðθÞαβ ¼
(P

N
i¼1½nivi − 1� ∂

2vi
∂θα∂θβ

−
P

N
i¼1

ni
v2i

∂vi
∂θα

∂vi
∂θβ

; α ¼ 1 or β ¼ 1;P
N
i¼1½nivi − 1� ∂

2vi
∂θα∂θβ

−
P

N
i¼1

ni
v2i

∂vi
∂θα

∂vi
∂θβ

− δαβ
1
σ2α
; 2 ≤ α; β ≤ M:

Prior to calculating the values of μ, V, and F , one can easily compute the EðniÞ as follows:

EðniÞ ¼
Y
α

Z
α
dθαN ðθα; σαÞ

X
j

PðnijviðθÞÞ ¼
Y
α

Z
α
dθαN ðθα; σαÞviðθÞ ¼ viðθÞ þ

X
α

1

2

∂
2vi
∂θ2α

σ2α;

where only the term with Oðσ2jÞ is taken into consideration, assuming that σj is sufficiently small. However, one can opt
for more perturbation orders to achieve a more precise outcome. Analogously, we possess: EðninjÞ ¼ vivj þP

α
1
2

∂
2vivjþδijvj

∂θ2α
σ2α þ δijvj.

Then we acquire the analytical results of μ, V and F in Eq. (4). Especially, in our neutrino floor case

viðθÞ ¼ θ1si þ
P

j≥2 θjb
j
i , and we have:

μα ¼ 0; 1 ≤ α ≤ M;

F αβ ¼
(P

i
1
vi

∂vi
∂θα

∂vi
∂θβ

; α ¼ 1 or β ¼ 1;P
i
1
vi

∂vi
∂θα

∂vi
∂θβ

þ δαβ
1
σ2α
; 2 ≤ α; β ≤ M;

Vαβ ¼
X
i

1

vi

∂vi
∂θα

∂vi
∂θβ

þ
X
ijk

∂vi
∂θk

∂vj
∂θk

σ2k
vivj

∂vi
∂θα

∂vj
∂θβ

; 1 ≤ α; β ≤ M: ðB1Þ

When H0 is real: θ0 ¼ θ0, the numerical solution tell us
that there is only one non-zero diagonal element in Λ with
its value at 1. Therefore, the statistic q0 ¼ −2 ln λ ≈ a1Y2

1;
a1 ¼ 1; Y1 ∼N ð0; 1Þ. Furthermore, the signal strength θ1
should be positive in this situation, which leads to the
fact that q0 asymptotically follows the 1

2
½δð0Þ þ χ21� dis-

tribution instead of χ21. It can be explained by the Eq. (A4)
for δ ¼ 0:

θ� − θ̂ ≈ −ðF−1 −HÞl̇ðθ0Þ; ðB2Þ

where every component of θ� − θ̂ is a normal variate. With
the positive condition for θ1, all negative values of θ�1 − θ̂1
are forced to be zero. Consequently, the distribution of the
statistic is altered to 1

2
½δð0Þ þ χ21�.

When H1 is real: θ0 ¼ θ1, similarly, the numerical
solution reveals that there is only one non-zero dia-
gonal element in Λ with value of 1. Thus, the statistic
q0 ≈ a1Y2

1; a1 ¼ 1; Y1 ∼N ð ffiffiffiffi
ϕ

p
; 1Þ, where ϕ is:

ϕ ¼ δTF ½F−1 −H�Fδ: ðB3Þ
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It can be directly obtained from Eq. (A5), where l̇ðθ0Þ is
neglected since its mean value μ is zero in this case. Making
use of the only nonvanishing component in δ is δ1 ¼ 1, we
perform a more useful form of ϕ:

ϕ ¼ δ1ðG1 −G2G−1
3 GT

2 Þδ1; ðB4Þ

where the dimension of G1 is ð1 × 1Þ.

APPENDIX C: COMPARED WITH RESULTS
FROM MC METHOD

As demonstrated in Fig. 6, two newmethods in this study
are used to reproduce the neutrino floor, and the results
closely match the neutrino floor from APPEC report for
mχ ≳ 6 GeV. However, there are some discrepancies
between our results and APPEC results, which could be
caused by the differences in the threshold settings, neutrino
fluxes, and uncertainties. To check this, we select some
benchmark points along the neutrino floor and obtain the
distribution of the test statistic using MC pseudoexperi-
ments, as shown in Fig. 7. Furthermore, as depicted in
Fig. 6, the neutrino floor from the asymptotic-analytic
method is slightly higher than that from the quasi-Asimov
dataset method. This is because the sample size is not large
enough to invalidate the approximation utilized in our
deduction in Sec. II.
In order to validate our methods’ effectiveness, we

reproduce the neutrino floor from APPEC report [42]
based on MC method. Since the neutrino floor defined
by discovery limits depends on the detector configuration,
we need to combine several neutrino spectra for different
setup to reach the final neutrino floor. The detector thresh-
old can be chosen to be realistic or ideal, while its
multiplication with the exposure is assumed to contribute
to about 500 neutrino events [7]. As shown in Fig. 6, two
new methods are utilized to reproduced the neutrino floor
and the results closely match the neutrino floor from
APPEC report for mχ ≳ 6 GeV. However, there are some
tiny discrepancies between our results and APPEC’s result,
which might be caused by the differences in the settings on
the detector thresholds, neutrino fluxes and their uncer-
tainties. For mχ ≲ 6 GeV, since the exposure corresponds
to the threshold we choose is not large enough (only
0.018 ton × years), the distribution of the test statistic
somehow deviates from the non-central chi-square distri-
bution. To check this, we have chosen some benchmark
points along the neutrino floor and obtained the distribution
of the test statistic using MC pseudoexperiments, as shown
in Fig. 7. Besides, it can be seen from Fig. 6 that the
neutrino floor from the asymptotic-analytic method is
slightly higher than that from the quasi-Asimov dataset
method. That is because the sample size is not large enough

so that the approximation utilized in our deduction in
Sec. II becomes invalid.
In order to validate the effectiveness of our method

as discussed in Sec. IVA, MC pseudoexperiments are
presented here. Note that we fix the exposure at
10 ton × years, and choose the appropriate cross section
to demonstrate our results. As shown in the left panel of
Fig. 8, we take three benchmark points of interest and run
10000 MC pseudoexperiments for each point. It can
be seen from the left panel of Fig. 8 that there are some
sizable discrepancies between the result ofmχ ¼ 0.51 GeV
and the corresponding prediction. For mχ ¼ 0.1 GeV
and 5.5 GeV, our predictions are in agreement of MC
pseudoexperiments.
We also use MC realizations to confirm our statement in

Sec. IV B. Note that we use the technique described in
Sec. II B to save computational expense by only taking
more relevant parameters as inputs. As shown in Fig. 8, we
take four benchmark points of interest and run 10000 MC
pseudoexperiments for each point. More details can be
found in our public codes [43]. One can see that the results
from the asymptotic-analytic method are consistent with
those from MC realizations, despite of tiny discrepancies.
For mχ ¼ 10 GeV, we might need higher-order corrections
since the standard deviation of 21.2% is relatively large in
this case.

FIG. 6. Neutrino floors defined by discovery limits in the DM
parameter space. The red and black solid lines stand for the
results from the asymptotic-analytic and quasi-Asimov dataset
methods, respectively. The black dashed line is taken from
APPEC report. The color-coded neutrino sources, causing
primary effects on the neutrino floor over the WIMP mass range,
is shown above the figure.
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