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Q-balls are bound-state configurations of complex scalars stabilized by a conserved Noether charge Q.
They are solutions to a second-order differential equation that is structurally identical to Euclidean vacuum-
decay bounce solutions in three dimensions. This enables us to translate the recent tunneling potential
approach to Q-balls, which amounts to a reformulation of the problem that can simplify the task of finding
approximate and even exact Q-ball solutions.
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I. INTRODUCTION

Classical field theory of massive bosons can admit
stable, localized solutions, so-called nontopological
solitons [1]. This requires an attractive force to bind
the particles together and a conserved Noether charge Q
to forbid decays and self-annihilation. The minimal
example is a complex scalar field Φðx⃗; tÞ with a Uð1Þ-
invariant potential UðjΦjÞ that grows slower than jΦj2
in some range. In that case, spherically symmetric
localized solutions to the Klein-Gordon equation of
the form Φ ¼ ϕðjx⃗jÞeiωt= ffiffiffi

2
p

exist that can have the
lowest energy per charge [2]. We shall denote all such
objects as Q-balls in a slight generalization of
Coleman’s definition. Similar solitons can arise in
multifield scenarios and can be tackled with a similar
approach as pursued below [3].
Q-balls are interesting examples of bound states that

have been discussed in many different contexts. While
the Standard Model of particle physics does not provide
any elementary complex scalars that could condense into
Q-balls, many extensions do. For example, supersym-
metry naturally provides complex scalars (sfermions)
charged under global Uð1Þ symmetries (baryon and
lepton number) with attractive interactions in their poten-
tial, thus allowing for Q-balls [4]. These stable objects
could form and grow in the early universe and make up
dark matter [5].

Mathematically, Q-balls are described by a second-order
differential equation for their radial profile ϕðjx⃗jÞ [2].
Equation and boundary conditions are structurally identical
to Euclidean vacuum-decay bounce solutions in d ¼ 3
dimensions [6], as originally noted by Coleman. We can
therefore adapt the recent reinterpretation and approxima-
tion of bounces by one of the authors (Espinosa) [7] to the
Q-ball case, yielding a novel method to find exact and
approximate soliton solutions.
The so-called tunneling potential approach [7] to the

calculation of tunneling actions (which control the decay
of false vacua) is an alternative to the usual Euclidean
approach. The new method formulates the problem as a
minimization problem for an action functional S½Vt�
(defined in field space) that depends on the so-called
tunneling function, VtðϕÞ, which connects the false vac-
uum and the basin of the true vacuum and describes the
decay. The monotonicity of Vt and the fact that S½Vt� is a
minimum (rather than a saddle point) make the new
approach powerful for numerical applications, both for
single-field [7] and multifield [3] potentials in arbitrary
dimensions. Moreover, the method leads in a natural way to
a new procedure to find potentials which allow for exact
solutions of the decay process. These appealing properties
of the tunneling potential formalism can be applied to the
study of Q-balls and is the main goal of this paper.
We introduce Q-ball terminology and notation in Sec. II

and the reformulation in the tunneling approach in Sec. III.
Approximations for the new sought-after function EðϕÞ
are derived in Sec. IV and then applied and compared
to numerical solutions in Sec. V. In Sec. VI we use the new
formalism to construct potentials that lead to exactly
solvable Q-ball solutions. We conclude in Sec. VII. The
Appendix is devoted to a discussion of the large Q-ball
limit in flat potentials, appropriate for potentials that do not
have a thin-wall limit.
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II. Q-BALL BASICS

Using the notation established in the Introduction,
the Oð3Þ-symmetric radial Q-ball profile ϕðrÞ satisfies a
differential equation of the form

ϕ̈þ 2

r
ϕ̇ ¼ −V 0; ð1Þ

where a dot (prime) represents a derivative with respect
to r (ϕ), with the boundary conditions

ϕ̇ð0Þ ¼ 0; ϕð∞Þ ¼ ϕþ: ð2Þ

Here, ϕþ is a local maximum of V, where the Uð1Þ
symmetry is unbroken, which we could set to zero without
loss of generality and VðϕÞ is an effective potential relevant
for the description of Q-balls. This V is different from the
fundamental potential for the scalar field appearing in the
Lagrangian, UðjΦjÞ, with

VðϕÞ≡ 1

2
ω2ϕ2 −U

�
ϕffiffiffi
2

p
�
; ð3Þ

where ω is the rotation frequency in internal space of the
Q-ball solution. An example for a possible potential is
shown in Fig. 1 (left).
If we identify rwith time, Eq. (1) describes the motion of

a particle with position ϕ in the potential VðϕÞ, with a
velocity and time-dependent friction force, left to roll from
some initial position ϕð0Þ ¼ ϕ0. The solution can be found
by the undershoot/overshoot method, changing ϕ0 until
the boundary condition at r → ∞ is satisfied [2].1 We shall
focus on ground-state solutions, for which ϕðrÞ decreases
monotonically. The example of Fig. 1 illustrates the main
qualitative features of Q-ball potentials and profiles.
The Noether charge Q counts the number of ϕ particles

minus antiparticles and for a Q-ball is given by the integral

Q½ϕ� ¼ 4πω

Z
∞

0

ϕ2r2dr: ð4Þ

For a fixed charge Q, the Q-ball profile ϕðrÞ minimizes the
energy functional

E½ϕ� ¼ ωQþ 4π

Z
∞

0

�
1

2
ϕ̇2 − VðϕÞ þ VðϕþÞ

�
r2dr: ð5Þ

If ϕ satisfies the equation of motion, energy and charge are
related through the differential relationship

dE
dω

¼ ω
dQ
dω

; ð6Þ

which also allows for an interpretation of ω ¼ dE=dQ as
the chemical potential [1,8]. We require 0 ≤ ω0 < ω < mϕ

for localized solutions, with ω ∼ ω0 corresponding to the
limit of large Q-balls, defined below.
We can distinguish two qualitatively different potentials

and resulting solitons:
(A) VðϕÞ has a global maximum at some ϕ− > ϕþ, as

the one illustrated in Fig. 1. The particle can then
spend a long time near this point before starting to
roll, which implies an essentially constant ϕðrÞ ≃ ϕ−
up to some potentially large radius Rc [2]. Solitons
with such a thin-wall limit were dubbed Q-balls by
Coleman. Here, ω0 is the value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðjΦjÞ=jΦj2

p
at

its minimum, which occurs at the nonzero finite
value jΦj ≃ ϕ−=

ffiffiffi
2

p
[2].

(B) VðϕÞ does not have a global maximum but rather
grows with ω2ϕ2=2 for large ϕ. This occurs for U
potentials that are approximately flat and predate
Coleman’s Q-balls [9,10]. Here, the particle starts to
roll immediately and the only way to make the
Q-ball larger is to start ϕ at higher and higher values.
In the vacuum-decay analogy, this corresponds to
tunneling into an unbounded vacuum. Here, ω0 is
simply zero.

Notice that neither case can be realized with a renormaliz-
able bounded-from-below single-field potentialUðjΦjÞ, but
both can be excellent effective descriptions of scenarios

FIG. 1. Left: example of a Q-ball potential VðϕÞ (red), in which a particle rolls from ϕ0 to ϕþ ¼ 0 under friction. EðϕÞ (blue)
corresponds to the particle’s total energy. Right: the corresponding solution ϕðrÞ as well as the change of total energy E with “time” r.

1Notice that this V has the opposite sign of a vacuum-decay
potential [6].
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arising in renormalizable multifield cases. Both cases
allow for arbitrarily large stable Q-balls that can be
approximated with relative ease by using the large radius
as an expansion parameter.
In the thin-wall limit, the potential difference between

the maxima, ΔV ≡ Vðϕ−Þ − VðϕþÞ, is small compared to
the depth of the minimum between them and the profile has
a sharp transition between ϕ0 ≃ ϕ− for r < Rc and ϕþ for
r > Rc, where the bubble radius Rc can be calculated
analytically in terms of the surface tension,

σ ≃
Z

ϕ−

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Vðϕ−Þ − VðϕÞ�

p
dϕ; ð7Þ

as Rc ¼ 2σ=ΔV. In this thin-wall case the Q-ball charge
and energy can be obtained analytically as

Qtw ¼ 4π

3
ωϕ2

−R3
c; Etw ¼ ωQþ 16π

3

σ3

ΔV2
; ð8Þ

where ω ∼ ω0 is assumed to be nonzero and σ3=ΔV2 ∝ R2
c

corresponds to the surface energy. For large Q-balls,
stability is ensured because E ≃ ω0Q < mϕQ [2]. The
thin-wall limit works remarkably well for Q-balls of
type A and can be systematically improved order by order
in 1=R [11,12].
LargeQ-balls of type B in flat potentials are even simpler

to describe because Eq. (1) becomes a linear differential
equation for large ϕwith solution sinðωrÞ=ðωrÞ. This leads
to a markedly different scaling in the large-R limit:
Q ∝ R4 ∝ E4=3 [10]. Once again large Q-balls are stable
because E=ðmϕQÞ ∝ Q−1=4 becomes smaller than one
beyond some critical charge. We provide the large Q-ball
solution for this case in the Appendix for the convenience
of the reader since it is not as widely known as the thin-
wall limit.

III. Q-BALLS VIA THE TUNNELING
POTENTIAL APPROACH

The application of the so-called tunneling potential
approach to the study of Q-balls is based on the fact that
the equation for the Q-ball profile, (1), has the form of a
Coleman bounce equation in three dimensions. We can then
borrow directly known Vt results and properties [7]. Notice
that, in what follows, there is a flip in the signs of both V
and Vt with respect to the tunneling-potential literature in
order to match the standard Q-ball notation.
With these sign flips in mind, the key quantity in the

tunneling potential approach is

VtðϕÞ≡ 1

2
ϕ̇2 þ VðϕÞ; ð9Þ

where it is understood that ϕ̇ above is expressed in terms of
the field ϕ via the Q-ball profile. Vt is nothing but the total

particle energy in the mechanics analogy, which is mono-
tonically decreasing due to the friction term in the equation
of motion. From now on, we use EðϕÞ instead of Vt to make
this interpretation explicit.
The entire Q-ball problem can be rewritten in terms of

EðϕÞ rather than ϕðrÞ. EðϕÞ connects the local maximum
at ϕþ to some ϕ0 such that the Q-ball energy functional,

E½E� ¼ ωQþ 16π

3

Z
ϕ0

ϕþ

½2ðE − VÞ�3=2
ðE0Þ2 dϕ; ð10Þ

is minimized (for fixed Q), reproducing the Q-ball energy
in (5). The integral here is the surface energy of the Q-ball
and corresponds to the Euclidean action integral in the
vacuum-decay analogy. The total charge of the Q-ball can
be written as

Q½E� ¼ 16πω

Z
ϕ0

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − VÞp
ðE0Þ2 ϕ2dϕ: ð11Þ

One can remove altogether the reference to the Q-ball
profile and real space in favor of EðϕÞ as follows. From (9),

ϕ̇ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½EðϕÞ − VðϕÞ�

p
; ð12Þ

where the minus sign, chosen due to ϕþ < ϕ−, should be a
plus if ϕþ > ϕ−. Equation (12) allows to remove deriva-
tives of ϕ in terms of E (and V). The radial coordinate r can
then be extracted from (1) as

r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − VÞ=ðE0Þ2

q
: ð13Þ

Taking a derivative of the above with respect to r we get a
second-order differential equation for E:

ð3E0 − 2V 0ÞE0 ¼ 4ðE − VÞE00; ð14Þ

which also follows as the Euler-Lagrange equation from
extremizing (10).2 In the E formulation of the problem, one
should find a ϕ0 and a EðϕÞ that solve (14) with boundary
conditions,

EðϕþÞ ¼ VðϕþÞ; Eðϕ0Þ ¼ Vðϕ0Þ: ð15Þ

Assuming V 0ðϕþÞ ¼ 0, Eq. (14) also leads to

E0ðϕþÞ ¼ 0; E0ðϕ0Þ ¼ 2V 0ðϕ0Þ=3: ð16Þ

At this point it is far from obvious why reformulating
Q-balls in terms of EðϕÞ is beneficial, but it turns out to be

2It can be proven [7] that the E that solves this Euler-Lagrange
equation minimizes the integral in (10) for monotonically
increasing E’s.
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quite simple to estimate EðϕÞ for a given potential to get an
accurate approximation to the Q-ball energy using (10).
Equation (10) can be regarded as a generalization of the

thin-wall approximation (in the sense that the expression
for the action involves just an integral in field space rather
than in real space involving the Q-ball profile) that is valid
for generic potentials. In the limit of quasidegenerate
maxima we recover the thin-wall result in a very direct
way as follows: Given the properties of E, for near
degenerate maxima one has E0 ≪ jðV − EÞ0j—except at
small regions around the point ðV − EÞ0 ¼ 0 and at the
maxima ϕ�, where E ¼ V—so (14) can be reduced to the
form ðE − VÞ0E0 ≃ 2ðE − VÞE00. This can be readily inte-
grated to get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − VÞ

p
≃ CE0; ð17Þ

with an integration constant C. Integrating (17) in the
interval ðϕþ;ϕ0 ≃ ϕ−Þ gives C in terms of the wall tension
σ and the potential difference ΔV as

σ ≡
Z

ϕ−

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½EðϕÞ − VðϕÞ�

p
dϕ ≃ CΔV: ð18Þ

Plugging (17) and (18) in the energy integral (10) repro-
duces the correct thin-wall energy (8). Moreover, to get
the critical bubble radius we just plug (17) in (13) to get
r ¼ Rc ¼ 2C, and using (18) we get the correct
result, Rc ¼ 2σ=ΔV.
To sum up, EðϕÞ captures all the relevant information of

the Q-ball profile and has the appealing property of being
quite featureless {e.g. a potential with a bumpy barrier
gives a ϕ̇2=2 that also has bumps [both sets of bumps cancel
out in EðϕÞ]}, as can be seen in Fig. 1. This property can be
exploited to estimate the Q-ball energy as is shown next.

IV. ESTIMATES OF THE ENERGY

Let us give approximations for E of increasing level of
sophistication. The simplest is the linear one:

E1ðϕÞ ¼ V0

ϕ

ϕ0

; ð19Þ

where V0 ¼ Vðϕ0Þ, and it satisfies the boundary conditions
(15). To also satisfy the boundary condition (16) on E0ðϕ0Þ,
one can use the quadratic approximation

E2ðϕÞ ¼ E1ðϕÞ þ
ϕ

3ϕ2
0

ð2ϕ0V 0
0 − 3V0Þðϕ − ϕ0Þ; ð20Þ

where V 0
0 ¼ V 0ðϕ0Þ. One can go further, matching also

E0ðϕþÞ using the cubic approximation

E3ðϕÞ ¼ E2ðϕÞ þ
2ϕ

3ϕ3
0

ðϕ0V0
0 − 3V0Þðϕ − ϕ0Þ2: ð21Þ

So far, the previous approximations focus only on the
boundary conditions at ϕþ and ϕ0. We can add information
about the local minimum between the maxima, forcing the
E approximation to satisfy Eq. (14) at ϕT , the value at
which VðϕÞ is minimal. This can be achieved with the
quartic approximation

E4ðϕÞ ¼ E3ðϕÞ þ a4ϕ2ðϕ − ϕ0Þ2; ð22Þ

where

a4 ¼
a0T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20T − ϕ2

Tϕ
2
0ϕ

2
0TU3T

p
2ϕ2

Tϕ
2
0ϕ

2
0T

; ð23Þ

with ϕ0T ≡ ϕ0 − ϕT , U3T ≡ 3ðE0
3TÞ2 þ 4ðVT − E3TÞE00

3T ,
E3T ≡ E3ðϕTÞ and

a0T ¼ 2ðVT − E3TÞð6ϕTϕ0T −ϕ2
0Þ− 3ϕTðϕ0T −ϕTÞϕ0TE0

3T

þϕ2
Tϕ

2
0TE

00
3T: ð24Þ

This approximation also satisfies the boundary conditions
in Eqs. (15) and (16).
More generally, one could pick a4 so that the differential

equation is satisfied at some other value, say at ϕ0=η with
η > 1 (or even leave a4 as a free parameter and minimize E
with respect to ϕ0 and a4). This might be necessary to make
this approximation useful for type-BQ-balls, where ϕ0 can
be much larger than ϕT , so ϕT is not a useful reference
point. Matching at ϕη ≡ ϕ0=η gives

a4 ¼
a0η −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20η − ϕ2

ηϕ
2
0ϕ

2
0ηU3η

q
2ϕ2

ηϕ
2
0ϕ

2
0η

; ð25Þ

with ϕ0η ≡ ϕ0 − ϕη, U3η ≡ 3ðE0
3ηÞ2 þ 4ðVη − E3ηÞE00

3η−
2V 0

ηE0
3η, E3η ≡ E3ðϕηÞ, Vη ≡ VðϕηÞ and

a0η ¼ 2ðVη − E3ηÞð6ϕηϕ0η − ϕ2
0Þ

þ ϕηϕ0ηðϕ0η − ϕηÞðV 0
η − 3E0

3TÞ þ ϕ2
ηϕ

2
0ηE

00
3η: ð26Þ

The optimal choice of η depends on the potential V and is
particularly important for large Q-balls, where some η can
lead to unphysical, e.g. nonmonotonic, E. For small
Q-balls, the exact value for η is much less important and
the E4 approximation works remarkably well. This makes
the above procedure nicely complementary to the well-
known large Q-ball approximations.
For an approximate ansatz EaðϕÞ, (10) gives an approxi-

mate Q-ball energy Ea bigger than the true E, see foot-
note 2. Ea is a function of the end point ϕ0 whose minimum
gives the best estimate for E for the used ansatz.
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As we will show in the next section, E4 already provides
excellent approximations for typical Q-ball potentials. The
direct outputs are ϕ0 and the integral in Eq. (10), essentially
E − ωQ. The actual profile ϕðrÞ can be obtained via rðϕÞ
from Eq. (13), which also provides the Q-ball radius, e.g.
conveniently defined through ϕðRÞ ¼ 2

3
ϕ0 [12]. Lastly, the

charge Q is in principle defined through E in Eq. (11).
However, for large Q-balls this integral is often not well
approximated by this method. Instead, one can make use of
the Q-ball relation dE=dω ¼ ωdQ=dω to write

Q ¼ d
dω

ðωQ − EÞ: ð27Þ

This allows us to obtain the Q integral directly from the
well-approximated result for the surface energy E − ωQ,
which works well even for large Q-balls. Unless noted
otherwise, this is how we obtain Q in the following.

V. COMPARISON WITH NUMERICAL
SOLUTIONS

In the following we will compare the E approximations
to numerical solutions of the Q-ball equations.

A. Polynomial potentials

A large class of Q-balls of type A can be described by
polynomial potentials,

UðjϕjÞ ¼ m2
ϕjϕj2 − βjϕjp þ ξjϕjq; ð28Þ

with 2 < p < q and positive coefficients m2
ϕ, β, and ξ. The

thin-wall limit of these cases has been discussed exten-
sively in Refs. [12,13]. By redefining parameters one can
bring Eq. (1) to the form

f00ðρÞ þ 2

ρ
f0ðρÞ ¼ −

d
dfðρÞ

�ðp − qÞðκ2 − 1ÞfðρÞ2 − ðq − 2ÞfðρÞp þ ðp − 2ÞfðρÞq
2ðp − qÞ

�
; ð29Þ

with dimensionless radial coordinate ρ, dimensionless
Q-ball profile fðρÞ, and 0 < κ < 1 playing the role of
ω, with κ → 0 corresponding to the thin-wall limit.
In Fig. 2 (left) we show the ϕ0 prediction for ðp; qÞ ¼

ð4; 6Þ as a function of κ for the four increasingly sophis-
ticated approximations of E from the previous section,
together with the true value obtained from numerically
solving Eq. (29) [12]. We can see that the E predictions
become increasingly better, with E4 reaching percent level
accuracy. The corresponding predicted minimum of the
surface-energy integral is shown in Fig. 2 (right) together
with the true result and the thin-wall prediction [11]

Z
½f0ðρÞ�2ρ2dρ ≃ 1

4κ2
: ð30Þ

For the surface-energy integral, the E4 prediction is at the
per-mille level, as is the prediction for the Q integral using
Eq. (27). The Q-ball radius is obtained from Eq. (13) and
for E4 agrees at the percent level with the true values.
Notice that the E approximation is not restricted to the thin-
wall region of parameter space but works well even for
small Q-balls, thus nicely complementing existing analyti-
cal thin-wall results.
Using the results from Ref. [12] we have confirmed the

above qualitative picture for many other values of p and q
in Eq. (29). We find a similar excellent agreement between
the E4 predictions and numerical results in all cases and
thus expect this approach to be successful for all Q-balls
of type A. When p and q take on very large values, the
minimum of V moves closer to ϕ0 and the a4 matching at

FIG. 2. Left: prediction of ϕ0 using the Ea approximations of Sec. IV for the potential from Eq. (29) with ðp; qÞ ¼ ð4; 6Þ, together with
the actual value in black. Right: corresponding values for the surface-energy integral. The red dashed line corresponds to the thin-wall
prediction from Eq. (30).
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the minimum is no longer optimal. Instead, it becomes
beneficial to match a4 at ϕ0=2 using Eq. (25). The so-
obtained E4 is then an excellent approximation for essen-
tially arbitrary p and q; for large Q-balls, a thin-wall
prediction has been given in Ref. [12]. We stress that for
large p and q or κ it is numerically challenging to solve the
actual differential equations, so approximations of the kind
shown here are very useful to study those Q-balls.

B. Flat potential

Having shown that the E approach works remarkably
well forQ-balls that have a thin-wall limit, let us investigate
solitons that are qualitatively different and do not have a
global V maximum. An example for a flat U potential that
generates such Q-balls was given long ago by Rosen [9],

UðϕÞ ¼ m2
ϕΛ2ð1 − e−jϕj2=Λ2Þ; ð31Þ

and corresponds to the smoothed-out version of the simple
piecewise quadratic potential [14]

UðϕÞ ¼
(
m2

ϕjϕj2; for jϕðrÞj ≤ Λ;

m2
ϕΛ2; for jϕðrÞj > Λ;

ð32Þ

argued to arise in gauge-mediated Minimal Supersymmetric
Standard Model potentials [15]. Another simple renormaliz-
able realization of flat potentials can be found in the
Friedberg-Lee-Sirlin model [8,16]. Upon rescaling, this
scenario can be brought to a similar form as above, involving
only dimensionless quantities:

f00ðρÞ þ 2

ρ
f0ðρÞ ¼ −

1

2

d
dfðρÞ

h
κ2fðρÞ2 − 1þ e−fðρÞ2

i
: ð33Þ

Even though these solitons do not have a thin-wall limit, they
become large and stable for small κ with ϕ0 ≃ π=κ andR ½f0ðρÞ�2ρ2dρ ≃ π3=2κ3, as shown in the Appendix.
We restrict ourselves to the E4 prediction here. Since in

this potential the position of the V minimum is at

ϕT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log κ−2

p
, the distance to ϕ0 becomes arbitrarily

large for small κ and matching a4 at the minimum is not
ideal. Instead, we matched at ϕ0=3 and also left a4 as a
free minimization parameter, which is numerically more
challenging but should give the best results. In Fig. 3, we
compare these E4 predictions with the numerical results.
As expected, leaving a4 free gives the best results but
matching at ϕ0=3 also gives a good approximation. For
small Q-balls, both approaches for E4 work just as well as
for thin-wall Q-balls, i.e. with percent level accuracy.
For small κ, i.e. largeQ-balls, the approximations become
worse and should be replaced by the approximation
derived in the Appendix. Alternatively, one could
approximate E with higher-order polynomials to allow
more freedom in the E shape.

VI. POTENTIALS WITH EXACTLY
SOLVABLE Q-BALLS

Another application of the E approach is that it allows to
generate in a straightforward manner potentials (or pieces
of them) that lead to analytic solutions of the Q-ball
problem. Instead of starting from V and solving for E,
one postulates a given E and integrates (14) to obtain the
corresponding V as

VðϕÞ ¼ EðϕÞ þ 1

2
½E0ðϕÞ�2

Z
ϕ

ϕ0

dϕ̃

E0ðϕ̃Þ : ð34Þ

When an approximate ansatz for E is used for a given
potential VðϕÞ, formula (34) can also be used to check
how close is the potential derived from the ansatz to the
original potential.

A. Periodic E

As a first example, consider

EðϕÞ ¼ sin2 ϕ; ð35Þ

FIG. 3. Left: prediction of ϕ0 using the E4 approximations of Sec. IV for the potential from Eq. (33), together with the actual value in
black. Two different methods for a4 are presented, one where a4 matches the differential equation at ϕη ¼ ϕ0=3, and one where a4 is
varied freely to minimize the energy. Right: corresponding values for the surface-energy integral. The red dashed line shows the large
Q-ball approximation from the Appendix.
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for simplicity in conveniently chosen units, although mass
parameters can be put back easily if necessary. Using (34),
the corresponding potential is

VðϕÞ ¼ sin2ϕ

�
1þ cos2ϕ log

tanϕ
tanϕ0

�
: ð36Þ

The profile of theQ-ball can be obtained, by integrating (12),
as the simple function

ϕðrÞ ¼ cot−1 ðer2=2 cotϕ0Þ
¼ arctan

�
eðR2−2r2Þ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eR

2=2 − 2
p �

; ð37Þ

where the last expression is written in terms of the Q-ball
radius, defined in this case by ϕðRÞ ¼ ϕ0=2. Figure 4 shows
the potential and tunneling potential for the two choices
ϕ0 ¼ π=4; π=2 − 10−7, (corresponding to R ¼ 1.33 and
R ¼ 5.68 respectively), the last one being in the thin-wall
regime. The corresponding field profiles are given in the
bottom plot.

B. Cubic E

Another example is

EðϕÞ ¼ ϕ2ðϕa − ϕÞ; ð38Þ

which is the solution for the potential

VðϕÞ ¼ −
ϕ2

4ϕa

�
4ϕaðϕ − ϕaÞ

þ ð2ϕa − 3ϕÞ2 log ð2ϕa − 3ϕÞϕ0

ð2ϕa − 3ϕ0Þϕ
�
: ð39Þ

The profile of the Q-ball can also be obtained as

ϕðrÞ ¼ ϕa

3
½1 − tanh ðϕar2=4 − BÞ�; ð40Þ

with

B ¼ −
1

2
log

�
2ϕa

3ϕ0

− 1

�
; ð41Þ

so that ϕð0Þ ¼ ϕ0. In terms of the Q-ball radius R, defined
by ϕðRÞ ¼ ϕ0=2, the profile can be written as

ϕðrÞ ¼ 2ϕaðeϕaR2=2 − 2Þ
3ðeϕaR2=2 þ eϕar2=2 − 2Þ : ð42Þ

This case also admits a thin-wall limit, for B ≫ 1.

C. Quadratic E

The previous two examples (of type A potentials) are
simple enough but one does not have the freedom of

FIG. 4. For the analytic example of (35), upper plots: potential, V, (blue curve) and tunneling potential, E (orange curve) for ϕ0 ¼ π=4
(left plot) and ϕ0 ¼ π=2 − 10−7 (right plot). Lower plot: corresponding Q-ball profiles ϕðrÞ.
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changing ω (and therefore Q). This can be done in the next
example, which is even simpler:

E ¼ 1

2
m2

tϕ
2; V ¼ 1

2
m2

tϕ
2 logðϕ=ϕcÞ þ

1

2
ω2ϕ2; ð43Þ

wheremt, ϕc, and ω are free parameters (actually ϕc can be
absorbed into ω, but we want ω to be a separate adjustable
parameter). Now we can keep UðϕÞ ¼ − 1

2
m2

tϕ
2 logðϕ=ϕcÞ

fixed and vary ω and this will change the value of the
starting value ϕ0, which is given by

ϕ0ðωÞ ¼ ϕce1−ω
2=m2

t : ð44Þ

The Q-ball profile can also be obtained as

ϕðrÞ ¼ ϕ0ðωÞe−m2
t r

2=4: ð45Þ

This result reproduces an exact solution that was already
discussed in Refs. [14,17]. From this profile it is clear that
this example does not have a thin-wall limit. Indeed, the
value of the potential at the minimum, VM, is related to the
value of the potential at the initial point, V0, as

VM ¼ −
1

4e3
m2

tϕ
2
0ðωÞ ¼ −

1

2e3
V0; ð46Þ

and one cannot have jVMj≫ΔV¼Vþ−V0. Alternatively,
one can notice that VðϕÞ does not have a maximum
for ϕ > 0.
The charge and energy of the Q-balls can be calculated

analytically as

QðωÞ¼2
ffiffiffi
2

p
π3=2ωϕ2

0ðωÞ
m3

t
; EðωÞ¼ωQðωÞþπ3=2ϕ2

0ðωÞffiffiffi
2

p
mt

;

ð47Þ

which satisfy the identity dE=dω ¼ ωdQ=dω. Figure 5
shows V and E in this example as well as QðωÞ and EðωÞ

(for mt ¼ ϕc ¼ 1). The dashed line at ω ¼ mt=2, where Q
is maximal, marks the value below which dQ=dω > 0 and
the Q-balls are unstable.

D. Quartic E

In the analysis of the tunneling problem (with d ¼ 4)
there is a simple (scale-independent) potential, V ¼
−λϕ4=4, which admits an infinite family of bounces [18],
corresponding to Vt ¼ −λϕ0ϕ

3=4 with arbitrary ϕ0.
The tunneling action is ϕ0 independent and given by
S ¼ 8π2=ð3λÞ. We can then ask if there is a similar
example for Q-balls. The formal solution does exist and
is given by

VðϕÞ ¼ λϕ6

Λ2
; EðϕÞ ¼ λϕ4ϕ2

0

Λ2
: ð48Þ

However, it can be checked that this example is unphysical,
as it would give a divergent charge Q. Indeed, at small ϕ,
the integrand in (11) goes like 1=ϕ2, leading to a divergent
integral for ϕ → 0.
This divergence can be cured by introducing an addi-

tional mass term in E that acts as an infrared cutoff (at
ϕ → 0). We take then

EðϕÞ ¼ 2ω2ϕ2 þ λϕ4ϕ2
0

Λ2
; ð49Þ

where we have written the mass in terms of ω for later
convenience. For this E we get

VðϕÞ ¼ 2ω2ϕ2 þ λϕ2
0ϕ

4

Λ2

þ ω2ð1þ Cϕ2=ϕ2
0Þ2ϕ2 log

ð1þ CÞϕ2

ϕ2
0 þ Cϕ2

; ð50Þ

where C≡ λϕ4
0=ðΛ2ω2Þ. The Q-ball profile is

FIG. 5. For the analytic example of (43): Potential, V, and tunneling potential, E for mt ¼ ϕc ¼ ω ¼ 1, (left plot) and Q-ball charge
and energy as functions of ω for mt ¼ ϕc ¼ 1 (right plot).
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ϕðrÞ ¼ ϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ 1Þe2ω2r2 − C

q : ð51Þ

For ω=ϕ0 ≪ 1, this potential is well approximated, at
large ϕ, as

VðϕÞ ≃
�

λ

Λ2
−

ω2

2ϕ4
0

�
ϕ6 þ 2ω2

ϕ2
0

ϕ4 þ 1

2
ω2ϕ2

≃
λϕ6

Λ2
þ 1

2
ω2ϕ2; ð52Þ

which is independent of ϕ0, has an adjustable ω parameter
and takes the form (48) up to a small IR cutoff correction.
For small ϕ, one has

VðϕÞ ≃ ω2½2þ logð1þ CÞ þ 2 logðϕ=ϕ0Þ�ϕ2: ð53Þ

This form leads to the existence of a shallow minimum at

ϕm ≃
ϕ0

e3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

p ≃
ωΛ

e3=2
ffiffiffi
λ

p
ϕ0

: ð54Þ

Nevertheless, the parameter ω only approximately works
as it should. In particular, the relation dE=dω ¼ ωdQ=dω
breaks down as ω → 0, although it holds for larger ω
when C ≪ 1.

VII. CONCLUSION

In this article we used the mathematical similarity
betweenQ-balls and vacuum-decay bounces to reformulate
the Q-ball problem in the tunneling potential approach of
Ref. [7]. Rather than tracking ϕðrÞ—or particle position ϕ
as a function of time r in the rolling-particle analogy—we
can track the particle’s energy E as a function of position,
EðϕÞ. Since the latter is monotonically decreasing due to
the friction term in the equation of motion these two are
equivalent formulations. One advantage of the EðϕÞ for-
mulation is that EðϕÞ can be approximated fairly accurately
with low-order polynomials, providing simple numerical
estimates for Q-ball properties that work especially well in
the small Q-ball regime that is usually inaccessible via
approximations. We have shown that this works very well
for essentially all kinds of single-field Q-ball potentials.
Furthermore, the EðϕÞ formulation provides a new angle to
find exactly solvable Q-ball potentials, as we have illus-
trated with several examples.
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APPENDIX: LARGE Q-BALLS IN FLAT
POTENTIALS

In this Appendix we derive the large Q-ball behavior
for the flat potential case, as approximated through the
exactly solvable potential of Eq. (32), repeated here for the
convenience of the reader:

UðϕÞ ¼
(
m2

ϕjϕj2; for jϕðrÞj ≤ Λ;

m2
ϕΛ2; for jϕðrÞj > Λ:

By rescaling the field ðϕðx⃗; tÞ ¼ Λeiωtfðjx⃗jÞÞ and
spatial coordinate ðρ≡mϕjx⃗jÞ we arrive at the differential
equation

f00ðρÞ þ 2

ρ
f0ðρÞ ¼

	 ð1 − κ2ÞfðρÞ; f ≤ 1;

−κ2fðρÞ; f > 1;
ðA1Þ

where κ ≡ ω=mϕ is the only remaining variable, with
values κ∈ ð0; 1Þ. Demanding the solution to be continuous
and differentiable, we find

f ¼
8<
:

fð0Þ sinðκρÞκρ ; ρ < R;

fð0Þ 1ρ exp
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

ðR − ρÞ
�
; ρ ≥ R;

ðA2Þ

where the matching radius is given by

R ¼ π − arcsin κ
κ

¼ π

κ
− 1 −Oðκ2Þ: ðA3Þ

The overall prefactor fð0Þ is not fixed by the linear
differential equation but its ω or κ dependence can be
obtained by demanding dE=dω ¼ ωdQ=dω to hold, E and
Q being calculated through the integrals

Z
∞

0

dρρ2f2 ¼ fð0Þ2
�
2cos−1ðκÞ þ π þ 2κffiffiffiffiffiffiffi

1−κ2
p

�
4κ3

;Z
∞

0

dρρ2f02 ¼ fð0Þ2 ð2cos
−1ðκÞ þ πÞ
4κ

: ðA4Þ

dE=dω ¼ ωdQ=dω can be translated into the relationZ
dρρ2f2 ¼ −

1

3κ

d
dκ

Z
dρρ2ðf0Þ2; ðA5Þ

which is satisfied by fð0Þ ¼ cðπ − arcsin κÞ=κ, where c is a
κ-independent constant that is fixed to c ¼ 1 by calculating
the energy lost to friction and equating it to the potential
difference [11,19],
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Vð0Þ − Vðfð0ÞÞ ¼ −
Z

dρ
2

ρ
ðf0Þ2: ðA6Þ

We hence find the relations fð0Þ ¼ R and also fðRÞ ¼ 1,
which complete the solution to our differential
equation (A1). Energy and charge are then given by the
integrals in Eq. (A4). In particular, we find that these
solitons are stable, E < mϕQ, for κ < 0.84, i.e. once their
charge exceeds the critical value

Qcrit ≃ 435.44
Λ2

m2
ϕ

: ðA7Þ

Our classical-field-theory calculation of course breaks
down for small Q and needs to be replaced by a quan-
tum-mechanical treatment, beyond the scope of this article.
Notice that the physical radius satisfies R≳ 1=mϕ, in
agreement with Ref. [20].

Let us focus on the large Q-ball case, since this is the
region where the above solution is a good approximation to
the continuous potential of interest in the main text. For
small ω, we have

Q ≃
4π4m2

ϕΛ2

ω4

�
1 −

2ω

mϕπ
þ ω2

m2
ϕπ

2
þO

�
ω4

m4
ϕ

��
ðA8Þ

and

EðQÞ ≃ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffi
2mϕΛ

p
Q3=4 − 2πΛQ1=2 þOðQ1=4Þ: ðA9Þ

While the general scaling with ω agrees with the literature
[10,15] we provide prefactors and higher-order correc-
tions here.
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