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We have computed the charge and heat transport coefficients of hot QCD matter by solving the
relativistic Boltzmann transport equation using the Bhatnagar-Gross-Krook (BGK) model approximation
with a modified collision integral in the weak magnetic-field regime. This modified collision integral
enhances both charge and heat transport phenomena which can be understood by the large values of the
above-mentioned coefficients in comparison to the relaxation collision integral. We have also presented a
comparative study of coefficients like the electrical conductivity (σel), Hall conductivity (σH), thermal
conductivity (κ), and Hall-type thermal conductivity (κH) in weak and strong magnetic fields in the BGK
model approximation. The effects of weak magnetic field and finite chemical potential on the transport
coefficients have been explored using a quasiparticle model. Moreover, we have also studied the effects of
weak magnetic field and finite chemical potential on the Lorenz number, Knudsen number, specific heat,
elliptic flow, and Wiedemann-Franz law.
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I. INTRODUCTION

The possible existence of the deconfined state of quarks
and gluons, known as quark gluon plasma (QGP) has been
theoretically predicted by quantum chromodynamics
(QCD). The creation of such a state has been achieved
in the heavy-ion collision experiments at the Relativistic
Heavy Ion Collider (RHIC) at BNL and the Large Hadron
Collider (LHC) at CERN. In such collisions, strong
magnetic fields are expected to be produced in the
perpendicular direction to the collision plane. The strength
of the magnetic field can be expressed in terms of the pion
mass scale as eB ¼ m2

π at RHIC [1] and eB ¼ 15m2
π at

LHC [2]. The creation of QGP in laboratory is of great
phenomenological significance. The extensive understand-
ing of various aspects of QGP in the presence of magnetic
field is becoming increasingly relevant. In recent years,
various properties of QGP in the presence of magnetic field
have been studied by different research groups. Some of

them are chiral magnetic effect [3,4], axial magnetic effect
[5,6], magnetic and inverse magnetic catalysis [7,8], the
nonlinear electromagnetic current [9,10], chiral vortical
effect [11], the axial Hall current [12], refractive indices
and decay constant [13,14], dispersion relation in magnet-
ized thermal QED [15], photon and dilepton productions
from QGP [16–18], thermodynamic and magnetic proper-
ties [19–22], heavy quark diffusion [23], thermoelectric
responses of hot QCD medium in a time-varying magnetic
field [24,25] and magnetohydrodynamics [26,27].
The transport coefficients like, electrical conductivity

(σel) and thermal conductivity (κ) carry the information
about the charge and heat transport in the medium,
respectively. Electrical conductivity plays an important
role for the study of chiral magnetic effects [3,4],
emission rate of soft photons [28], etc. The effect of
magnetic field on electrical conductivity has already been
studied via different approaches, such as the dilute
instanton-liquid model [29], the diagrammatic method
using the real-time formalism [30], the quenched SU(2)
lattice gauge theory [31], the effective fugacity approach
[32], etc. Studies on the thermal conductivity of a hot
QCD matter in a strong magnetic field have been done in
Refs. [33,34]. In the literature, different approaches are
available for computing these coefficients, such as the
relativistic Boltzmann transport equation [35–38], the
Chapman-Enskog approximation [39,40], the correlator
technique using Green-Kubo formula [29,41,42], the
quasiparticle model [43], etc.
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Recently, in a work [44], the effects of weak magnetic
field and finite chemical potential on the transport of charge
and heat in a hot QCD matter have been studied by
calculating the transport coefficients, such as the electrical
conductivity (σel), the Hall conductivity (σH), the thermal
conductivity (κ), and the Hall-type thermal conductivity
(κH). The transport coefficients have been calculated by
solving the relativistic Boltzmann transport equation in
weak magnetic-field regime, and the complexities of the
collision term were avoided by considering a mean-free
path treatment in the kinetic theory approach within the
relaxation time approximation (RTA). However, in such
models, the charge is not conserved instantaneously, but
only on an average basis over a cycle. This can be avoided
by considering a modified collision term as introduced in
the Bhatnagar-Gross-Krook (BGK) model [45]. The effects
of this modified collision integral and strong magnetic field
on charge and heat transport for hot QCD medium were
recently explored in Ref. [46]. In BGK collisional kernel,
the particle number is conserved instantaneously, and has
been studied on plasma instabilities in Ref. [47]. Moreover,
one can consider QGP as a system of massive noninteracting
quasiparticles in the quasiparticle model framework [48,49].
For the study of QGP, this type of model is suitable as the
medium formed in heavy-ion collision behaves like a
strongly coupled system. Later, different research groups
consider thismodel for different scenarios such as the Namb-
Jona-Lasinio model [50–52], the thermodynamically con-
sistent quasiparticle model [53,54], the quasiparticle model
in a strong magnetic field [55,56], and the quasiparticle
model with Gribov-Zwanziger quantization [57,58].
In this paper, we plan to explore the effects of weak

magnetic field and finite chemical potential for a hot and
dense QCD matter by estimating their respective response
functions, viz. σel, σH, κ, and κH. A kinetic-theory approach
with the BGK collision term in the relativistic Boltzmann
transport equation has been used to calculate the above
coefficients followed by the estimation of the Lorenz
number, the Knudsen number, specific heat, the elliptic
flow coefficient, etc. We also showed how these transport
coefficients change as we shift to the quasiparticle descrip-
tion of partons, where the rest masses are replaced by the
masses generated in the medium. A comparative discussion
of the results with the previous two works [44,46] is also
presented.
The rest of the paper has been organized as follows.

Section II is dedicated to the calculation of charge and heat
transport coefficients from the relativistic Boltzmann trans-
port equation with a BGK collision integral in the weak
magnetic-field regime. In Sec. III, we have discussed the
results of these different kinds of conductivity, considering
the rest mass of the quarks. The quasiparticle model is
discussed in the weak magnetic field and finite chemical
potential in Sec. IVA. The results of the above-stated
transport coefficients are discussed in Sec. IV B. Section V

describes various applications and their results obtained
from these coefficients, such as the Lorenz number, the
Knudsen number, specific heat, elliptic flow coefficient etc.
Finally, Sec. VI summarizes the results.

A. Notations and conventions

Here the covariant derivative ∂μ and ∂
ðpÞ
μ are written for

∂

∂xμ and ∂

∂pμ, respectively. The fluid four-velocity uμ ¼
ð1; 0; 0; 0Þ is normalized to unity in the rest frame
ðuμuμ ¼ 1Þ. Throughout this paper, the subscript f stands
for the flavor index with f ¼ u; d; s. Moreover, qf, gf, and
δff (δf̄f) are the electric charge, degeneracy factor and the
infinitesimal change in the distribution function for the
quark (antiquark) of the fth flavor, respectively. In Eq. (6),
σ0, σ1, and σ2 are the various components of the electrical
conductivity tensor and b ¼ B=B indicates the direction of
magnetic field. In Eq. (7), ϵij denotes an antisymmetric
2 × 2 unit matrix. The Lorentz force is defined as F ¼
qðEþ v ×BÞ and the components of Fμν are related to
electric and magnetic fields as F0i ¼ Ei, Fi0 ¼ −Ei, and
Fij ¼ 1

2
ϵijkBk. Heremf denotes the current quark mass (the

values ofmf are 3 MeV, 5 MeV, and 100MeV for up, down
and strange quarks, respectively). In this work, gg ¼
2ðN2

c − 1Þ represents the gluonic degrees of freedom,
and gfðgf̄Þ ¼ 2Nc denotes the quark (antiquark) degrees
of freedom (for each flavor of quark), where Nc ¼ 3 is the
number of colors.

II. CHARGE AND HEAT TRANSPORT
PROPERTIES OF A QCD MEDIUM

IN THE PRESENCE OF MAGNETIC FIELD:
A BGK MODEL APPROACH

The Boltzmann transport equation for a single particle
distribution function is given by

∂ff
∂t

þ p
m
:∇ff þ F:

∂ff
∂p

¼
�
∂ff
∂t

�
c
¼ C½ff�; ð1Þ

where F is the force field acting on the particles in the
medium and m is the mass of particle. The right-hand side
term arises due to collisions between particles in the
medium. The zero value of this term indicates a collision-
less system referred to as the Vlasov equation. Even for the
simplest solution for the above Eq. (1), one faces various
difficulties because of the complicated nature of the

collision term. The term ð∂ff
∂t Þc represents the instantaneous

change in the distribution function due to the collisions
between particles. In order to obtain a complete solution,
we will start by discussing some mathematical models by
which we can adequately treat the collision term.
In the case of relaxation time approximation, where the

collision term is being replaced by a relaxation term having
a form as given below,
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�
∂ff
∂t

�
c
¼ −

1

τðpÞ ðffðx; p; tÞ − feq;fðpÞÞ; ð2Þ

where we can write ffðx; p; tÞ ¼ feq;fðpÞ þ δffðx; p; tÞ
and τðpÞ signifies the relaxation time for occurring colli-
sions which forge ahead the distribution function to the
equilibrium state. In order to allow the linearization of the
Boltzmann equation, we can assume the quark distribution
function is close to equilibrium with a small deviation from
equilibrium. Here the term 1

τ acts as a damping frequency.
The instantaneous conservation of charge appears to be an
elementary issue of this model. To shed the crunch, the
BGK model introduces a new type of collision kernel,
which is given as

�
∂ff
∂t

�
c
¼ −

1

τðpÞ
�
ffðx; p; tÞ −

nðx; tÞ
neq

feq;fðpÞ
�
; ð3Þ

where nðx; tÞ is known as fluctuating density or perturbed
density calculated as

R
ffðx; p; tÞd3p which gives zero

value after integrating over momenta, thus indicating
instantaneous conservation of particle number during
collisions in the system. Here we are considering the
general relativistic covariant form of the Boltzmann trans-
port equation for a medium of quarks and gluons given as

pμ
∂μff þ qFμνpν∂

ðpÞ
μ ff ¼ C½ff� ¼ −

pμuμ
τðpÞ

×

�
ffðx; p; tÞ −

nðx; tÞ
neq

feq;fðpÞ
�
; ð4Þ

where Fμν is the electromagnetic field strength tensor
representing the external electric and magnetic fields
applied to the system. We will now see in forthcoming
sections how the above-mentioned collision integral affects
the solution of the relativistic Boltzmann transport equation
in the presence of a weak magnetic field. We also discuss
the consequences on the transport of current and heat in
terms of their respective transport coefficients, such as σel,
σH, κ, and κH and the derived coefficients from them,
namely the Lorenz number, the Knudsen number, elliptic
flow, and specific heat. The two subsections of the present
section are arranged as follows. We will begin with the
formalism of electric charge transport and calculation of
corresponding transport coefficients (σel, σH) within the
weak magnetic-field regime in Sec. II A. Further, Sec. II B
contains the formalism of heat transport phenomena and the
calculation of associated transport coefficients (κ, κH)
within the weak magnetic-field regime.

A. Charge transport properties: Electrical
conductivity and Hall conductivity

In an attempt to see the effects of the magnetic field on
the charge transport phenomena, we need to calculate the

electric current density of the magnetized medium. When a
thermal QCD medium containing quarks, antiquarks, and
gluons of different flavors gets in contact with an external
electric field, the medium gets infinitesimally disturbed.
Due to this electric field, there is an induced current density
in the medium, whose spatial component (Ji) is directly
proportional to the electric field (E) with a proportionality
constant, known as electrical conductivity (σel) and is
given by

Ji ¼
X
f

gfqf

Z
d3p
ð2πÞ3

pi

ωf
½δffðx; pÞ þ δf̄fðx; pÞ�; ð5Þ

where Ji represents the spatial part of the current density
vector. At first, we have to calculate the nonequilibrium
part of the distribution function from Eq. (4) to get the
current density. In the presence of an electromagnetic field,
the general form of spatial current density can be written as

Ji ¼ σijEj ¼ σ0δ
ijEj þ σ1ϵ

ijkbkEj þ σ2bibjEj: ð6Þ

Equation (6) can be rewritten in a case where the electric
field and magnetic field are both perpendicular to each
other as

Ji ¼ σijEj ¼ ðσelδij þ σHϵ
ijÞEj; ð7Þ

where σ0 and σ1 denote electrical conductivity (σel) and
Hall conductivity (σH), respectively. Now one can obtain
the expressions for electrical conductivity and Hall con-
ductivity with the help of Eqs. (5) and (7). In order to do
that, we start with the relativistic Boltzmann transport
equation (RBTE), i.e., Eq. (4), which can be rewritten as

pμ
∂ff
∂xμ

þ qFμνpν
∂ff
∂pμ

¼ C½ff� ¼ −
pμuμ

τf
ðff − nfn−1eq;ffeq;fÞ; ð8Þ

where τf is the relaxation time, i.e., the time required to
bring the perturbed system back to its equilibrium state and
νf ¼ 1

τf
indicates the collision frequency of the medium.

The equilibrium distribution functions for fth flavor quark
and antiquark are given as

feq;f ¼
1

eβðωf−μfÞ þ 1
; ð9Þ

f̄eq;f ¼
1

eβðωfþμfÞ þ 1
; ð10Þ

respectively, where ωf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

fÞ
q

, β ¼ 1
T, and μf

represents the chemical potential of fth flavor quark.
In a weak magnetic field regime, the temperature scale
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is more dominant than the magnetic field scale in equilib-
rium. For this reason, we neglect the effects of Landau
quantization on phase space and scattering processes. The
expression for τf is given [59] by

τfðTÞ ¼
1

5.1Tα2s logð1=αsÞ½1þ 0.12ð2Nf þ 1Þ� : ð11Þ

Here αs is the QCD running coupling constant, which is a
function of temperature, magnetic field and chemical
potential, and it has the following [60] form,1

αsðΛ2; eBÞ ¼ αsðΛ2Þ
1þ b1αsðΛ2Þ lnð Λ2

Λ2þeBÞ
; ð12Þ

where

αsðΛ2Þ ¼ 1

b1 ln
�

Λ2

Λ2

MS

� ; ð13Þ

with b1 ¼ ð11Nc−2NfÞ
12π , ΛMS ¼ 0.176 GeV and Λ ¼

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ

�
μ2f
π2

�r
. In the collision term, nf and neq;f signify

the perturbed density and equilibrium density, respectively
for the fth flavor with a degeneracy of gf. Both can be
calculated from the equations given below,

nf ¼ gf

Z
d3p
ð2πÞ3 ðfeq;f þ δffÞ; ð14Þ

neq;f ¼ gf

Z
d3p
ð2πÞ3 feq;f: ð15Þ

The RBTE (8) can be rewritten as

∂ff
∂t

þ v:
∂ff
∂r

þ p:F
p0

∂ff
∂p0

þ F:
∂ff
∂p

¼ C½ff�

¼ −
pμuμ

τf
ðff − nfn−1eq;ffeq;fÞ: ð16Þ

Now we consider the distribution function to be spatially
homogeneous and also in a steady-state condition, which
gives us the freedom to neglect the first two terms by taking
∂ff
∂r ¼ 0, ∂ff

∂t ¼ 0 and finally the above equation is reduced to

v:F
∂ff
∂p0

þ F:
∂ff
∂p

¼ C½ff� ¼ −
pμuμ

τf
ðff − nfn−1eq;ffeq;fÞ:

ð17Þ

By taking electric and magnetic fields in a perpendicular
direction to each other, i.e., electric field along x-direction
(E ¼ Ex̂) and magnetic field along z-direction (B ¼ Bẑ),
the above equation appears to be

τfqEvx
∂ff
∂p0

þ τfqBvy
∂ff
∂px

− τfqBvx
∂ff
∂py

¼ ðnfn−1eq;ffeq;f − ffÞ: ð18Þ

For a satisfactory solution to the above equation, we
propose the following ansatz for the distribution function,
which was first introduced in [42] and was later followed
by various research groups [61–64],

ff ¼ nfn−1eq;ffeq;f − τfqE:
∂feq;f
∂p

− Γ:
∂feq;f
∂p

; ð19Þ

where Γ is an unknown quantity which is constructed in
such a way that it depends on both electric field and
magnetic field in weak magnetic-field limit (it will be more
evident in the forthcoming sections where we will obtain its
expression). Neglecting higher-order terms of eB in
Eq. (19), one can easily show that the unknown quantity
Γ should be a function of eB. For weak magnetic-field
regime, the magnetic field is not the dominant scale as
compared to the temperature scale of the thermal medium
in equilibrium. Thus, the effect of Landau quantization on
the phase space and on the scattering processes have not
been considered in the present work.2

Now with the help of an assumption that the quark
distribution function is in the neighborhood of equilibrium,
we can evaluate these quantities as follows:

∂feq;f
∂px

¼ −βvxfeq;fð1 − feq;fÞ
∂feq;f
∂py

¼ −βvyfeq;fð1 − feq;fÞ
∂feq;f
∂pz

¼ −βvzfeq;fð1 − feq;fÞ

9>>>=
>>>;
: ð20Þ

With the help of Eqs. (19) and (20) at high temperature,
Eq. (18) can be simplified as

1We have taken the coupling constant from [60], where it has
been calculated perturbatively in the weak magnetic-field limit
with momentum transfer being larger than the magnetic field.

2Within BGK approximation in the strong magnetic field limit
[46], the authors had considered the lowest Landau-level approxi-
mation in their study, as a result they used the modified dispersion
relation, EOS and other modified quantities appropriate for the
strong magnetic field regime.
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τfqEvx
∂ff
∂p0

þ βfeq;fðΓxvx þ Γyvy þ ΓzvzÞ − qBτf

�
vx

∂ff
∂py

− vy
∂ff
∂px

�
¼ 0: ð21Þ

Solving the above equation, we have3

Γx ¼ qEτfð1−ω2
cτ

2
fÞ

ð1þω2
cτ

2
fÞ

Γy ¼ −
2qEωcτ

2
f

ð1þω2
cτ

2
fÞ

Γz ¼ 0

9>>>=
>>>;
: ð22Þ

Putting the values of Γx, Γy, and Γz in the ansatz, we get

ðff − nfn−1eq;ffeq;fÞ ¼ 2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ: ð23Þ

One can reduce the left-hand side of Eq. (23) to4

ðff − nfn−1eq;ffeq;fÞ ¼
�
δff − gfn−1eq;ffeq;f

Z
p
δff

�
: ð24Þ

5Substituting the result of Eq. (24) in Eq. (23) we have

δff − gfn−1eq;ffeq;f

Z
p
δff ¼ 2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ: ð25Þ

Neglecting higher-order terms ðOðδffÞ2Þ, we get the solution of this equation as

δff ¼
�
δfð0Þf þ gfn−1eq;ffeq;f

Z
p0
δfð0Þf

�
; ð26Þ

where

δfð0Þf ¼
�
2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ

�
: ð27Þ

The infinitesimal change in the quark distribution function (δff) (see Appendix A) is obtained as

δff ¼
�
2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ

�

þ gfn−1eq;ffeq;f

Z
p0

�
2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ

�
: ð28Þ

Similarly, for antiquarks, we get

3Refer appendix A of Ref. [44] for detailed mathematical calculations.
4Refer appendix A of Ref. [46] for detailed mathematical calculations.
5Here we are using the symbol of momentum integration,

R
p ¼ R

d3p=ð2πÞ3.
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δf̄f ¼
�
2q̄Eβvx

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ − 2q̄Eβvy

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
þ gfn−1eq;ff̄eq;f

×
Z
p0

�
2q̄Eβvx

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ − 2q̄Eβvy

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
: ð29Þ

Now, replacing the values of δff and δf̄f in Eq. (5) and comparing it with Eq. (7), we get the final expressions for electrical
conductivity and Hall conductivity under BGK model in weak magnetic field limit as

σBGKel ¼ β

3π2
X
f

gfq2f

Z
dp

p4

ω2
f

��
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�

þ 2βffiffiffi
3

p
X
f

g2fq
2
fn

−1
eq;f

Z
p

p
ωf

feq;f

Z
p0

p0
ωf

��
τf

ð1þ ω2
cτ

2
fÞ
�

× feq;fð1 − feq;fÞ þ
�

τf̄
ð1þ ω2

cτ
2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
; ð30Þ

σBGKH ¼ β

3π2
X
f

gfq2f

Z
dp

p4

ω2
f

��
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�

þ 2βffiffiffi
3

p
X
f

g2fq
2
fn

−1
eq;f

Z
p

p
ωf

feq;f

Z
p0

p0
ωf

��
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
: ð31Þ

Expressions of σBGKel [Eq. (30)] and σBGKH [Eq. (31)] can be rewritten as

σBGKel ¼ σRTAel þ σCorrel ; ð32Þ

σBGKH ¼ σRTAH þ σCorrH ; ð33Þ

where

σRTAel ¼ β

3π2
X
f

gfq2f

Z
dp

p4

ω2
f

��
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
; ð34Þ

σCorrel ¼ 2βffiffiffi
3

p
X
f

g2fq
2
fn

−1
eq;f

Z
p

p
ωf

feq;f

Z
p0

p0
ωf

��
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
: ð35Þ

Similarly,

σRTAH ¼ β

3π2
X
f

gfq2f

Z
dp

p4

ω2
f

��
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
; ð36Þ

σCorrH ¼ 2βffiffiffi
3

p
X
f

g2fq
2
fn

−1
eq;f

Z
p

p
ωf

feq;f

Z
p0

p0
ωf

��
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ þ

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
: ð37Þ

B. Heat transport properties: Thermal conductivity and Hall-type thermal conductivity

Heat flow in a system is defined as the difference between the energy flow and the enthalpy flow. It is directly proportional to
the temperature gradient through a proportionality constant known as thermal conductivity. To study the heat transport in a
medium, we need to calculate the thermal conductivity first. In four-vector notation, the heat flow is given by
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Qμ ¼ ΔμαTαβuβ − hΔμαNα: ð38Þ

In the above equation, the projection operator (Δμα) and the
enthalpy per particle (h) are respectively defined as

Δμα ¼ gμα − uμuα; ð39Þ

h ¼ ðϵþ PÞ=n; ð40Þ

where ϵ, P, and n represent the energy density, pressure, and
particle number density, respectively, which are given by the
following equations:

ϵ ¼ uαTαβuβ; ð41Þ

P ¼ −
ΔαβTαβ

3
; ð42Þ

n ¼ Nαuα: ð43Þ

Here, the particle flow four-vector Nα and the energy-
momentum tensor Tαβ are defined as

Nα ¼
X
f

gf

Z
d3p
ð2πÞ3

pα

ωf
½ffðx; pÞ þ f̄fðx; pÞ�; ð44Þ

Tαβ ¼
X
f

gf

Z
d3p
ð2πÞ3

pαpβ

ωf
½ffðx; pÞ þ f̄fðx; pÞ�: ð45Þ

The spatial part of the heat flow four-vector is given by

Qi ¼
X
f

gf

Z
d3p
ð2πÞ3

pi

ωf
½ðωf − hfÞδffðx; pÞ

þ ðωf − hf̄Þδf̄fðx; pÞ�; ð46Þ

where we use the fact that in the rest frame of the fluid, heat
flow four-vector, and fluid four-vector are perpendicular to
each other, i.e., Qμuμ ¼ 0 and the enthalpy per particle for
the fth flavor is given by

hf ¼ ðϵf þ PfÞ
neq;f

; ð47Þ

where

ϵf ¼ gf

Z
d3p
ð2πÞ3 ωffeq;f; ð48Þ

Pf ¼ gf
3

Z
d3p
ð2πÞ3

p2

ωf
feq;f: ð49Þ

In the Navier-Stokes equation, the heat flow is related to the
gradients of temperature and pressure by

Qμ ¼ κ

�
∇μT −

T
ðϵþ PÞ∇μP

�
; ð50Þ

where κ represents the thermal conductivity for the medium
and ∇μ ¼ ∂μ − uμuν∂ν.
Now, the spatial component of the heat flow four-vector

at finite magnetic field can be expressed [65] as

Qi ¼ −κij
�
∂jT −

T
ðϵþ PÞ ∂jP

�
: ð51Þ

Here, κij represents the thermal conductivity tensor [65],

κij ¼ κ0δ
ij þ κ1ϵ

ijkbk þ κ2bibj: ð52Þ

In the above equation, κ0, κ1, and κ2 are the various
components of the thermal conductivity tensor. In this
work, the gradients of temperature and pressure are taken
perpendicular to the magnetic field, so the κ2 term will
vanish. Therefore, the above equation evolves to

Qi ¼ −ðκδij þ κHϵ
ijÞ
�
∂jT −

T
ðneq;fhfÞ

∂jP

�
: ð53Þ

Here κ0 ¼ κ and κ1 ¼ κH are known as thermal conductivity
and Hall-type thermal conductivity, respectively. One can
find the expressions for κ and κH using Eqs. (46) and (53).
In order to calculate the infinitesimal change in the

distribution function (δff), we start with the RBTE given in
Eq. (8) with the help of Eq. (19),

τf
p0

pμ
∂feq;f
∂xμ

þ βfeq;fðΓxvx þ Γyvy þ ΓzvzÞ þ τfqEvx
∂ff
∂p0

− qBτf

�
vx

∂ff
∂py

− vy
∂ff
∂px

�
¼ 0: ð54Þ

Using Eq. (20) and considering L ¼ τf
p0 pμ ∂feq;f

∂xμ , Eq. (54) is

reduced to

L − βfeq;fτfqEvx þ βfeq;fðΓxvx þ Γyvy þ ΓzvzÞ

−
qBτfβfeq;f

ωf
ðvxΓy − vyΓxÞ þ

τ2fq
2BEvyβfeq;f

ωf
¼ 0:

ð55Þ

Here L can be calculated as

L ¼ τfβfeq;f
ðωf − hfÞ

T
vx

�
∂
xT −

T
nhf

∂
xP

�

þ τfβfeq;f
ðωf − hfÞ

T
vy

�
∂
yT −

T
nhf

∂
yP

�
þ τfβfeq;f

×

�
p0

DT
T

−
pμpα

p0
∇μuα þ TD

�
μf
T

��
: ð56Þ
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Now, solving Eq. (55),6 we get

Γx ¼ qEτf
ð1 − ω2

cτ
2
fÞ

ð1þ ω2
cτ

2
fÞ

−
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
∂
xT −

T
nhf

∂
xP

�
−

ωcτ
2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
∂
yT −

T
nhf

∂
yP

�
; ð57Þ

Γy ¼ −
2qEωcτ

2
f

ð1þ ω2
cτ

2
fÞ

−
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
∂
yT −

T
nhf

∂
yP

�
þ ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
∂
xT −

T
nhf

∂
xP

�
; ð58Þ

Γz ¼ 0: ð59Þ

Putting the values of Γx, Γy, and Γz in Eq. (19), we get

ðff − nfn−1eq;ffeq;fÞ ¼
2qEτfvxβ

ð1þω2
cτ

2
fÞ
feq;fð1− feq;fÞ−

2qEωcτ
2
fvyβ

ð1þω2
cτ

2
fÞ

feq;fð1− feq;fÞ− βfeq;fð1− feq;fÞ
τf

ð1þω2
cτ

2
fÞ

×
ðωf − hfÞ

T

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βfeq;fð1− feq;fÞ

ωcτ
2
f

ð1þω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
: ð60Þ

With the help of the same approach, we can reduce the left-hand side of the above Eq. (60) to obtain

δff − gfn−1eq;ffeq;f

Z
p
δff ¼

2qEτfvxβ

ð1þω2
cτ

2
fÞ
feq;fð1− feq;fÞ−

2qEωcτ
2
fvyβ

ð1þω2
cτ

2
fÞ

feq;fð1− feq;fÞ− βfeq;fð1− feq;fÞ
τf

ð1þω2
cτ

2
fÞ

×
ðωf − hfÞ

T

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��

− βfeq;fð1− feq;fÞ
ωcτ

2
f

ð1þω2
cτ

2
fÞ
ðωf − hfÞ

T

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
: ð61Þ

After neglecting higher-order terms ðOðδffÞ2Þ, we get the solution of this equation as

δff ¼ δfð0Þf þ gfn−1eq;ffeq;f

Z
p0
δfð0Þf ; ð62Þ

where

δfð0Þf ¼ 2qEτfvxβ

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ −

2qEωcτ
2
fvyβ

ð1þ ω2
cτ

2
fÞ

feq;fð1 − feq;fÞ − βfeq;fð1 − feq;fÞ
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βfeq;fð1 − feq;fÞ

ωcτ
2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
: ð63Þ

So finally, we get the infinitesimal change in the quark distribution function (δff) (see Appendix B) as

6For detailed calculations, see Appendix B of Ref. [44].
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δff ¼
2qEτfvxβ

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ −

2qEωcτ
2
fvyβ

ð1þ ω2
cτ

2
fÞ

feq;fð1 − feq;fÞ − βfeq;fð1 − feq;fÞ
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βfeq;fð1 − feq;fÞ

ωcτ
2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
þ gfn−1eq;ffeq;f

Z
p0

�
2qEτfvxβ

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ −

2qEωcτ
2
fvyβ

ð1þ ω2
cτ

2
fÞ

× feq;fð1 − feq;fÞ − βfeq;fð1 − feq;fÞ
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��

− βfeq;fð1 − feq;fÞ
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

���
: ð64Þ

Similarly, for antiquarks, we get

δf̄f ¼
2qEτf̄vxβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ −

2qEωcτ
2
f̄
vyβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ − βf̄eq;fð1 − f̄eq;fÞ

τf̄
ð1þ ω2

cτ
2
f̄
Þ
ðωf − hf̄Þ

T

×

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βf̄eq;fð1 − f̄eq;fÞ

ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
ðωf − hf̄Þ

T

×

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
þ gfn−1eq;ff̄eq;f

Z
p0

�
2qEτf̄vxβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ −

2qEωcτ
2
f̄
vyβ

ð1þ ω2
cτ

2
f̄
Þ

× f̄eq;fð1 − f̄eq;fÞ − βf̄eq;fð1 − f̄eq;fÞ
τf̄

ð1þ ω2
cτ

2
f̄
Þ
ðωf − hf̄Þ

T

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��

− βf̄eq;fð1 − f̄eq;fÞ
ωcτ

2
f̄

ð1þ ω2
cτ

2
f̄
Þ
ðωf − hf̄Þ

T

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

���
: ð65Þ

Now, replacing the values of δff and δf̄f in Eq. (46) and comparing it with Eq. (53), we get the final expressions for thermal
conductivity (κBGK) and Hall-type thermal conductivity (κBGKH ) under BGK model in weak magnetic field as

κBGK ¼ β2

6π2
X
f

gf

Z
dp

p4

ω2
f

�
ðωf − hfÞ2

�
τf

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ þ ðωf − hf̄Þ2

�
τf̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�

þ β2ffiffiffi
3

p
X
f

g2fn
−1
eq;f

Z
p

p
ωf

ðωf − hfÞfeq;f
Z
p0

p0
ωf

�
ðωf − hfÞ

�
τf

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ þ ðωf − hf̄Þ

×

�
τf̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�
; ð66Þ

κBGKH ¼ β2

6π2
X
f

gf

Z
dp

p4

ω2
f

�
ðωf − hfÞ2

�
ωcτ

2
f

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ þ ðωf − hf̄Þ2

� ωcτ
2
f̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�

þ β2ffiffiffi
3

p
X
f

g2fn
−1
eq;f

Z
p

p
ωf

ðωf − hfÞfeq;f
Z
p0

p0
ωf

�
ðωf − hfÞ

�
ωcτ

2
f

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ

þ ðωf − hf̄Þ
� ωcτ

2
f̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�
: ð67Þ

Here, we can write the expressions of κBGK and κBGKH as an addition of two terms as
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κBGK ¼ κRTA þ κCorr; ð68Þ

κBGKH ¼ κRTAH þ κCorrH ; ð69Þ

where

κRTA ¼ β2

6π2
X
f

gf

Z
dp

p4

ω2
f

�
ðωf − hfÞ2

�
τf

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ þ ðωf − hf̄Þ2

�
τf̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�
; ð70Þ

κcorr ¼ β2ffiffiffi
3

p
X
f

g2fn
−1
eq;f

Z
p

p
ωf

ðωf − hfÞfeq;f
Z
p0

p0
ωf

�
ðωf − hfÞ

�
τf

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ

þ ðωf − hf̄Þ
�

τf̄
1þ ω2

cτ
2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�
; ð71Þ

κRTAH ¼ β2

6π2
X
f

gf

Z
dp

p4

ω2
f

�
ðωf − hfÞ2

�
ωcτ

2
f

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ þ ðωf − hf̄Þ2

� ωcτ
2
f̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�
; ð72Þ

κCorrH ¼ β2ffiffiffi
3

p
X
f

g2fn
−1
eq;f

Z
p

p
ωf

ðωf − hfÞfeq;f
Z
p0

p0
ωf

�
ðωf − hfÞ

�
ωcτ

2
f

1þ ω2
cτ

2
f

�
feq;fð1 − feq;fÞ

þ ðωf − hf̄Þ
� ωcτ

2
f̄

1þ ω2
cτ

2
f̄

�
f̄eq;fð1 − f̄eq;fÞ

�
: ð73Þ

III. RESULTS AND DISCUSSIONS

The charge transport coefficients (σel, σH) and heat
transport coefficients (κ, κH) are estimated in the pre-
sence of weak magnetic field within the framework of
the BGK model by considering the current masses of
the quarks.

Figures 1 and 2 show the variations of σel and σH as
functions of temperature, respectively. In Fig. 1(a), the
BGK model estimations are compared with the RTA model
results in the weak magnetic-field regime. It is found that
due to this new BGK collision term, there is an increment in
the charge transport phenomenon for the QCD medium.
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FIG. 1. The variation of the electrical conductivity (σel) with temperature, (a) comparison with RTA model result (weak magnetic
field) and (b) comparison with BGK model result (strong magnetic field).

SHAIKH, RATH, DASH, and PANDA PHYS. REV. D 108, 056021 (2023)

056021-10



This is indicated by the large value of electrical conduc-
tivity. The ratio of σBGKel =σRTAel comes out to be 2.72. In
Fig. 1(b), similar kind of comparison has been done with
BGK model results for the strong magnetic field and it is
observed that the weak magnetic field slightly reduces the
electrical conductivity, contrary to the enhancement of
the same by the strong magnetic field. We have compared
the BGK model estimations in weak magnetic-field limit
with the corresponding results of Ref. [46] in the strong
magnetic field limit.7 The large value of σel in Fig. 1(b) in
the strong magnetic-field regime arises due to the large
relaxation time, as it is inversely proportional to the square
of the mass [Eq. (60) of Ref. [46] ], where the current quark
mass is very small. Similar results have been found in
Ref. [30], where σel has been calculated in the diagram-
matic method in the strong magnetic-field regime and its
large value is attributed to the smaller value of the current
quark masses.
We have also compared our results on the electrical

conductivity with that of lattice QCD. In Fig. 1(a), it is
observed that, with respect to the BGK model, σel in RTA
model is nearer to the lattice results [66–68]. Specifically
the lattice results in Refs. [66,67], which are obtained with
the lattice simulations containing 2þ 1 dynamical flavors
on anisotropic lattices using spectral functions from corre-
lators of the conserved vector current and using a tadpole-
improved Clover action, respectively, report an increasing
trend of σel up to temperature T ≃ 0.26 GeV and the slope
gradually decreases at higher temperatures. A very small
variation in σel with temperature is noticed in Ref. [68],

which is calculated using the nonperturbatively improved
clover Wilson valence quarks. The value of σel as estimated
in Ref. [68] lies slightly below the RTA result, specifically
at low temperatures. On the other hand, lattice results in
Refs. [66,67] are comparable to our results at high temper-
atures. From the above discussion, it is inferred that
the BGK model results are not at par with the lattice
calculations.
In Fig. 2, we have done a suchlike comparison of our

estimated results on Hall conductivity (σH). As presented in
Fig. 2(a), it is found that the Hall conductivity shows
increasing behavior with temperature for both RTA and
BGK models at very small or zero chemical potential,
which is attributed to the increase of distribution function
with temperature. Conversely, Fig. 2(b) shows slight
decreasing behavior of σH with temperature at finite
chemical potential, which can be understood from the fact
that, at finite μ, the increase of distribution function with T
becomes smaller and the factor βτ2f (≈ 1

T3 in the weak
magnetic-field case) appearing in the expression of Hall
conductivity dominates, thus giving an overall decreasing
effect to σH with increasing temperature. As compared to
the RTA model result, the BGK model result on σH is
larger. But in all cases, the magnitude of σH gets increased
as the magnetic field increases, which is mainly due to the
fact that the σH directly depends on the cyclotron fre-
quency. At finite μ, the increase in σH is inferred from
the increase of the net Hall current with the enhancement
of the difference between the numbers of particles and
antiparticles.
Figures 3 and 4 show the variations of κ and κH

as functions of temperature, respectively. To be more
specific, Figs. 3(a) and 3(b) represent the comparison of
our estimated results of thermal conductivity (κ) with RTA
model results of weak magnetic field and BGK model
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7We have used the published results of Ref. [46] within BGK
approximation in the strong magnetic-field regime for the
comparison with our results in BGK approximation within the
weak magnetic-field regime.
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results of strong magnetic field, respectively, whereas
Figs. 4(a) and 4(b) show the comparison of our calculated
results of κH with RTA model results for weak magnetic
field and for finite chemical potential, respectively. The
ratio of κBGK=κRTA comes out to be 1.42. Thus, the above
discussions imply that our collision integral is more
sensitive to charge transport than heat transport.
Like the RTA model, in BGK model also, κH is directly

associated with the cyclotron frequency in contrast to κ, so
the magnitude of κH gets increased with the magnetic field
even in the weak magnetic-field regime. The emergence
of finite chemical potential also helps in enhancing the
magnitude of κH. It is observed that both κ and κH increase
with T, but a reverse effect of T on these conductivities is
expected due to the presence of terms β2τf and β2τ2f in the

expressions of κ and κH, respectively, but the increase of
enthalpy per particle and the increase of distribution
function with temperature reduce this reverse effect and
give an increasing effect to κ and κH with temperature.

IV. QUASIPARTICLE MODEL (QPM)
AND THE TRANSPORT COEFFICIENTS

A. Quasiparticle description of QGP

Noninteracting quasiparticles in a thermal medium
obtain some masses due to the interaction with the medium,
which are known as thermal masses. In the present context,
we can consider QGP as a system of massive noninteracting
quasiparticles in the quasiparticle model framework. This
quasiparticle quark-gluon plasma (qQGP) model is widely
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FIG. 3. The variation of the thermal conductivity (κ) with temperature, (a) comparison with RTA model result (weak magnetic field).
and (b) comparison with BGK model result (strong magnetic field).
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used to describe the nonideal behavior of QGP. In the case
of a pure thermal medium, the quasiparticle masses of
particles depend only on the temperature of the medium,
but for a dense thermal medium, they also depend on
chemical potential. The thermal mass (squared) of quark for
a dense QCD medium is given [69,70] by

m2
fT ¼ g2T2

6

�
1þ μ2f

π2T2

�
; ð74Þ

with g ¼ ð4παsÞ1=2, where the expression of αs is given in
Eq. (12). It can be seen from Eq. (12) that αs depends
on temperature, chemical potential and magnetic field,
which indicates that, it is not a fixed value, rather, its value
changes depending on the values of T, eB, and μf and thus
the value of the thermal mass changes accordingly. Here,
the chemical potentials for all the three quarks are set to be
the same (μf ¼ μ).
The thermal quark mass used has been obtained from

high temperature perturbative QCD calculations using the
hard thermal-loop approximation, where higher-order cou-
pling terms have been truncated [28,69,71]. The coupling g
(

ffiffiffiffiffiffiffiffiffiffi
4παs

p
) used in this work is the extension of the pure

T-dependent coupling to the T; eB-dependent coupling in
the perturbative domain with temperature scale being larger
than the magnetic field scale [60].
For a thermal QCD medium in the absence of magnetic

field, the available energy scales are associated with the
temperature and the quark mass. In the QGP phase
consisting of light quarks and gluons, the temperature is
large enough to become the highest-energy scale. In this
high-temperature regime, the divergences encountered in
the calculation of QCD thermodynamic observables, trans-
port coefficients, and amplitudes are treated by applying the

effective theories, one of which is the hard thermal loop
(HTL) perturbation theory. In this theory, the loop momen-
tum is of the order of T, i.e., the hard scale and the next
scale is the soft scale of the order of gT (g is the coupling
constant). When the thermal medium is exposed to a
magnetic field,

ffiffiffiffiffiffi
eB

p
emerges as the new energy scale of

the system in addition to T. Depending on the strength of
magnetic field with respect to the temperature, the thermal
medium may be considered as weakly magnetized or
strongly magnetized. In particular, for a weakly magnetized
thermal medium where

ffiffiffiffiffiffi
eB

p
≪ T, T plays the role of

largest energy scale. Therefore, one can in principle use the
same resummation technique (HTL perturbation theory) to
alleviate the divergences as done previously for the pure
thermal medium. As a result, there is no violation of self-
consistency in using gðTÞ in place of gðT; eBÞ (in the weak
magnetic-field limit) in the thermal masses of partons.
Due to the temperature-dependent masses, there is a

significant change in the transport phenomena of the given
system and also in the corresponding transport coefficients.
In the following section, our aim is to study the variations of
electrical, Hall, thermal andHall-type thermal conductivities
with temperature considering the quasiparticle masses of the
quarks. We also intend to compare our results in “BGK
(weak)” with that in “BGK (strong)” [46]. As compared to
the thermal mass in Eq. (74), the thermal mass [Eq. (109) in
Ref. [46]] in “BGK (strong)” has a different form as it was
calculated in the strong magnetic field limit (

ffiffiffiffiffiffi
eB

p
≫ T). In

addition, weak and strong magnetic-field values are used for
“BGK (weak)” and “BGK (strong)” cases, respectively. This
comparison is helpful to understand the behavior and
properties of aforesaid transport coefficients in different
regimes (the weak and the strong magnetic-field regimes)
within the BGK model.
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FIG. 5. The variation of the electrical conductivity (σel) with temperature, (a) comparison with RTA model result (weak magnetic
field), and (b) comparison with BGK model result (strong magnetic field).
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B. Results and discussions

In this section, the charge and thermal coefficients are
reinvestigated with the thermal mass as given by Eq. (74).
Figures 5 and 6 show the variations of σel and σH with
temperature, respectively. To be more specific, in Figs. 5(a)
and 5(b), we compare our results of electrical conductivity
with the results of the RTAmodel (weak magnetic field) and
BGKmodel (strong magnetic field). Similarly, Figs. 6(a) and
6(b) represent the comparison of Hall conductivity with the
results of the RTA model in weak magnetic field and finite
chemical potential, respectively. In Figs. 7 and 8, same
comparisons have been done for κ and κH, respectively. In
kinetic theory, all the transport coefficients depend on the
distribution functions of partons in the medium. The

distribution functions are observed to be slightly modified
due to the quasiparticle masses of partons, which further
causes change in the transport phenomena of the medium. In
the calculation of conductivities and corresponding coeffi-
cients, we follow the similar methodology as done for the
current quark masses but with masses being replaced by the
medium-generated masses, i.e., the quasiparticle masses.
It is observed that the heat and charge transport phenom-

ena slightly slow down due to the quasiparticle masses
(comparatively heavier) than the current quark masses
because of the reduced mobility of carriers. As a result,
we see a slightly higher values of σel, σH, κ and κH in the
case of current quark masses. The ratios of σBGKel =σRTAel and
κBGK=κRTA are observed to be 2.70 [Fig. 5(a)] and 1.39
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[Fig. 7(a)], respectively. This shows that the collision
integral is more sensitive to charge transport, irrespective
of quark masses. Figure 5(a) shows the result on electrical
conductivity with that of lattice QCD. It is found that the
lattice QCD results in Refs. [66,67] are a bit closer to σel
calculated in the quasiparticle model due to the slight
reduction in its magnitude as compared to the current quark
mass case. Thus, a good agreement with the lattice data is
observed when the partons acquire thermal masses.
In the current quark-mass case, the largemagnitudes of σel

and κ [in BGK (strong) case] are mainly attributed to the
phase-space factor (∼jqfBj), and the relaxation time in the
strongmagnetic-field limit. The phase-space factor is propor-
tional to ∼jqfBj and the relaxation time is inversely propor-
tional to the square of the mass [Eq. (60) of Ref. [46]], where

the current quark mass is very small. Thus, they overall give
an increasing effect to the transport coefficients in the strong
magnetic field limit. After the inclusion of the thermal mass,
there is a large reduction in the distribution function of
particles and the relaxation time as compared to the current
quark-mass case. Hence, a decrease in the magnitudes of σel
and κ is evidenced and this makes the quasiparticle descrip-
tion of particles a useful tool in taming the large values of
transport coefficients in the strong magnetic field.

V. APPLICATIONS

A. Wiedemann-Franz law and Lorenz number

This law states that the ratio of thermal conductivity (κ)
to electrical conductivity (σel) is directly proportional to the
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temperature (T) through a proportionality factor known as
the Lorenz number (L),

κ

σel
¼ LT: ð75Þ

This law indicates the relative behavior of the charge
and heat transport phenomena in a medium. In Figs. 9(a)
and 9(b), we show the variation of κ=σel with temperature
for different magnetic field strengths and chemical poten-
tials and also compare this result with RTA model (weak
magnetic field) and BGK model (strong magnetic field)
results, respectively. The same comparison has been done
in Fig. 10 [10(a) and 10(b)] for the Lorenz number. It is
found that the ratio κ=σel varies almost linearly with the
temperature (Fig. 9), indicating that the heat transport
forges ahead of the charge transport as the temperature
of the medium increases. For a better understanding of the
relative behavior of the aforesaid transport phenomena, the
Lorenz number is seen to vary in a monotonically increas-
ing manner for low temperature, indicating the violation
of the Wiedemann-Franz law. On the other hand, the
Lorenz number saturates at higher temperature (Fig. 10).
Figures 9(a) and 10(a) depict the domination of the
relaxation collision integral over the BGK collision inte-
gral, whereas Figs. 9(b) and 10(b) indicate that the Lorenz
number in the strong magnetic field regime prevails over
the one in the weak magnetic-field regime.

B. Knudsen number and specific heat

Knudsen number (Ω) is a dimensionless quantity and it is
defined as the ratio of the mean-free path (λ) and the
characteristic length scale of the medium (l), i.e.,

Ω ¼ λ

l
: ð76Þ

If Ω is less than one (i.e., λ < l), then we can apply the
equilibrium hydrodynamics to this system. So with the
help of the Knudsen number, we can predict the local
equilibrium of a system. The mean free path λ in Eq. (76) is
computed as

λ ¼ 3κ

VCv
; ð77Þ

where Cv and V represent the specific heat at constant
volume and the relative speed, respectively. Specific heat is
calculated with the help of the equation given below,

Cv ¼
∂ϵ

∂T
: ð78Þ

Here, ϵ is given in Eq. (41), and we have fixed the value of
V ≈ 1 and l ¼ 4 fm.
Figures 11 [11(a) and 11(b)] and 12 [12(a) and 12(b)]

show the variations of the Knudsen number and the specific
heat with the temperature for different combinations of
magnetic field and chemical potential, respectively as well
as the comparison with RTA model (weak magnetic field)
and BGK model (strong magnetic field) results. Overall,
the Knudsen number shows a decreasing trend, whereas
specific heat shows an increasing nature with temperature.
From the above comparison, we can see that the modified
BGK collision term is found to dominate over the RTA
collision term, and the BGK model result in the strong
magnetic field comes out to be larger than the correspond-
ing weak magnetic field result, which can be understood
from the behaviors of κ (Fig. 7) and Cv (Fig. 12) in the
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similar environment. The value of Ω, as seen in Fig. 11 for
both the models, is less than unity, which indicates the
validity of the system being in local equilibrium even in the
presence of both magnetic field and chemical potential.

C. Elliptic flow

The elliptic flow coefficient (v2) describes the azimuthal
anisotropy in the momentum space of produced particles in
heavy ion collisions. The elliptic flow is related to the
Knudsen number by the following equation [72–74]:

v2 ¼
vh2

1þ Ω
Ωh

; ð79Þ

where vh2 represents the value of elliptic flow coefficient in
the hydrodynamic limit (i.e., Ω → 0 limit). The value of Ωh
can be calculated by observing the transition between the
hydrodynamic regime and the free-streaming particle
regime. In our work, we have used vh2 ≈ 0.1 and Ωh ¼
0.7 and these values are taken from the transport calcula-
tion in Ref. [74]. Figure 13 [13(a) and 13(b)] shows the
variation of elliptic flow coefficient with the temperature at
different combinations of magnetic field and chemical
potential as well as the comparison with RTA model
(weak magnetic field) and BGK model (strong magnetic
field) results. It can be observed that v2 shows an increasing
trend with temperature for different combinations of weak
magnetic field and finite chemical potential. From the
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FIG. 11. The variation of the Knudsen number (Ω) with temperature, (a) comparison with RTA model result (weak magnetic field) and
(b) comparison with BGK model result (strong magnetic field).
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above comparison, it is inferred that the RTA collision
term dominates over the modified BGK collision term
[Fig. 13(a)], and the value of the elliptic flow in BGK
model for the strong magnetic field is less than its
counterpart in the weak magnetic field [Fig. 13(b)], which
can be understood from the behavior of the Knudsen
number with temperature as shown in Fig. 11.

VI. SUMMARY

The effects of weak magnetic field and finite chemical
potential on a strongly interacting thermal QCD medium
have been investigated through different charge and heat
transport coefficients. Due to the complicated nature of
the collision integral in the Boltzmann transport equation,
we considered the problem in a kinetic theory approach
with a modified collision integral under the BGK model.
The magnetic field was assumed to be weak in com-
parison to the temperature scale in the system. In the
presence of a magnetic field, the transport coefficients
lose their isotropic nature and possess different compo-
nents. Charge and heat transport coefficients, such as
electrical conductivity (σel), Hall conductivity (σH),
thermal conductivity (κ), and Hall-type thermal conduc-
tivity (κH) were calculated by solving the relativistic
Boltzmann transport equation. We examined how the
modified collision integral (BGK model) affects these
transport coefficients in comparison to the often used
relaxation-type collision integral (RTA model). We also
observed how the magnitudes of these coefficients
change when we apply the quasiparticle model to the
system, where the usual rest masses are being replaced
by the medium generated masses. The modified BGK
collision integral enhances both the charge transport

(σel, σH) and the heat transport (κ, κH) coefficients as
compared to the RTA collision integral in weak magnetic
field. At finite chemical potential, all the charge and heat
transport coefficients get enhanced, whereas, with the
weak magnetic field, σel and κ decrease, and σH and κH
increase. The transport coefficients were further used to
study the Wiedemann-Franz law, the Lorenz number, the
Knudsen number, the specific heat and the elliptic flow.
The RTA collision integral dominates over the BGK
collision term for the ratio of thermal-to-electrical con-
ductivity (Wiedemann-Franz law). The Lorenz number
was seen to increase monotonically with temperature,
which indicates the violation of the Wiedemann-Franz
law for a thermalized QCD medium in the presence of
weak magnetic field. The magnitude of the Knudsen
number remains below unity for both BGK and RTA
models, which indicates the existence of a local equilib-
rium for the medium. The elliptic-flow coefficient gets
decreased at finite chemical potential, whereas the pres-
ence of weak magnetic field increases it. In addition, the
elliptic flow coefficient in BGK model was observed to
be less than that in RTA model in the presence of a weak
magnetic field. Observation also showed that there is a
large difference in the magnitudes of elliptic flow in
BGK weak and BGK strong magnetic field cases,
especially at lower temperatures, whereas this difference
gets mitigated at higher temperatures.
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APPENDIX A: DERIVATION OF EQUATION (28)

From Eq. (19), we have

ff ¼ nfn−1eq;ffeq;f − τfqE:
∂feq;f
∂p

− Γ:
∂feq;f
∂p

;

¼ nfn−1eq;ffeq;f − τfqE
∂feq;f
∂px

− Γx
∂feq;f
∂px

− Γy
∂feq;f
∂py

− Γz
∂feq;f
∂pz

: ðA1Þ

Now, after putting the values of ∂feq;f
∂px

, ∂feq;f
∂py

, ∂feq;f
∂pz

[as given by Eq. (20)], Γx, Γy, and Γz [as given by Eq. (22)] in Eq. (A1),

we have

ff ¼ nfn−1eq;ffeq;f − τfqEf−βvxfeq;fð1 − feq;fÞg −
	
qEτfð1 − ω2

cτ
2
fÞ

ð1þ ω2
cτ

2
fÞ



f−βvxfeq;fð1 − feq;fÞg

−
	
−

2qEωcτ
2
f

ð1þ ω2
cτ

2
fÞ


f−βvyfeq;fð1 − feq;fÞg;

ff − nfn−1eq;ffeq;f ¼ 2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ: ðA2Þ

For a proper treatment of the left-hand side of the above equation, we are considering an infinitesimal perturbation to the
equilibrium distribution function: feq;f → feq;f þ δff, δff ≪ feq;f and after linearizing it, we get

δff − gfn−1eq;ffeq;f

Z
p
δff ¼ 2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ: ðA3Þ

Solving the above equation for δff [neglecting the higher-order OððδffÞ2Þ], we get

δff ¼ δfð0Þf þ gfn−1eq;ffeq;f

Z
p0
δfð0Þf ; ðA4Þ

where

δfð0Þf ¼ 2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ: ðA5Þ

Putting it in Eq. (A4), we have

δff ¼
�
2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ

�

þ gfn−1eq;ffeq;f

Z
p0

�
2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ − 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ

�
: ðA6Þ

Similarly, for antiquarks, we have

δf̄f ¼
�
2q̄Eβvx

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ − 2q̄Eβvy

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�

þ gfn−1eq;ff̄eq;f

Z
p0

�
2q̄Eβvx

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ − 2q̄Eβvy

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ

�
: ðA7Þ
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After substituting the results of Eqs. (A6) and (A7) in Eq. (5), we get

Ji ¼
X
f

gfqf

Z
d3p
ð2πÞ3

pμ

ωf

�
ðAþ ĀÞ þ gfn−1eq;ffeq;f

Z
p0
ðAþ ĀÞ

�

−
X
f

gfqf

Z
d3p
ð2πÞ3

pμ

ωf

�
ðBþ B̄Þ þ gfn−1eq;ffeq;f

Z
p0
ðBþ B̄Þ

�
; ðA8Þ

where

A ¼ 2qEβvx

�
τf

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ; ðA9Þ

B ¼ 2qEβvy

�
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
�
feq;fð1 − feq;fÞ; ðA10Þ

Ā ¼ 2q̄Eβvx

�
τf̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ; ðA11Þ

B̄ ¼ 2q̄Eβvy

� ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
�
f̄eq;fð1 − f̄eq;fÞ: ðA12Þ

Now recalling Eq. (7),

Ji ¼ σijEj ¼ ðσelδij þ σHϵ
ijÞEj ðA13Þ

and comparing Eq. (A8) with this equation, we get the final expressions of electrical conductivity (σel) and Hall
conductivity (σH) as given in Eqs. (30) and (31), respectively.

APPENDIX B: DERIVATION OF EQUATION (64)

After substituting the values of ∂feq;f
∂px

, ∂feq;f
∂py

, ∂feq;f
∂pz

[as given by Eq. (20)], Γx, Γy, and Γz (as given by equations (57), (58), and

(59), respectively) in Eq. (A1), we get

ff ¼ nfn−1eq;ffeq;f− τfqEf−βvxfeq;fð1−feq;fÞg−
	
qEτf

ð1−ω2
cτ

2
fÞ

ð1þω2
cτ

2
fÞ
−

τf
ð1þω2

cτ
2
fÞ
ðωf−hfÞ

T

�
∂
xT−

T
nhf

∂
xP

�

−
ωcτ

2
f

ð1þω2
cτ

2
fÞ
ðωf−hfÞ

T

�
∂
yT−

T
nhf

∂
yP

�

f−βvxfeq;fð1−feq;fÞg−

	
−

2qEωcτ
2
f

ð1þω2
cτ

2
fÞ
−

τf
ð1þω2

cτ
2
fÞ

×
ðωf−hfÞ

T

�
∂
yT−

T
nhf

∂
yP

�
þ ωcτ

2
f

ð1þω2
cτ

2
fÞ
ðωf−hfÞ

T

�
∂
xT−

T
nhf

∂
xP

�

f−βvyfeq;fð1−feq;fÞg;

ff−nfn−1eq;ffeq;f ¼
2qEτfvxβ

ð1þω2
cτ

2
fÞ
feq;fð1−feq;fÞ−

2qEωcτ
2
fvyβ

ð1þω2
cτ

2
fÞ

feq;fð1−feq;fÞ−βfeq;fð1−feq;fÞ
τf

ð1þω2
cτ

2
fÞ

×
ðωf−hfÞ

T

�
vx

�
∂
xT−

T
nhf

∂
xP

�
þvy

�
∂
yT−

T
nhf

∂
yP

��

−βfeq;fð1−feq;fÞ
ωcτ

2
f

ð1þω2
cτ

2
fÞ
ðωf−hfÞ

T

�
vx

�
∂
yT−

T
nhf

∂
yP

�
−vy

�
∂
xT−

T
nhf

∂
xP

��
: ðB1Þ

Following the previous steps [as done in Eqs. (A3) and (A4)], we have
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δfð0Þf ¼ 2qEτfvxβ

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ −

2qEωcτ
2
fvyβ

ð1þ ω2
cτ

2
fÞ

feq;fð1 − feq;fÞ − βfeq;fð1 − feq;fÞ
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βfeq;fð1 − feq;fÞ

ωcτ
2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
vx

�
∂
yT −

T
nhf

∂
yP

�

− vy

�
∂
xT −

T
nhf

∂
xP

��
; ðB2Þ

δff ¼ 2qEτfvxβ

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ −

2qEωcτ
2
fvyβ

ð1þ ω2
cτ

2
fÞ

feq;fð1 − feq;fÞ − βfeq;fð1 − feq;fÞ
τf

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βfeq;fð1 − feq;fÞ

ωcτ
2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

×

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
þ gfn−1eq;ffeq;f

Z
p0

�
2qEτfvxβ

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ

−
2qEωcτ

2
fvyβ

ð1þ ω2
cτ

2
fÞ

feq;fð1 − feq;fÞ − βfeq;fð1 − feq;fÞ
τf

ð1þ ω2
cτ

2
fÞ

×
ðωf − hfÞ

T

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��

− βfeq;fð1 − feq;fÞ
ωcτ

2
f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞ

T

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

���
; ðB3Þ

and

δf̄f ¼ 2qEτf̄vxβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ −

2qEωcτ
2
f̄
vyβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ − βf̄eq;fð1 − f̄eq;fÞ

τf̄
ð1þ ω2

cτ
2
f̄
Þ
ðωf − hf̄Þ

T

×

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
− βf̄eq;fð1 − f̄eq;fÞ

ωcτ
2
f̄

ð1þ ω2
cτ

2
f̄
Þ
ðωf − hf̄Þ

T

×

�
vx

�
∂
yT −

T
nhf

∂
yP

�
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�
∂
xT −

T
nhf

∂
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��
þ gfn−1eq;ff̄eq;f

Z
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�
2qEτf̄vxβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ

−
2qEωcτ

2
f̄
vyβ

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ − βf̄eq;fð1 − f̄eq;fÞ

τf̄
ð1þ ω2

cτ
2
f̄
Þ

×
ðωf − hf̄Þ

T

�
vx

�
∂
xT −

T
nhf

∂
xP

�
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�
∂
yT −

T
nhf

∂
yP

��

− βf̄eq;fð1 − f̄eq;fÞ
ωcτ

2
f̄

ð1þ ω2
cτ
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f̄
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ðωf − hf̄Þ

T

�
vx

�
∂
yT −

T
nhf

∂
yP

�
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�
∂
xT −

T
nhf

∂
xP

���
: ðB4Þ

After putting the results of Eqs. (B3) and (B4) in Eq. (46), we get

Qi ¼
X
f

gf

Z
d3p
ð2πÞ3

pi

ωf

�
ðωf −hfÞ½ð2qEvxβA−2qEvyβB− β2C− β2DÞþ gfn−1eq;ffeq;f

Z
p0
ð2qEvxβA− 2qEvyβB− β2C

− β2DÞ�þ ðωf −hf̄Þ½ð2qEvxβĀ− 2qEvyβB̄− β2C̄− β2D̄Þþ gfn−1eq;ffeq;f

Z
p0
ð2qEvxβĀ− 2qEvyβB̄− β2C̄− β2D̄Þ�

�
;

ðB5Þ
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where

A ¼ τf
ð1þ ω2

cτ
2
fÞ
feq;fð1 − feq;fÞ; ðB6Þ

B ¼ ωcτ
2
f

ð1þ ω2
cτ

2
fÞ
feq;fð1 − feq;fÞ; ðB7Þ

C ¼ τf
ð1þ ω2

cτ
2
fÞ
ðωf − hfÞfeq;fð1 − feq;fÞ

�
vx

�
∂
xT −

T
nhf

∂
xP

�
þ vy

�
∂
yT −

T
nhf

∂
yP

��
; ðB8Þ

D ¼ ωcτ
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f

ð1þ ω2
cτ

2
fÞ
ðωf − hfÞfeq;fð1 − feq;fÞ

�
vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
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T
nhf

∂
xP

��
; ðB9Þ

Ā ¼ τf̄
ð1þ ω2

cτ
2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ; ðB10Þ

B̄ ¼
ωcτ

2
f̄

ð1þ ω2
cτ

2
f̄
Þ f̄eq;fð1 − f̄eq;fÞ; ðB11Þ

C̄ ¼ τf̄
ð1þ ω2

cτ
2
f̄
Þ ðωf − hf̄Þf̄eq;fð1 − f̄eq;fÞ

�
vx

�
∂
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T
nhf

∂
xP

�
þ vy

�
∂
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nhf

∂
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; ðB12Þ

D̄ ¼
ωcτ

2
f̄

ð1þ ω2
cτ

2
f̄
Þ ðωf − hf̄Þf̄eq;fð1 − f̄eq;fÞ
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vx

�
∂
yT −

T
nhf

∂
yP

�
− vy

�
∂
xT −

T
nhf

∂
xP

��
: ðB13Þ

Now recalling Eq. (53),

Qi ¼ −ðκδij þ κHϵ
ijÞ
�
∂jT −

T
ðneq;fhfÞ

∂jP

�
ðB14Þ

and comparing Eq. (B5) with this equation, we get the final expressions of thermal conductivity (κ) and Hall-type thermal
conductivity (κH) as given in Eqs. (66) and (67), respectively.
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