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We extend our recently proposed formalism for calculating anomalies of global and gauge symmetries
using the covariant derivative expansion to include a general class of operators that can appear in relativistic
effective field theories (EFTs). This allows us to prove that EFT operators involving general scalar, vector,
and tensor couplings to fermion bilinears only give rise to irrelevant anomalies, which can be removed by
an appropriate choice of counterterms, thereby confirming the absence of new constraints from anomaly
cancellation on the Standard Model EFT.
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I. INTRODUCTION

Anomalies provide critical consistency conditions on
gauge theories such as the Standard Model; see, e.g.,
Refs. [1,2] for reviews. Anomaly cancellation in the
Standard Model itself is, of course, well understood.
However, anomaly cancellation for effective field theories
(EFTs) with higher-dimensional operators is a more subtle
issue, which has received renewed interest recently in the
context of the Standard Model effective field theory
(SMEFT) [3,4] (see also Refs. [5–10] for earlier studies).
As shown in these papers, demonstrating anomaly can-
cellation for SMEFT involves carefully accounting for the
interplay of various interactions encoded in the higher-
dimensional operators.
In this paper, we generalize the method developed in

Ref. [11] for computing anomalies with the covariant
derivative expansion (CDE) [12–16] to the case of EFTs.
This will allow us to confirm that the anomaly cancellation
condition is unchanged by the presence of a general class
of higher-dimensional operators. More precisely, contribu-
tions to anomalies from higher-dimensional operators are in
the form of the gauge variation of local operators. These are
known as irrelevant anomalies and can be removed by the

renormalization procedure with appropriate counterterms
(see, e.g., Ref. [17] for a recent systematic study of such
counterterms focused on renormalizable theories). In con-
trast, relevant anomalies are IR effects and are not affected
by higher-dimensional operators. We will demonstrate this
explicitly with a CDE calculation.
To see that anomalies a priori may depend on the

detailed form of the interactions in the theory, let us briefly
review its definition. We extract anomalies from the gauge
variation of the bosonic effective action W½Gμ�, defined as

eiW½Gμ� ≡
Z

DχDχ†eiS½χ;χ†;Gμ�: ð1:1Þ

Even when the classical action is gauge invariant,
S½χα; χ†α; Gμ

α� ¼ S½χ; χ†; Gμ� (where subscript α denotes the
gauge-transformed quantity), the bosonic effective action
after integrating out the fermions may not be:

W½Gμ
α� ¼? W½Gμ�: ð1:2Þ

This possible discrepancy is due to the path integral
measure DχDχ†:

eiW½G
μ
α� ¼

Z
DχDχ†eiS½χ;χ†;G

μ
α� ¼

Z
DχαDχ†αeiS½χα;χ

†
α;G

μ
α�

¼
Z

J −1
α DχDχ†eiS½χ;χ†;Gμ� ¼ eiW½Gμ�hJ −1

α iG; ð1:3Þ

or equivalently

W½Gμ
α�−W½Gμ� ¼ −i log hJ −1

α iG ¼A½α� þOðα2Þ: ð1:4Þ
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We see that the anomaly functional A½α� (which we will
often just refer to as the anomaly), as defined by the first-
order gauge variation of the bosonic effective action, is
related to the expectation value of the Jacobian factor
hJ −1

α iG. As emphasized by the subscript G, this expect-
ation value may a priori depend on the details of the theory,
namely what interactions it contains (just as expectation
values of generic operators would). So one needs a general
formalism to calculate the anomalies for theories with
generic interactions.
In Ref. [11], we focused on the case of chiral fermions

minimally coupled to gauge fields and introduced a
regularization prescription—a generalized version of the
classic Fujikawa’s method [18–21]—to efficiently evaluate
the anomaly in d ¼ 4 spacetime dimensions using CDE.
This approach leads to unambiguous evaluation results, in
the form of a master formula for the anomaly functional
A½α� that integrates various known results about anomalies.
In this paper, we extend this formalism to include a more
general set of interactions in Lorentz-invariant EFTs such
as SMEFT.
The rest of this paper is organized as follows. In Sec. II

we present our parametrization of a general class of EFT
operators, involving scalar, vector, and tensor couplings to
fermion bilinears. In Sec. III we generalize the formalism in
Ref. [11] and explain how to calculate the anomaly in such
EFTs with CDE.We complete the detailed evaluation of the
anomaly in Sec. IV and show that extra contributions from
the interactions beyond minimal coupling are all irrelevant
anomalies. Finally, in Sec. V we conclude and discuss some
future directions.

II. PARAMETRIZATION OF A GENERAL EFT

We are interested in anomalies of both gauge and global
symmetries in a general Lorentz-invariant EFT. As in
Ref. [11], we introduce auxiliary gauge fields for all the
global symmetries of interest. Putting them together with
the physical gauge fields, we denote the whole collection
by Gμ, which can be a sum over multiple (Abelian and/or
non-Abelian) group sectors:

Gμ ≡
X
a

Ga
μta: ð2:1Þ

The (Hermitian) covariant derivative is

Pμ ≡ iDμ ¼ i∂μ þGμ; ð2:2Þ

and the gauge field strength is given by

Fμν ¼
X
a

Fa
μνta ¼ −i½Pμ; Pν�

¼ ð∂μGνÞ − ð∂νGμÞ − i½Gμ; Gν�: ð2:3Þ

We consider a general theory of n left-handedWeyl fermions
χ1;…; χn, with each χi transforming in an irreducible
representation of the (global and gauge) symmetries. The
theory may also contain an arbitrary number of scalar fields,
collectively denoted as ϕ. The EFT Lagrangian we consider
has the following general form:

L ¼ LG;ϕ þ
Xn
i¼1

χ†i σ̄
μPμχi

þ
Xn
i;j¼1

�
χ†i σ̄μV

μ
ijχj þ

h
χiðSij þ iσμσ̄νT

μν
ij Þχj þH:c:

i�
:

ð2:4Þ

Here LG;ϕ collects the interactions that do not involve
fermions. The rest of the first line encodes the minimal
couplings between the fermions χi and gauge fields Gμ. In
the second line, we parametrize an extended set of inter-
actions with fermion bilinears, categorizing them into scalar,
vector, and tensor interactions,

χiSijχj; χ†i σ̄μV
μ
ijχj; χiiσμσ̄νT

μν
ij χj; ð2:5Þ

where Sij½G;ϕ�, Vμ
ij½G;ϕ�, and Tμν

ij ½G;ϕ� are functions
made of Gμ, ϕ, and their derivatives and can have
arbitrarily high operator dimensions. Note that due to
the Clifford algebra σμσ̄ν þ σνσ̄μ ¼ 2ημν1, the μ↔ν
symmetric components of Tμν

ij can be absorbed into the
scalar interactions Sij, so we define the tensor interactions
to be antisymmetric, Tνμ

ij ¼ −Tμν
ij .

In the equations above, we have been using the standard
two-component notation and have suppressed the spinor
indices. Taking the scalar interactions, for example, if we
write out the spinor indices and put the expression into
matrix form, we have

χiχj¼ðχiÞαðχjÞα¼ðχiÞβð−ϵβαÞðχjÞα→ χTi ð−iσ2Þχj; ð2:6Þ

which is symmetric under i ↔ j. Absorbing the i, j indices
also into matrix form, we can write

χiSijχj ⟶ χTð−iσ2SÞχ; ð2:7aÞ

χ†i σ̄μV
μ
ijχj ⟶ χ†ðσ̄μVμÞχ; ð2:7bÞ

χiiσμσ̄νT
μν
ij χj ⟶ χTð−iσ2iσμσ̄νTμνÞχ: ð2:7cÞ

We see that without loss of generality we can require

ð−iσ2SÞT ¼ −ð−iσ2SÞ⇒ ST ¼ S; ð2:8aÞ
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ð−iσ2iσμσ̄νTμνÞT ¼ −ð−iσ2iσμσ̄νTμνÞ
⇒ TT

μν ¼ Tνμ ¼ −Tμν: ð2:8bÞ

Furthermore, Hermiticity of the Lagrangian in Eq. (2.4)
requires V†

μ ¼ Vμ.
A general symmetry transformation of the fermions can

be parametrized as

χ ⟶ χα ≡Uαχ ¼ eiαχ; ð2:9Þ

where, similar to the gauge fields in Eq. (2.1), α≡ αata is a
sum over all symmetry group generators (across multiple
sectors). For the Lagrangian in Eq. (2.4) to respect the
(global and gauge) symmetries, we need the following
transformation properties of various quantities:

Pμ ⟶ Pμ
α ¼ UαPμU†

α; δαPμ ¼ δαGμ ¼ i½α; Pμ�; ð2:10aÞ

Vμ ⟶ Vμ
α ¼ UαVμU†

α; δαVμ ¼ i½α; Vμ�; ð2:10bÞ

S ⟶ Sα ¼ U�αSU
†
α; δαS ¼ −iðαTSþ SαÞ; ð2:10cÞ

Tμν ⟶ Tμν
α ¼ U�αTμνU†

α; δαTμν ¼ −iðαTTμν þ TμναÞ; ð2:10dÞ

LG;ϕ ⟶ LG;ϕ½Gα;ϕα� ¼ LG;ϕ½G;ϕ�; δαLG;ϕ ¼ 0; ð2:10eÞ

where δα denotes the first-order (in α) gauge variation, e.g.,
δαPμ ≡ ðPμ

α − PμÞjOðαÞ.
The Lagrangian in Eq. (2.4) incorporates the most

general scalar, vector, and tensor couplings to fermion
bilinears. For example, in SMEFT, the vector interactions
Vμ
ij cover current-current operators such as1

ðH†iD
↔

μHÞðψ̄γμψÞ; jHj2ðH†i D
↔

μHÞðψ̄γμψÞ;…; ð2:11Þ

whereH is the Higgs doublet and ψ may represent any of the
SM fermions ψ ∈ fq; u; d;l; eg, written in four-component
notation here. The scalar interactions Sij cover Yukawa-type
operators such as

leH; jHj2leH;…: ð2:12Þ

The tensor interactions Tμν
ij cover dipole operators such as

lσμνeBμνH; jHj2lσμνeBμνH;…; ð2:13Þ

where σμν ≡ i
2
½γμ; γν�. At dimension six, these include all but

the four-fermion operators in the Warsaw basis [22]. In fact,
all operators in SMEFT involving up to two powers of
fermions and no derivatives acting on them, up to arbitrarily

high dimensions, are captured by Eq. (2.4). Furthermore, as
argued in Refs. [4,9], four-fermion operators can be captured
by introducing auxiliary fields, and we believe this argument
may be extended to operators with six and more fermions by
perturbatively including interactions among such auxiliary
fields. Therefore, our calculation in what follows should
apply quite generally to all higher-dimensional SMEFT (as
well as other relativistic EFT) operators2 with no derivatives
acting on the fermions.

III. REGULARIZING AND EVALUATING
THE ANOMALY WITH CDE

To facilitate the calculation of anomalies, we first recast
the fermionic interactions in Eq. (2.4) into the following
matrix form:

L ¼ LG;ϕ þ
1

2

�
χ† χTð−iσ2Þ

�
P̂

�
χ

iσ2χ�

�
; ð3:1Þ

where

P̂≡
 
σ̄μði∂μ þ Gμ þ VμÞ S† − iσ̄νσμT†

μν

Sþ iσμσ̄νTμν σμði∂μ −GT
μ − VT

μÞ

!
: ð3:2Þ

For the Lagrangian to be real and symmetry preserving, the
matrix P̂ needs to be Hermitian, P̂† ¼ P̂, and transform as

1While our example operators here are SMEFT operators
written in the electroweak unbroken phase with the Higgs doublet
H, our formalism applies equally well to effective operators
written in the spontaneously broken phase, with an explicit
vacuum expectation value v, the physical Higgs h, and the
Goldstone fields. It is a matter of rewriting the effective operators
in the Lagrangian and the local counterterms accordingly. The
conclusion that higher-dimensional operators yield irrelevant
anomalies still holds.

2Throughout this paper we use the term “higher-dimensional
operators” to emphasize the relevance of our analysis for the
infinite series of EFToperators, though technically the operators
considered here include also renormalizable ones such as
dimension-four Yukawa interactions [as part of S—see
Eq. (2.12)].
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P̂ ⟶ P̂α ¼ eiαP̂e−iα; δαP̂ ¼ i½α; P̂� with

α≡
�
α 0

0 −αT

�
: ð3:3Þ

Clearly, these properties of P̂ can be verified using its
explicit expression in Eq. (3.2) together with the trans-
formation properties given in Eq. (2.10).
As reviewed in Ref. [11] (see also Refs. [1,2]), anomalies

can be derived from the gauge variation of the bosonic
effective action obtained by integrating out the fermion
fields. In the present case, the bosonic effective action
depends on both gauge and scalar fields (i.e., we integrate
out the fermions in the path integral while treating all
bosonic fields as classical backgrounds). Formally, we have

eiW½G;ϕ� ¼
Z

DχDχ†eiS½χ;χ†;G;ϕ� ¼ eiSG;ϕðdet P̂Þ1=2: ð3:4Þ

Following Eq. (3.3), a gauge transformation yields

eiW½Gα;ϕα� ¼ eiSG;ϕðdet P̂αÞ1=2 ¼ eiSG;ϕ ½det ðeiαP̂e−iαÞ�1=2:
ð3:5Þ

As in Eq. (1.4), the anomaly functional (or simply the
anomaly) is defined by the first-order gauge variation of the
bosonic effective action:

A½α�≡ δαW½G;ϕ� ¼ ðW½Gα;ϕα� −W½G;ϕ�ÞjOðαÞ
≃ −

i
2
Tr log

�
1þ 1

P̂
ðiαP̂ − P̂iαÞ

	




OðαÞ

≃
1

2
Tr

�
1

P̂
ðαP̂ − P̂αÞ

	
: ð3:6Þ

As explained in detail in Ref. [11], we use the notation “≃”
to emphasize that the expressions are not exactly equal
unless they are regularized in the same way.
To proceed further, we need to introduce a regulator.

Following similar steps as in Sec. 3 of Ref. [11], we see that
in the present case, each term in the expansion is propor-
tional to

tr

 
σμ1 σ̄ν1 � � � σμn σ̄νn ·

· σ̄μ1σν1 � � � σ̄μnσνn

!

¼ tr

"
γμ1γν1 � � � γμnγνn

 
1−γ5
2

·

· 1þγ5
2

!#
: ð3:7Þ

We can therefore replace all the 2 × 2 Pauli matrices
by 4 × 4 gamma matrices while freely inserting chirality

projection factors 1∓γ5

2
þ β 1�γ5

2
, such that terms propor-

tional to β will hit the opposite chirality projection operator
when anticommuted to the right and vanish. To this end, let
us define

P̂β ≡
0
B@ i=∂þ =G

�
1−γ5
2
þ βG

1þγ5
2

�
þ =V

�
1−γ5
2
þ βV

1þγ5
2

�
S†
�
1þγ5
2
þ βS

1−γ5
2

�
þ σμνT†

μν

�
1þγ5
2
þ βT

1−γ5
2

�
S
�
1−γ5
2
þ βS

1þγ5
2

�
þ σμνTμν

�
1−γ5
2
þ βT

1þγ5
2

�
i=∂ − =GT

�
1þγ5
2
þ βG

1−γ5
2

�
− =VT

�
1þγ5
2
þ βV

1−γ5
2

�
1
CA: ð3:8Þ

We clarify that =GT and =VT are defined as

=GT ≡ γμGT
μ ; =VT ≡ γμVT

μ ; ð3:9Þ
in which the gamma matrices are not transposed. Here βG,
βS, βV , βT can all be different in principle, and we denote
them collectively as β in the subscript of P̂β (and also Aβ

below). Replacing P̂ → P̂β in Eq. (3.6), we see that similar
to Ref. [11], a damping factor fð−P̂2

β=Λ2Þ emerges as a
natural regulator, with any function fðuÞ that satisfies the
following conditions:

fð0Þ ¼ 1; fðþ∞Þ ¼ 0;

Z
∞

0

dufðuÞ well defined;

ð3:10aÞ

un
dnf
dun






u¼0
¼ un

dnf
dun






u→þ∞

¼ 0 for n ≥ 1: ð3:10bÞ

The regularized anomaly is then defined by

AΛ
β ½α�≡1

2
Tr

�
f

�
−
P̂2
β

Λ2

�
ˆ̂P
−1
β ðα ˆ̂Pβ−

ˆ̂PβαÞ
1−Γ5

2

	
; ð3:11Þ

where we have introduced the notation

Γ5≡
�
γ5 0

0 −γ5

�
satisfying P̂βΓ5¼−Γ5P̂β: ð3:12Þ

Now using the cyclicity of the trace and commuting P̂β

through fð− P̂2
β

Λ2Þ, we obtain

AΛ
β ½α� ¼

1

2
Tr
�
f
�
−
P̂2
β

Λ2

�
Γ5α

	
: ð3:13Þ

The renormalized anomaly is then defined by
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Aβ½α�≡ lim
Λ→∞
ðAΛ

β ½α� þ δα

Z
d4xLΛ

ctÞ; ð3:14Þ

where LΛ
ct is the local counterterm Lagrangian. SinceAΛ

β ½α�
may be quadratically divergent, we must include appro-
priate OðΛ2Þ counterterms to make the renormalized
anomaly finite in the limit Λ → ∞. Meanwhile, the finite
part of LΛ

ct defines the renormalization scheme. Generically

AΛ
β ½α� also containsOð1=ΛÞ terms, which we will suppress

throughout the paper since they vanish when Λ → ∞.
Equation (3.13) is a generalization of the minimal

coupling (mc) case formula in Ref. [11]. To see the
connection explicitly, we note that when S¼Vμ¼Tμν¼0,
P̂β becomes a block diagonal with the two blocks related by
charge conjugation3:

P̂mc
β ¼

 
P̂β 0

0 ¯̂Pβ

!
¼

0
B@ i=∂þ γμGμ

�
1−γ5
2
þ βG

1þγ5
2

�
0

0 −i=∂T − γμGT
μ

�
1þγ5
2
þ βG

1−γ5
2

�
1
CA; ð3:15Þ

where “charge conjugation” is the operation

¯̂Pβ ≡ γ0γ2P̂T
β γ

0γ2; ð3:16Þ

under which the gamma matrices transform as

γμ ¼ −γμ; σμν ¼ −σμν; γ5 ¼ γ5: ð3:17Þ

It satisfies the expected properties

¯̄A ¼ A; trðABC � � �Þ ¼ trð� � � C̄ B̄ ĀÞ: ð3:18Þ

Therefore, the two blocks in P̂mc
β contribute equally, and

Eq. (3.13) reduces to the result derived in Ref. [11]:

AΛ;mc
β ½α� ¼ Tr

�
f
�
−
P̂2
β

Λ2

�
γ5α

	
: ð3:19Þ

It is useful to introduce an extended version of this
charge conjugation operation. For a matrix A acting on the
field multiplet space, we define

Ā≡ γ0γ2
�
0 1

1 0

�
ATγ0γ2

�
0 1

1 0

�
: ð3:20Þ

Clearly, the properties in Eq. (3.18) hold for this extended
version as well, and one can also check that

¯̂Pβ ¼ P̂β; ᾱ ¼ −α; Γ5 ¼ −Γ5: ð3:21Þ

The CDE evaluation of the functional trace in Eq. (3.13)
proceeds in a similar way to the minimal coupling case
detailed in Ref. [11]. After performing the loop integrals,
we obtain

AΛ
β ½α� ¼

i
32π2

Z
d4x

�
−Λ2

�Z
∞

0

dufðuÞ
	
tr0

þ 1

6
ðtr1 þ tr2 þ tr3Þ

�
; ð3:22Þ

with a few (nonfunctional) traces over the field multiplet
and internal indices (denoted by lowercase “tr”):

tr0 ¼ trðP̂2
βΓ5αÞ; ð3:23aÞ

tr1 ¼ trðP̂4
βΓ5αÞ; ð3:23bÞ

tr2 ¼ −
1

2
tr½ðP̂2

βγ
μP̂βγμP̂β þ P̂βγ

μP̂βγμP̂
2
βÞΓ5α�; ð3:23cÞ

tr3 ¼ −
1

2
trðP̂βγ

μP̂2
βγμP̂βΓ5αÞ: ð3:23dÞ

These are generalizations of tr0–tr3 (unbolded) in Ref. [11],
although (obviously) their evaluation result is twice as
large, tri ¼ 2tri, in the minimal coupling case. It is also
useful to note that the two terms in tr2 are related by charge
conjugation and therefore equal,4 which simplifies its
calculation later on.

IV. HIGHER-DIMENSIONAL OPERATORS
YIELD IRRELEVANT ANOMALIES

In this section, we complete the evaluation of the
regularized anomaly AΛ

β ½α� by computing the traces in
Eq. (3.23). For general values of βG, βS, βV , βT , the
calculation is very tedious and does not give new insights.
The reason is that most β choices lead to results that do not
satisfy the Wess-Zumino consistency condition [23], which

3Note that ð∂μÞT ¼ ∂
 

μ ¼ −∂μ upon integration by parts.
4Note that we need to use cyclic permutation inside the internal

trace tr for this argument. See Appendix A of Ref. [11] for a
detailed discussion about the legitimacy of such operations,
which will be assumed throughout this paper.
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means they do not correspond to consistent regularization
schemes of the effective action and there is no meaningful
notion of relevant vs irrelevant anomalies. This point has
been discussed in detail in Ref. [11] in the minimal
coupling case where only βG is present; for example,
βG ¼ 0 is the only choice that satisfies the Wess-Zumino
consistency condition for the case of a nontrivial non-
Abelian anomaly. Motivated by the results in Ref. [11], we
will set all the β’s to zero in the present analysis:

βG ¼ βS ¼ βV ¼ βT ¼ 0: ð4:1Þ

With this regularization scheme choice, we will show that
all the additional contributions to the anomaly are irrel-
evant, namely

AΛ
β¼0½α� ¼ AΛ;mc

β¼0 ½α� − δα

Z
d4xΔLΛ

ct: ð4:2Þ

This means that by appropriately adjusting the local
counterterms (i.e., choosing the renormalization scheme),
the renormalized anomaly defined in Eq. (3.14) is the same
as that in the minimal coupling case

Aβ¼0½α� ¼ Amc
β¼0½α�: ð4:3Þ

Setting β ¼ 0 significantly simplifies the presentation;
we now have

P̂β¼0≡ i=∂þ
 

=Gþ=V S†þ σμνT†
μν

Sþ σμνTμν −=GT−=VT

!
1−Γ5

2
: ð4:4Þ

Nevertheless, the calculation including S; Vμ; Tμν all at
once is still quite lengthy. So in what follows, we will work
up to the full results gradually, adding one type of
interactions at each step.

A. Vector interactions

We begin with the case of having vector interactions Vμ

only, while setting S and Tμν to zero. In this case, there is
actually a shortcut. From the expression of P̂β¼0 in Eq. (4.4)
we see that, instead of directly calculating the traces in
Eq. (3.23), we can simply take the minimal coupling result

and replace Gμ → Gμ þ Vμ:

AΛ
β¼0½α�jS¼Tμν¼0 ¼ AΛ;mc

β¼0 ½α�jGμ→GμþVμ
: ð4:5Þ

In Ref. [11], we obtained the result for the minimal
coupling case

AΛ;mc
β¼0 ½α�¼

Z
d4x

�
1

48π2
εμνρσtr

h
ð∂μαÞðGνFρσþ iGνGρGσÞ

i

−δαLΛ
ct;0

�
: ð4:6Þ

The first term is the standard result for the consistent
anomaly. The second term, being the gauge variation of a
local counterterm

LΛ
ct;0 ¼

1

16π2

�
Λ2

Z
∞

0

dufðuÞ
	
trðGμGμÞ

þ 1

96π2
tr

�
ð∂μGμÞ2 − 2iFμνGμGν þ

1

2
GμGνGμGν

	
;

ð4:7Þ

is an irrelevant anomaly.
Upon making the substitution Gμ → Gμ þ Vμ, we first

note that the irrelevant term in Eq. (4.6) remains irrelevant,
because the two operations “taking the gauge variation” and
“substituting Gμ → Gμ þ Vμ” commute with each other,

ðδαLΛ
ct;0ÞjGμ→GμþVμ

¼ δαðLΛ
ct;0jGμ→GμþVμ

Þ; ð4:8Þ

due to the fact

δαðGμ þ VμÞ ¼ ð∂μαÞ þ i½α; Gμ� þ i½α; Vμ�
¼ ð∂μαÞ þ i½α; Gμ þ Vμ�: ð4:9Þ

For the relevant part ofAΛ;mc
β¼0 [first term in Eq. (4.6)], the

substitution Gμ → Gμ þ Vμ produces additional terms that
we need to track carefully. Using

FμνjGμ→GμþVμ
¼ Fμν þ ðDμVνÞ − ðDνVμÞ − i½Vμ; Vν�;

ð4:10Þ

where ðDμVνÞ≡ ð∂μVνÞ − i½Gμ; Vν�, we get

AΛ
β¼0½α�jS¼Tμν¼0 ¼ AΛ;mc

β¼0 ½α� − δα

Z
d4xðLΛ

ct;0jGμ→GμþVμ
− LΛ

ct;0Þ −
Z

d4x
1

48π2
εμνρσtrfð∂μαÞ½−ðVνGρσ þ GρσVνÞ

− iðGνGρVσ þ VνGρGσ − GνVρGσÞ − 2VνðDρVσÞ
− iVνGρVσ þ iðGνVρVσ − VνVρGσÞ þ iVνVρVσ�g: ð4:11Þ
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Using the gauge transformation properties of the various
quantities

δαGμ ¼ ð∂μαÞ þ i½α;Gμ�; δαGμν ¼ i½α;Gμν�; ð4:12aÞ

δαVμ ¼ i½α;Vμ�; δαðDμVνÞ ¼ i½α; ðDμVνÞ�; ð4:12bÞ

we can organize the terms beyond the first line in Eq. (4.11)
into the gauge variation of the following local counterterm:

ΔLðVÞct ¼
1

48π2
εμνρσtr

�
−GμðVνFρσ þ FρσVνÞ

− iGμGνGρVσ − 2GμVνðDρVσÞ

−
i
2
GμVνGρVσ þ iGμGνVρVσ þ iGμVνVρVσ

	
:

ð4:13Þ

Note that when taking the gauge variation of the expression
above, all the commutator terms generated through
Eq. (4.12) cancel out, which leaves us with only terms
proportional to ð∂μαÞ, reproducing the expression in
Eq. (4.11). In summary, we have shown that

AΛ
β¼0½α�





S¼Tμν¼0

¼ AΛ;mc
β¼0 ½α� − δα

Z
d4x
�
LΛ
ct;0





Gμ→GμþVμ

− LΛ
ct;0 þ ΔLðVÞct

�
: ð4:14Þ

We conclude that all additional contributions to the
anomaly due to the vector interactions Vμ are irrelevant.

B. Vector and scalar interactions

In this subsection, we turn on both the scalar interactions
S and vector interactions Vμ while keeping Tμν ¼ 0. We
will further include the tensor interactions Tμν in the next
subsection.
To calculate the traces in Eq. (3.23) in the presence of S

and/or Tμν, it is useful to decompose P̂β¼0 in Eq. (4.4) as

P̂β¼0 ¼ ðSL þ γμV
μ
L þ σμνT

μν
L Þ

1 − γ5

2

þ ðSR þ γμV
μ
R þ σμνT

μν
R Þ

1þ γ5

2

≡ ðSL þ VL þ TLÞ
1 − γ5

2

þ ðSR þ VR þ TRÞ
1þ γ5

2
; ð4:15Þ

where we have introduced the notation

VL ¼
�
i=∂þ =Gþ =V 0

0 i=∂

�
; SL ¼

�
0 0

S 0

�
;

TL ¼ σμν

�
0 0

Tμν 0

�
; ð4:16aÞ

VR ¼
�
i=∂ 0

0 i=∂ − =GT − =VT

�
; SR ¼

�
0 S†

0 0

�
;

TR ¼ σμν

�
0 T†μν

0 0

�
: ð4:16bÞ

These components satisfy the following relations under the
(extended) charge conjugation defined in Eq. (3.20):

V̄L=R ¼ VR=L; S̄L=R ¼ SL=R; T̄L=R ¼ TL=R: ð4:17Þ

With the decomposition in Eq. (4.15), we can expand the
traces in Eq. (3.23) into a set of terms, each being a product
of the components

VL=R
1∓ γ5

2
; SL=R

1∓ γ5

2
; TL=R

1∓ γ5

2
: ð4:18Þ

The matrix structures of these components, their chiralities,
and charge conjugation properties lead to simplifications of
the calculation:

(i) For the Dirac trace to be nonzero, each term must
have an even power of γμ matrices in total. Given the
structures of the traces in Eq. (3.23), this implies
that only terms with an even power of VL=R will
contribute.

(ii) The matrix structure of SL=R tells us that

SLð� � �VL=R � � �ÞSL¼ SRð� � �VL=R � � �ÞSR¼ 0; ð4:19Þ

where ð� � �VL=R � � �Þ does not contain any SL=R or
TL=R factors. The same is true if we replace any of
the SL=R in Eq. (4.19) with TL=R.

(iii) The product of the chirality projection factors 1∓γ5

2
will impose further selection rules.

(iv) Finally, one can make use of the charge conjugation
properties in Eq. (4.17) to merge terms and simplify
the result.

Now we apply these constraints to the case of this
subsection, where S; Vμ ≠ 0 but Tμν ¼ 0. It is easy to see
that tr0 does not contain any S-dependent terms, while the
nonzero terms in tr1; tr2; tr3 must have two powers of S
and two powers of V with appropriate chirality combina-
tions. Starting with tr1, we get

trðS
2V2Þ

1 ¼ 1

2
tr
h
ðSRVLSLVR − VLSLVRSR

þ SLVRSRVL − VRSRVLSLÞα
i
; ð4:20Þ
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where terms containing one power of γ5 have been dropped
since trðγμγνγ5Þ ¼ 0. We can use charge conjugation to
further simplify this trace. Upon cyclic permutation the four
terms in Eq. (4.20) combine in pairs and give

trðS
2V2Þ

1 ¼ tr½ðSRVLSLVR − VRSRVLSLÞα�
¼ trðSRVLSL½VR;α�Þ: ð4:21Þ

The other two traces tr2 and tr3 admit similar simplifica-
tions. The general rule we follow is to rewrite half of the
terms using charge conjugation such that the entire
expression is proportional to the commutator ½VR;α�.
After contracting the gamma matrices using γμγμ ¼ 4,
γμγνγμ ¼ −2γν, we find

trðS
2V2Þ

2 ¼ trfðSRVRSL − 2VLSRSL − 2SRSLVLÞ½VR;α�g;
ð4:22aÞ

trðS
2V2Þ

3 ¼ trðSRSL½VR;α�Þ
¼ trfðSRSLVR þ VRSRSLÞ½VR;α�g: ð4:22bÞ

Combining the three traces above and substituting in the
expressions for SL;R and VL;R from Eq. (4.16), we find that
the additional contribution to the anomaly from scalar
couplings is

AΛ
β¼0½α�jOðS2V2Þ ¼ −

1

192π2

Z
d4xtrf½S†ð=GT þ =VTÞS

− S†Sð=Gþ =VÞ
− ð=Gþ =VÞS†Sþ iðS†=DV

↔
SÞ�ð=∂αÞg;

ð4:23Þ

where ðS†=DV

↔
SÞ≡ γμ½S†ðDμ

VSÞ − ðDμ
VS

†ÞS�. Here we have
defined a shifted covariant derivative Dμ

V that also contains
the vector interactions Vμ:

Dμ
V ≡DμjGμ→GμþVμ ¼ ∂

μ − iðGμ þ VμÞ: ð4:24Þ

Its action on S; S† follows the same substitution:

ðDμ
VSÞ≡ ðDμSÞjGμ→GμþVμ ;

ðDμ
VS

†Þ≡ ðDμS†ÞjGμ→GμþVμ : ð4:25Þ

If desired, one could easily evaluate the Dirac trace
trðγμγνÞ ¼ 4ημν in Eq. (4.23), but this is unnecessary for
showing that it is an irrelevant anomaly.
To find the corresponding counterterm, we recall the

gauge transformation of the scalar interactions S½Gμ;ϕ�
from Eq. (2.10):

S ⟶ Sα ¼ U�αSU
†
α; ð4:26Þ

which leads to

S†S ⟶ UαS†SU
†
α; δαðS†SÞ ¼ i½α; S†S�: ð4:27Þ

Their covariant derivatives by definition transform in the
same way. This remains true for the shifted covariant
derivative Dμ

V defined in Eq. (4.24), and therefore we have

δαðS†=DV

↔
SÞ ¼ i½α; ðS†=DV

↔
�SÞ: ð4:28Þ

From the gauge transformation properties discussed
above, together with those of Gμ and Vμ in Eq. (4.12),
we can identify

AΛ
β¼0½α�jOðS2V2Þ ¼ −δα

Z
d4xΔLðS

2V2Þ
ct ; ð4:29Þ

where

ΔLðS
2V2Þ

ct ¼ 1

192π2

Z
d4xtr

�
1

2
S†ð=GTþ=VTÞSð=Gþ=VÞ

− S†Sð=Gþ=VÞð=Gþ=VÞ þ iðS†=DV

↔
SÞ=G

	
: ð4:30Þ

We therefore conclude that when both vector and scalar
interactions are present, the additional contributions to
the anomaly beyond the minimal coupling case are all
irrelevant.

C. Vector, scalar, and tensor interactions

Finally, we also include the tensor interactions Tμν

alongside vector and scalar interactions in this subsection.
The calculation proceeds in a similar way to the vector and
scalar interactions case in the previous subsection; the
gamma matrix algebra is slightly more tedious but it is
straightforward.
Using the decomposition in Eq. (4.15), we immediately

see that again, tr0 does not contain any Tμν-dependent
terms. For tr1; tr2; tr3, the additional nonzero terms are of
the form TSV2 and T2V2. We examine them in turn below.
TSV2 terms: Upon contraction of gamma matrices using

γμγμ ¼ 4, γμγνγμ ¼ −2γν, and noting γμTL;Rγμ ¼ 0 (since
γμγνγργμ ¼ 4ηνρ while TL;R involves the antisymmetric
σμν), we find

trðTSV
2Þ

1 ¼ trfðTRVLSL þ SRVLTLÞ½VR;α�ð1þ γ5Þg;
ð4:31aÞ

trðTSV
2Þ

2 ¼ trfðTRVRSL þ SRVRTL − 2VLSRTL

− 2TRSLVLÞ½VR;α�ð1þ γ5Þg; ð4:31bÞ
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trðTSV
2Þ

3 ¼ trfTRSL½V2
R;α�ð1þ γ5Þ

þ SRTL½V2
R;α�ð1 − γ5Þg: ð4:31cÞ

To arrive at these equations we have combined terms that
are related by charge conjugation and used cyclic permu-
tation as in the previous subsection. We can further show

that trðTSV
2Þ

3 ¼ 0 because

½V2
R;α� ¼ ðVμ

R½Vν
R;α� þ ½Vμ

R;α�Vν
RÞγμγν

¼ ð½Vμ
R; ½Vν

R;α�� þ ½Vν
R;α�Vμ

R þ ½Vμ
R;α�Vν

RÞγμγν:
ð4:32Þ

The expression in parentheses is symmetric in μ↔ν (note
that for ½Vμ

R; ½Vν
R;α��, only its upper-left block ð−∂μ∂ναÞ

will eventually feed into the expressions), whereas the
Dirac traces are antisymmetric:

trðγμγνσρτÞ ¼ −trðγνγμσρτÞ; ð4:33aÞ

trðγμγνσρτγ5Þ ¼ −trðγνγμσρτγ5Þ: ð4:33bÞ

Adding up tr1 and tr2 and substituting in the expressions
for SL;R, VL;R, TL;R from Eq. (4.16), we obtain

AΛ
β¼0½α�jOðTSV2Þ ¼−

1

192π2

Z
d4xtrf½ðσ ·T†Þð=GTþ=VTÞS

þS†ð=GTþ=VTÞðσ ·TÞ
þ 2iððσ ·T†Þð=DVSÞ
− ð=DVS†Þðσ ·TÞÞ�ð=∂αÞð1þ γ5Þg; ð4:34Þ

where we have introduced the shorthand notation

σ · T ≡ σμνTμν; σ · T† ≡ σμνT†μν: ð4:35Þ

From the gauge transformation properties discussed earlier
we see that

AΛ
β¼0½α�jOðTSV2Þ ¼ −δα

Z
d4xΔLðTSV

2Þ
ct ð4:36Þ

is an irrelevant anomaly corresponding to the following
local counterterm:

ΔLðTSV
2Þ

ct ¼ 1

192π2

Z
d4xtr

��
1

2
ððσ ·T†Þð=GTþ=VTÞSð=Gþ=VÞ

þS†ð=GTþ=VTÞðσ ·TÞð=Gþ=VÞÞ

þ2iððσ ·T†Þð=DVSÞ−ð=DVS†Þðσ ·TÞÞ=G
	
ð1þγ5Þ

�
:

ð4:37Þ

T2V2 terms: Finally, for the T2V2 terms, we find

trðT
2V2Þ

1 ¼ trfTRVLTL½VR;α�ð1þ γ5Þg; ð4:38aÞ

trðT
2V2Þ

2 ¼ trfTRVRTL½VR;α�ð1þ γ5Þg; ð4:38bÞ

trðT
2V2Þ

3 ¼ −trfTRγμTLγν½Vμ
RV

ν
R;α�ð1þ γ5Þg; ð4:38cÞ

where we have used γμTLVRγμ ¼ 2γμTLV
μ
R to simplify tr3.

Further, since the Dirac traces involved are symmetric
under the exchange of γμ and γν,

trðγμσρτγνσκλÞ ¼ trðγνσρτγμσκλÞ; ð4:39aÞ

trðγμσρτγνσκλγ5Þ ¼ trðγνσρτγμσκλγ5Þ; ð4:39bÞ

we can freely interchange μ and ν in tr3 and obtain

trðT
2V2Þ

3 ¼−trfðTRγμTLV
μ
RþVμ

RTRγμTLÞ½VR;α�ð1þ γ5Þg:
ð4:40Þ

Adding up all three traces and substituting in the expres-
sions for VL;R and TL;R from Eq. (4.16), we get

AΛ
β¼0½α�jOðT2V2Þ

¼ −
1

192π2

Z
d4x tr

n
½ðσ · T†Þð=GT þ =VTÞðσ · TÞ

þ ðσ · T†Þγμðσ · TÞðGμ þ VμÞ
þ ðGμ þ VμÞðσ · T†Þγμðσ · TÞ
þ iððσ · T†Þ=DV

↔
ðσ · TÞÞ�ð=∂αÞð1þ γ5Þ

o
;

ð4:41Þ

where ððσ · T†Þ=DV

↔
ðσ · TÞÞ ¼ σρτγμσκλ½T†ρτðDμ

VT
κλÞ−

ðDμ
VT

†ρτÞTκλ�. This again can be identified with the gauge
variation of a local counterterm,

AΛ
β¼0½α�jOðT2V2Þ ¼ −δα

Z
d4xΔLðT

2V2Þ
ct ; ð4:42Þ

where
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ΔLðT
2V2Þ

ct ¼ 1

192π2

Z
d4xtr

��
1

2
ðσ · T†Þð=GT þ =VTÞðσ · TÞð=Gþ =VÞ þ ðσ · T†Þγμðσ · TÞγνðGμ þ VμÞðGν þ VνÞ

þ iððσ · T†Þ=DV

↔
ðσ · TÞÞ=G

	
ð1þ γ5Þ

�
: ð4:43Þ

We therefore conclude that additional contributions to
AΛ

β¼0½α� remain irrelevant when tensor couplings are
included.

D. Summary

To summarize, in this section we have completed the
calculation of the regularized anomaly AΛ

β ½α� in the
presence of scalar, vector, and tensor couplings to fermion
bilinears and found that, with the Wess-Zumino consistent
scheme choice β ¼ 0, the difference with respect to the
minimal coupling case is an irrelevant anomaly,

AΛ
β¼0½α� ¼ AΛ;mc

β¼0 ½α� − δα

Z
d4xΔLΛ

ct: ð4:44Þ

The corresponding local counterterm is

ΔLΛ
ct ¼ LΛ

ct;0jGμ→GμþVμ
− LΛ

ct;0 þ ΔLðVÞct þ ΔLðS
2V2Þ

ct

þ ΔLðTSV
2Þ

ct þ ΔLðT
2V2Þ

ct ; ð4:45Þ

with LΛ
ct;0, ΔL

ðVÞ
ct , ΔLðS

2V2Þ
ct , ΔLðTSV

2Þ
ct , and ΔLðT

2V2Þ
ct given

by Eqs. (4.7), (4.13), (4.30), (4.37), and (4.43), respec-
tively. This means that for the renormalized anomaly Aβ½α�
defined in Eq. (3.14)

there exists a renormalization scheme where

Aβ¼0½α� ¼ Amc
β¼0½α�: ð4:46Þ

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we generalized the CDE framework for
computing anomalies in Ref. [11] to the case of relativistic
EFTs with a general class of higher-dimensional operators.
We systematically calculated the anomaly in this formalism
and demonstrated explicitly that the additional contribu-
tions from higher-dimensional operators are irrelevant
anomalies. This means, in particular, that the (relevant)
anomaly cancellation condition in SMEFT including the
aforementioned higher-dimensional operators is the same
as that in the Standard Model.

Our calculation did not include higher-dimensional
operators which involve derivatives acting on the fermions
(beyond the kinetic term), such as

ϵikϵjlðHiDμHjÞðlT
k iγ

0γ2DμllÞ; ðH†DμDνHÞðlγμDνlÞ:
ð5:1Þ

While there is no essential obstacle to incorporate them in
our present formalism, the CDE calculation becomes more
and more tedious with the inclusion of each derivative.
Nevertheless, noting that the counterterms we found in
Eqs. (4.30), (4.37), and (4.43) share similar structures, we
are hopeful that there could be a more efficient framework
that would make such a calculation more manageable and
potentially also shed new light on the underlying structures
of CDE. We plan to pursue this intriguing possibility in
future work.
The master functional trace evaluated in this paper,

Eq. (3.13), can also be relevant for certain EFT matching
calculations, such as when integrating out heavy fermions
that acquire masses from a Yukawa interaction via sponta-
neous symmetry breaking [24,25]. Modern EFT matching
calculations are typically performed with dimensional
regularization. However, we anticipate our regularization
prescription, applied in exclusively d ¼ 4 spacetime
dimensions, should produce the same anomaly-related
nondecoupling effects. We leave the exploration of this
interesting question for future study.
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