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In this work, we study a model that describes the ð2þ 1ÞD Yukawa interaction for static particles
confined to the plane. In order to do so, we perform a dimensional reduction of a ð3þ 1ÞD massive vector
field whose mass term introduces a natural scale for a correlation length within the system. We derive the
projected model similarly to the so-called pseudo (or reduced) quantum electrodynamics that has been used
in several applications. One-loop radiative corrections to the electron and to the massive vector-field mass
are computed, as well as the vertex corrections; this brings forth the quantum correction to the electron g
factor, demonstrating that it smoothly goes to zero when the mass of the vector field is significantly larger
than the electron mass and generalizing the results obtained for graphene within pseudo-QED to a system
with a correlation length. Such a limit is expected to emerge due to many-body interactions in two-
dimensional materials. Furthermore, the model is likely to be relevant in the relativistic limit, when
electrons move with a high velocity.
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I. INTRODUCTION

The use of quantum field theories (QFT) to describe
two-dimensional systems has gained increased attention
during the past years. This is due to the great agreement
obtained between the theoretical predictions and the exper-
imental data in many condensed-matter systems. Examples
range from the integer and the fractional quantum Hall
effects [1–5] to the study of transport in graphene [6–14],
excitonic properties of transition metal dichalcogenides
(TMDs) [15–17], and superconductivity in layered materi-
als [18–22].
The quantum field description of the electron-electron

interactions in planar systems is rather involved, because
the system has mixed dimensionality: The field mediating
the interactions lives in ð3þ 1ÞD, whereas the electron
kinematics is constrained to a two-dimensional spatial

plane [see Fig. 1(a)]. The appropriate theory to capture
this dimensional mismatch is the so-called pseudo-quantum
electrodynamics (PQED) [23] (sometimes also referred to
as reduced QED [24–26]). In this approach, a planar field
emulates the properties of the ð3þ 1ÞD the electromagnetic
field, acting as an effective projection [see Fig. 1(b)].
The PQED has been demonstrated to be unitary [27]

and causal [28] and has been successfully applied to
describe several properties of very thin systems (graphene-
like structures) [13,29], where the 2d approximation is a
reasonable assumption. We highlight the Fermi velocity
renormalization in the absence [12] or in the presence [14]
of a magnetic field, in the vicinity of a grounded
conducting surface [30], or in a cavity [31]. In addition,
it provided a theoretical description of the quantum v
alley Hall effect, quantum corrections for the longitudinal
conductivity in graphene [13], and the corrections to the
electron’s g factor due to interactions [32]. When account-
ing for massive electrons, the theory was shown to
describe the excitonic spectrum [16] and the renormali-
zation of the band gap in TMDs [29] and dynamical chiral
symmetry breaking [33]. A dual PQED type of model
describing the interaction between point vortex excita-
tions and with some interesting properties has also been
recently constructed [34].
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Another topic that attracted much attention recently is
the study of models with broken Lorentz symmetry
within massive-photon theories [35]. This is often inves-
tigated in the context of nonrenormalizable effective field
theories [36–38] or in the lookout for valid quantum gravity
frameworks [39,40]. All these models, however, lacked
the projection component to describe the aforementioned
mixed-dimensionality effect, which are accounted for
within the PQED.
Here, we will follow steps similar to the ones that led to

the construction of the PQED model [23] and develop a
theory to describe electron-electron interactions through a
massive vector (Proca) field in a (soft) broken Lorentz
symmetry context. For a discussion about the projection of
the Proca model, see Ref. [41], which shows that a Yukawa
potential is generated in the static limit and indicates the
relevance of the order in which we generate mass and do the
projection. Such a model constrains only the matter
(electron) current to the spatial xy plane. The corresponding
quantum partition functional is defined initially in 3þ 1

dimensions, and then the third spatial dimension is inte-
grated out. This procedure is very much analogous to the
one that links the ð3þ 1ÞD Maxwell model to the 2þ 1-
dimensional PQED model.
This work is organized as follows. In Sec. II, we present

the model used in this work, and we derive its planar
dimensional reduction in a procedure analogous to that
used to derive the PQEDmodel. In Sec. III, we compute the
electron and the massive vector-field self-energies for the
model, as well as the interaction vertex, within the leading-
order (one-loop) level. In this same section, we also
explicitly derive the g factor for our model. A comparison
to the literature, when considering the massless regime, is
also established. In Sec. IV, we present our conclusions.
Some technical details of the calculation of the g factor are
given in the Appendix.

II. PSEUDO-PROCA MODEL

Let us first consider the ð3þ 1ÞD Proca (P) model,
including the coupling to a general conserved current Jμ.
The quantum partition functional is

ZP½Jμ� ¼
Z

DAμ exp ðiSPÞ; ð2:1Þ

where Aμ is a ð3þ 1ÞD massive vector field and SP is the
action, given by

SP ¼
Z

d4χ
�
−
1

4
FμνFμν þm2

2
AμAμ − eAμJμ

�
; ð2:2Þ

where Fμν ¼ ∂μAν − ∂νAμ and m is the vector-field mass.
Natural units (ℏ ¼ c ¼ 1) are considered for the remainder
of this section. The vector-field propagator is directly
derived from Eq. (2.2):

Gμν
P ðχ − χ0Þ ¼

Z
d4k
ð2πÞ4

e−ik·ðχ−χ0Þ

k2 −m2

�
ημν −

kμkν

m2

�
; ð2:3Þ

with χ and χ0 representing points in the ð3þ 1ÞD spacetime
and ημν ¼ diagðþ;−;−;−Þ is the metric tensor. Integrating
out the vector field in Eq. (2.1), we obtain

ZP½Jμ� ¼ Z0e
−i
2
e2
R

d4χd4χ0JμðχÞGμν
P ðχ−χ0ÞJνðχ0Þ; ð2:4Þ

where Z0 is a normalization constant, independent of Jμ.
Note that, by the conservation of the current, ∂μJμ ¼ 0, the
last term in Eq. (2.3) (kμkν=m2) vanishes in Eq. (2.4).
By using the constraint of having only currents in the xy

plane, we can explicitly write the current Jμ as

JμðχÞ ¼
�
J μ̂ðt; x; yÞδðzÞ; if μ ¼ 0; 1; 2;

0; if μ ¼ 3;
ð2:5Þ

FIG. 1. Schematic representation of a mixed-dimensionality
system. In (a), the hexagonal plate is the part of the system which
is constrained to a plane, while the blue lines picture any
arbitrary-interaction mediator that can detach from the plane
as long as it returns to the plane. In (b), the blue lines lie within
the hexagonal plane and are the effective projection of the lines
in (a).
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where the hat over an index notation is used to identify
objects that assume three values, i.e., μ̂ ¼ 0, 1, 2.
After the integration in z and z0 space coordinates,

Eq. (2.4) can be written as

ZPP½J � ¼ Z0e
−ie2

2

R
d3ζd3ζ0Jμ̂ðζÞGμ̂ ν̂

P ðζ−ζ0ÞJν̂ðζ0Þ; ð2:6Þ

with ζ and ζ0 denoting points in the 2þ 1-dimensional
spacetime and Gμ̂ ν̂

P ðζ − ζ0Þ is given by

Gμ̂ ν̂
P ðζ − ζ0Þ ¼ i

Z
d4k
ð2πÞ4

ημ̂ ν̂

k2 −m2
e−ik·ðχ−χ0Þjz¼z0¼0; ð2:7Þ

where the momentum integration is over the energy-
momentum four-vector kμ.
If we now perform the integration over the third

component of kμ, i.e., kz, in Eq. (2.7) and, hence, restrict
the dynamics to the xy-space plane, we obtain

Gμ̂ ν̂
P ðζ − ζ0Þ ¼ i

2

Z
d3k
ð2πÞ3

ημ̂ ν̂e−ik·ðζ−ζ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −m2

p ; ð2:8Þ

with k now indicating a three-vector, stressing the fact that
we are now working in the reduced space (effectively, in
2þ 1 dimensions). However, the above result can also be
obtained if we start from a completely 2þ 1-dimensional,
in principle nonlocal, model from the very beginning. We
will name this model the “pseudo-Proca” (PP) model, in
analogy with the case of the PQED model. Notice that the
denominator of the propagator in Eq. (2.8) is significantly
different from the original Proca model, and this impacts
directly the quantum corrections in a mixed-dimensionality
physical system.
The Lagrangian density for this model is then

expressed as

LPP ¼ −
1

2

Fμ̂ ν̂Fμ̂ ν̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−□ −m2

p − eAμ̂J μ̂ −
m2

2

Aμ̂Aμ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−□ −m2

p ; ð2:9Þ

with J μ̂ being the general 2þ 1-dimensional current
defined in Eq. (2.5) and □ the d’Alembertian operator
(which must be understood as a convolution). The free
propagator associated with LPP is simply given by
Eq. (2.8), as can be easily verified. Thus, we immediately
realize that

Gμ̂ ν̂
PPðζ − ζ0Þ ¼ Gμ̂ ν̂

P ðχ − χ0Þjz¼z0¼0; ð2:10Þ

and, therefore, the quantum partition function of the
pseudo-Proca and that of the ð3þ 1ÞD Proca models are
completely equivalent, as long as the currents of the latter
are constrained to a plane, such as in Eq. (2.5). It is
important to emphasize that the process we implemented in
this section is sensible to the relative order of generating

mass and making the dimensional projection [41], and we
chose to first include the Proca term and just then project it.

III. RADIATIVE CORRECTIONS

In this section, we consider a soft symmetry-breaking
term in the Dirac action through the Fermi velocity vF, in
order to reproduce the Dirac-like low-energy electronic
dispersion. The Lagrangian density in the now 2þ 1-
dimensional Minkowski space is then

L ¼ −
1

2

FμνFμνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−□ −m2

p −
m2

2

AμAμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−□ −m2

p

þ ψ̄ ½iγ0∂0 þ ivFγi∂i −Mc2 − eðγ0A0 þ βγiAiÞ�ψ ;
ð3:1Þ

with ψ a four-component Dirac spinor, β ¼ vF=c, and M
the Dirac fermion mass. In the above equation and from
this point on, we have explicitly retrieved the dimension
of the speed of light c (but still keeping ℏ ¼ 1 units).
For convenience and to avoid overloading the notation, we
suppress the hat of the Lorentz index.
The Feynman rules for the model are obtained as usual

[42]. The interaction vertex is given by Γα ¼ −ieðγ0; βγiÞ,
the fermion propagator is

SFðpÞ ¼ i

�
γ0p0 þ vFγipi þMc2

p2
0 − v2Fp

2 −M2c4

�
; ð3:2Þ

and the massive vector-field propagator reads

ΔμνðpÞ ¼ −
icημν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − c2p2 −m2c4

p : ð3:3Þ

A. Electron self-energy

The electron self-energy at one-loop order is shown in
Fig. 2, and its regularized amplitude is given by

−iΣðpÞ ¼
Z

dDk
ð2πÞD ΓμSFðp − kÞΓνΔμνðkÞ; ð3:4Þ

where D ¼ dþ 1. In what follows, all momentum inte-
grations in the loop radiative quantities are computed using
standard dimensional regularization procedure [43,44],

FIG. 2. Feynman diagram for the one-loop correction to the
fermion self-energy.
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with e → μϵ=2e, d ¼ 2 − ϵ, and μ is the dimensional
regularization energy scale.
By substituting the propagators and vertices in Eq. (3.4),

we obtain

−iΣðpÞ ¼ ðieÞ2μϵc
2

Z
dDk
ð2πÞD

N1

D1

; ð3:5Þ

where N1 and D1 are given, respectively, by

N1 ¼ vFðp − kÞiðγ0γiγ0 þ β2γjγiγjÞ þ ðp − kÞ0
þ ðγ0γ0γ0 þ β2γjγ0γjÞ þMc2ðγ0γ0 þ β2γjγjÞ;

D1 ¼ ½ðp − kÞ20 − v2Fðp − kÞ2 −M2c4�
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − c2k2 −m2c4

q
: ð3:6Þ

Using, hereinafter, the gamma matrix properties
γ0γ0 ¼ 1 and γjγj ¼ 2, we have that

−iΣðpÞ ¼ ðieÞ2μϵc
2

Z
dk0
2π

ddk
ð2πÞd

γ0ðp − kÞ0ð1þ 2β2Þ − vFγiðp − kÞi þ ð1þ 2β2ÞMc2

½ðp − kÞ20 − v2Fðp − kÞ2 −M2c4�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − c2k2 −m2c4

p
Þ : ð3:7Þ

Using the Feynman parametrization,

1

a
ffiffiffi
b

p ¼ 3

4

Z
1

0

dx

� ð1 − xÞ−1=2
½axþ ð1 − xÞb�3=2

�
; ð3:8Þ

and performing the integration in k0, we obtain that
Eq. (3.7) can be rewritten as

−iΣðpÞ ¼ ðieÞ2μϵc
4π

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
Z

ddk
ð2πÞd

N2

D2

; ð3:9Þ

where N2 and D2 are defined, respectively, as

N2 ¼ ð1þ 2β2ÞMc2 þ ð1 − 2β2Þγ0p0ð1 − xÞ

−
�
1 −

v2Fx
B

�
vFγipi; ð3:10Þ

D2 ¼ B
��

k −
pv2Fx
B

�
2

−
p2vF4x2

B2
þA

B

�
; ð3:11Þ

with A and B defined, respectively, as

A ¼ p2
0x

2 þ ½ðM2 −m2Þc4 þ p2vF2 − p2
0�xþm2c4;

B ¼ c2½1 − xð1 − β2Þ�: ð3:12Þ

The electron self-energy then becomes

−iΣðpÞ ¼ ðieÞ2cμϵ
4π

Z
1

0

dx

B
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
Z

ddk
ð2πÞd

N2

k2 − Δ
; ð3:13Þ

Δ ¼ p2vF4x2

B2
þA

B
: ð3:14Þ

Performing the integration in the arbitrary dimension
d ¼ 2 − ϵ in Eq. (3.13) in the dimensional regularization
procedure, we obtain

ΣðpÞ ¼ ðieÞ2cμϵ
16π2

Z
1

0

dxffiffiffiffiffiffiffiffiffiffi
1− x

p Γðϵ
2
ÞN2

B

�
Δ
4π

�
−ϵ
2

¼ ðieÞ2c
16π2

Z
1

0

dxffiffiffiffiffiffiffiffiffiffi
1− x

p N2

B

�
2

ϵ
− γE − ln

�
Δ

4πμ2

�
þOðϵÞ

�

¼ ΣfiniteðpÞ þΣdivðpÞ; ð3:15Þ

where

ΣfiniteðpÞ ¼ −
ðieÞ2c
16π2

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffi
1 − x

p N2

B

�
γE þ ln

�
Δ

4πμ2

��

ð3:16Þ

and

ΣdivðpÞ ¼
ðieÞ2c
8π2ϵ

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffi
1 − x

p N2

B
ð3:17Þ

are the finite and divergent contributions to the electron
self-energy, respectively, in the pseudo-Proca QED. One
notices that the divergent part of the electron self-energy,
Eq. (3.17), is independent of the vector-field mass, and it is,
in fact, exactly the same result as that obtained in the PQED
case [45]. Consequently, the Fermi velocity renormaliza-
tion will also be the same.
Substituting Eq. (3.10) in Eq. (3.16), we immediately

read the one-loop contributions to the electron mass and the
wave-function renormalization terms. In particular, the one-
loop correction for the fermion mass at zero-external
momenta is

ΣM
finiteð0Þ ¼

e2c
16π2

ð1þ 2β2ÞM
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffi
1 − x

p 1

1 − xð1 − β2Þ

×

�
γE þ ln

�
M2c2xþm2c2ð1 − xÞ
4πμ2½1 − xð1 − β2Þ�

��
: ð3:18Þ

The PQED result is obtained by simply setting m ¼ 0
in Eq. (3.18).
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In Fig. 3, we show the behavior of the ratio ΔΣM ≡
½ΣM

finiteð0Þ − limm→0ΣM
finiteð0Þ�=ðMc2Þ as a function of

(m=M). We note that the electron self-energy correction
increases with the vector-field mass.

B. The vector-field self-energy

Let us now compute the vector-field self-energy, shown
in Fig. 4, for the present model. Explicitly, we have that

iΠμνðp0;pÞ ¼ −
Z

dDk
ð2πÞD Tr½ΓμSFðkþ pÞΓνSFðkÞ�:

ð3:19Þ

The manipulation of the Dirac algebra proceeds in a
standard fashion [42]. Separating the components of the
polarization tensor and performing the integration over k0
and k in Eq. (3.19), we can write

Π00ðpÞ ¼ −
e2

π
p2Πðp2Þ; ð3:20Þ

ΠijðpÞ ¼ −
e2

πc2
½−p2ηij þ v2Fp

ipj�Πðp2Þ; ð3:21Þ

Π0jðpÞ ¼ −
e2

πc
p0pjΠðp2Þ; ð3:22Þ

where p2 ¼ p2
0 − v2Fp

2 and Πðp2Þ is given by

Πðp2Þ ¼
Z

1

0

xð1 − xÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c4 − p2xð1 − xÞ

p : ð3:23Þ

Notice that the use of a dimensional regularization
scheme makes the vector-field self-energy explicitly finite.
Furthermore, as at the one-loop level the vector-field self-
energy involves only the electron propagator, the result
turns out to be identical to that computed in the context of
the 2þ 1D QED at one-loop order, which naturally implies
the conservation of the current ðp0Π0ν þ cpiΠiν ¼ 0Þ.
Let us now illustrate the effects of quantum corrections

on the vector-field propagatorΔF
μνðpÞ. Initially, we consider

the static potential of interaction between charged particles
when using the free propagator Eq. (3.3). In this case, the
static potential of interaction V1LðrÞ becomes

V1LðrÞ ¼ e2
Z

d2p
ð2πÞ2 e

−ip·rΔF
00ðp0 ¼ 0;pÞ; ð3:24Þ

or, considering c ¼ 1 and Eq. (3.3), the tree-level potential
becomes

VbareðrÞ ¼ −
e2

4π

Z
∞

0

djpj jpjJ0ðjpjrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ¼ −
e2

4π

e−mr

r
; ð3:25Þ

with J0ðprÞ the Bessel function of the first kind, r ¼ jrj,
and VbareðrÞ representing the Yukawa potential as expected
due to the mass in the ð3þ 1ÞD vector field.
The corrected mediating field propagator Δ−1

FμνðpÞ in
Eq. (3.24) can be found by substituting Eq. (3.19) in the
Schwinger-Dyson equation, i.e.,

Δ−1
FμνðpÞ ¼ Δ−1

μν ðpÞ − ΠμνðpÞ; ð3:26Þ

and using the above form for the one-loop corrected
vector-field propagator in place of the free propagator
in Eq. (3.24).
We now obtain

V1LðrÞ ¼ e2
Z

d2p
ð2πÞ2

e−ip·r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
− Π00ðp0 ¼ 0;pÞ

:

ð3:27Þ

From the equation above, we can approximate the effect of
the polarization tensor, given by Eq. (3.20), for small
(p ≪ M) and large (p ≫ M) momentum and obtain the
interaction potential for each case to compare it with
Ref. [16]. For small momentum within the loop (large
distance), it is

FIG. 3. The difference of the self-energy correction for the
fermion mass, with respect to the PQED one, as a function of the
mass ratio (m=M). For illustrative purposes only, the Fermi
velocity was taken to be vF ¼ c=300, and we also have used
e2 ¼ 4πvFα, where α ¼ 1=137 is the fine-structure constant.

FIG. 4. The one-loop vector-field vacuum polarization dia-
gram.
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V1LðrÞjp≪M ≃−
e2

2π

Z
∞

0

djpj jpjJ0ðjpjrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
þ e2

6πMp2
ð3:28Þ

and can be seen in Fig. 5, while for large loop momentum
(short distance) the potential is

V1LðrÞjp≫M ≃ −
e2

2π

Z
∞

0

djpj jpjJ0ðjpjrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
þ e2

8
jpj

; ð3:29Þ

where we consider vF ¼ c=300 and generate Fig. 5.
Notice that, in the limit where m goes to zero, Eq. (3.28)

gives the Keldysh potential [46]

V1LðrÞjp≪M ≃ −
e2

8r0

�
H0

�
r
r0

�
− Y0

�
r
r0

��
; ð3:30Þ

with a screening length r0 ¼ e2=ð12πMÞ, used to describe
the excitonic spectrum of TMDs [47,48], whereas
Eq. (3.29) yields a screened Coulomb potential:

V1LðrÞjp≫M ≃ −
e2

2π

1

ð2þ e2=8Þ
1

r
: ð3:31Þ

This screening effect on the Coulomb potential leads to an
effective dielectric constant. This effect has been used to
compare experimental data on the renormalization of the
Fermi velocity of electrons in graphene [49].

C. Vertex correction and the g factor

To have a complete one-loop analysis of relevant
quantities, we also compute next the one-loop interaction
vertex radiative contribution Γν

1L as shown in Fig. 6.
Explicitly, Γν

1L is given by

Γν
1L ¼

Z
dDk
ð2πÞD ΓαSFðkþ p0ÞΓνSFðkþ pÞΓβΔαβðkÞ;

ð3:32Þ

but, in order to consider the Gordon decomposition, we
include the external lines and identify the terms that have an
impact on the g factor with the structure (for further detail,
refer to the Appendix)

Mi
gy ¼ ieβūðp0Þ

�
i

2Mc2
F2vFσiνqν

�
uðpÞ; ð3:33Þ

where F2 generalizes the form factor related to the g factor
in Ref. [32] to account for the contribution of the vector-
field mass m:

F2 ¼ −
α�β3

2π
R; ð3:34Þ

with α� ¼ e2=4πvF the effective fine-structure constant and
R ¼ Rðβ; m=MÞ an effective parametric factor that depends
on the mass ratio given by

R¼
Z1
0

Z1−x
0

2ð1þ 2β2Þðxþ yÞ þ β2ðxþ yÞ2
m2

M2 ð1− x− yÞD2 − ðxþ yÞ2D
dydxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x− y

p :

ð3:35Þ
A few predictions emerge from the result in Eq. (3.34)

when looking at some of the limits achievable through the
tweak of mass parameters.
When the vector field is heavy with respect to the

electron mass, m ≫ M, the parametric integral no longer
depends on the mass ratio, and the parametric factor R

Rjm≫M ≃
M2

m2

Z1
0

dx
Z1−x
0

dyðxþ yÞ
ð1 − x − yÞ3=2

×
2þ 4β2 þ β2ðxþ yÞ
½ð1 − β2Þðxþ yÞ − 1�2 ð3:36Þ

implies that F2 ¼ 0; i.e., the g-factor correction vanishes.

FIG. 5. Interaction potential as a function of the distance
[Eq. (3.27)]. The solid line is the same obtained analytically
for m ¼ 0 in Ref. [16], and the interaction range is significantly
shortened as the vector-field mass m grows.

FIG. 6. Feynman diagram for the one-loop correction to the
interaction vertex.
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The second relevant limit happens when m goes to zero
in the original unprojected model, which after the projec-
tion reproduces the usual PQED behavior, i.e.,

lim
m→0

F2 ¼ FPQED
2 : ð3:37Þ

As a consistency check, we take the limit of Eq. (3.35)
when ðm=MÞ → 0 to obtain

R¼
Z

1

0

dx
Z

1−x

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x− y

p
�

2þ 4β2 þ β2ðxþ yÞ
ðxþ yÞ½1− ð1− β2Þðxþ yÞ�

þ β2F
½β2Fðxþ yÞ þ 1− x− y�2

�
ð3:38Þ

and draw an immediate comparison to the parametric
integral in Ref. [32], which obtains a similar integration
structure but with an incomplete overall numerator. Hence,
our model extends the projection to the massive case but
also corrects the nonmassive g-factor result for graphene
found previously in Ref. [32].

Although we could not find an analytical solution for the
integral in Eq. (3.35), some numerical solutions for R are
shown in Fig. 7 for different mass ratios (m=M). These
numerical values of R, when substituted into Eq. (3.34),
allow us to verify how small changes in β affect the g factor
in each case.
To show that the g factor associated with the system is

going to decrease faster with the mass when vF gets closer
to c, we plot in Fig. 8 the numerical values of R for a few
different values of β, but now as a function of the mass
ratio (m=M).

IV. CONCLUSIONS

In this work, we have provided a generalization of the
dimensional reduction, developed in Ref. [23], for the case
of a ð2þ 1ÞD massive vector field. By doing so, we have
obtained an effective planar model that retains the funda-
mental physical properties of the Proca electrodynamics,
which is taken as an effective model for describing massive
(via the Anderson-Higgs-Meissner mechanism) photons in
a material. We have then evaluated the one-loop radiative
corrections for the electron and vector-field self-energies
for this model.
We observed that the divergent part of the electron self-

energy is exactly identical to the one obtained in the context
of the PQED (massless) model. Therefore, from the
renormalization group perspective, the renormalization of
the Fermi velocity does not depend on the mass of the
vector field and, consequently, is the same obtained for the
PQED model [12,45], which is similar to the nonlocal
Chern-Simons term coupled to PQED obtained from dual
transformations in Ref. [34], which also does not affect the
Fermi velocity renormalization [50]. The renormalized
mass for the electron, on the other hand, is seen to increase
with the vector-field mass.
From the vector self-energy, we calculate the polariza-

tion tensor in the respective regimes of small and large
energies with respect to the fermion mass to estimate the
screening effect on the potential for the interaction between
fermions; in the massless vectorial gauge field case, these
regimes lead to the Keldysh and Coulomb (with screening)
potentials, respectively. Here, we have generalized these
two potentials to the large-mass vector-field case and
identified that they have no bound state for neither the
small- nor the large-momentum approximation, just like the
regular Proca model with large photon mass [51].
A particular interest in the kind of model studied here is

that, from the vertex diagram, it is possible to predict the g
factor for the so-called Dirac systems, which exhibit
quasirelativistic dynamics, with massless (e.g., graphene)
or massive (e.g., silicene and TMDs) electrons moving with
the Fermi velocity [32]. In this context, we have found that
the parametric integral in the vertex correction form factor
—and, thus, this theory’s predicted g factor—decreases
with both the value of β and the ratio (m=M), effectively

FIG. 8. Dependence of R on the ratio (m=M) for some values of
β obtained numerically. We notice that the vector-field mass
suppresses the result of the integral (and, consequently, of the g
factor) for all values of β, but does it faster for ultrarelativistic
systems (vF ≈ c).

FIG. 7. Dependence of R on the ratio m=M of the three-
dimensional vector-field mass to the electron mass. For
ðm=MÞ¼0, the PQED results are retrieved, and for ðm=MÞ≫1
the g-factor correction is vanishingly small. The solid blue line
(obtained near the limit of a nonmassive gauge field) is related to
PQED and gives the approximate values of R to correct the g
factor obtained in Ref. [32].
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switching the magnetic coupling off of the system for very
large values of m and corrected the result in Ref. [32] for
the limit of massless photons (m → 0).
This work contributes to the proper description of planar

effective models, which are known to be intrinsically
related to condensed-matter physical systems that can
operate as QFT laboratories, such as Dirac materials
[52], by investigating the effects of attributing a mass to
the interaction field.
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APPENDIX: VERTEX CORRECTION

To shed some light on the g-factor corrections that we have
brought up in Sec. III C, we display a part of the calculations
of the corrected vertex highlighting the steps that differ from
the usual QED. The subtlety on the calculation that appears
for the model discussed here comes from the fact that it is
anisotropic and has a different photonlike propagator (the
planar projection of a massive vector field).
We will analyze the quantity Mi ¼ ūðp0ÞΓiuðpÞ, which

relates to the two external fermion lines ūðp0Þ and uðpÞ in
the spatial component of the vertex diagram (because the
temporal part of it does not affect the g factor), such that we
can use the Dirac equations to simplify the calculations
further.
Starting from the vertex structure in Sec. III C,

Γν
1L ¼

Z
dDk
ð2πÞDΓ

αSFðkþp0ÞΓνSFðkþpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρν

ΓβΔαβðkÞ; ðA1Þ

we define an auxiliary variable ρν and expand the indices α
and β to get

Γν
1L ¼

Z
dDk
ð2πÞD ½Γ0ρνΓ0Δ00ðkÞ þΓlρνΓnΔlnðkÞ�: ðA2Þ

In Eq. (A2), the nondiagonal terms of the vector-field
propagator were dropped, because the metrics inside them
vanish. Explicitly substituting the Feynman rules given in
Sec. III, we find

Γν
1L ¼ −

ie2c
2

μ

Z
dDk
ð2πÞD

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − c2k2 −m2c4
p

�

×

�
γ0
�
γ0ðkþ p0Þ0 þ vFγiðkþ p0Þi þMc2

ðkþ p0Þ20 − v2Fðkþ p0Þ2 −M2c4

�
Γν

�
γ0ðkþ pÞ0 þ vFγiðkþ pÞi þMc2

ðkþ pÞ20 − v2Fðkþ pÞ2 −M2c4

�
γ0

þ β2γl
�
γ0ðkþ p0Þ0 þ vFγiðkþ p0Þi þMc2

ðkþ p0Þ20 − v2Fðkþ p0Þ2 −M2c4

�
Γν

�
γ0ðkþ pÞ0 þ vFγiðkþ pÞi þMc2

ðkþ pÞ20 − v2Fðkþ pÞ2 −M2c4

�
γnηln

�
: ðA3Þ

To handle this unusual propagator, which contains a
square root and a mass term, we apply a slightly modified
Feynman parametrization:

1

abd1=2
¼ 3

4

Z
1

0

dx
Z

1−x

0

dy
ð1 − x − yÞ−1=2

½axþ byþ dð1 − x − yÞ�5=2
ðA4Þ

on the denominator of each term in Eq. (A3). Assuming

a ¼ ðkþ p0Þ20 − v2Fðkþ p0Þ2 −M2c4;

b ¼ ðkþ pÞ20 − v2Fðkþ pÞ2 −M2c4; d ¼ 3k20 − c2;

ðA5Þ

we find that the denominator of Eq. (A3) is given by

1

abc1=2
¼ 3

4

Z
1

0

dx
Z

1−x

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x − y

p fk20ð1þ xþ yÞ

þ ½2k0p0
0 þ p02

0 �x −m2c4ð1 − x − yÞ
þ ½2k0p0 þ p2

0 − v2Fðkþ pÞ2
−M2c4�y − c2k2g−5=2: ðA6Þ

Now, we complete the k0 square, make a shift k0 →
k0 − ω0 (with ω0 ¼ xp0

0 þ yp0) on it, and solve the
integration over k0 as done in standard anisotropic proce-
dures (at this point, we also drop the odd terms in k0).
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Then, we follow essentially the same steps for k but
using the shift k → k − ωβ2=D2, with D ¼ ½ð1 − β2Þðxþ
yÞ − 1� and ω ¼ xp0 þ yp. Finally, we perform the inte-
gration over k using dimensional regularization [42] to
obtain Eq. (A8), namely,

Γi
1L ¼

Z
1

0

dx
Z

1−x

0

dy
6π2

�
N3

K

�
Mpiv2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x − y

p ; ðA7Þ

where, for convenience, we defined the numerator result for
the integration in k as

N3 ¼
2ð1 − x − yÞγjωjpiv2F

D
−
½ωi − 2ðxþ yÞ2pi�β4

D2
;

D ¼ ½ð1 − β2Þðxþ yÞ − 1�;

and its denominator as

K ¼ D2ðM2c4 −m2c4 − ω2
0Þc2 þ ½v2Fðp0 − pÞ2i þ p2

0�xy
þ ½ðxþ yÞð1 − x − yÞc2�ðp0 þ pÞ2μ þ p2

0y
2:

When represented according to the flux choices in Fig. 6
and after applying a parametrization detailed above, the
diagram is written in its parametrized form as

Mi ¼ ūðp0Þ
�Z

1

0

dx
Z

1−x

0

dy
6π2

Mpiv2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x− y

p N3

K

�
uðpÞ; ðA8Þ

with

N3 ¼
2ð1 − x − yÞγjωjpiv2F
½ð1 − β2Þðxþ yÞ − 1� −

½ωi − 2ðxþ yÞ2pi�β4
½ð1 − β2Þðxþ yÞ − 1�2 ;

ðA9Þ

K ¼ ½ð1 − β2Þðxþ yÞ − 1�2ðM2c4 −m2c4 − ω2
0Þc2

þ ½v2Fðp0 − pÞ2i þ p2
0�xy

þ ½ðxþ yÞð1 − x − yÞc2�ðp0 þ pÞ2μ þ p2
0y

2; ðA10Þ

where ω0 ¼ xp0
0 þ yp0 and ωi ¼ xp0 þ yp.

Then, using the (Gordon) decomposition identity

ūðp0ÞγμuðpÞ ¼ ūðp0Þ
�ðp0 þ pÞμ

2Mc2
þ iσνμ

qν
2Mc2

�
uðpÞ

[where ūðp0Þ and uðpÞ are spinorial solutions to the
Dirac equations, qν ¼ ðp0 − pÞν is the transferred momen-
tum, and σνμ ¼ ði=2Þ½γμ; γν�], we determine theMi relevant
terms to the g factor. In other words, we expand Eq. (A8),
selecting only the terms proportional to σiα and leaving
aside the terms that would have a ðp0 þ pÞμ to define

Mi
gy ¼ ūðp0Þ

�Z
1

0

dx
Z

1−x

0

dy
6π2

MvFσiαðp0 − pÞαβ2
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x − y

p

×

�
2ð1 − 2β2Þðxþ yÞ2 − 2ðxþ yÞ

½ð1 − β2Þðxþ yÞ − 1�2
��

uðpÞ; ðA11Þ

where the subscribed “gy” index was used to identify that
we are accounting for only the σiα proportional parcels.
To extract the g factor, however, a few extra conditions

are also necessary, such as the low-energy approximation
(q2 → 0) and the mass-shell condition (which for small-
energy values reads as vFγjpj ≅ Mc2) [32,42]. After taking
the above conditions, we conveniently define a variable

K0 ¼ f½ðxþ yÞ2 − x − y�v2F − ½ð1 − x − yÞ2�c2gm2c4

þ 2f½ðxþ yÞ2 − x − y�c2 − 2ðxþ yÞ2v2FgM2c4;

ðA12Þ

so that the g-factor relevant parcel of the vertex correction
Mi

gy is reduced to

Mi
gy ¼ ūðp0Þ

�
1

6π2

Z
1

0

dx
Z

1−x

0

dy
M2c2σiαqαv3F
K0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x − y
p

× ½2ðxþ yÞD − ðxþ yÞ2v2F�
�
uðpÞ: ðA13Þ

From this structure, we identify the form factor F2 detailed
in Sec. III C.
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[39] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[40] D. Blas, O. Pujolas, and S. Sibiryakov, Consistent Extension
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