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The deeply inelastic scattering is one of the most important processes in studying the nucleon structure.
Theoretical calculations for both the inclusive one and the semi-inclusive one are generally carried out in the
virtual photon-nucleon collinear frame in which the virtual photon does not have the transverse components.
Expressions in this frame are written in relatively simple forms. Nevertheless, it is also meaningful to
calculate the scattering process in the electron-nucleon collinear frame where new measurement schemes are
obtained. In the present paper, we reconsider the semi-inclusive deeply inelastic scattering process in the
electron-nucleon collinear frame and present the results of azimuthal asymmetries and quark intrinsic
asymmetries. We find that the differential cross sections in these two frames are the same at a leading twist
level but different at a higher twist level. Azimuthal asymmetries and intrinsic asymmetries in these two
frames have the same forms but different kinematic factors. For the sake of completeness, both the
electromagnetic and the weak interactions are considered in our calculations. The neutral current
measurements in the scattering process could be used as electroweak precision tests that can provide

new accurate determinations of the electroweak couplings.

DOI: 10.1103/PhysRevD.108.056022

I. INTRODUCTION

The deeply inelastic scattering (DIS) experiments pro-
vided a unique window for studying the nucleon structure in
the past decades via the lepton-nucleon reactions. It will still
play an important role in the future Electron-Ion Collider
(EIC) [1-3] experiments. The inclusive DIS process can
only access the longitudinal motion of partons in a fast
moving nucleon or the longitudinal momentum distribu-
tions along the light-cone direction determined by the
nucleon. To resolve the transverse momentum distributions,
one is supposed to consider the semi-inclusive DIS (SIDIS)
where a final state hadron or a jet is also measured in
addition to the scattered lepton. Under the one-photon
exchange approximation, theoretical calculations are gen-
erally carried out in the virtual photon-nucleon (y*N)
collinear frame in which the virtual photon does not have
the transverse components. Systematic calculations for the
hadron-production SIDIS process at the leading order twist-
3 level can be found in Refs. [4,5]. Further discussions at
next-to-leading power can be found in Refs. [6-8]. In these
reactions, the transverse momentum dependent parton
distribution functions (TMD PDFs) and fragmentation
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functions (FFs) have to be considered simultaneously.
Uncertainties from TMD FFs are inevitably introduced in
extracting TMD PDFs. To avoid this problem, one considers
the jet-production SIDIS process where jets are generally
taken as fermions (quarks) in the calculation. Here the jet
and the scattered lepton are measured simultaneously.
Comparing to the production of hadrons in the SIDIS
process, the production of jets in a reaction takes on simpler
forms that allow one to calculate higher twist effects.
Nevertheless, there is a shortcoming of this process that
cannot be used to explore the chiral-odd quantities, e.g.,
Boer-Mulders function (hf) [9], because no spin flip occurs
in such a reaction that only the chiral-even contributions
exist. However, proposals for exploring the chiral-odd
quantities through the jet fragmentation functions have
been studied recently in Refs. [10-13].

Calculations for the jet-production SIDIS process in the
y*N collinear frame had been studied extensively [14-24].
Recently, the jet-production SIDIS process considered in
the electron-nucleon (eN) collinear attracted much atten-
tion [25-29]. A number of quantities were reconsidered,
such as single spin asymmetry [25-28], parity violating
asymmetries, and charge asymmetries [30]. Previous dis-
cussions of the jet-production SIDIS process in the eN
collinear frame were limited at the leading twist level. In
this paper, we reconsider this process and extend the
calculation to the twist-3 level. This is not a naive extension
because the current conversation law of the hadronic tensor
(g,W# = 0) should be dealt with carefully. In the y*N
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collinear frame, the current conservation at twist-3 is
satisfied by the relationship ¢g-g=¢q-(q+2xp)=0;
see Ref. [22]. However, in the eN collinear frame, the
virtual-photon gains the transverse momentum component
qr- The previous relationship no longer holds; instead, a
more complicated relationship is obtained.

In addition to the electromagnetic contributions, the
(SDDIS process also receives contributions from the weak
interaction from the exchange of the Z° boson. According
to our numerical estimates, weak contributions will reach a
few percent when Q > 10 GeV in the (SI)DIS process. The
neutral current measurements in the scattering process
could be used as electroweak precision tests [31] which
can provide new accurate determinations of the electroweak
couplings or new signals beyond the standard model.
Furthermore, the charged current measurements can be
used in the flavor decomposition in PDF global analyses,
especially for the determination of the parton distributions
of the strange quark. In this paper, we limit ourselves by
only calculating the neutral current SIDIS process in the e N
collinear frame. After obtaining the hadronic tensor, we
calculate the differential cross section, azimuthal asymme-
tries, and intrinsic asymmetries [24]. We find that the
differential cross sections in these two frames are the same
in form at the leading twist level but different at a higher
twist level. Azimuthal asymmetries and intrinsic asymme-
tries in these two frames have the same forms but different
kinematic factors.

To be explicit, we organize this paper as follows. In
Sec. II, we present the formalism of the jet-production
SIDIS process. Conventions used in this paper are also
given. In Sec. III, we calculate the hadronic tensor up to the
twist-3 level in the eN collinear frame. In Sec. IV we
present our calculation results, including differential cross
section, azimuthal asymmetries, and intrinsic asymmetries.
Numerical estimates of the intrinsic asymmetry are also
presented. Finally, a brief summary is given in Sec. V.

II. THE FORMALISM

As mentioned in the Introduction, we consider both the
electromagnetic (EM) and weak interactions in the jet-
production SIDIS. Therefore, the exchange of a 79 boson
between the electron and the nucleon can be relevant. We
label this reaction in the following form:

e (L,A,)+N(p,S)—=e (I')+qK)+X, (2.1)
where 4, is the helicity of the electron with momentum /, N
is a nucleon with momentum p and spin 1/2, and g denotes
a quark which corresponds to a jet of hadrons observed in
experiments. We require that the jet is in the current
fragmentation region.

The differential cross section of the SIDIS can be written
as a product of the leptonic tensor and the hadronic tensor,

@ &P ldk
ALl (L des )W (g, p, S K ) o
sgr Arkinl e Wi ta. .80 o o

(2.2)

do =

The symbol r can be yy, ZZ, and yZ, for EM, weak,
and interference terms, respectively. A summation over r
in Eq. (2.2) is understood; i.e., the total cross section is
given by

do = do?? + do"* + do™". (2.3)
A,’s are defined as
Ay = 65’
4
Azz =1 22Q22-4 =X
[(Q* + M7)* + IZM7]sin*20)y,
—2e,0%(Q* + M>
AyZ = 5 ;]Qz (Q BV Z> B = Xint» (24)
[(Q® + M2)? + T3 M3]sin®20y,

where e, is the electric charge of quark ¢; M and I'; are
the mass and width of the Z° boson; @y, is the weak mixing
angle; and Q> = —q> = —(I —I')>. The leptonic tensors
are, respectively, given by

L (L2 1) =2[L, 0, + L1, — (1-1)g,] + 2id,,0. (2.5)

L (L 2. 1) = (¢ = e§A) L (1L 2. 1),

(ef = c54) (2.7)

where 1, is the helicity of the electron. ¢§ = (c%)? + (c$)?
and c¢§ = 2cycy. ¢y and ¢ are defined in the weak
interaction current J¥(x) = y(x)[*y(x) with I* =
7(cy = cir’).

The hadronic tensors are given by

(2.6)

LZE(L 2, 1) = LIL(L A, 1),

Wi, p. k) = (27)*6*(p + g = ¥ — px)
X

x (p, S5, (0)|K's X)(K's X|J3,(0)|p. S),
(2.8)
W (g p. k) = (228" (p + g — K = py)
X
x (p., S|J7(0)|K's X) (K': X|J7,(0)|p. S),
(2.9)
Wy (q.p.K) => (228" (p+ g — K = px)
X
x (p, S|, (0)[K's X)(K'; X|J%,(0)|p. S),
(2.10)
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where J%(0) = p(0)7y(0) and J4,(0) = p(0)T%y(0)
with T% = y#(c!, — ¢%y°). It is convenient to consider the
k’.-dependent cross section, i.e.,

agm r v dsl/ko/T
da:sQ4A,L,,y(l,ﬂe,l’)W’i (¢.p.S. k) E

(2.11)
where the k. integrated hadronic tensor is given by

dk’
W (q, p. S, K)) = / S W@ p s k). @)

277:)32Ek/

With the convention of exploring the lepton-jet correlation
[25], we define j = I’ + K/, the sum of the momenta of the
scattered lepton and the final jet. In the eN collinear frame,

jT:7T+E/T:7T+IzT+ZI)T:]zT (2.13)

if the higher order radiation of gluon is neglected. In other
words, the transverse momentum j; equals the intrinsic

transverse momentum l:T of a quark in the nucleon which
can induce the intrinsic asymmetry [24]. Therefore, the
hadronic tensor and/or cross section can be defined in terms
of the new momentum j [30], i.e.,

do az
e = T ALE (1 20, 1YW (., p, S, ),
di’]dzl/TdQ] SQ4 ( ) (q p JT)

(2.14)
where 7 is the rapidity of the scattered lepton. We here have
used dn = dl,/Ey.

In the eN collinear frame, we use the light-cone unit
vectors (7,1) to express the momenta of these particles.
While in the y*N collinear frame, vectors (i, n) are used to
express those momenta. To distinguish the difference, we
present the relationships in Appendix A. If the target
particle travels in the +z direction, then the incoming
lepton travels in the —z direction (see Fig. 1). We define

# _7(1 0,0,1) and :7.(1 0,0,—1). They satisfy

#? =t =0and 7-t = 1. In light-cone coordinates, # =

(l,O,OT) and # = (0, 1,0T). Therefore,
pt=ptt + pt, (2.15)

=141, (2.16)

T
z
Y

The SIDIS process of the jets productions in the eN
collinear frame.

h
lepton plane

FIG. 1.

where p* = \/% (po £ p3). " and [~ are defined similarly.

Up to O(1/Q?), p* = p*#, and I* = I+ In other words,
the light-cone vector in this frame can be defined as
™= pt/pt,t* =I#/I". According to the definition, we
parametrize these momenta as

p” - (p+707 6T)7

0’ =
=020,
< 2xyp T

q' = <—xyp ,

(2.17)

(2.18)

1- )

> (2.19)

where x = Q?/2p-gand y = p - g¢/p - I. Since the trans-
verse momentum jr equals the intrinsic transverse momen-
tum k; of a quark in the nucleon in the eN collinear frame,

we can define

Jr = K = [kr[(0,0, cos g, sin ). (2.20)

We also parametrize the transverse polarization vector as

S = 1571(0,0,cos ps,singps).  (221)
Here we note that the transverse component is defined with
respect to the z direction determined by momenta of the
incoming lepton and the target hadron.

III. THE HADRONIC TENSOR

To calculate the differential cross section, Eq. (2.14), we
need to obtain the hadronic tensor. To be explicit, we divide
the hadronic tensor into a leading twist part and a twist-3
part. The leading twist hadronic tensor had been obtained in
Ref. [30], and we repeat it here explicitly.

A. The leading twist hadronic tensor

Equations (2.8)—(2.10) show respectively the operator
definitions of hadronic tensors for the EM, interference,
and weak interaction. One can choose any one of them, for
example, for illustration. Generally, we choose WY, After
simple algebraic calculation, the hadronic tensor can be
written as

2Ey .«
Tr[®©
2p-q

Wwh = ) (x, k)

(C[, k)](2”)35(qZ + kz - klz)

(3.1)

Hereafter, we neglect the subscript ZZ of W* for simplicity.
Integrating over k., [see Eq. (2.12)], we have the ko-
dependent hadronic tensor. Changing the variable k; into

Jjr gives W*(q, p. S, jr),
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W = Tr[®© (x, k LK), 3.2
T 1[®) (x, k) H7,(q. k)] (3.2)
where the quark-quark correlator is
R prdy~d*y
O (x, k) = /# ixp*y” =ik 3y
(X T) (2 )3
x(p. S[p(0)LO0. y)w(¥)|p.S).  (3.3)

The gauge link has been inserted into the quark-quark
correlator Eq. (3.3) to keep the gauge invariance. In the jet-
production SIDIS process, where the fragmentation is not
considered, only the chiral even PDFs are involved. Since
there is no spin flip, we only need to consider the y* and the
y%y> terms in the decomposition of these correlators:

2 a0 ., &0
O =~ [ @l + yoysdY], (3.4)

. 1 N
&) = 2 [ D) + s,

: (3.5)

AU

where @, is the quark-gluon-quark correlator which will be
introduced in the next part. The TMD PDFs are defined
through the decomposition of the correlators or the coef-
ficient functions,

_ Ky
o = p*i, (fl TM - i) + kraf*
3 B kriokrp -

—~ MSyafr = kpaft =TS f . (36)
. ) ky - Sy -
o = pti, < Angi +——— 7 917> — krog™

kT akT}
— MSro9r — Ankragt + <M h S/;Q%- (3.7)

Here A% = e = s?ﬂATﬂ, A can be ky or Sy, and
krokrpy = krakrs — gTaﬁk% /2. For the antiquark distribu-
tion functions defined via the antiquark -correlator
®(x,ky) [4,32], we have relations ®) = 4@l and
@'l = —@l’] where @ and @) denote, respectively,
distribution functions given in Egs. (3.6) and (3.7).
The hard part in Eq. (3.2) is abbreviated as
Hy,(q.k) =

Pea(f + e, (3.8)

In the eN collinear frame we have the following
relationships:
k~ < kT < qr ~ q_, (39)

and g* + k* = (1 — y)xp™. Neglecting the small compo-
nents of k, we have

g+1=(1

In addition to the minus component of g, we see the
transverse and the plus components also contribute in the
eN collinear frame. This is important to the requirement of
the current conservation of the hadronic tensor.

According to the above discussion, the hadronic tensor is
calculated as

—y)xpti+ gt + dr. (3.10)

v ~UU . ~UU k S
W¢2:—<c?g';+w_zef;>(1 r Sy )

. G kr-S
-%£%~H4%)<AWM+T Tﬁa, (3.11)

where the subscript 2 denotes the leading twist.
Dimensionless tensors are defined as

91]{1/ _ TZ/ _ <q(’]_T)2 M — q {ﬂtu} (312)
P o=y e, 3.13
T T

It is easy to check that ¢, = ¢,7 =0 and ¢,& =
q,& = 0. These relationships imply that the current
conservation of the hadronic tensor is satisfied.

B. The twist-3 hadronic tensor
The twist-3 hadronic tensor has two parts of contribu-
tions, one from the quark-quark correlator given in
Eq. (3.3), and the other from the quark-gluon-quark
correlator

. tdy~d?
k) = [P0 S

( )3 1 iXP+y_—iET')7T
2

x(p, S|y (0)Dr,(0)L(0, y)w(y)|p, S),

(3.14)

where D ,(y) = —id, + gA,(y) is the covariant derivative.
Similar to Eqgs. (3.15) and (3.16), we can decompose the
quark-gluon-quark correlator as we did for the quark-quark
correlator,

Q[()ll) = p+ia |:kTpffi_ - MS'Tpde

k /) T/i

- ﬂ'hl’%rﬂij de:| ) (3-15)

= (1 N
CD/(HI) - lp+t(x |:kTpg£i_ + MSTpng

krkrp

+ /1h kT/)gfl_L - M
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where a §ubscript d is used to denote the TMD PDFs W Vi T ft e gt e+ AgF AL
deﬁn?d via the quark-gluon-quark correlator or coefficient B pog p-q pq°> pg
functions.
For the sake of simplicity, we show the complete twist-3 Mfr h’”’ + /T T n + h”” + 9t T ny,  (3.17)
hadronic tensor here and give the calculation procedure in P 4q p-4q p-4q p-q
Appendix B. Then the complete twist-3 hadronic tensor
that satisfies the current conservation is written as where h|”¢ are defined as

v - v = 2xpT e e -
Wy =+cf k{T”t”}q‘+k{T”t”}(2—y)xp++k{T”qT}—<g"”+t"t” );1_7 >kr-qT]+w§’ [k?t”]q‘—k?t”]CI*—W]S%k}, (3.18)
i o o __oxpt o
Wy =~ k;”t”}q—+k{r"t”}(2—y)xp++k{T”qT} - (g"”—l—t"t’“};—l_)) quk] +icd [k%"]q‘—k%’“]q*—t[”t”]kT-qT}, (3.19)

. o . __2xp* o
WY = —cd [ g+ R 2= y)apt + R - (g"” P Z—’f) s‘;"] it [k lq K #lgt Tk g7 (3.20)

+

Wy =—cf |kt g+ kP (2 —y)xpt + kg - <9ﬂ S )kT ' QT] —ief [kwq_ ~kitlq - t[”tv]g%k} - G21)
L q
v i
ne = —|—{—c {S{”t”}q + 3e 2 = y)xpt + SigY - <g"” + ¥ );]3 )e?s]

+ic] [S)rlg — SE#lgt — s - g } (322)

__2xp*

kS
+ic! [zz%vlq— — kgt — e } % (3.23)

_ 2xpt
—{—c [S{”t”}q —|—S{”t”}(2 y)xp*t +S{” <g"” + );I_) >£qu]

_ k%
+ict [swq— — S¥plgt — s, qr}} (3.24)
oM
, _ ) __2xp*
Wy = +{—CS’ {S{T”f”}qf + SYPH 2 - y)apt o+ s¥g) - (9“” + 7 q[_) )ST ‘ ‘IT]
—ic! [SW g - 5g - f“‘t”]eﬂ } (3.25)
v 7 v g 2P
g = +{+c§ [k{r”t”}q‘ FEEE 2 - y)xpt + kg - (9"” + 77 le )kT ' qT]
. o ] kp- S
vt [t - Belg - e } b Sr (3.26)
14 ZUT 2 +
{+C {S{”t”}q +SY# 2 - y)xpt + SPay - (g"” + );lj )ST : QT}
~ e _ i3
il [Stelq - SHrlg — ey }ﬁz (3.27)
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We see clearly that the full twist-3 hadronic tensor satisfies
current conservation, ¢, W4 = g, W"; = 0. Although, the
h-tensors are relatively complicated, they have similar
forms that would lead to the simple expression of the
differential cross section.

IV. THE RESULTS

A. The differential cross section

The differential cross section can be obtained by using
the contraction of the leptonic tensor and hadronic tensor.
With variables shown in Egs. (2.17)—(2.21), we use
Egs. (2.7), (3.12), and (3.13) and obtain

AR R 2Q2 g
L (e +icler) = — 7 =S-T6) = 2T5()],  (4.1)
ZZ( Ay | G 2Q2~q q
L7 (3 +icley) = ——-[T1(y) = 2T{(y)],  (4.2)
where T functions are defined as
Tg(y): i "A(y)+6‘§ C(y).
Ti(y) = c5cA(y) + c§ciC(y).
Ti(y) = 0303 A(y) + ¢fc{C(y),
T1(y) = ¢§c§A(y) + c5eC(y). (4.3)

Here A(y) = y> =2y +2 and C(y) = y(2 —y). A simple
algebraic calculation gives the leading twist cross section of
the jet-production SIDIS in the eN collinear frame

a 2m)(

dc;; =

— kyp sin ¢(Tg ()

2

+sin(29— 5) (T4() = 2.T40)) L2 13 +cos(2 ) (T

where d6,; = doys/(dnd®lyd®jy) and k), = M/Q is the
twist suppression factor. In the eN collinear frame,
ky =k + I7.. In the y*N collinear frame, k; = &/, and
dé,3 is defined as dé 3 = do 3/ (dxdydyd®k'| ), where y is

the azimuthal angle of 7 around [ [24]. The difference of the
transverse momentum of the incident quark leading to the
different expressions of the cross section at the twist-3
level. To be precise, B(y) and D(y) are different in these
two frames. For example, for the fL term, we have

203k, |cos@'2(2 —y)\/T—y/y* in the y*N collinear

=2 T3]+ 187 [sings(T5 () = A.T5(v))f 1 + cos s (T

dé, = “gff 2x{(T4(y) = 2. TL(0)
— (T4(y) = 2.T4()Angis

+[Srlkrylsin(e — @s) (T () = 2 T5 ()7
= cos(p — s)(T](y) = A.T1(¥))gi7]}-

where d&, = do,/(dnd*lyd®j;) and  kpy = |kr|/M.
Subscript 72 denotes the leading twist.

We can calculate the twist-3 differential cross section
similarly. For the sake of simplicity, we only show
contractions of the leptonic tensor and /4"; here:

(4.4)

v 0’ z
L7 - 1Y = === lkr[[T5(y) = A T5(y)] cos . (4.5)

y_ 200 :
Ly? - 15 = ——-|kr|[T5(y) = 2. T5(y)] sing.  (4.6)

Other contractions have the same forms. The T functions
are defined as

T3(y) = cic{B(y) + c5¢§D(y).
T3(y) = c5¢iB(y) + 53D (y),
T5(y) = ¢5c§B(y) + cfc{D(y),
T(y) = ¢{c§B(y) + c5c{D(y), (4.7)

with B(y) =2 —y? and D(y) = y*\/T —y. After simple
calculations, we write down the differential cross section at
twist-3,

0 4x KM{kTMCOS(ﬂ( 50) = A T3NS + ke sing(T5(y) = 2. T5(9)) g™ = Ak cos (T4 (v) = 2.T5 ()91

5(0) = 2T5(y))gr

1) - 47300 2ot | (45)

frame and 2Q3|ky|cos (2 —y?)/y* in the eN collinear
frame.

In this part, we only present results for the weak
interaction case. For the EM contribution, it requires
¢/ =0 and ¢¢/¢ = 1. For the interference contribution,
it requires ¢/ =c%? and ¢¢/? = ¢¢/9. Besides, the
kinematic factors are also different. To make it transparent,
we can get the EM and interference cross sections by
replacing the parameters in the weak interaction cross
section according to Table I.
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TABLE 1. Relations of kinematic factors and electroweak
couplings between weak, EM, and interference interactions.

A, L wh
zz X cf.
YZ X = Xint
vy X = e

cf.c§
e e e e
cf = ¢y, c§ = cf
c{—>1,¢§-0

q q .49 q
Cp = Cy,C3 > Cy

ct-1,¢1-0

B. The azimuthal asymmetries

Azimuthal symmetries are measurable quantities that are
generally used to extract (TMD) PDFs. In the reaction of
jets production, the soft parts are only TMD PDFs.
Uncertainties from FFs vanish. Under this circumstance,
the jet-production SIDIS process can be a good reaction in
determining the TMD PDFs.

As to azimuthal asymmetries, we consider both the
unpolarized beam (1, =0) and the polarized beam
(4, = £1) cases. They contribute to different azimuthal
asymmetries results. The azimuthal asymmetry has a
definite definition, e.g.,

_ [ d sin pdy

Jdsde (49)

(sin €0>U,U

for the unpolarized or longitudinally polarized target
case, and

. [ dasin( — @g)dpdes
(sin(p — @g))y.r = [ dzdpdeg 7

(4.10)

for the transversely polarized target case. The subscripts
such as (U, T) denote the polarizations of the lepton beam
and the target, respectively. At the leading twist, there are
two polarization dependent azimuthal asymmetries that are
given by (the sum over r = ZZ, yZ, and yy is implicit in the
numerator and the denominator, respectively)

, B 2T f 17
(sin(¢g — fﬂs)>U,T - TMW()}] (4.11)
(st = oo =k EEOME a1

f1y is the famous Sivers function [33,34], which has been
studied widely. At twist-3, we have eight azimuthal
asymmetries. They are given by

T5(y) f*

(cos @)y y = —xkpkry TI0) f1 (4.13)
749 1
(sing)y y = xKMkTM’(;fq)g i ?1 (4.14)

ATIO0) L = T gt

(eosauy = -k 120 S AILOML (4 15
(sin@)y.s = —xkpkpy L0 )i: Tg(j;fg(y Vi (416)
{cosps)yr = _XKM); ;g ; - (4.17)
(singg)y 1 _XKM);;%;g]) ;JZ (4.18)
(s(20 = ))ur = kb AL G4y
(020 - ps)ur = ki S 20

For the case of the polarized electron beam, we obtain
similar results as the unpolarized case. They have one-to-
one correspondence. The two kinds of asymmetries at the
leading twist are given by

o= gl = ek B (o)
(cos(g - 951 1 = ~Aekpy ELEDIT (4 3

¢ TMz AT f1

At twist-3, we have eight azimuthal asymmetries. They are
given by

(cos); v = ’leXKMkTM))(;;%((—);))]:’ (4.23)
(sing), ;= AeXKMkTM%y (4.24)
(€05 P14 = Auxky kmﬁg(y)]; g—(i;}flTé’(y)gi’ (4.25)
(sing), . = ﬁeXKMkTMXTg(y)j;g(t}))(;g(y)fi ) (4.26)
(cosps)Lr = —ﬂeXKM%, (4.27)
(singg), r = —ﬁexw%, (4.28)
(cos(2¢ = s)) 1.7 =4 XKMkTMé( ;q(z}))g;l (4.29)
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» XT)fF

My (430)

(sin(2¢ — fﬂs)>L,T = —Aexkyk

In the neutral current SIDIS process, weak contributions
cannot be separated from the EM contribution. We have
calculated the contribution from the EM interaction.
Numerical estimates show that weak contributions will
reach a few percent when Q > 10 GeV. However, the
precise values depend on the fraction x and y. Under this
circumstance, weak contributions should be taken into
account in measurements of these asymmetries in the
SIDIS process.

C. The intrinsic asymmetries

In the eN collinear frame, jT = /;T if the higher order
radiation of gluon is neglected [see Eq. (2.13)]. In other

words, the transverse momentum j;r equals the intrinsic
transverse momentum I;T of a quark in the nucleon. To
explore the imbalance of the transverse momentum of the
incident quark in a nucleon, we introduce the intrinsic
asymmetry [24]. According to the definition, the transverse
momentum of the incident quark (jet) is in the x — y plane.
It can be decomposed as

kY. = kr cos ¢, (4.31)

ky = kg sin . (4.32)
Therefore, we can define k}.(—x) — k}.(+x) to quantify the
difference of the transverse momentum between the neg-
ative x and positive x directions. The difference in the y
direction is defined similarly. To be explicit, we present the
general definition of the intrinsic asymmetry,

o Jop dods = |7, dgds
J75, deds + 2] dpds

(4.33)

_ Jz"dods — [§ dpds

A = :
J§ dods + [ dpds

(4.34)

The sum of the differential cross section for EM, weak,
and interference terms is understood. Equations (4.33)
and (4.34) lead to asymmetries in the x direction and y
direction, respectively.

According to our definition, the twist-3 intrinsic asym-
metries are obtained as

q 1
A%, = 4x’<MkTM)(T2q(y)f , (4.35)
’ T ZTO(Y)fl
: 4 T(y)g*+
A%],U _ XKy K x 3()’)9 (4.36)

0 ZT(q)(y)f1 ’

. Axicyrkray x T (y) g
AU’L — _ MRrTM Sq( ) L , (437)
T ZTO()’)fl
4 k T L
A)[,J’L _ XKy TMZT%I(y)fL , (438)
T X 0()’)f1
AX _ _4XKMkTM)(Tg(y)fJ_ (4 39)
wy zm xTgf
, dxiprkry xTH(y) gt
Ay = ——IHE S (4.40)
a )(To()’)f1
Axicprkry xTL(y) g1
AZ‘L _ XK g TM)(T?](y)gL , (441)
T X O(Y)fl
y 4XKMkTM)(Tg(y)fi_
Ay =~— (4.42)

m o ZTo0f

We note again that only weak interaction results are shown
in Egs. (4.35)—(4.42). For the complete results, EM and
interference interactions should be included. Furthermore,
the sum of the quark flavor in the numerators and denom-
inators is also understood. At leading twist, the intrinsic
asymmetries can also be introduced. But they do not have
physical interpretations. We do not consider them here.

To illustrate the intrinsic asymmetries shown above, we
present the numerical values of Ay, ;; and A7 ; in Figs. 2
and 3. Without proper parametrizations, our estimations are
based on the Gaussian ansatz for TMD PDFs, i.e.,

1 72 n
f1(x kr) = mfl (x)e~ki/A%, (4.43)

1 =
fr(x k) = mfl(x)e_kT/A ) (4.44)

where f(x) are taken from CT14 [35] and the fraction is
taken as x = 0.3 for illustration. We have used the
Wandzura-Wilczek approximation, i.e., neglecting quark-
gluon-quark correlation function (¢ = 0) [4,5], to deter-
mine f(x, kr).

In the numerical estimates, only the valence quarks are
taken into account. Because other contributions are small.
For the Gaussian ansatz the widths of the unpolarized
TMD PDF f(x, k) are taken as A7 = A7 = 0.53 GeV?
[36-40]. However, the widths of the unpolarized TMD
PDF f*(x,k;) run from 0.3 to 0.6 GeV? (see Figs. 2
and 3). Figure 2 showed the results at A2 = 0.5 GeV?
while Fig. 3 showed the results at A2 = 0.5 GeV?. In both
figures, we choose y = 0.5.

According to the numerical estimates, we find that
asymmetry Aj ; is 2 or 3 orders of magnitude smaller
than Ay, ;. Because A7 ;; is a parity violating effect or an
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FIG.2. The intrinsic asymmetry Ay, ;; with respect to k7. The solid lines show the asymmetry at 5 GeV while the dashed lines show the
asymmetry at Q = 10 GeV. Here A? = A7 = 0.53 GeV? and A2 = 0.5 GeV? while A2 runs from 0.3 to 0.6 GeV>.

04" 203, Q=5 Gev 0.0000
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FIG. 3. The intrinsic asymmetry A7 ,; with respect to k7. The solid lines show the asymmetry at 5 GeV while the dashed lines show the
asymmetry at Q = 10 GeV. Here A?? = AZ,Z =0.53 GeV? and A2 = 0.5 GeV? while Aﬁ runs from 0.3 to 0.6 GeV?>.

effect of the weak interaction, it should be the same order of After obtaining the differential cross section, we calculate
magnitude as a parity violation in the standard model. In  azimuthal asymmetries and intrinsic asymmetries. They
addition, asymmetry Ay, ;, decreases with respect to the  provide more measurable quantities for extracting (TMD)
energy, while A} ; increases with the energy. Furthermore, PDFs. Two leading twist and eight twist-3 azimuthal
we find the intrinsic asymmetry is more sensitive to A2 than ~ asymmetries are obtained for the case of the unpolarized
Aﬁ, . We attribute it to the fact that £+ (x, k7 ) for the u quark electron beam. Similar results for the case Qf the polar@ed
is larger than that for the d quark in the Gaussian ansatz and electron beam are also obtained. Intrinsic asymmetries

the small variation of Aﬁ will be magnified to the intrinsic 1Ed19ate.(jthe 1mbai(an.ce of thel transl\;erse Irlllomentum. 0{
asymmetry due to the larger distribution function. the “incident quark i a nucleon. From the numerica
estimates, we find that asymmetry Aj ;; is 2 or 3 orders

of magnitude smaller than Ay, ;, because of the parity

V. SUMMARY violating effect. In addition, asymmetry Ay, ;; decreases

In this paper, we consider the neutral current jet- with respect to the energy, while A)i,U increases with the

production SIDIS process and calculate the differential energy. Furthermore, the intrinsic asymmetry is more
cross section of this process at tree level twist-3 in the eN  sensitive to A2 than Aﬁ,.

collinear frame. In this frame, the virtual-photon gains the

transverse momentum component ¢ and the current
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APPENDIX A: RELATIONSHIPS

OF THE LIGHT-CONE VECTORS
In the y*N collinear frame (see Fig. 4), the target particle
travels in the +z direction. We define ## = \/—(1 0,0,1)
and n”:ﬁ(l,0,0,— ). They 7z =n?=0,

= (1,0,0;) and

satisfy

n-n=1. In light-cone coordinates, 7"
n = (0, 1,6T). Therefore,

p'=pra+pat, (A1)

q' =g it +q ", (A2)
Here the plus component of p* is written as p to distinguish
that in the eN collinear frame. Up to O(1/Q?), only the
large plus component of p* survives. Light-cone vectors can
be defined as n* = p*/p*,n* = (¢* + xp")/q~. Under
this condition, we parametrize momenta of these particles
as [22]

2
q” - <_xp+72x~+’01_>7
lu:<1_y Bt 0 oVi- )
b ,..Jr?
y 2xyp y
l/ﬂ _ ( )Q2 Q\/ I - (A3)
y h 2xypt Ty '

lepton plane

FIG. 4. The SIDIS process of the jets productions in the y*N
collinear frame.

The relationships between 72, n and 7, ¢ are

N b MV A Ll
! v p - xypt
2(1 - 25+ ,+ + 2
e R A
y p

According to our definition, the transverse components
of [* and ¢* are in the lepton plane which is just the
x — z plane. Therefore, Iy =1, = Q\/1—y/y and gy =
q. = —0+/1 —y. Then the second term in the first line in
Eq. (A4) vanishes and

(2-y)
y

P =

phat. (AS5)

* and pT do not have to be equal.

APPENDIX B: TWIST-3 HADRONIC TENSOR

There are two origins of the twist-3 hadronic tensor, one from the quark-quark correlator and the other from the quark-
gluon-quark correlator. We first consider contributions from the quark-quark correlator. Inserting the twist-3 TMD PDFs in
Egs. (3.6) and (3.7) and the hadron part given in Eq. (3.8) into Eq. (3.2), we obtain

v fl Y- v v
W’fs,q:ﬁ el (K g IR (1= y)xpt + kg -
L Maft [_ ¢
Pq

1
+ % [—cg(ké”t”}q‘ RPN - y)xpt R gy -

g"”kT-qT)—i—icg](l}][’ft”] kmﬂj]( y)xpt — i kq)]
[ g+ R (= y)ap* + k') = gelf) +ic§(kf1q k;“ff”](l—yhp*—;%ﬂkrmﬂ

Fvei) +ict (kg™ — KER (1= y)xpt — ek - qr)]

Agt _ v L~ e _
—|—ﬁ [—cg(ké”t”}q_ + k{T”t”}(l —y)xpt+ k{TMqT} - ¢"kr-qr) — zc‘l’(k%”]q - kglt”] (1=y)xp™— t[f’t”]el}q)}

M
Mfr
pP-q

{ ?[S{”t”}q + ¥R (1 = y)xpt + 8 gY — ged }—l—lg[S%’“]q — SKRI(1 = y)xpt — S, - qT}}
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L
- % {+C'f [ g+ k(1= y)ep ™ + kg -

g ky - qT} + icg {fcyft’“] qg - INCZUff’“] (I=y)xp™

~ k2
——{—c‘{[S}”ﬂ} - S{"t”}( y)xp*t +S{” —g"e qs} +ic§ [S["t”]q —SV‘t”](l— Yapt =S, qT” T

_ ks
]

M ~lu= -
+pg;{ -4 [S{”t”}q +S{”t’“}( y)xp* +S —-¢"Sr-qr } —icf [S[”t”]q SY[’ft”](l —y)xp* —tV‘t"]e%S}}
gr AP A I + 4 ple v 1 ) A gl gak] | K-St
+ﬁ +c3[kT Mg+ ko (1—y)xpt +ky qT - ¢"kr- qT}—Hc [k Mg —kp (1 —y)xpt —1Hile } i
9r | ol wy s} (1 {ﬂ a| Sl ~ _ Sl + _glup] 48 Kt
__~q +c3[S Mg+ SEP (1 —y)xpt + S g Sy qT} 1{STt”q = S7t(1—y)xpt =1+ e } M
(B1)
|
The subscript g denotes the hadronic tensor from the quark- FIVP T b+ g » »
quark correlator. This expression does not satisfy the Hzz =1" (ky +q)27 Ky + 1. (B3)
current conservation law, ie., ¢, Wl ,#0 due to the

incompleteness of the twist-3 hadromc tensor.

The quark-gluon-quark correlator comes from the one
gluon-exchanging process. From the operator definition of
the hadronic tensor we have

v 1 2 2 UL
W = T (x, kp) B (g, Ky k)],

2p-q (B2)

where L denotes the left-cut [14], <i>,(,l) is the quark-gluon-

quark correlator given in Eq. (3.14), and A% is the hard
scattering amplitude

_— kr- -
W = —[c (ﬂ‘t”T—_qT— k’;ﬂ‘) —ic
' q

+ |ic (_"f”ST a7

__ kg _ o o
+ ic? (t"t” br-d4r _ k;t”) + ¢ ( up T _ k%zﬂ)] P
q q :
[ kr - qr - s equ TUT
+ |ic | #7 Yy kg ) + cf t”t”q—_— ke
YA ) et
+ cg (t”t” fr-4r _ k”Ttl‘> —ic? (t/‘t”gi_— )
q
s
S”ﬁ”) +cf (E”E”i_ -
q
_ - qu £ks
—k”Tt”> —icd (l”t” k’“t")] 1\2
q-
as k2
cf (Wf]i_— S”T?"ﬂ ﬁ} —fT

VU s 4| Fuzv 8;]"S N2 prr
=St ) —ic] | 1Y ——— Syt —Mgr
q P-4

- Sﬁﬂ) +

To simplify the hard scattering amplitude, here we use the
approximation that only the plus components of the

ford

momenta exist in Tota) Under this approximation, we

can rewritten the hard scattering amplitude as

o
;) = 26]7_1—%(];7/}(%1 + ¢)ra. (B4)

Inserting Eqgs. (3.15), (3.16), and (B4) into (B2) and using
Eq. (3.10), we have

S”Tf”)} A
p-q
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_ k qr _ 8qk ~ kT'ST
P . iy V% [y
e {- |t it (e R ) | B

g . o qS k2 +
T {cgf <t”t”T—_qT - S”Tt”> —ic? <t”t”gi_ Tt”ﬂ ﬁ} gt (BS)
q q P-4

The subscript L denotes the left-cut tensor. We note that TMD PDFs marked with the subscript d have been reexpressed in
terms of TMD PDFs without a subscript by using relation [22]

fhs = gfs = —x(f§ = igf), (B6)

where K can be | and S can be L and 7. It is straightforward to obtain the result above. For example, from Eqgs. (B2)—(B4),
we calculate the trace and obtain

__ky-q _ . __eqk pt
W = [c" (t”t”u -k t”) + ic"( v — 2L fi- B7
B3.L 1 g T 3| Kt )| q< d = 90)s (B7)
as long as we only consider f* and g' terms. Substituting Eq. (B6) into Eq. (B7) gives

k- . N e\ —xpt
W, = {c‘{(tﬂthq—_qr—k”Tﬂ‘) +ic§< LI — T _)] P (-~ igh, (B8)

q pP-q

which corresponds to the first and second lines in Eq. (B5). To obtain the complete result of the twist-3 hadronic tensor from
the quark-gluon-quark correlator, we sum the left-cut and the right-cut terms together and obtain

__ 2xp _ Ty 1
Wz3 Lt Wzs R= [Ctll <t”ty k- qr — XP+k¥lty}> - ichPJrk%yq —ft
q P-q

[/ _ 2xpT . _ 1
+ |cd (ﬂ‘t’“ xlj kg _ xp*k{T”t”}> + ic?xp*kg’t”]] —g*
L q P-q
__ 2xpt = fum _ 1
+ |cf (t"t” xlz 8'}" - xp+k{T”t”}> + icé’xp*kg‘t"]] — St
L q P-4
[ /- _ 2xp* ~Tue 1
+ | (’”’ Pk qr - xp“({”’”}) — iclxp*kf t”]} —— gL
L q pP-q
- . ) .
+ |cf <f”f”);—]ze?s - S{T”?”}> + icé’xp*Sg'f”]] ﬁMfT
_ 2 kS
- {— cf <t" 2 kr - qr — xp*k{”t”}> ic xp*k[”t”]] =
q- M

__l/2xp+ S ) 1 K
<t"t e — Sl }> +iclxpt I ]] W —fT
_2 1

p St qr— xp*S{”t”}> —ic xp*S[”t”]} — Mgy

p-q
__ 2xpt _ ~tue| k7 - S
+ {—{c% <t/‘t" P k- qr— k{T"ﬂ‘}> - ic?k%”]] o7
q

M
+ [cgf (W

One knows the relationship that W[3 L= (Wt3 z)". Finally, we sum Eqgs. (B1) and (B9) to obtain the complete hadronic
tensor given in Eq. (3.17).

2xp* { [ 1
S st +57 t”] — gk, B9
g STar = —icfxp 2M il (B9)
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