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We investigate the effects of the momentum spread of photon around incoming electrons during
nonlinear Compton scattering of an elliptically polarized laser off an ultrarelativistic electron beam. It has
been assumed to be a good approximation to neglect the angular spread in the strong-field QED codes
considering its smallness in relativistic regime. Here, we scrutinize the validity of this approximation in the
nonlinear Compton scattering. For our purpose, we improved the fully electron spin- and photon
polarization-resolved Monte Carlo simulation method by employing the angle-resolved probability for
high-energy photon emission in ultrastrong laser fields. The quantum operator method introduced by Baier
and Katkov is employed for calculation of the probability within the quasiclassical approach and the local
constant field approximation. Our simulation shows that the angular spread at emission has notable effects
on angular distribution and polarization of outgoing particles. The width of angular distributions for
electrons and emitted photons are increased. Meanwhile, the electrons polarization is reduced due to the
correction of radiation reaction force, while the average polarization of photons is insensitive to the angular
spread at emissions.
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I. INTRODUCTION

Polarized unltrarelativistic particle beams have important
applications in many fields thanks to the unique additional
spin information [1–4]. For instance, spin-polarized elec-
tron (positron) beams can be used in polarized deep-
inelastic lepton-nucleon scattering to provide information
on the spin structure of the nucleon, and to search for new
physics beyond the standard model [5–10]. Polarized γ
photons are excellent probe of protons, neutrons, and nuclei
partially due to the smallness of photon-hadron cross
section [11], and could be used for detecting QED vacuum
taking advantage of the enhancement of QED vacuum
nonlinearity for energetic photons [12–17].
Recent progress of high-power laser and electron accel-

erator technologies have stimulated the interest of making
laser-driven ultrarelativistic polarized-particle sources via
nonlinear Compton scattering [18–24]. By shining laser
light at a counterpropagating ultrarelativistic electron beam,
the electron spin varies due to spin precession [25–28],
radiative polarization [29–31] and QED loop effects
[29,32–35] (see also [36,37] for recent reviews). After

the interaction, the electrons could obtain a net polarization
along a certain direction in the case that the background
fields have some sort of asymmetry such as the elliptically
polarized [18,19] and two-color laser fields [20]. The
asymmetry is essential to prevent the cancellation of
polarization effects in the adjacent half-cycles.
To investigate the electron-spin dynamics and photon

polarization in strong laser fields, the spin-resolved sim-
ulation approaches have been developed using probabilistic
routine based on electron spin- and photon polarization-
resolved quantum radiation probability [18,19,38]. Under
local constant field approximation (LCFA) [30,39–45], the
quantum probability can be obtained using strong-field
QED in the Furry picture [34,40,44,46–48] or quantum
operator method introduced by Baier and Katkov [38,49],
which are equivalent under constant cross-field approxi-
mation. However, the spin-resolved probability applied in
the strong-field simulation codes are based on integration
over emitted photon angle [38]. Consequently, the angular
spread around the electron propagation direction at the
emission events have to be ignored, as well as the
dependency of polarization on the emission angle. This
simplification is justified in the ultrarelativistic limit as the
angular spread at emission (ASE) Δϑ ∼ 1=γ ≪ 1 with γ
being electron Lorentz factor, much smaller than the total
angle of particle deflection in the intense laser field
θD ¼ a0=γ. Here a0 ¼ jejE0=mω0 is the invariant laser-
field parameter, with −e and m being the electron charge
and mass, respectively, E0 and ω0 the amplitude and
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frequency of the laser field, respectively. The relativistic
units ℏ ¼ c ¼ 1 are used throughout. However, whether the
approximation is valid in a realistic polarization scenario
have not been truly tested. The effects of ASE on dynamics
and polarization of the outgoing particles could be impor-
tant, especially for the low-energy photon emissions in the
laser with a0i ¼ a0 · êi ≪ 1 along a certain direction êi. In
this case, the deflection angle is negligible along êi, while
the ASE is nontrivial due to the smallness of γ.
The exact angle-resolved radiation probability can be

calculated with semiclassical or Volkov-state approaches,
which is valid for arbitrary electron spin and photon
polarization [50–53]. However, the radiation probability
obtained in these literatures include double integrals over
interaction phase and are numerically cumbersome in the
strong-field regime, where formation length is small and
multiple emissions dominate. Under local constant field
approximation (LCFA), the angle-resolved probability has
been recently derived after averaging over initial spins and
summing over final spins of electrons, and applied to study
the energy and angular spectra of polarized photon in the
weakly nonlinear regime [44]. The angle-resolved LCFA
probability for unpolarized photons can be found in [49],
which has been applied for investigating radiation beaming
in the quantum regime without polarizations [54]. The
electron spin- and photon polarization-resolved probabil-
ities have been provided for nonlinear Compton scattering
and nonlinear Breit-Wheeler pair creation in monochro-
matic plane waves [55,56], which haven been included in
simulation codes to support the strong-field QED experi-
ments [57,58]. However, the probabilities are presented as a
summation over the photon number n, whose evaluation
represents a tremendous task at high-field limit (a0 ≫ 1).
Recently, the generalized probabilities applicable for arbi-
trary fields with slowly varying envelope are obtained
under locally monochromatic approximation (LMA),
which is more accurate in the modeling of plane-wave-
like fields than LCFA probabilities as it captures interfer-
ence effects [59–61].
In this paper, we derived the angle-resolved probability

for nonlinear Compton scattering using the Baier-Katkov
quantum operator method under LCFA, valid for arbitrary
electrons spin and photon polarization. By applying the
probability to the fully spin-resolved QED codes, we
developed an angle-resolved Monte Carlo method for
investigating the effect of ASE on angular distribution of
density and polarization for outgoing particles in arbitrary
laser fields. We revisited the polarization schemes in an
elliptically polarized laser field with the newly developed
simulation method. We show that the ASE could cause a
remarkable spread of angular distribution along the direc-
tion with negligible deflection angle (θiD ∝ a0 · êi ≪ 1),
and affected the direction of radiation reaction force, which
consequently decrease the angle-dependent polarization of
final electrons.

II. ANGLE-RESOLVED LCFA PROBABILITY

The electrons in the laser fields radiate mainly forward
into the narrow conewith the axis directed along the electron
velocity v and the cone opening angle Δϑ ∼ 1=γ. The
radiation direction n ¼ ðcos β cosψ ; cos β sinψ ; sin βÞ is
expressed with the emission angles ðβ;ψÞ [Fig. 1(a)], in the
basis spanned by three orthogonal vectors ðev; e⊥; ev × e⊥Þ
with ev ¼ v=jvj being the unit vector along the electron
velocity vðtÞ, e⊥ ¼ w⊥=jw⊥j the unit vector along the
direction of the transverse component of acceleration
w⊥ðtÞ (Fig. 1). The emission probability for a photon
radiated along n can obtained by Baier-Katkov quantum
operator method [49]

dwrad¼
α

ð2πÞ2
d3k
ω
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�
−i

εðkx2−kx1Þ
ε0

�
;

ð1Þ
where kμ ¼ ωf1;ng and xμ ¼ ft; rðtÞg are the 4-momen-
tum and 4-coordinate of the emitted photon. The indices 1
and 2 denote the dependence on the radiation time moments
t1 and t2 along the radiation directionn, respectively. ε and ε0
are the electron energies before and after emission, respec-
tively, and

RðtÞ ¼ φ0þðζ 0Þ½AðtÞ þ iσ · BðtÞ�φðζÞ; ð2Þ

where φ and φ0 are the two-component spinors that describe
the initial- and final-spin states of the electron, respectively.
The unit vectors ζ and ζ 0 are the corresponding spin vectors.
The expressions of AðtÞ and BðtÞ are
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FIG. 1. Reference frames for description of the angular char-
acteristics of the radiation. (a) β is an angle between the plane
ðev; e⊥Þ and vector n, and ψ is an angle between the projection of
vector n on the plane ðev; e⊥Þ and vector ev. (b) ϑ is the angle
between n and ev, and ϕ is the angle between the projection of
vector n and vector e⊥.
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with pðtÞ ¼ γmvðtÞ being the momentum of the electron,
γ ¼ ε=m the Lorentz factor, e the polarization vector of the
emitted photon, which can be expressed in terms of the
orthogonal basis

e1 ¼
s − ðn · sÞn
js − ðn · sÞnj ; e2 ¼ ½n × s�; ð4Þ

where s ¼ w=jwj. Changing variables from t1, t2 to t ¼
ðt1 þ t2Þ=2 and τ ¼ t2 − t1, the LCFA result can be obtained
by expanding v1;2 and r1;2 in Eq. (1) over τ (for more details
see Appendix B). Keeping in mind that β and ψ are both in
the order of ∼1=γ, the combinations of angles with order
beyond ∼1=γ2 can be dropped out, which is a good
approximation for ultrarelativistic electrons. Then one could

obtain the photon-radiation probability per unit time and per
solid angle with the accuracy up to ∼1=γ2 [38,49]:

d2Wrad

dωdΩ
¼ αω

ð2πÞ2
Z

∞

−∞
dτR�

2R1

× exp

�
−i

ε

ε0
ω

��
β2

2
þ ψ2

2
þ 1

2γ2

�
τ þ w2τ3

24

��
:

ð5Þ

After the integration over τ, we obtain the polarization
matrix of radiation probability per unit time and per
solid angle:
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where v̂ ¼ v=jvj, b ¼ v̂ × s, C ¼ αγ3ωΘ
1
2

2
ffiffi
3

p
π2χε0

with Θ ¼
ϑ2 þ 1

γ2
, ξ ¼ 2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
=m3. Here Fμv denotes the field tensor

and pv the 4-momentum of the electron. Note that, we have
convert the results to the ðϑ;ϕÞ frame [Fig. 1(b)], for the
sake of convenience of further integration of emission
angles and obtaining the angle-unresolved LCFA proba-
bility in [38]. The angle-resolved radiation probability
density including all the polarization and spin characteristic
takes the form

d2Wrad

dωdΩ
¼ 1

2
ðF0 þ ξ1F1 þ ξ2F2 þ ξ3F3Þ; ð7Þ

where F0¼d2W11þd2W22

dωdΩ , F1¼d2W12þd2W21

dωdΩ , F2¼id
2W12−d2W21

dωdΩ ,

F3 ¼ d2W11−d2W22

dωdΩ , and the 3-vector ξ ¼ ðξ1; ξ2; ξ3Þ are the
Stokes parameters of emitted photon defined with respect
to e1 and e2. For an arbitrarily polarized photon with
polarization vector e ¼ a1e1 þ a2e2, the Stokes parameters
are given by

ξ1 ¼ a1a�2 þ a2a�1; ξ2 ¼ iða1a�2 − a2a�1Þ; ξ3 ¼ ja1j2 − ja2j2:
ð8Þ

After summing over the polarization of emitted photon,
we get
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The final polarization vector of the electron resulting
from the scattering process itself is ζf ¼ η=κ [50]. The
radiation probability dW̄ ∝ 1þ ζ 0 · ζf, where ζ 0 ¼ �d
denotes the electron spin alignment (þ) or antialignement
(−) with respect to the spin-quantization axis d defined
by the detector. The corresponding probabilities of
spin-up and spin-down are dW̄ζ 0 ∈ f↑;↓g ¼ 1� d · ζf, which
give the final polarization of the electron along d:

ζ0d ¼ dW̄↑−dW̄↓

dW̄↑þdW̄↓
¼ ζf · d. Thus, ζ 0d can be obtained by pro-

jecting ζf on the arbitrary observation direction d, where ζf

is the mean spin vector in the rest frame of electron
resulting from the scattering process itself [38,50]. After

averaging over initial and summing over final electron
polarizations, we get the analytic expression for the angle-
resolved probability density,

d2W̃rad

dωdΩ
¼ 2C

�
ϑ2 þ Θ

�
ε2 þ ε02

ε0ε
− 1

��
K1

3
ðξÞ: ð10Þ

The angular spread of a photon around the emitting electron
is inversely proportional to emitted photon energy δ
(see Fig. 2), roughly with ϑ ∼ δ−1=3 for δ ≪ 1 [62] and
ϑ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − δÞ=δp
for δ ∼ 1 [54]. Therefore, the ASE effects

is more significant for low-energy photon emissions. Let us
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compare our results with the angle-resolved LCFA results
obtained earlier. The angle-resolved probability given in
Eq. (10) is same with Eq. (4.23) in [49] and Eq. (1) in [54],
using the relation u ¼ ω=ε0 and z ¼ ½γ2ϑ2 þ 1�3=2.
The derived angle-resolved LCFA rates are applicable

when the formation length of the emitted photon lf is much
smaller than the typical length where the background field
significantly varies. The formation length can roughly be
estimated as lf ≃ 1=a0ω0, and consequently the LCFA is
assumed to be valid in any strong external field with
a0 ≫ 1. Recent studies provide a more precise estimation
of formation length that depends on photon energy ω0:
lf ¼ χ1=3

a0ω0
ðγm−ω0

ω0 Þ1=3, indicating the LCFA is violated at

ω0=γm≲ χ=a30 even though a0 ≫ 1 [39,41,54,63,64].
The formation length of these low-energy photons is
comparable to the spatial scale of field variation, therefore
the interference effects are indispensable for an accurate
description of the low-energy end of the spectrum.
Conclusively, the LCFA rates presented in this section
are generally applicable for a0 ≫ 1 and accurate for
photons with energies of ω0=γm≳ χ=a30.

III. SIMULATION RESULT

A. Angle-resolved Monte Carlo simulation

Let us first introduce our angle-resolved Monte Carlo
method for nonlinear Compton scattering. Photon emissions
are treated quantummechanically, while the electron dynam-
ics semiclassically. At each simulation step, two random
numbers are sampled to decide the occurrence of photon
emission and photon energy by the spectral probability. The
spin of the electron after the emission is determined by the
spin-resolved emission probabilities according to the com-
monly used stochastic algorithm [19–21,65], as well as the
polarization of the emitted photons [19,23]. Once photon
energyω, electron spin ζf and Stokes parameters ξ have been
picked, the angles of emission are picked using the

distribution d2Wrad=dωdΩ of Eq. (7) and the commonly
used acceptance-rejection method. After emission, the elec-
tron momentum is changed according to the momentum
conservation, p0 ¼ p − kðϑ;ϕÞ, enabling an angle-resolved
radiation reaction. In this way, an angular corrections to the
kinetic dynamics of all the put-going particles is included to
the strong-field QED simulation codes.
To confirm the accuracy of our simulation method, we

simulated the nonlinear Compton scattering of a linearly
polarized laser pulse and ultrarelativistic electron beam
with different approaches, including the semiclassical
approach without LCFA [49,50,66], the angle-resolved
and -unresolved LCFA approaches [see Fig. 3]. The
analytical expression for the spectral distribution of radi-
ation can be derived in the framework of the Baier–Katkov
semiclassical approximation based on the classical trajec-
tory [49,50,66,67]. With the semiclassical approach, one
could obtain the angular distribution of emitted photons by
coherently integrating over the electron trajectory, which
has been proved in [47,51] to be coincide with the exact
QED calculations. However, this method is more suitable
for investigating the interference effects or polarization
effects with moderate laser intensity, where formation
length is comparable to the timescale of the external field
and multiple photon emissions is negligible. In the case that
the formation length is much smaller than the field
inhomogeneities, LCFA can be adopted to avoid the
complicated integrals in simulation. Therefore, we com-
pared the semiclassical approach with integration of
classical trajectory and angle-resolved LCFA approach
in the single-photon emission dominated regime, to assess
the validity of LCFA and capacity of describing
angular distribution. Meanwhile, we also compared the
angle-resolved approaches and angle-unresolved LCFA
approach to reveal the importance of the angle spread at
emissions.
The angular distribution of emitted photon energy with

different approaches are shown in Fig. 3. We considered a
linearly polarized plane wave of the form

E ¼ E0 cos ðω0t − k0zÞ exp
�
−
ðω0t − k0zÞ2

2s2

�
êx; ð11Þ

with s ¼ ω0τp
2
ffiffiffiffiffiffiffiffi
2 ln 2

p , pulse duration τp ¼ 3T0 with period T0,

peak intensity I ≈ 1021 W=cm2ða0 ¼ 10Þ, wavelength of
the laser λ0 ¼ 1.0 μm. The parameters are chosen such that
multiple emissions can be avoided. The average photon
number emitted by a single electrons can be estimated by
Nγ ∼ αa0τp=T0 < 1. For the semiclassical approach with-
out LCFA, we obtain the trajectory of an 4 GeVelectron by
solving Lorentz equation, and then substitute the time-
dependent momentum and coordinate of the electron into
the radiation spectrum [47,67]:

FIG. 2. The angle-resolved radiation probability d2W̃rad
dωdΩ vs

emitted photon energy δ ¼ ω=ε and emission angle θ for χ ¼ 2.0.

EFFECTS OF ANGULAR SPREAD IN NONLINEAR COMPTON … PHYS. REV. D 108, 056025 (2023)

056025-5



d2I
dΩdω

¼ e2

4π2

�
ε2 þ ε02

2ε2
jIj2 þ ω2m2

2ε4
jJj2

�
; ð12Þ

where

I ¼
Z

n × ½ðn − vÞ × v̇�
ð1 − n · vÞ2 ei

ε
ε0kxdt;

J ¼
Z

n · v̇
ð1 − n · vÞ2 e

i ε
ε0kxdt:

As shown in Fig. 3(a), the azimuthal angle of photons
emitted by an electron in the linearly polarized laser
are centered at φ ¼ tan−1 ky=kx ¼ 0 with a width of
Δφ ¼ 0.4 rad, and polar angle θ ¼ cos−1 kz=jkj is within
∼a0=γ ¼ 0.5 mrad. Note that, ðθ;φÞ are the usual spherical
angles corresponding to the Cartesian axes, while ðϑ;ϕÞ
are the angles defined with respect to the frame
ðev; e⊥; ev × e⊥Þ [Fig. 1(b)].
For the LCFA approaches, we consider a monochromatic

electron beam consists of 3 × 106 electrons, which has a
cylindrical form with radius we ¼ λ0, length Le ¼ 5λ0 and
initial energy of ε0 ¼ 4 GeV. The electron density has a
transversely Gaussian and longitudinally uniform distribu-
tion. The simulation results show that the angle-resolved
LCFA can reproduce the angular intensity of the semi-
classical approach in Fig. 3(a), indicating nearly perfect
agreement between the two approaches. In contrast, the
angle-unresolved LCFA performs poorly in describing the
angular distribution, especially over azimuthal angle φ.
The angle-resolved approaches predict a energy peak at
θm ¼ 0.175 mrad, which is missing in the angle-unresolved

case [Fig. 3(d)], as well as a spread of azimuthal angle over
φ ¼ 0. In the case of angle-unresolved case, the photons are
emitted along the electron momentum direction, which
is in the x–z plane for the linearly polarized plane wave
propagating along z. Therefore, the momentum of the
photon has negligible y component, i.e., φ ≈ 0. In contrast,
the difference in width of dI=dθ is negligible for different
approaches. It is because the width is induced by the
deflection of electron in the field θD ∼ a0=γ, which is one
order larger compared to the correction of angular spread
Δϑ ∼ 1=γ.

B. The impact of ASE on density and polarization
of outgoing particles

1. Angle-resolved photon emissions

Next, we proceed to investigate the effect of ASE in a
more realistic scenario. For investigating the polarization
effects, intense lasers with asymmetry are needed to
prevent the cancellation of spin effects in adjacent
half-cycles. Here, we use a tightly focused elliptically
polarized laser with beam waist size w0 ¼ 5λ0, laser
intensity a0 ¼ 100 and ellipticity ϵ ¼ jEyj=jExj ¼ 0.03.
The electron beam consists of Ne ¼ 6 × 106 electrons,
with energy divergence Δεi ¼ 0.06, angular divergences
Δθi ¼ 0.3 mrad and Δφi ¼ 1 mrad. The rest parameters
are same as in Fig. 3.
The ASE induces a significant angular spread over θy but

have negligible effects on the angular distribution over
θx ¼ tan−1 kx=kz [Figs. 4(a) and 4(c)]. The total angle of
electron deflection in the x direction can be estimated as
θx ∼ a0=γ, orders larger than ASE Δϑ ∼ 1=γ. While the

FIG. 3. The angular intensity of emitted photons d2I=dθ=dφ versus θ (mrad) and φ (rad): (a) for semiclassical approach without
LCFA; (b) for angle-resolved LCFA approach; and (c) for angle-unresolved LCFA approach. The angular intensity of photons dI=dθ vs
θ (mrad) (d) and dI=dφ vs φ (rad) (e) for semiclassical approach without LCFA (blue solid line), angle-resolved LCFA approach (red
dashed line) and angle-unresolved LCFA approach (green dotted line).
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deflection angle along the y axis is comparable with ASE
since θy ¼ tan−1 ky=kz ∼ ϵa0=γ ∼Oð1Þ=γ. This angular
spread is more significant for photons with θx ≈ 0. It is
because most of the photons are emitted by high-energy
electrons with a small deflection angle (θx ≈ 0), including a
considerable amount of soft photons that are emitted at low-
intensity region of laser pulse [54]. Since the significance
of ASE is inversely proportional to emitted photon energy
(Fig. 2), these soft photons are spread out dramatically
when emission angle is resolved, resulting in a significant
angular spread over θy around θx ≈ 0. Correspondingly, the
high-energy region of electrons is stretched out along θy
around θx ≈ 0 as a result of angle-resolved radiation
reaction of soft-photons emissions [Figs. 5(a) and 5(b)].
The relative error to angular distribution of photon density
by neglecting ASE is ðΔθy − Δθuny Þ=Δθy ≈ 10.3%, with
Δθy and Δθuny being the full width at half maximum of
angular distribution for angle-resolved and unresolved
approaches, respectively [Fig. 4(e)].
Regarding to the photon polarization, the changing law

of ξ3 with θy is opposite in large angle region for different
approaches [Fig. 4(f)]. ξ3 increases with θy for angle-
unresolved LCFA but decreases for angle-resolved LCFA.
The γ photons emitted by the unpolarized electrons are in a
mixed state with ξ ¼ ð0; 0; ξ3Þ. The average polarization of
the emitted photons can be estimated with [38] (for more
details see Appendix D)

ξ3 ¼
K2

3
ð2u
3χÞ

−
R
2u
3χ
K1

3
ðxÞdxþ ε2þε02

ε0ε K2
3
ð2u
3χÞ

; ð13Þ

where u ¼ ω=ε0. As shown in [Fig. 5(e)], ξ3 is inversely
proportional to photon energy δ ¼ ω=εi except for the soft
photons located at δ ≤ 0.25. In the angularly unresolved
case, θy ∝ ay=γ is inversely proportional to emitted photon
energy ω ¼ χεi ∼ a0γ2. The high-energy photons are well
collimated in the beam center while the low-energy photons
are emitted with a larger angle [Fig. 5(c)]. Therefore, the
polarization ξ3 increases with the increase of θy [Fig. 4(f)].
While in the angle-resolved case, the angular spread of the
soft photons around θx ≈ 0 could result in a reduction of
average photon energy at large θy. For instance, the soft
photons distributed at θy ¼ 0 move towards θy ¼ Δθy,
resulting in a decrease of average energy of photons at Δθy.
Since soft photons are mostly distributed around θx ≈ 0, the
angular distribution of photon energy is severely distorted
at this region [Fig. 5(d)]. When the photon energy decrease
to δ ≤ 0.25, ξ3 decreases with the decrease of δ [Fig. 5(e)],
which is responsible for the decrease of ξ3 with the increase
of jθyj at jθyj > 1.1 mrad [Fig. 4(f)].
Note that, even though the ASE affects the angular

distribution of photon density and polarization, the average
polarization over all the emitted photons ξ̄3 ¼ ξ̄un3 ≈ 0.54 is
unchanged. In our scheme, ξ3 of a emitted photon is solely
determined by its energy, which is irrelevant to ASE.

FIG. 4. Angular distribution of photon density
log10 d2N=dθx=dθy ðmrad−2Þ (left column) and polarization ξ3
(right column) vs θx (mrad) and θy (mrad): (top row) for angle-
unresolved LCFA, and (middle row) for angle-resolved LCFA.
The angular distribution of photon density dN=dθy ðmrad−1Þ (e)
and polarization ξ3 (f) vs θy for angle-unresolved LCFA (blue
solid line) and angle-resolved LCFA (red dashed line).

FIG. 5. Angular distribution of average energy for electrons
d2ε̄=dθx=dθy ðmrad−2Þ (top row) and photons d2ω̄=dθx=dθy
ðmrad−2Þ (middle row) vs θx (mrad) and θy (mrad) for angle-
unresolved LCFA (left column) and angle-resolved LCFA (right
column). (e) The spectral stokes parameter ξ3 vs emitted photon
energy δ ¼ ω=εi.
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The role of ASE is changing the momentum direction of a
photon, leading to a variation of angular distribution of ξ3.
However, the average polarization of the photon beam is
unaffected by ASE.

2. Electrons with angle-resolved radiation reaction

The effects of ASE on electrons density and polarization
are illustrated in Fig. 6. The angular distribution of
electrons is slightly broadened with a relative error of
ðΔθy − Δθuny Þ=Δθy ≈ 5.4%, which is smaller than that for
photons, as the error is induced by radiation reaction of soft
photons, i.e., Δϑe ≈ ωΔϑ=γ ≪ Δϑ for ω ≪ γ. Meanwhile,
the electron polarization exhibits some unique features
distinct from photon polarization. In both approaches, the
electron beam is split along the propagation direction into
two oppositely transversely polarized parts due to the spin-
dependent radiation force [18,22,23]. The electrons with
ζy > 0 (ζy < 0) are more likely to emit photons at By < 0

(By > 0) due to asymmetric radiation probability. In an
elliptically polarized laser field, the electron momentum py

andmagnetic fieldBy is correlated aspy · By < 0. Assuming
the photons are emitted along the momentum direction of
emitting electrons, the photons emitted at By < 0 (By > 0)
could exert a radiation kick to deflect the electrons towards
py < 0 (py > 0), and finally the electron obtains ζy > 0

(ζy < 0) at θy > 0 (θy < 0). It is assumed to be a good
approximation for ultrarelativistic electrons. However, the

splitting angle of the electrons with opposite spin is in the
order of milliradians, comparable with the emission angle
Δϑ ∼ 1=γ for MeV electrons with γ ≤ 103. In the angle-
resolved case, the polarization of electrons distributed at the
beam center decreases. It is because the high-energy region
is stretched out around θx ≈ 0 [Fig. 5(b)], and the polari-
zation is roughly inversely proportional to emitted photon
energy, leading to a decrease of polarization around θx ≈ 0.
Meanwhile, the low-polarization gap between the splitting
electrons is broadened slightly. Since the correlation of
polarization and radiation reaction force in an elliptically
polarized laser field can be breakdown by angular spread for
small angle electrons around θy ≈ 0. For instance, the
photons emitted at By > 0 could exert a radiation kick to
deflect electrons towards py < 0 instead of py > 0 due to
the angular spread. Finally the distribution of electron with
ζy < 0 is extended to θy > 0, averaging out the polarization
of electrons polarized with ζy > 0 at θy > 0 [Fig. 7]. The
relative error to electron polarization induced by neglecting
ASE is ðζy − ζuny Þ=ζy ≈ 6.67%, with ζy and ζuny being the
average polarization for angle-resolved and unresolved
approaches, respectively.

C. Impact of laser and electron-beam
parameters on the signature

For the experimental feasibility, we have investigated
the impact of laser and electron parameters on the relative
error, see Fig. 8. We vary the following parameters: laser
intensity a0 and ellipticity ϵ, initial electron kinetic energy
εi and angular divergence Δφi. The ASE is pronounced
when the deflection angle θy ∼ ϵa0=γ is much smaller than
the angular spread at emissionΔϑ ∼ 1=γ, which confines the
domain of experiment setups by a0ϵ ≪ 1. The decrease

FIG. 6. Angular distribution of electron density
log10 d2N=dθx=dθy ðmrad−2Þ (left column) and polarization ζy
(right column) vs θx (mrad) and θy (mrad): (top row) for angle-
unresolved LCFA, and (middle row) for angle-resolved LCFA.
The angular distribution of electron density dN=dθy ðmrad−1Þ (e)
and polarization ζy (f) vs θy: for angle-unresolved LCFA (blue
solid line) and angle-resolved LCFA (red dashed line).

FIG. 7. Angular distribution of electron density
log10 d2N=dθx=dθy (mrad−2) (left column) and polarization ζy
(right column) vs θx (mrad) and θy (mrad) with photon emissions
at By > 0: (upper row) for angle-unresolved LCFA, and (bottom
row) for angle-resolved LCFA.
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of a0 or ϵ is certainly beneficial for a larger relativistic error,
[Figs. 8(a) and 8(b)]. The increase of γ results in the decrease
of deflection angle θy, but unfortunately the angular spread at
emissionΔϑ also deceases. Consequently, the relative error is
less sensitive to the electrons initial energy than laser
parameters due to the tradeoff [Fig. 8(c)]. Meanwhile,
the relative error is robust against the fluctuation of the
initial angular spread of electrons, since θyi ¼ sin θi sinφi ∼
10−6 ≪ Δϑ ∼ 1=γ [Fig. 8(d)].

IV. CONCLUSION

We developed an angle-resolved Monte Carlo method
for investigating the impact of angular spread during
nonlinear Compton scattering, by employing the angle-
resolved radiation probabilities in the local constant field
approximation. We assessed the validity of the commonly
used strong-field QED simulation, which based on the
angle-unresolved LCFA probability and the assumption
that photons propagate along the momentum direction of
the emitting electrons. In a linearly polarized plane wave,
the angular distribution of emitted photons obtained with
angle-resolved LCFA approach agrees with the semiclass-
ical approach without LCFA, while the angle-unresolved
LCFA approach fails in describing the angular distribution
along the magnetic field direction, where deflection angle
θD ∼ 0. For nonlinear Compton scattering in a realistic
elliptically polarized laser field, the deflection angle
induced by laser field along y is rather small as θy ∼ ϵa0=γ
with ellipticity ϵ ∼Oð10−2Þ. In this case, neglecting the
emission angle between photons and electrons could result
in a relative error of ∼10.3% in angular distribution of
emitted photons. Meanwhile, the angular spread at emis-
sions could also affect angular distribution of polarization
for the outgoing particles. The soft photons at beam center
are relocated towards large-angle region, inducing a

decrease of average photon energy at jθyj > 1.1 mrad
and consequently a decrease of photon polarization at this
region. The angular distribution of electron density and
polarization are also affected by angular spread as a
consequence of angle-resolved radiation reaction. The
high-energy electrons are stretched to a larger θy around
θx ≈ 0 due to the angle spread of soft-photon emissions,
resulting in a decrease of polarization near the beam center.
More importantly, since the polarization of electrons in
elliptically polarized laser is generated by the spin-depen-
dent radiation reaction, the angle spread could change the
direction of radiation reaction force, breaking the correla-
tion of electron spin and deflecting angle in an elliptically
polarized laser field. This is a nontrivial effect for electrons
around θy ≈ 0, which causes a broaden of low-polarization
gap between electron ensembles with opposite polarization.
Therefore, the ASE is crucial for accurate descriptions of
angular distribution of density and polarization for out-
going particles, and could impact the average polarization
of the particle beams if the considered laser-driven polari-
zation scheme is sensitive to emission angles.
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APPENDIX A: ASYMMETRY FOR
NET POLARIZATION

The spin variation induced by spin-flip at each time step
can be estimated as [68,69]

dζ
dt

≈ −
αmffiffiffi
3

p
πγ

Z
∞

0

u2du
ð1þ uÞ3K1=3

�
2u
3χ

�
ê2; ðA1Þ

with u ¼ ω
ε−ω and ê2 being the unit vector along

magnetic field direction in the rest frame of electron. The
spin variation depends on the quantum parameter χ,
see Fig. 9. The net polarization can be estimated by
ζ̄ ¼ NT

2
ðζ̇ðχ1Þ − ζ̇ðχ2ÞÞ, with χ1 and χ2 being the quantum

parameters at adjacent half-cycles, respectively, N the laser
cycle and T the laser period. The current experimental
detection precision of polarization is typically ≳0.5% [70].
If the asymmetry is defined as R ¼ χ2=χ1 ≈ a2=a1, then the
net polarization should fulfils ζ̄ ¼ NT

2
ðζ̇ðχ1Þ − ζ̇ðRχ1ÞÞ≳

0.5%. For N ¼ 3, χ1 ¼ 1, a sizeable polarization of ∼10%
requires R≲ 0.4. The asymmetry in the case of an

FIG. 8. Influence of laser pulse and electron-beam parameters
on relative error of angular spread for photons (black-solid) and
polarization for electrons (red-dashed), including (a) laser in-
tensity a0, (b) laser ellipticity ϵ, (c) electron initial energy εi
(GeV) and (d) electron initial angular spread Δφi (mrad).
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elliptically polarized field refers to additional field compo-
nents along the y-axis, which could split the electrons with
different polarization along the propagation direction due to
the spin-dependent radiation reaction. Even though the net
polarization of the whole beam is zero, an angle-dependent
polarization emerges regardless of the value of ϵ.

APPENDIX B: THE DERIVATION OF
ANGLE-RESOLVED PROBABILITY

In LCFA the time of radiation in the given direction is
much shorter than the time characteristic of particle motion,
and the variation of the external field acting on the particle
at the formation length can be neglected. In this case, it is
convenient to introduce the following variables

t ¼ ðt1 þ t2Þ=2; τ ¼ t2 − t1; ðB1Þ
and the functions in the probability expression expand over τ,

vðt� τ=2Þ ¼ v � wτ=2þ ẇτ2=8þ � � � ;
rðt� τ=2Þ ¼ r� vτ=2þ wτ2=8� ẇτ3=48þ � � � ; ðB2Þ

with r ¼ rðtÞ, v ¼ vðtÞ, andw ¼ wðtÞ being the coordinate,
velocity, and acceleration of the electron at a time t,
respectively. Taking into account that the produced particles
are ultrarelativistic, one obtains with an accuracy up to the
terms ∼Oð1=γ2Þ

v · w ¼ Oð1=γ2Þ;n · ẇ ¼ −w2: ðB3Þ
Then

v1v2 ¼ 1 −
1

γ2
−
w2τ2

2
;

kx2 − kx1 ¼ ωτð1 − n · v þ w2τ2=24Þ: ðB4Þ

The scalar combinations involving vector n have the form

n · v ¼ v cos β cosψ ;

n · w⊥ ¼ w⊥ cos β sinψ ;

n · ½v × w⊥� ¼ vw⊥ sin β: ðB5Þ
Since the ultrarelativistic particle radiatesmainly forward into
a narrow cone, the angles β andψ are of the order of1=γ.With
the adopted accuracy

1 − n · v ¼ ðβ2 þ ψ2 þ 1=γ2Þ=2;
n · s ¼ ψ ;n · ½v × s� ¼ β: ðB6Þ

UsingEqs. (B6) and (B4), thephoton radiationprobability per
unit time, dWrad ≡ dwrad=dt, reads

dWrad¼
αω

ð2πÞ2dω
Z

∞

−∞

Z
∞

−∞
dβdψ

Z
∞

−∞
dτR�

2R1

×exp

�
−i

ε

ε0
ω

��
β2

2
þψ2

2
þ 1

2γ2

�
τþw2τ3

24

��
: ðB7Þ

Because of the rapid decreasing of functions at large angles
and time, the integration limits have been extended to infinity.

APPENDIX C: THE ELECTROMAGNETIC
FIELDS OF THE LASER PULSES

In thiswork,we employ tightly focused laser pulseswith a
Gaussian temporal profile, which propagate along z direc-
tion as a scattering laser beam. The spatial distribution of the
electromagnetic fields takes into account up to ϵ30 order of the
nonparaxial solution,where ϵ0 ¼ w0=zr,w0 is the laser focal
radius, zr ¼ k0w2

0=2 the Rayleigh length, k0 ¼ 2π=λ0 the
laser-wave vector, and λ0 the laser wavelength. The expres-
sions of the electromagnetic fields of the linearly polarized
(LP) (along x axis) laser pulse are as follows [71]:

EðLÞ
x ¼ −iEðLÞ

�
1þ ϵ20

�
f2x̃2 −

f3ρ4

4

��
;

EðLÞ
y ¼ −iEðLÞϵ20f

2x̃ ỹ;

EðLÞ
z ¼ EðLÞ

�
ϵ0fx̃þ ϵ30x̃

�
−
f2

2
þ f3ρ2 −

f4ρ4

4

��
;

BðLÞ
x ¼ 0;

BðLÞ
y ¼ −iEðLÞ

�
1þ ϵ20

�
f2ρ2

2
−
f3ρ4

4

��
;

BðLÞ
z ¼ EðLÞ

�
ϵ0fỹþ ϵ30ỹ

�
f2

2
þ f3ρ2

2
−
f4ρ4

4

��
;

EðLÞ ¼ E0Fnfe−fρ
2

eiðψþψCEPÞe−
t2

τ2 ; ðC1Þ

where τ is the laser-pulse duration, E0 the amplitude of the
laser fields with normalization factor Fn ¼ i in order to

FIG. 9. The changing rate of electron polarization in constant
cross field dζ=dt versus χ.
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provide in the focal spotE0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðLÞ

x j2 þ jEðLÞ
y j2 þ jEðLÞ

z j2
q

,
with scaled coordinates

x̃¼ x
w0

; ỹ¼ y
w0

; z̃¼ z
zr
; ρ2¼ x̃2þ ỹ2; ðC2Þ

f ¼ i
z̃þ i

; ðC3Þ

the laser field phaseψ ¼ ω0t − k0z, and the carrier-envelope
phase ψCEP.

APPENDIX D: THE POLARIZATION OF
EMITTED PHOTONS

Integrating over the emission angles ðϑ;ϕÞ and summing
over the final electron polarizations, the radiation proba-
bility becomes

dW̃rad ¼
1

2

�
F̃0 þ ξ1F̃1 þ ξ2F̃2 þ ξ3F̃3

�
;

F̃0 ¼ C0dω

�
ε2 þ ε02

ε0ε
K2

3
ðzqÞ −

Z
∞

zq

dxK1
3
ðxÞ − ω

ε
ζ · bK1

3
ðzqÞ

�
;

F̃1 ¼ C0dω
ω

ε0
ðζ · sÞK1

3
ðzqÞ;

F̃2 ¼ −C0dω

�
−
ε2 − ε02

ε0ε
K2

3
ðzqÞ þ

ω

ε

Z
∞

zq

dxK1
3
ðxÞ

�
ðζ · v̂Þ;

F̃3 ¼ C0dω

�
K2

3
ðzqÞ −

ω

ε0
ðζ · bÞK1

3
ðzqÞ

�
: ðD1Þ

The polarization of the emitted photon resulting from the
scattering process itself takes the form ξf ¼ F̃

F̃0
with F̃ ¼

ðF̃1; F̃2; F̃3Þ [50]. For initially unpolarized electrons with
ζ ¼ 0, we have F̃0 ¼ C0dωfε2þε02

ε0ε K2
3
ðzqÞ −

R∞
zq
dxK1

3
ðxÞg,

F̃1 ¼ F̃2 ¼ 0, F̃3 ¼ C0dωK2
3
ðzqÞ. Therefore, the average

polarization of the emitted photons can be estimated
with

ξ1¼ ξ2¼0; ξ3¼
K2

3
ð2u
3χÞ

−
R
2u
3χ
K1

3
ðxÞdxþ ε2þε02

ε0ε K2
3
ð2u
3χÞ

: ðD2Þ

APPENDIX E: COMPARISON OF LMA AND
ANGLE-RESOLVED LCFA

We benchmarked the angle-resolved LCFA against the
LMAwith the parameters in Fig. 3. We plotted the angular
distribution of photon density with the angle-resolved
LCFA approach and the LMA approach, see Fig. 10.
The results roughly coincide for different approaches.
Both approaches predict a density peak around θm ≈
0.25 mrad and an angular spread of dN=dθ with a width
of ΔθFWHM ∼ 1 mrad. However, as is well-known, the
LCFA overestimates the yield of low-energy photons and
the angular spread is larger for photons with lower energy
since Δθ ∼ δ−1=3. Consequently, the photon density at the

FIG. 10. The angular distribution of emitted photon density dN2=dθ=dφ versus θ (mrad) and φ (rad) for the LMA approach (a) and
angle-resolved LCFA approach (b). The angular distribution of emitted photon density dN=dθ versus θ (mrad) (c) for the LMA (blue
solid line), angle-resolved LCFA approach (red dashed line) and angle-resolved LCFA approach with a formation length cutoff of λ0=2
(green dotted line).
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large-angle region obtained by the LCFA approach
is larger than that by the LMA approach. As discussed
in [54], the accuracy of the LCFA can be improved
by a cutoff of low-energy photon with formation

length lf comparable to the laser wavelength λ0. For the
considered parameters, the best agreement is obtained
when the photon emissions with lf > λ0=2 are suppressed
during simulations, see Fig. 10(c).
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