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Forces inside a strongly-coupled scalar nucleon
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We investigate the gravitational form factors of a strongly coupled scalar theory that mimic the interaction
between the nucleon and the pion. The nonperturbative calculation is based on the light-front Hamiltonian
formalism. We renormalize the energy-momentum tensor with a Fock sector dependent scheme. We also
systematically analyze the Lorentz structure of the energy-momentum tensor and identify the suitable
hadron matrix elements to extract the form factors, avoiding the contamination of spurious contributions.
We verify that the extracted form factors obey momentum conservation as well as the mechanical stability
condition. From the gravitational form factors, we compute the energy and pressure distributions of the
system. Furthermore, we show that utilizing the Hamiltonian eigenvalue equation, the off-diagonal Fock
sector contributions from the interaction term can be converted to diagonal Fock sector contributions,
yielding a systematic nonperturbative light-front wave function representation of the energies and forces

inside the system.
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I. INTRODUCTION

One of the biggest mysteries in physics is the nature of
the strong force that holds the quarks together inside the
nucleons. This force is responsible for quark confinement,
gluon binding, and 99% of the nucleon mass. The hadronic
energy-momentum tensor (EMT) is a direct probe of how
the force is distributed inside the hadrons, and has sparked
renewed interest in recent research. For recent reviews,
see Refs. [1,2].

By virtue of the Lorentz symmetry, the hadron matrix
element of the EMT of the nucleon (spin-1/2) can be
parametrized by the gravitational form factors (GFFs) [3.,4],

(D5 |T9(0) p.s) = iy (p) 2PHPHA(?)

oM
+iPYeq,1()

1
+3 (@' - 7*¢")D(q*)]us(p). (1)

where P=(p'+p)/2, ¢ = p' — p, a¥b*} = a*b* + a*b*,
and M? = p? = p'? is the hadron mass. The Lorentz scalars
A(q?), J(¢%), and D(g?) encode the information about the
energy, momentum and stress distributions inside the
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hadrons. Similarly, for scalar hadrons (spin-0), the hadron
matrix elements of the EMT can be written as [1]

(P [7(0)|p) = 2PPA(R) + 5 (4" — D ().

(2)

The GFFs A and D exist for particles of all spins.

The D term D(g?) is associated with the stress compo-
nent of the EMT, which reveals the mechanical properties
of the nucleons. However, this form factor remains poorly
understood. In fact, the D term is dubbed as “the last global
unknown” [1]. Unlike other GFFs, the value of the D term
at zero-momentum transfer D(0) is not fixed by global
conservation laws. It depends on the internal QCD dynam-
ics. Based on mechanical stability, Polyakov et al. con-
jectured that D(0) should be negative [5]. This is supported
by various model calculations [1,6-29]. However, Ji and Liu
argued that D(0) is positive for the hydrogen atom, a stable
system [30]. The D term also contributes to the anomalous
mass of the proton, which probes the gluon distribution
inside the nucleons [31] (cf. [2,32,33]). The D term of the
vacuum state gives the cosmological constant [34].

In the parton picture, the D term contributes to the
generalized parton distributions (GPDs) in the off-forward
region [9,35], which provide the experimental access to the
D term. Burkert et al. extracted the force distributions
inside the proton from the deeply virtual Compton scatter-
ing data collected at Jefferson Lab [36,37]. However,
the result has large systematic uncertainty and model
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dependence, due to the limited energy and luminosity of
the experiment [38,39]. These measurements are expected
to be significantly improved with the advent of electron ion
colliders [40-42]. In the timelike region, the D term can
also be extracted from the two-photon production of the
particle-antiparticle pair, as shown by Kumano et al. [43].
Kharzeev proposed to use the near-threshold quarkonium
photoproduction to extract the anomalous mass [44]. The
nucleon D term is also extracted from lattice QCD [45,46]
and a light-cone sum rule approach [47].

The D term has been extensively investigated in pertur-
bation theory, e.g. QCD at large momentum transfer [48].
However, calculations with nonperturbative couplings
are scarce. The force distribution has also been explored
in phenomenological models [7-29], such as holography
[22,23], light-front quark-diquark model [20], and Dyson-
Schwinger equations with contact interaction [49]. One of
the challenges of computing the D term is that the stress
component of the EMT involves the interaction, which
needs to be properly renormalized and consistent with the
dynamical solution of the hadron state. Otherwise, the
extracted D term may have unphysical divergences, as
reported in prior work [20].

Light-front quantization is a natural framework to inves-
tigate the structures of the hadrons in the nonperturbative
regime [50-52]. It is the native language for parton physics,
which describes how the hadrons are seen in modern high
energy scattering experiments [53-55]. The spatial distri-
bution of hadrons is only meaningful on the light front [56].
This approach is closely related to physics in the infinite
momentum frame [57]. Furthermore, it also offers a sys-
tematic nonperturbative framework to tackle the strong
interaction based on the Hamiltonian formalism [50].
Remarkable progress has been made in recent years with
the development of theoretical methods and the increase
of the computational power [52,58-62]. One of the core
quantities in light-front quantization is the light-front wave
function (LFWF), which encodes the full quantum informa-
tion of the system [50]. The LFWF representation has been
crucial in the investigation of the GFFs A(g?) and J(g?).
For instance, this representation provides a nonperturbative
derivation of the absence of the anomalous gravitomagnetic
moment, i.e. B(0) = 0 [63], where B(¢?) =2J(¢°*) —A(q?).

In nonrelativistic quantum many-body theory, the quan-
tum stress can be expressed as the virial Y, 7; - p; using
quantum many-body wave functions [64,65]. It is natural to
expect that such a formulation can be generalized to
quantum field theories (QFTs) using LFWFs. One of the
main challenges in QFT is the involvement of the inter-
action terms in the EMT, which change the particle
numbers and generate nondiagonal contributions within
the Fock space. It has been posited that a LFWF repre-
sentation of the D term is not useful unless the full set of
LFWFs was obtained [1]. Indeed, in phenomenological

models, only the lowest Fock sectors' are available, and the
effective quark-antiquark interactions are used. The inter-
action part of the EMT is effectively neglected.

In this work, we investigate the GFFs A(g?) and D(g?)
in a strong-coupling scalar theory. The theory is one of
the simplest yet nontrivial QFTs. It can be used to model
the low-energy interaction of the (mock) nucleon and the
(mock) pion. This theory is used to illustrate the properties
of the D term and its relation to GPDs based leading-order
perturbative calculation [68,69]. It is interesting to see how
the forces inside the mock nucleon evolve as the coupling
increases. This theory can be systematically renormalized
using Fock sector dependent renormalization (FSDR)
developed by Karmanov et al. [70], which ensures the
cancellation of the UV divergences even in the strong
coupling regime. The eigenstate in the one-nucleon system
is obtained in the light-front Hamiltonian approach up to
four particles (one mock nucleon plus three mock pions),
where the Fock sector convergence is achieved [71,72].
This theory serves as an ideal playground for exploring the
properties of the EMT in the nonperturbative regime. We
evaluate the hadron matrix elements of the EMT and extract
the GFFs. The EMT is renormalized with FSDR. From
these results, we also obtain a general LFWF representation
of the D term, independent of the interaction details.

The rest of this work is organized as follows. In Sec. II,
we introduce the light-front Hamiltonian formalism and set
up the basic framework for the calculation. In Sec. III, we
compute the hadron matrix elements of the EMT. In Sec. IV,
we first analyze the covariant structure of the hadron matrix
elements using covariant light-front dynamics (CLFD) [73].
Based on these analyses and the expressions obtained in
Sec. 111, we extract the GFFs A(g?) and D(g?) and present
their numerical results. In Sec. V, we further analyze the
hadron matrix elements using the LFWF representation. In
the forward limit (¢ = 0), momentum conservations and the
Hamiltonian dynamics lead to well-known constraints on
the GFFs. In the off-forward limit (g # 0), we derive a
general LFWF representation for the A term as well as the D
term. Finally, we conclude in Sec. VI. Some technical
details are given in the Appendix.

II. LIGHT-FRONT HAMILTONIAN FORMALISM
The Lagrangian of the theory reads

_ L1 1 _
L=0, 0y —mdy'y+ 50,09 — 5#%902 + 90 xe.  (3)

Here, mg and y are the bare masses of the complex scalar
field y (mock nucleon) and real scalar field ¢ (mock pion),

'Quite often, only the valence sector is retained in phenom-
enological calculations. Recent progress in incorporating higher
Fock sector contributions can be found in Refs. [59,66,67].
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respectively. The physical masses are taken to be the
nucleon mass m = 0.94 GeV and the pion mass u =
0.14 GeV, respectively. g, is the bare coupling. We also
introduce a dimensionless coupling, a = ¢*>/(16zm?),
where ¢ is the physical coupling, and m is the physical
mass of the mock nucleon. In the semiclassical limit, this
theory describes a Yukawa type interaction with the
coupling strength a.

To simplify our calculations, we quench the theory, i.e.,
we neglect the contributions of nucleon-antinucleon loops,
which would otherwise destabilize the vacuum [74]. This
approximation is justified by the large mass gap between
the nucleons and the pions, which suppresses the pair
creation effects. It is useful to introduce the mass counter-
term: dm> = m? — m3. In the quenched theory, the mock
pion mass is not renormalized, viz. o = p. The Fock space
is built with Fock particles with the physical masses. N.B.
we do not renormalize the fields, but instead normalize
the state vector. The bare parameters are determined in
FSDR [71,72].

The EMT can be obtained as a Noether current of the
translational symmetry,2

T = oWy 0y — g (9" %% — mix"y) — 9 90 xp

1
+ 090 g — 59" (F9dyp - 1. (4)

Note that the EMT contains the bare parameters and needs
to be renormalized. We adopt the same sector dependent
bare parameters determined in FSDR. We quantize the
theory on the light front x° + x* = 0, and the light-front
Hamiltonian is obtained as the conserved charge of
T+ [75],

P / BT = / Ex VL7 +

@l(iV 1)* + Pl — gox xe — 5m2)(*)(}- (5)

NI'—‘

Here, the light-front component of a four-vector »* is
defined as

vE =00 4+ 03, v, = (v',0?). (6)

In particular, x* = x* 4+ x* is the light-front time and
p~ = p® = p? is the light-front energy. The integration
measure is defined as d*x = Jdx~d%x).

At the initial time x* =0, the field operators can
be expanded in terms of the creation and annihilation
operators,

Note that, for this simple scalar theory, the EMT is symmetric.

1) = [P ()i (e Py ()

(2m)*2p*

o) = | %wme-w+a"'<p>e+fpﬂ|x+:o. ®)

The creation and annihilation operators obey the canonical
commutation relations,

The state vectors of the physical particles are the
solutions of the light-front Schrédinger equation,

pL+ M

Ply(p)) = p=

lw(p))- (10)

In this work, we consider the one-nucleon sector, i.e., the
mock nucleon dressed by mock pions. The mass eigenvalue
is simply the physical nucleon mass M = m. The state
vector can be expressed in the Fock space,

— Z/[dxidzkiL]an({xi’%il})

X {xip+’kiJ_ +xiﬁJ_}n>’ (11)

where [dx;d?k;, ], =5ty 7lg§1dkuz5(z, 1)(27)* x

62(21»/2,- 1) is the n-body phase space measure.
wn({xi,l_é,- 1}) is called the LFWF, which only depends
on the longitudinal momentum fractions x; = p;/p*
and the relative transverse momenta 121- L =PiL—XipL.
Also, [{p;},) = a'(pi)a'(p2) -+~ a’(p,-1)b'(p,)|0) is the
n-body Fock state. Each Fock particle is on their mass shell:
p? = m?. The state vector is normalized as (y/(p')|w(p)) =
2pt(27)38°(p — p'). Consequently, the LFWFs are nor-
malized to unity,

> [k (i B wi (i Fiuh) = 1. (12

It is wuseful to introduce the vertex functions
Fn({xi’kij_}): (SIZ_MZ_?Wn({xivkil})’ where Sp = (pl +
prttpa)? = Zi(k,i + m?)/x; is the invariant mass

squared of the Fock sector. It can be shown that the vertex
function is the matrix element of the 7 matrix,

({xip™. Eil + xiﬁl}n|TiT1t_ O)|w(p)) = 2T, ({x;, /zu})-
(13)
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(a) 6m? = o6mj (b) go = gos
e go = go2

FIG. 1.

e T

(c) om? = om3 (d)

e

g 5m—Ogo—g()2

go = go2

Diagrammatic representations of the matrix elements of the EMT. The subcaption gives the assignments of the counterterms.

Diagrams that are the complex conjugate to these diagrams are not shown. The vertex rules are given in Fig. 2.

Using the vertex functions, we can generalize the light-
cone perturbation theory to the nonperturbative regime
[73,76,77].

The theory is super-renormalizable. However, ultraviolet
divergence does exist in loop integrals. We introduce the
Pauli-Villars degree of freedom to regularize the divergence
prior to renormalizing the theory. After a successful
renormalization of the EMT operator, the GFFs are inde-
pendent of the Pauli-Villars mass, as expected for the
conserved current. We will suppress the Pauli-Villars
regularization throughout. In Ref. [72], the theory is solved
in the one-nucleon system up to four particles (one mock
nucleon plus three mock pions). By comparing with the
solution from the three-body truncation [70,71], the Fock
sector expansion is shown to converge up to the three-body
truncations for the field strength renormalization constant as
well as the electromagnetic form factor up to nonperturba-
tive couplings. In this work, we adopt the three-body
truncation to compute the GFFs.

III. HADRON MATRIX ELEMENTS

With the LFWFs solved from the light-front Schrodinger
equation (10), we can compute the hadron matrix elements
of the EMT * = (p/|T**(0)|p) using Egs. (4), (1)~(9),
and (11). The calculation can be neatly represented using
light-front time-ordered diagrams as shown in Fig. 1. See
Ref. [50] for a summary of the old-fashioned diagrammatic
rules for light-front dynamics, also known as the Weinberg
rules [76]. The rules for the interaction vertices associated
with the EMT can be obtained from the operator expression
(4), as shown in Fig. 2. These rules are generalized to the

P Y p ' P v
—e—  ANVBAN
k
(a) (3¢°—0m®)g" + (b) LgPg +plep™? (¢) —gog"”
p{upfv}

FIG. 2. Vertex rules of the EMT. The light-front time x* flows
from left to right. The solid line represents the nucleon. The wavy
lines represent the pion. The circled cross @ represents the EMT
operator. ¢ is the injected momentum.

nonperturbative regime by adopting the vertex functions
for the hadron vertices [73,77]. It is useful to introduce
kinematical variables P = (p’ + p)/2 and g = p' — p. We
also adopt the Drell-Yan frame g™ =0 to evaluate the
hadron matrix elements, which dramatically simplify the
algebra [78].

As we mentioned, the EMT contains counterterms. We
adopt the FSDR scheme and assign the counterterms
according to the Fock sector in which they reside. The
values of the counterterms were obtained from solving
the Schrodinger equation in the previous work [71,72].
These counterterms are sufficient to renormalize the EMT.
To see this point, let us first see an example. Consider
diagrams (a) and (b), as shown in Fig. 3. The correspond-
ing expressions are

1
= ZKE q* - (Sm%) g7 + p{“p’/’}]

1 1
=7 {ZP“Pﬂ + <§ q* - 6m%> g - 5 qaqﬂ] ) (14)

X 2
’Zﬂ—‘ﬁgaﬂ/ u(f-x)/ (d k)‘g“'“(x w19

Here, \/Z = y, is the one-body normalization constant. 7,
contains a mass counterterm 6m3. Compare 7, with the
self-energy function within the three-body truncation,

2(m?) = ) (m?)
1 dzk
= —-—— k
\/Z 2x( l—x / o )3go3llfz(x 1)
= oms. (16)
We obtain
(@] §/g——Dz
FIG. 3. Diagrams (a) and (b).

056026-4



FORCES INSIDE A STRONGLY-COUPLED SCALAR NUCLEON

PHYS. REV. D 108, 056026 (2023)

e

FIG. 4. Diagram (c): 6m?> = 6m3.

7 = g z6m3 (17)

as expected. Therefore, #;, cancels out the mass counter-
term contribution in diagram (a),

" y 1 1
t(a/}—f— t;)/i -7 ZP“P/}—Eqig“/} _Eqaq/i ) (18)

We collect the result of each diagram as follows.

A. Diagram (c)

The relevant diagram is shown in Fig. 4:

dx d%k - -
ap L * pd
te = Jk k| —
/zx(l_x)z/(zﬂ_)?, l//z('x J.)WZ(X 1 xQL)
1 a

x [(5 g’ - 5m%> 97+ p! p’f}], (19)

where p;, p) are
pi = (1-x)P* 20)

- - - 1 -
Puz—kL'i‘(l—x)PL—E(l—x)fh (21)

2 2
_  py,tm
P = le+ (22)
1
py =(1-x)P* (23)

- > - 1 -
Pi=—k +(1-x)P, +5(1+x)61¢ (24)

P am?
pi =T (25)
Py

B. Diagram (d)

The relevant diagram is shown in Fig. 5:

dx d%k -
afp iR
£t = k
d /2x2(1—x)/(27t)3y/2(x 1)

- /1 .,
<tk +(1-02) (o ). o

where ki, k| are

= kN

FIG. 5. Diagram (d).
ki = xP* (27)
R
kip =k +XPL_§XCIJ_ (28)
k2 +M2
ki = uT (29)
1
Kt =xpPt (30)
> > =~ 1\,
kip =ky +XPL+<1—§X)QL (31)
7 k/Z +/’t2
= (32)

C. Diagram (e)

The relevant diagram is shown in Fig. 6. In the Drell-Yan
frame g™ =0, this diagram and its complex conjugate
(denoted as e) vanish, t, = t, = 0.

D. Diagram (f)

The relevant diagram is shown in Fig. 7:

[aﬁ— gaﬁ/ dx /dzkl/ dx’
f =9, 2x(1=x) ) (22)*) 2x'(1 —x—X)

d2K - - - N
« | el R (e, -2 ()

A related diagram, (f), is the Hermitian conjugate of
diagram (f), as shown in Fig. 8,

]
L L

FIG. 6. Diagram (e) vanishes in the Drell-Yan frame.

L > |

FIG. 7. Diagram (f): go = goa-

056026-5
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L X |

FIG. 8. Diagram (f): gy = goo.

2
(7 = —goog® / dr / dky
! 2x(1-x) ) (2x)?

x/ dx’/ a2k’
22X (1=x—x)
7ap

(27)?
xyi(xky —xg X KL =X G o (x k) = Iy

E. Diagram (g)

The relevant diagram is shown in Fig. 9:

\/dzkj_\/ dx’ /dzkﬁ_
'1-x-x)?) (2x)3

X yr3(x, ki’x s ki)l//,% (x, ki —xq,,x, ki -x'q,)

1 p
<2q 7+ p! /3}>

- - - 1 -
Pro=—k,—k +(1 —x—x’)PL—E(l —x=x')q.,
p__pﬁ—i—mz'
1 7p1+ ;
Py =(1-x-x)P",
pu:—kl—kl—l—(l xX— x)Pl—l-Z(l—l—x—l-x)ql,
p,l,zpﬁ"‘mz_

pi

FIG. 9. Diagram (g): ém = 0, gy = goa-

(34)

(35)

(39)

(40)

(41)

FIG. 10. Diagram (h): 6m = 0, gy = goo-

F. Diagram (h)

The relevant diagram is shown in Fig. 10,

o / /d2kl / dv’ /d2k1
2x 2x?(1-x-x") ) (27)3

(36)

(37)

(38)

<y (x kL KDk + (1= x)G, .0 K.
R 1
-x'qy) (5 g + kK] ) ; (42)
where ki, k| are
kl+ = xPT, (43)
- - -1
kll:kL+xP—§qu_, (44)
kP
ky = ukiJr (45)
1
Kt =xPT, (46)
7! 7 2 1 -
ku:kl—l-xP—F(l—zx)ql, (47)
B k/2 + ‘uz
ki = “T (48)
G. Forward limit
To see the renormalization of the EMT, let us first
examine the hadron matrix elements in the forward limit
(g = 0). As we will see later in Sec. IV, to extract the GFFs,
it is sufficient to consider ¥+ and ™.
In the LFWF representation, 1/" = Z2(P")? =
1,2(P")?, where I, = Z is the probability of the one-body
Fock sector. On the other hand,

L N dx d’k
trt=2(P )2/2x(1_x)/(2ﬂ)l3

Xy (x, /;L)Wﬁ(x’ /;L —xq,)(1-x) (49)
dx d%k
0= (P+)2/2x(1 —)C)/(Zﬂ)l3
x (kw3 (e kL + (1= )G, )x. (50)
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Hence, in the forward limit,
1+t = 0L2(PY) (51)

where

o [Pk -
= :/2x(] —X)/(Zn)3 wo(x, k )ws(x ky ), (52)

is the two-body normalization constant. Similarly, one

is the three-body normalization constant. Note that
=it = t}”“ = 0. Therefore, in the forward limit,

= (I + L+ L)2(PT)* =2(PT)%. (54)
Here, we have used the normalization condition for the
three-body truncation, I + I, + I3 = 1.

Next, let us consider #7~. This hadron matrix element is

more complicated since it involves the interaction. The one-
body part of 17 is

obtains 7" + ;" = I;2(PT)?, where

/ /dsz_/ dx’ /dzkl
= 21 ) 2x "M=x-x)) (2r)}

=t + 1] =2ZQ2PtP) =Z(2M* +2P3).  (55)

For the two-body part, let us first consider the kinematical

X y3(x, kl’x ) kJ_)W3 (x, erl’ kl) (53) contribution, viz. excluding terms proportional to g%,
|
dx d’k, > Ko+ K +m?
G = En + Lo = k k 2-+ 2P . 56
2.kin c.kin + dkm /2)6(1 _ )C) / (277:)3 l//2(x J—)l//2(x J-) |: X + 1—x + 1 ( )

Similarly, the three-body kinematical contributions

_ d’k, dx’ d2K,
t3+,k1n t;kln hkln_zy/ (271, / ( ! /(2 )31//3()6 kJ_»x kJ_)V/S(x kJ_vx kJ_)

l—x—-x)
k k k2 k!2 2
><<2(L1Jr L)’ +,m Y LK +2P’j>. (57)
—x—x x x

Next, let us consider the interacting terms, viz. all terms proportional to g*, in the forward limit. These involve diagrams
lpstes by 17, 1y, 1), Note that the g* parts of t, and 1, cancel out. The two-body interacting contribution, #;, ., tr, reads

d’k -
p p p 1o
[glnt_ta +t(c‘11nt+tf1nt ga /2X l—x / ) 2(X,kJ_>

> dx’ d?k,
X {\/2903 +m5m2¥’2(% ki) + 902 / (1 —x—) / 27)} Ly (kX kj_)}- (58)

The expression in the curly bracket can be simplified using the equation of motion as shown in Fig. 11:

- 1 - dx’ d’k’ > >
Ty(x, k1) = VZgos +m5m2y/2(x, ki) + 902/2)6/(1 p——y / (27;)L3 w3 (x ko, X K ). (59)
Hence, Eq. (58) becomes
dx d’k - - K +p? k4 m?
aﬁ ap L 2 KL TH 1
= x, k| k) M= - - . 60

ﬁﬁiswfiﬁmigis%

FIG. 11. The equation of motion for the two-body vertex function [71].
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FIG. 12. The equation of motion for the three-body vertex function [71].

The full two-body contribution becomes

_ dx d’k
B =Gt i /2x(1 — ] @y o (x. K )y (x. K )[2M? + 2P2] = 1,(2m* + 2P2). (61)
Finally, the only three-body contribution of the interacting part is t}r_,
dx d’k dx’ a2k -
aff af 1
1 =— ki .x K k 62
7 g /2x<1 —x)/(Zﬂ)3/2x’(1 _x_x/)/(z )3 l/’}(x 1 'x J_)QOZI//Z( ) ( )
d’k dx’ d?k';
— _ap L 1 k 'k 902 p 902 k 63
751 [ 5 [ [ avime [ et b R0 {E ) + 2 B} ()
Again, applying the equation of motion (Fig. 12), the expression in the curly bracket becomes
r ]; ;7 9oz 7 902
sk, X' k) —m#’z(% ki) + 1— ,Wz(x kJ_) (64)
The interacting part of diagram (f) is
koL dx/ de/ - ey - 2/
t+_—_ L 3 3k £ /7k 7k ’ ,9k
/Zx/ / "1 —x-— x)/(2n’)3W3(x LXK sk, X )
k k 2 k/2
X|:(J_+ J.) —i;m +kl+ﬂ J_+/’t _M2:| (65)
l—x—x X

Therefore, the full three-body contribution is

67 =+ t}“_ = I;(2m? + 2P%). (66)

Summing over all three Fock sector contributions, the full
EMT is

T=T AT T =2m + PO(L + L+ )

=2(m*+ P?). (67)

As one can see, the hadron matrix elements do not
depend on any counterterms nor do they contain any
additional divergence.

IV. GRAVITATIONAL FORM FACTORS

A. Covariant light-front dynamics

By virtue of the Lorentz symmetry, the hadron matrix
elements of the EMT for a scalar particle can be para-
metrized by two GFFs,

1
(p'|T(0)|p) = 2P*PPA(q%) + 5 (4°¢d* — ¢*9"P)D(q?),

(68)

where ¢ = p’ — p and P =1(p' + p). In practical non-
perturbative calculations, including those on the light front,
however, the full Lorentz symmetry can only be retained in
the exact continuum limit. As we impose truncations and
approximations (e.g., neglecting higher Fock sectors), the
dynamical symmetries, i.e. symmetries involving inter-
actions, are likely to be broken and only the kinematical
symmetries are manifest. As a result, the hadron matrix
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element of the EMT has to be reparametrized with the
reduced symmetries [73].

In CLFD, this can be systematically constructed by
introducing a null vector @, which indicates the orientation
of the quantization surface, the light front [73]. Effectively,
the state vector |y (p)) depends on w*. The standard light-
front coordinate is recovered by choosing @ = (1, 0,0, —1),
viz. o~ =2, w" = w, = 0. Note that since the null vector
w is only defined up to a scaling factor, the dependence on @
is always in the form @*/(® - P).

In CLFD, the form factors F;({,q*) are complex
functions of two Lorentz scalars, ¢*> and { = (w-q)/
(w- P). Hermiticity of the EMT operator implies
Fi(¢, ¢*) = Fi(=¢,¢%). In the Drell-Yan frame ¢ =0
[78], the form factors become real functions. In this frame,
the most general Lorentz structures of the hadron matrix
element read

1F = (p'|T?(0)|p) = 2P*PPA(q?)
@~ i)+ L0

2 galwypuquwy‘g/}pdppqgwASZ(qz)’ (69)

+ Si(q%)

N[ =

_|_

(- P)

where ¢ = p'—p and P =1(p'+ p). The new GFFs
S12(g?) are the spurious form factors. They are expected
to vanish in the continuum limit when the full dynamics is
incorporated. To extract the GFFs, we can compute the
components of the EMT as follows:

£ = 2(PH2A(=¢2) (70)
1 = 2P PIA(~q}) (71)
ij — 2PiPiA(—g? 1 igh — 8 g2 \D(=g?

r ( ‘h)"‘z(qq q1)D(=q71)

+(2x41)'(2x4.1)S2(=¢7) (72)
1
= =24 P A+ AD(-R)

m? 4+ P2 +14%2\2
r"=8<;+ : L) A=q3)

+2( L) Diegi) +4 s )

P, xqg,)-2\2
e Pﬂ ) s (74)
) 2 PZ
[—I:WMDA( 2)
q.- PJ_ Z(ﬁLxﬁL)-ﬁi. i
ST ip(oqa) + 2P R igis ().

(75)

Further simplification can be achieved by taking the Breit
frame, P, =1(pL+P))=0,

T =2(P")?A(—43) (76)
=0 (77)
R D

=5(d'q'=8"q1)D(=

q1)+e"em g q1S:(—q71) (78)

- 1

e, =4+ = —E‘ﬁD(—Qi) + @3 S2(=4%)  (79)
1

12 = ququ(—qi) -4'¢*:(—4%) (80)

- = 2<m2 + %qi)A(—qzﬁ +4¢1D(=47) (81)

2 4
= 8<%> Al=q1) + 4%31(—@ (82)
=0, (83)

From these analyses, the A term can be extracted from ¢+,
while the D term can be extracted from 1,

A(-q1) = (84)

2 1.2
m +ZqL

e 89)

¢iD(—¢7) =1 -

Note that the popular choice 77, the transverse stress
tensor, is contaminated by the spurious GFF S,. Using
these components to extract the D term is not reliable,
unless a proper combination is used [20].

B. Physical densities

From these two GFFs, we can compute several physical
densities. These physical densities attain the same physical
interpretation as those in classical field theory [79],

1% = (e + p)u*u — pg™ + n. (86)

Here, e is the proper energy density. p is the pressure, trace
part of the stress tensor. Both quantities are Lorentz
invariants. 7% is the (traceless) shear tensor. The energy
density is defined as [79]

2
et =M [ Sl emn L)+ a-ah)

; D(—q'i)]}- (87)
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Note that the energy density is different from the Fourier
transform of #*~. Similarly, the pressure is [79]

2
plr)) = - [ L9 i 2 p_ 2. (88
6M | (2x)? + +

The shear tensor is also related to the D term.

Another quantity of interest is the trace of the EMT 7*,
which is related to the anomalous mass in the proton. The
trace density is

2 2
o) =M [ G5 e A=) + e i)

n 3D<—qi>]} — e(r1) = 3p(rL). (89)

As a comparison, the Fourier transform of 1™~ in the Breit
frame is

1 3
WTJF_(H) =€(u)—§p(u)- (90)
The trace of the light-front EMT gives rise to a spurious
contribution,

re(ry) =1 - -2

d>q, .. .
=0(r) -2 [ L e rgis(-gt). (1)

Note that our definition here differs from the empirical
definitions introduced by Polyakov et al. by a Darwin
factor [1].

Energy conservation requires that the energy density
integrated over the entire space gives the total mass of
the system,

/dzrle(rl) =M. (92)
This condition is fulfilled if
A(0) =1, lin(l)qu(qz) =0. (93)
q—)

We will prove this is the case in our model.
The state vector is an eigenstate of the light-front
longitudinal momentum operator P+,

Plw(p)) = pTlw(p)), (94)

which is related to 77" as

Pt = /d3xT++(x), (95)

where d3x = (1/2)dx~d?x, . Combining these two expres-
sions we obtain

limr* = 2(P*)? (96)
q—)

which is consistent with our result Eq. (54). Combining this
with Eq. (84), we obtain

A(0) = 1. (97)

Similar analysis is also applied to T*'. Therefore, the
momentum conservation guarantees the proper normaliza-
tion of the A term, independent of the truncation and other
approximations that we employ.

The proof of the second condition® lim,_, ¢°D(¢?) = 0
requires a consistency between the EMT and the
Hamiltonian dynamics. The state vector satisfies the
light-front Schrodinger equation (10), and the light-
front Hamiltonian operator P~ is related to 7+~ by (5).
Sandwiching P~ with the eigenstates and applying
Egs. (5) and (10), we obtain

(w(p)|T(0)lyw(p)) = 2(p1 + m?). (98)

Indeed, this is exactly our result, Eq. (67), from the
diagrams. This expression together with Egs. (73)
and (97) implies that

lim 42 D(~4}) = 0. (99)
q.—

This condition is also related to the force balance inside the
composite particles, known as the von Laue condition [81],
which requires that the pressure integrated over the entire
space vanishes,

/dzrj_p(rl) =0. (100)

C. Numerical results

The numerical results of the GFFs are shown in Fig. 13.
In this figure, we compare results at various couplings from
the perturbative regime a = 0.5 to the strong coupling
regime o = 2.0, where the dimensionless coupling constant
is related to the physical coupling g as @ = ¢*/(16zm?). In
this figure, the A term is normalized to unity in the forward
limit, viz., A(0) = 1, and the D term in the same limit is
finite and negative D = D(0) < 0. In fact, D < —1 in our
model. Figure 14 shows the D as a function of the coupling
a. As the coupling increases, D becomes more negative.
The value of D appears quite sensitive to the coupling, thus

*Note that D(g?) is not necessarily finite in the forward limit
g — 0, which is actually the case for long-range interactions [80].
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— a=0.5
--- a=1.0
a=2.0

|
0 5 10 15 20 25
0” [GeV?]

FIG. 13. The gravitational form factors A(Q?) and D(Q?) at various couplings. Here, 0* = —¢*> = ¢*, a = ¢*/(16zm?). In the limit
Q — o0, A(Q?), and D(Q?) approach to Z and —Z, respectively, as indicated by the dashed lines in the inset panels for each coupling,

where Z is the field strength normalization constant.

10 1 1 1 1 1 1
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
[0

FIG. 14. The D term D = D(0) as a function of the coupling
a=g¢/(16zm?).

providing a good probe of the interaction strength of the
system. At large Q?, the form factors approach to their
one-body contribution, i.e., A(Q* > 00) =A; = Z, and
D(Q* - o) = D; = —Z, where Z is the field strength
renormalization constant.

Figure 15 compares the GFF A(Q?) and the charge form
factor F(Q?). Both quantities approach to the same limit at
large Q°. However, at small Q?, A(Q?) appears softer than
F(Q?), which implies a larger matter radius than the
charge radius, viz., r2, > r?, where rZ, =—6A'(0*=0)
and r% = —6F'(Q?). Indeed, r2,, is always larger than r%,
for the couplings we consider as shown in Fig. 16. Recall
that for mesons, the relative size is reversed [82]. These
can be understood in the LFWF representation (see Sec. V
for more details). In this representation, the charge
radius r = (3/2)(e,(1 — x)*r3) while the matter radius
raa = (3/2){x(1 = x)r2). The cartoon in Fig. 17 illus-
trates the origins of the mean radii for two systems. For the
pion, the LFWF is approximately symmetric with respect
to x. This shows its charge radius is larger than its matter
radius. By contrast, for our pion-dressed proton, the LFWF
concentrates on the x, ~1 side, and its matter radius
becomes larger than its charge radius.

From the form factors, we can extract the corresponding
transverse densities by a Fourier transformation. To avoid

1.0 N T T T T 1.0 T T T T
Qo a=1.0 \\ a=2.0
09F 3o 4 09R\ .
I~ - \
. \
0.8 4 o8k \u _
. : \
N
\\
0.7F 4 o7f .
el A9 — A
O - ROy Mo - oY |
1 1 1 1 1 1 1 1
%59 5 10 15 20 25 05 5 10 15 20 25

0* [GeV?]

FIG. 15.
0’ =-¢* = q1, a=g*/(16zm?).

0 [GeV?]

The gravitational form factor A(Q?) as compared with the charge form factor F(Q?) at @ = 1.0 and a = 2.0. Here,
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2.5 T T T T T T T T T T T T T

FIG. 16. Comparison of the matter radius and the charge radius
as functions of the coupling. As the coupling increases, the two-
pion sea contribution increases which leads to a dramatic increase
of the matter radius of the system.

(1-x)
LEWF,

x(1—x)

0.1 0.3 0.5 0.7

FIG. 17. Comparison of the matter radius and the charge radius
for two systems.

the numerical difficulties, we first fit the form factors with
the multimonopole function,

(1 —Z)al
1+ Q%/A}

(1-2)(1 —ay)

(101)

The corresponding density is

0.5 T T T
— Alry)
--= Pen(r1) 7

o o
w ES
T

2nry p(r1) [GeV]
o
o

|
1071 1 10
r1 [GeV™!]

FIG. 18.
the dimensionless coupling a = ¢/ (16zm?).

p(ri) =28 (ry) + < _”Z) aiATKo(Ayry)

(1-2)
2

+ (1= a)A3Ko(Aqry). (102)
Chiral effective field theory predicts a pion cloud
~exp(—2M,r ) at the periphery of the nucleon transverse
charge density [r| = O(M;1 )1 [83-85]. The ansatz we
adopt here is qualitatively in agreement with this picture.
The extracted matter density .A(r ) is shown in Fig. 18, in
comparison with the charge density p.,(r, ), the Fourier
transform of the charge form factor F(Q?). Figure 19 shows
the transverse matter density .A(r ) and pressure p(r ) for
various couplings. The expected node within the pressure is
squeezed to the origin r;, = 0 due to the pointlike repulsive
core « 6*(r,) (not shown in the figure).

V. LIGHT-FRONT WAVE FUNCTION
REPRESENTATION

In this section, we further analyze the LFWF represen-
tation. Our goal is to obtain a general nonperturbative
representation independent of the interactions.

A.t** and the A term

We summarize the hadron matrix element ™+ computed
in Sec. III as follows:

+ =2(P)*Z (103)
X 2 -
22P [ 5 [ vl )
x (. ky —xg,)(1—x) (104)
x 2 >
+2(P+)2/2x(?_x)/?27]331//2()@ ki)
x 3 (6 Ky 4 (1= )G, )x (105)

0.5 T T T
— Ary)
== Pch(ry) -

0.3

2nr 1 p(r1) [GeV]

|
1071 1 10
r1 [GeVT!]

!
1072

The transverse matter density .A(r, ) as compared with the transverse charge density p.,(r, ) at @ = 1.0 and a = 2.0, where
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0.5 T T T T
— a=0.5

= 04 a=1.0
[}
&) r a=2.0
= 030" i
3 i
= |
8 0.2 _
_'
~
&

0.1 .

0.0 '

’ 4 5

r1 [GeV™!]

27ry p(r1) [GeV?)

FIG. 19. The transverse matter density .A(r ) and pressure p(r,) at selected couplings.

&2k, ax’ &K, L
2251 [ 5 | G | o= [ G R R B = R =) (1 = x =)

d’k dx’ d2K - - - . - .
2(PY) 2'/2x/ l/ /(2”;3 W3(x’kL7x,»k/L)W§(x»kL+(l —x)qL,x’,kl—x’qJ_)x

(27)? "(1-x—x')

d2k dx’ &K,
2(F) 2’/ / L/ (1 /(2 )3‘/’%()( kpox KOsk = xg . X KL+ (1= )G, )x

(I—-x—-x)

(106)

(107)

(108)

Based on the above expression, it is not hard to conclude a general formula for #+7:

vt = 2P [ el S xR D (G B 1)),

where
];i.jl _ IEL —Xiq ., spectator: i # j (110)
' kii + (1 =x;)qg,, struckparton: i = j
and the n-body integration measure is defined as
/[dxd ki, H/z—%z(s(zi:xi - 1)
X/d il (271,)352 Zk (111)
(27[)3 - il |»

where §,, is the symmetry factor.

Using the transverse coordinate representation intro-
duced in the Appendix, the hadron matrix element (109)
can be written as

2P Y [ xdrl i (G P DY e
n J

(112)

The corresponding GFF A is

(109)

|
=3 [l (e Fu DY e
(113)

The light-front distribution is defined as the Fourier trans-
form of the form factor A,

2
A(r) =/ ?zZ§e‘“A<—qi> (114)
=3 [ldndr ()P
(115)

X ij52(7l — 7/J_>
J

This expression is in agreement with the classic results by
Brodsky et al. [63]. It generalizes the one-body density on
the light front. Hence, A(r ) should be understood as the
one-body (number) density.

The matter radius 72, is defined as the slope of the form
factor A(g?) multiplied by 6, which is equivalent to 3/2
times of the mean transverse squared radius,
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6 d 3
2 A(q? == [ &r, (1
Tmat A( )dqz (q )|q2—>0 2/ rJ_rLA(rJ_) ( 6)

In LFWF representation,

3 - -
Ra=3 3 [ el (b DEY ot (117
n J

B. t*~ and the D term

We summarize the hadron matrix element 7t~ computed
in Sec. III as follows. The one-body contribution [diagrams
(a) and (b)] is

1

- :Z{Z(m2+P2l) -=4%|. (118)

2

The two-body contribution [diagrams (c), (d), (b), and
(f)] reads

— -
_ dx dsz 1 [Z(KJ_ - (1 —X)PJ_)Z +2m2 —lqzl]
ty _/2x(1—x { < L+3 XQL>U/2<X fl—5x4¢> =+ s (119)
— -
SN\ R(E L +xP )P+ 2 -1
+l//2<x LﬂJ_—— l—x > <x fJ_—F (l—x)qL>[ ( L1 X J‘)x H 2qL] (120)
=\ . = 2+l fz + m?
2l 7 st 7 =) (5 )L (121)
Similarly, the three-body contribution [diagrams (f), (g), and (h)] reads
_ 1 d*¢, dx a2z, 1 1
t; :E/ / /2)6/(1—)6—)6/)/ {l//g,(X fl+2quax fl+2qu>
1 1 N 2(KL+I€L—(1—X—X)PL) +2m —lgi
X 3 (x 71 _QXQL’X 7 _EX/QL) T : (122)
— 1 -, = 1 . . — 1 B e 1 -
+ys| X, fL_E(l = x)q.. ¥, ¢} +t5x4q. |ws| X 71 +§(1 —x)q .., fL_Ex‘IJ_
- B \2 2_ 122
2(¢ L +xP1)*+2u" =547
(123)
X
— —/
- . £ £ 2 2 f2 2 f/2 2
NN T T C A N, 1 | GRS 0 e L e L A el —Mﬂ } (124)
l—x—x X X
From the above expressions, the general n-body contribution should be
+x; P2 +m2-1g
trer_ = 2/[(1)( dzle ZWV: {xzakljl})l//n({xl’kljl})( e Ll' ! 19t
j
- N ]_(’Z‘J_ +m2
2 [l L (B (G B ) 2 = S5, (125)
7 j
where
I_éi,nJ_ _ {IEM - X;q pion, i.e. i #n (126)

ki + (1 =x:)q .,

nucleon, ie. i =n
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(127) energy whereas the second line is the off-forward potential
];. n _%(1 —x;)q ., struckparton: i=j energy (mass eigenvalue minus kinetic energy), thus
generalizing Eq. (13) to the off-forward region,

{xipT ki + (P14 G0) bl T (0)|w(p))
r 1, = . -
I?l_jl _ { kiL MYl SpeCtator. 1 ?é_] = —2Fn({xi’ ki,nj_})' (129)
I 1
2

- . L, The first line of Eq. (125) represents the off-forward kinetic
oo {ku_ +5Xq1, spectator: i # j
ijLl =

x
(128)

(1-x;)qy, struckparton: i=j. In the transverse coordinate space,
|

2 2 1.2

= 2/[dxid2rll]nl/~/:;({xis 7&})261‘7,4-!1 ( +xjﬁi>lpn({xiv?ii})
J

Xj
-V2, +m? -
- 2/[dxid2”u_]nll~’2({xia Fii}) Z#_Mz P ({xi, i })e e, (130)
j J
The corresponding total density is the one-body light-cone energy density,
1 1
T ()= QZTT(H) =E(ry) + PLA(r) =T (ry) + V(ri) + PLA(r1), (131)

where the one-body (off-forward) kinetic energy density is

-2 <9
-V, 2_1
V]l—i-mj V

T(r) = Z/[dxidzru]nﬂ({xn7,1})252(’1 = 7j1) - g (x0T (132)
LIV +m2
= i), S0 = G g (), (133)

The one-body potential energy density in our case only involves the diagonal Fock sector contributions,
V(r) =Y /[dxidzru]nlfff,({xn P D& (ry = 1y ) (M? = 5,)0,({x;. Tl }), (134)

where s, = >, (—?,2 | + m?)/x; is the n-body light-cone kinetic energy. Note that the Dirac-6 only samples the nth parton,
the mock nucleon. This is because of the quenched approximation: all interaction is associated with the mock nucleon. It is
remarkable that the EMT “knows” the quenched approximation.

The Fourier transforms of £(r ), 7 (r, ), and V(r ) are the corresponding form factors, E(—g? ), T(—¢?% ), and V(—¢?).
At zero-momentum transfer, the squared invariant mass form factor gives the total squared invariant mass
E(0) = T(0) + V(0) = M?. From these expressions, we obtain

@D(-) = 2B(-3) ~2[EO) + ;2 [Al-a2). (135)

The von Laue mechanical equilibrium condition is automatically fulfilled as long as A(0) = 1, a consequence of
momentum conservation (97). The GFF D(q?) is
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- s ) 2 aaed
Fid — pitardi =V2, 4+ m? — x2
il — pifaiqL V]L mj —xiM

1+ x2

Di-t) =25 [ londPrial i) 3

'l

In particular, the D term is finite,

Ax ’ ei?’l'h}ﬁ/n({xia FiL})-

X j

J

(136)

1 1 -
D= D(O __1+2Z/ dXd rlJ_ nlen {x”rlL} Zx_{ nL_r )( V?L—f—m _x2M2)+Z(x?_1)}¢n({xi7rij_})’
j J

(137)

The D term contains a term ) _; rf i pjz ', resembling the virial term. This term measures how the wave function scales in
terms of a dilation transformation in the transverse direction. The Fourier transform of the D term is a quantity of interest:

- w2 2 o2
— Tl le—l-mj ij

1 + x2

D(r,) _2Z/dxd ril ,,l//n({xnm})Z{ ||:

1= jJ_l

The pressure distribution is

1

1) =337 (M2 =372 )AL - 5600 (139

and the proper energy density is

1 1

e — <M2 -ivi)A(n). (140)

e(ry) =
Note that we have introduced several energy related
densities [32], e.g. e(r,), E(ry), and 77 (r,). e is the
energy density of the hadron measured in its local rest
frame. It is normalized to the hadron rest energy, i.e. hadron
mass M. 7" (r,) is the light-front energy density multi-
plied by 2P, the state normalization factor. It is normal-
ized to the hadron light-front energy. £(r ) is the one-body

1.0 T T T T
\
\
\\
05F S~ -
§\ —_—— =
] 0.0 mmmmmmmmmm oo —
S
3
— a=0.5
051 ___ =10 7
a=2.0
_ 1 I I I
1'00 5 10 15 20 25

0 [GeV?]

FIG. 20. Fourier transform of the energy density ¢(Q?) and the mass squared density

4x : 52(”— - r )}lpn({xi’?il}).

X Ji

J

(138)

|
invariant mass squared density. It is the light-front energy
density in the Breit frame. It is normalized to the hadron
invariant mass squared:

/dzrle(rl) =M, (141)

M?* + P}
Sp &r T (ry) = TL (142)
/ @r E(r) = M. (143)

Figure 20 shows the energy form factors, i.e., the Fourier
transform of the energy densities.

An interesting quantity to investigate is the pressure
as a function of the energy, which can be interpreted as
the equation of state [86], as shown in Fig. 21. The

1 N T T T T
N
N
~N
_1 — \\\ -
o \\
2,
= — a=0.5
S ___ e=10 S |
@=2.0 -~
7 I I I I
0 5 10 15 20 25
0 [GeV?]

E(Q?) as a function of Q2.
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100
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FIG. 21.
sound speed c¢2 = dp/de for selected couplings.

derivative of the pressure-energy curve, i.e. ¢ = dp/de =
p'(r1)/e(ry), is the local speed of the sound. In our
model, the speed of the sound exceeds the conformal

limit y/1/3 in a large region [87]. At the periphery, it
approaches +/2/3.

VI. SUMMARY AND OUTLOOKS

In this work, we computed the forces inside a dressed
scalar nucleon in the nonperturbative regime using the light-
front Hamiltonian formalism. The calculation is based on a
previous nonperturbative solution of the quenched scalar
Yukawa model with a systematic Fock sector truncation up
to four particles where the Fock sector convergence was
demonstrated. The nonperturbative renormalization is imple-
mented using the Fock sector dependent renormalization.
In this work, the same counterterms are used to renormalize
the hadronic energy-momentum tensor (EMT). The hadron
matrix elements of the EMT are computed up to three
particles.

Instead of using empirical current components, e.g.
T'"' + T?2, to extract the notoriously challenging D term,
we performed a detailed analysis of the Lorentz structure of
the EMT and concluded that 7"~ is consistent with the
Hamiltonian dynamics that generates the LFWFs of the
system, and is a reliable current component for extracting
the forces inside the composite particles. The extracted D
term satisfies the von Laue mechanical equilibrium con-
dition. In the forward limit, its value is negative, consistent
with the mechanical stability conjecture.

Using the higher Fock sector expressions, we not only
derived the well-known LFWF representation for the A
term, but also obtained a general LFWF expression for the
D term. This expression does not involve the details of the
interaction, and can be used to investigate the general
properties of the forces inside composite particles in the
nonperturbative regime. The expression only involves the
diagonal Fock sector contributions and thus can be adapted
in phenomenological models to investigate the dynamical
structures of the nucleons. For example, for effective

1 1
1073 1072 107! 10° 10!
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Left: the pressure as a function of the energy, i.e., the equation of state for selected couplings. Right: the distribution of the

interactions between the quark and the antiquark, a reason-
able approximation is to couple the graviton to the trans-

verse center of mass of the system R, = Y, x;7;, i.e.,

1 dx’ et o
_g/zx/(l _x/)/dzrjj_l// (x/,l”l)

x 8% (ry = RO)V(F g, 7)),

Verr(r1)
(144)

where V(r ) is the two-body effective interaction. Note that

R 1 = 0 for boost invariant interactions.

An immediate extension of the present work is to
incorporate the spin degree of freedom. Another improve-
ment is to lift the quench truncation, which was used to
stabilize the scalar theory. Both improvements are required
for obtaining a general LFWF representation of the forces
in QCD.

The method we used here can also be applied to
investigate the inelastic gravitational form factors, which
provide a range of applications from particle production near
compact stars, to detecting dark matter, and to gravitational
transitions [88-90].
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APPENDIX: TRANSVERSE COORDINATE
SPACE REPRESENTATION

Let us introduce the transverse coordinate space wave
function as the Fourier transform of the LFWFs,
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n 2. o
(7)) = / %‘P({p}) (A1)

where p;, is the single-particle momentum, and ¥ (%) is
the single-particle momentum-space (coordinate-space)
light-front wave function. Since the light-front wave
functions are boost invariant, the momentum-space wave
function can be written in an explicitly boost invariant
form,

Y({xi pir}) =w({xi ki }), (A2)
where l_éi | = P;L +x;p, is the relative transverse momen-

tum, and p, = >_; p;| is the total transverse momentum.
The n-body integration measure can also factorize,

[ 5= [ 5 [

Here, we have denoted

/[dzku]n - ,lj/?;:)lz (27)262 (Z:kll). (A4)

Taking advantage of the light-front boost invariance,
Eq. (A1) becomes

= - d*p ik F =i XTFp
Py = [ % [hje S AR

X l//n({xi’]_éil})

(A3)

(AS)

— 2(R)) / @k Je SR Ty (xR )) (A6)

lhs =iV, P, ({x;. 71 }) = iV (R )W, ({xi. Fin }) + 82 (R )iV, ({x:, Fis }).

d2 = N . -
ths :/ PL e—iPLRL /[dzkiﬂne—zku-m (kjL +xjpl)1//n({xi,ku})

(2z)?

d’p i5 R, = =iy ki T P
= SRR [kl e S ()

(27)?

- 52(RL)U711({xi’ 71’J_}>’ (A7)

Here, we have introduced the intrinsic coordinate-space
wave function,

Fa(xn i) = / (ke S F ey (k). (A8)

From Eq. (A1), the momentum-space wave function can
be expressed as its Fourier transform,

¥, ({x. 5 ) = [ ] / dri et P, ({x, 70 })  (A9)
i=1

- /[dzril]neiZ[ku'?ul/?n<{xiv?iJ_})

=y ({xi ki }). (A10)

Here, again, k;; = p;) —x;p, and p, = >, p; is the
total momentum.

Let us next consider the derivatives. From Eqgs. (Al)
and (A9), it is not hard to conclude

B () =11 / r e TV ()
i=1

(Al1)

. = - = dzpi D T, = -
’lelyn({xi”’il})—ﬂ/(27[);6’ Pitip W ({xn pid }).
i=1

(A12)

Since we work with intrinsic variables, let us reduce both
sides of the second expression,

(A13)
(Al4)
(A15)

2 - iSY kL F T 7
+/d PL -5, R, /[dzkiﬂne—'Zi""i"fikjﬂ//n({xhku}) (A16)
(A17)

=iV 8 (R )W, ({x;. 71 }) +8*(R)) /[dzkil]ne_iZikil.;{l%]LWn({xiv ki })-

We can conclude
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V() = [@hle SE (i Fi)).
Similarly, let us consider
Jiri e S, g ()
2ri TSR )iV ({5 T )

’”u@iz’”;"%z(RL) /[dzkﬁ]ne_i 2ok E}ﬂlln ({xi IZL})

/ d
I
i=1
1 P d2p o B n d2k/ - 7 - > -
= d2r; etk T / / 5 <2n>252( m)e""“"uk’wn<{xhk;m
I/ e L G G (2 j
n /d2
-1/ ¢

ik T d pJ_ d2p —ip 7 - N N
rietin M/ o= ZH/ IL (27)%8° Zpu p1 Pt (pl = x;p )Y ({x0, Pry })

- 2l
oy e lH/ L omiF T (B — x5 )W, ({0 Bl })

:(kji - xjél)l//n({xiﬂ ku})

= jﬂl/n({xi, kii}),

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

where, p, = D), . In the last equality, we have used the fact that ./E,. 1 = 0. We have used a change of variable:
) IR AR i

K, = P, — x;p. . Therefore, we can conclude
kjﬂl/n({xi,ku}) = /[dz”il]neHZikwriLiVjLW;z({xia?u})-

We write the n-body integration measure as

=L oo () - fii,

where S, is the symmetry factor. The longitudinal measure is

/ H/%; 4;;5(2{},-— 1>.
/ [d2k; ], / & k’lz 8 <Zk,L>

We also define a new n-body measure based on the transverse coordinates,

/ [dx;d’r;1 ], Esin / [dx;] [d2r

Recall, the transverse measure is
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