Two-component model description of Bose-Einstein correlations in pp collisions at 13 TeV measured by the CMS Collaboration at the LHC

Takuya Mizoguchi $\mathbf{0}$, Seiji Matsumoto $\mathbf{0}$, and Minoru Biyajima³

¹National Institute of Technology, Toba College, Toba 517-8501, Japan
²Sebool of Canaral Education, Shinghu University, Mateumote 300,8621, Ic 2 School of General Education, Shinshu University, Matsumoto 390-8621, Japan Department of Physics, Shinshu University, Matsumoto 390-8621, Japan

(Received 31 March 2023; accepted 29 August 2023; published 18 September 2023) \circ

Using the two-component model, we analyze Bose-Einstein correlations in $p \, p$ collisions at the centerof-mass energy of 13 TeV, measured by the CMS Collaboration at the LHC, and compare results with the τ model. We utilize data described by the double ratios with an average pair transverse momentum 0 GeV $\leq k_T \leq 1.0$ GeV and six intervals described by the reconstructed charged-particle multiplicity as $N_{\text{trk}}^{\text{offline}}$. The estimated ranges are 1–4 fm for the magnitude of extension of emitting source expressed by the exponential function exp $(-RQ)$ and 0.4–0.5 fm for that by the Gaussian distribution exp $(-(RQ)^2)$, respectively. Moreover, we estimate the upper limits of the 3-pion BEC to test the two-component model and investigate the role of the long-range correlation. Analyses of data at 7 TeV are added for comparisons with results at 13 TeV.

DOI: [10.1103/PhysRevD.108.056014](https://doi.org/10.1103/PhysRevD.108.056014)

I. INTRODUCTION

This article investigates the Bose-Einstein correlations (BEC) described by double ratios (DRs) in $p p$ collisions at the center-of-mass energy 13 TeV, obtained by the CMS Collaboration at the LHC [[1](#page-10-0)]. The DR is defined by two single ratios (SRs), i.e., $C_2^{\text{data}} = N^{(2 + 12 -)}/N^{(+-)}$ and $C_2^{\text{MC}} = N_{\text{MC}}^{(2+/2-)}/N_{\text{MC}}^{(+-)}$, where Ns mean the number of events in data and the Monte Carlo simulation. The suffixes $(2 + 2-)$ and $(+-)$ mean the charge combinations. Therein, CMS Collaboration only reports χ^2 /n.d.f. (number of degrees of freedom) values obtained using the τ model. Here, we analyze the DRs at an average pair-transverse momentum 0 GeV $\leq k_T \leq 1.0$ GeV $(k_T = |\mathbf{p}_{T,1} + \mathbf{p}_{T,2}|/2),$ and six intervals expressed by means of constraint $a \leq$ $N_{\text{trk}}^{\text{offline}} \leq b$ as illustrated in Fig. [1](#page-1-0). The formula used in the CMS analysis [\[2](#page-10-1)] is

$$
F_{\tau} = C[1 + \lambda \cos((r_0 Q)^2 + \tan(\alpha_{\tau} \pi/4)(Qr)^{\alpha_{\tau}})e^{-(Qr)^{\alpha_{\tau}}}]
$$

× (1 + \delta Q), (1)

where λ , r_0 , r, and α_{τ} are parameters introduced in the stable distribution based on stochastic theory, namely the degree of coherence, two interaction ranges, and the characteristic index, respectively (see, also Refs. [[3](#page-10-2),[4\]](#page-10-3)). $Q = \sqrt{-\left(p_1 - p_2\right)^2}$ is the magnitude of the 4-momentum transfer between two pions. The last term $(1 + \delta Q)$ is named the long-range correlation with the index (linear) [LRC $_{\text{(linear)}}$]. Our estimated values are presented in Table [I](#page-1-1).

Because estimated values of all parameters by the τ model, i.e., Eq. [\(1\),](#page-0-0) have not been presented in Ref. [[1](#page-10-0)], it is difficult to draw physical picture through the analyses of BEC in pp collisions at 13 TeV. Thus for this aim, we present them in Table [I.](#page-1-1) Table [I](#page-1-1) shows that the χ^2 /n.d.f. values obtained from our analysis are consistent with those reported by the CMS Collaboration [[1\]](#page-10-0). [I](#page-1-1)n other words, through concrete figures in Table I, we are able to consider physical picture based on the τ model.

As indicated in Table [I](#page-1-1), the interaction ranges of the Levy-type form $[e^{-(Qr)^{\alpha_r}}]$ increase as the interval containing $N_{\text{trk}}^{\text{offline}}$ increases. The estimated values $r = 20 \sim 50$ fm appear large for pp collisions at 13 TeV.

This paper also investigates this issue from a different perspective, focusing on the collision mechanism. Three processes occur in collisions at the LHC [\[5](#page-10-4)–[9\]](#page-10-5); the nondiffractive dissociation (ND), the single-diffractive dissociation (SD), and the double-diffractive dissociation (DD). BEC are related to the chaotic components of particle production. Since the contribution from the DD is Poissonian [[9](#page-10-5)], there is no effect to the BEC. Thus, we calculated the following two-component model correlation function [[9,](#page-10-5)[10](#page-10-6)] (see also empirical Refs. [\[11](#page-10-7)–[13](#page-10-8)]),

Published by the American Physical Society under the terms of the [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

FIG. 1. Fit to the BEC measurements by CMS in pp collisions at 13 TeV by Eq. [\(1\)](#page-0-0). $C_2^{\text{MC}} \equiv N_{\text{MC}}^{(2+2-)}/N_{\text{MC}}^{(+-)}$, where N_{MC} means the numbers of the same charged and opposite charged pairs recorded in MC simulations.

$$
CF_{II} = 1 + \lambda_1 E_{BE_1} + \lambda_2 E_{BE_2}.
$$
 (2)

The exchange function is the Fourier transform of the space-time region emitting bosons (mainly pion) with overlapping wave functions. For the exchange functions E_{BE_1} and E_{BE_2} , we assign the following two functions [[14](#page-10-9)],

$$
\exp(-R_1Q)
$$
 and $\exp(-(R_2Q)^2)$ (3)

characterizing the exponential and Gaussian type of BEC. Thus, R_1 and R_2 mean the extensions of the sources [[14](#page-10-9)]. Regarding the two kinds of exchange functions, see also the different approach [\[15\]](#page-10-10).

Moreover, we discuss the LRCs below. Three decades ago, the OPAL Collaboration [[16](#page-10-11)] adopted $LRC_(OPAI)$ = $c(1 + \delta Q + \epsilon Q^2)$ to improve the linear form LRC_(linear) $C(1 + \delta Q)$. Recently, we proposed the inverse power series form, $\text{LRC}_{(p.s.)} = \frac{C}{[1 - \alpha Q \exp(\beta Q)]}$ [[17](#page-10-12)], because the number of parameters $(\alpha \text{ and } \beta)$ is the same as the $LRC_(OPAI)$ s, and it converges to C as Q is large. Taking into account of those investigations and mathematical descriptions shown in Ref. [[1](#page-10-0)], i.e., the distribution of opposite-charged pion pair $N^{(+)} = C[1 + a \exp(-bQ^2)]$ and so on, we propose the following form:

$$
LRC_{\text{(Gauss)}} = \frac{C}{1 + \alpha \exp(-\beta Q^2)}.
$$
 (4)

This function converges to C as Q is large and behaves as $C[1 - \alpha(1 - \beta Q^2) + \cdots]$, Q being small. In Table [II](#page-2-0), we compare our approach with the formulas shown in Ref. [\[1\]](#page-10-0).

In the second section, we analyze the BEC at 13 TeV using Eqs. (2) – (4) . In the third section, we present our predictions for 3-pion BEC using the twocomponent model. In the final section, we provide concluding remarks. Appendix [A](#page-6-0) presents an analysis of BEC at 13 TeV using the τ model with Eq. [\(4\).](#page-1-2) In Appendix [B](#page-6-1), we reanalyze the CMS BEC at 0.9 TeV and 7 TeV utilizing Eq. [\(4\),](#page-1-2) because in previous works [[9](#page-10-5)[,10\]](#page-10-6), we used LRC_(linear) = $C(1 + \delta Q)$. Therein, to study the k_T dependence of extensions R_1 and R_2 's, we analyzed the

TABLE I. Fit parameters to the CMS BEC measurements in pp collisions at 13 TeV at 0.0 GeV $\leq k_T \leq 1.0$ GeV by Eq. [\(1\).](#page-0-0) δ values are estimated (top to bottom); -0.016 ± 0.004 , 0.03 ± 0.01 , 0.005 ± 0.005 , $(-1.2 \pm 0.1) \times 10^{-3}$, $(1.3 \pm 0.2) \times 10^{-3}$, and 0.002 ± 0.001 .

$N_{\text{trk}}^{\text{offline}}$	r_0 (fm)	r (fm)		α_{τ}	χ^2 /n.d.f.	χ^2 (CMS)
$0 - 4$	0.139 ± 0.021	0.93 ± 0.06	0.96 ± 0.05	0.781 ± 0.026	195/93	195
$10 - 12$	0.244 ± 0.004	9.08 ± 1.40	2.43 ± 0.23	0.420 ± 0.013	140/93	140
$31 - 33$	0.232 ± 0.005	21.8 ± 4.0	3.36 ± 0.37	0.377 ± 0.011	135/93	135
$80 - 84$	0.224 ± 0.001	43.7 ± 2.5	4.48 ± 0.15	0.351 ± 0.003	899/93	902
$105 - 109$	0.216 ± 0.003	47.0 ± 5.2	4.71 ± 0.31	0.352 ± 0.005	282/93	281
$130 - 250$	0.228 ± 0.013	53.3 ± 19.9	5.32 ± 1.27	0.353 ± 0.020	84.5/93	84

	Formulas	cf.
Our approach	$CF_{II} \times LRC$ where $LRC_{(Exp)} = \frac{1}{1 + \alpha e^{-\beta Q}},$ or $LRC_{\text{(Gauss)}} = \frac{1}{1 + \alpha e^{-\beta Q^2}}.$	(1) CF_{II} is reflecting to three kinds of multiplicity distributions of the ND, SD, and DD in pp collisions. (2) Through the generalization of LRC _(OPAL) = $1 + \delta Q + \epsilon Q^2$ in e^+e^- annihilation at Z ⁰ -pole [16], we obtained LRC _(Exp) [17]. (3) Referring to mathematical descriptions on F_{2N} and F_{2D} in Ref [1], LRC _(Gauss) is proposed for pp collisions.
CMS	(1) Distributions $N^{(2+2-)}$, $N^{(+-)}$, $N_{MC}^{(2+2-)}$ and $N_{MC}^{(+-)}$ are assumed as follows: $CF_I \cdot C(1 + ae^{-bQ^2}), C'(1 + a'e^{-b'Q^2}),$ $C_M(1 + a_Me^{-b_MQ^2})$, and $C_M'(1 + a_M'e^{-b_M'Q^2})$, respectively. (2) SRs $F_{2N} = N^{(2 + 12)})/N^{(+)}$ and $F_{2D} =$ $N_{MC}^{(2+12-)}/N_{MC}^{(+-)}$ are used for analysis of data of DR by the ratio F_{2N}/F_{2D} . (3) τ model is also used for data of DR.	(1) $CF_I = 1 + \lambda E_{BE}$, where $E_{BE} = \exp(-RQ)$ [1]. (2) Provided that $N_{MC}^{(+-)} \cong N^{(+)}$ and the cross term $(\lambda a E_{BE} \cdot e^{-bQ^2})$ is small, we obtain $\frac{F_{2N}}{F_{2D}} \cong \frac{CF_1 \times (1 + ae^{-bQ^2})}{1 + a \cdot e^{-bMQ^2}} \cong CF_{II} \times \text{LRC}_{\text{(Gauss)}}.$ Thus, α and β in Eq. (4) are approximately identified with a_M and b_M describing the Monte Carlo events in F_{2D} , respectively. (3) Monte Carlo events are calculated with PYTHIA $6.72*$ tune. See Fig. 1 in Ref. $[1]$. (4) Notice that $\langle n \rangle_{SD}$ by PYTHIA 6 is smaller than that by PYTHIA 8 at 7 TeV and 8 TeV [5-7]. (5) Corrections to empirical data are performed by PYTHIA 8 with CUETP8M1 tune for MB (minimum bias) and 4C tune for high multiplicity (HM) events, respectively. (6) Reconstructed tracks with $ \eta $ < 2.4 and $p_T > 0.2$ GeV are required. The extrapolation method (0 GeV k_T < 0.2 GeV) is used in data on BEC.

TABLE II. Comparison of our approach with formulas utilized by CMS Collaboration [\[1\]](#page-10-0).

data on BEC at 7 TeV by Eqs. (2) – (4) , because in Ref. [\[2\]](#page-10-1) data with several intervals are presented.

II. ANALYSIS OF BEC AT 13 TeV **USING EQS.** $(2)–(4)$ $(2)–(4)$ $(2)–(4)$

Considering the results of the CMS BEC at 7 TeV in Ref. [[9\]](#page-10-5), we assume a combination of exponential function and Gaussian distribution, as this combination has shown a valuable role. Moreover, it is worthwhile mentioning that Shimoda et al. in Ref. [[14](#page-10-9)] investigated several possible distributions for E_{BE} s. Our results are presented in Fig. [2](#page-3-0) and Table [III.](#page-4-0) We observe extraordinary behaviors in the two intervals, $0 \leq N_{\text{trk}}^{\text{offline}} \leq 4$ and $10 \leq N_{\text{trk}}^{\text{offline}} \leq 12$, of the LRC shown in Fig. [3.](#page-4-1)

As indicated by Fig. [2](#page-3-0) and Table [III,](#page-4-0) the twocomponent model with Eqs. [\(2\)](#page-0-1)–[\(4\)](#page-1-2) effectively characterizes three intervals; $31 \leq N_{\text{trk}}^{\text{offline}} \leq 33$, $80 \leq N_{\text{trk}}^{\text{offline}} \leq 84$, and $105 \leq N_{\rm trk}^{\rm offline} \leq 109.$

Among the six intervals shown in Fig. [3](#page-4-1), the red (solid) line and green (dashed) line appear to be exceptional. They are probably related to the normalization factors $(0.980 \pm 0.004$ and 1.031 ± 0.001). In other words, in those regions there is very small freedom or noise which cannot be described by Eqs. (2) – (4) .

III. TEST OF THE TWO-COMPONENT MODEL FOR 3-PION BEC

Here, we investigate the 3-pion BEC using the twocomponent model. Since there is currently no information from CMS on the multiplicity distribution $P(n)$ at 13 TeV, it is challenging to determine the ratio between the contributions of the first and the second components. We use the diagrams in Fig. [4.](#page-4-2)

The formula that corresponds to the diagrams in Fig. [4](#page-4-2) [\[18](#page-10-13)–[20\]](#page-10-14) is expressed as

$$
F_i^{(3)} = 1.0 + 3\lambda_i E_{\text{BE}_i} + 2(\lambda_i E_{\text{BE}_i})^{3/2}.
$$
 (5)

By assuming an equal weight for the first and the second components, $F_1^{(3)}$ and $F_2^{(3)}$, we obtain the following normalized expression

$$
F^{(3+3-)} = 1.0 + \frac{1}{2} \left(3\lambda_1 E_{\text{BE}_1} + 2(\lambda_1 E_{\text{BE}_1})^{3/2} \right) + \frac{1}{2} \left(3\lambda_2 E_{\text{BE}_2} + 2(\lambda_2 E_{\text{BE}_2})^{3/2} \right), \tag{6}
$$

where λ_1 , λ_2 , R_1 , and R_2 are fixed by using the numerical values in Table [III.](#page-4-0) Typical figures are presented in Fig. [5](#page-5-0). We could calculate the ratio if the CMS Collaboration

FIG. 2. Fit to the BEC measurements by CMS in pp collisions at 13 TeV by Eqs. [\(2\)](#page-0-1)–[\(4\)](#page-1-2).

reports the multiplicity distributions $P(n)$ [\[2](#page-10-1)], as this would allow us to understand the ensemble property of the BEC through the multiplicity distribution. It is worth noting that the ATLAS Collaboration has already observed the multiplicity distributions $P(n)$ [[21](#page-10-16)] and BEC [[22](#page-10-17)] considered in [\[23\]](#page-10-18).

In the near future, we may be able to further test the twocomponent model when the CMS Collaboration analyzes the 3-pion BEC. If we observe the same extensions as in Fig. [2](#page-3-0), we could conclude that the two-component model is a viable approach.

IV. CONCLUDING REMARKS

(C1) Our analysis of CMS BEC at 13 TeV using the τ model with Eq. [\(1\)](#page-0-0) confirms the applicability

TABLE III. Fit parameters of the CMS measurements of BEC in pp collisions at 13 TeV (0.0 GeV $\leq k_T \leq 1.0$ GeV) by Eqs. [\(2\)](#page-0-1)–[\(4\).](#page-1-2) Three constraints are used; $\lambda_1 \le 1.0$, $\lambda_2 \le 1.0$, and $\lambda_1 + \lambda_2 \le 1.0$. The p-values for the three intervals $31 \le N_{\text{trk}}^{\text{offline}} \le 33$, $80 \leq N_{\text{trk}}^{\text{offline}} \leq 84$, and $130 \leq N_{\text{trk}}^{\text{offline}} \leq 250$ are 73.0%, 77.3%, and 85.3%, respectively. C (top to bottom): 0.980 ± 0.004 , $1.031 \pm 0.001, 1.007 \pm 0.001, 1.001 \pm 1 \times 10^{-4}, 1.003 \pm 2 \times 10^{-4}, 1.003 \pm 0.001, 0.972 \pm 0.002, 1.028 \pm 0.002,$ and 1.007 ± 0.001 .

$N_{\text{trk}}^{\text{offline}}$	R_1 (fm)	R_2 (fm)	λ_1	λ_2	α	β (GeV ⁻²)	χ^2 /n.d.f.	
$0 - 4$	1.57 ± 0.15	0.51 ± 0.01	0.680 ± 0.034	0.320 ± 0.034	0.062 ± 0.006	0.79 ± 0.18	185.4/92	
$10 - 12$	2.40 ± 0.07	0.39 ± 0.02	0.865 ± 0.007	0.135 ± 0.007	0.136 ± 0.009	0.99 ± 0.07	137.1/92	
$31 - 33$	3.37 ± 0.07	0.48 ± 0.02	0.910 ± 0.004	0.090 ± 0.004	0.048 ± 0.004	1.06 ± 0.12	83.3/92	
$80 - 84$	3.76 ± 0.03	0.49 ± 0.01	0.866 ± 0.007	0.061 ± 0.001	0.026 ± 0.001	1.53 ± 0.06	81.6/92	
$105 - 109$	4.02 ± 0.06	0.57 ± 0.01	0.867 ± 0.149	0.050 ± 0.002	0.020 ± 0.001	1.06 ± 0.07	107.0/92	
$130 - 250$	3.79 ± 0.22	0.46 ± 0.09	0.857 ± 0.051	0.040 ± 0.011	0.030 ± 0.014	1.54 ± 0.51	77.6/92	
Note: When no constraint is applied for λ_1 and λ_2 , we obtain the following figures:								
$0 - 4$	2.76 ± 0.30	0.49 ± 0.02	1.085 ± 0.083	0.477 ± 0.052	0.112 ± 0.051	1.78 ± 0.57	126.6/92	
$10 - 12$	2.50 ± 0.09	0.37 ± 0.02	0.947 ± 0.033	0.168 ± 0.025	0.165 ± 0.028	1.17 ± 0.13	128.8/92	
$31 - 33$	3.43 ± 0.11	0.48 ± 0.02	0.928 ± 0.029	0.092 ± 0.004	0.048 ± 0.004	1.06 ± 0.12	83.0/92	

of this model. This is evidenced by the values of χ^2 in Table [I.](#page-1-1)

- $(C2)$ As portrayed in Table [I,](#page-1-1) the interaction ranges r in the Lévy-type expression $e^{-(Qr)^{\alpha_r}}$ increase as the range of the interval $N_{\text{trk}}^{\text{offline}}$ increases. However, it appears that the interaction ranges from 30 to 50 fm are large in pp collisions at 13 TeV.
- (C3) To gain a better understanding of the results obtained from the τ model, we have analyzed the BEC using the τ model with Eq. [\(4\)](#page-1-2). This has led to improved estimations, as shown in Appendix [A](#page-6-0).
- (C4) We look forward to future analyses by the CMS Collaboration of the multiplicity distributions and the third-order BEC at 13 TeV. Concerning with the Monte Carlo simulations, see Refs. [\[5](#page-10-4)–[7\]](#page-10-15).

Hereafter, we summarize the results of the two-component model using Eqs. [\(2\)](#page-0-1)–[\(4\).](#page-1-2)

FIG. 3. The long-range correlations (LRCs), see Eq. [\(4\)](#page-1-2) for six intervals.

- $(C5)$ In Table [II](#page-2-0), we mentioned how to propose $LRC_(Gauss)$, i.e., Eq. [\(4\)](#page-1-2). To investigate the remarks mentioned in C2) above using the two-component model, we utilized Eqs. [\(2\)](#page-0-1)–[\(4\).](#page-1-2) Our results are presented in Table [III](#page-4-0). The large extensions are approximately 4 fm, and they appear to be reasonable.
- (C6) Furthermore, to test the availability of the twocomponent model, we calculated the 3-pion BEC by making use of the estimated values and diagrams presented in Fig. [4](#page-4-2). Interestingly, as $N_{\text{trk}}^{\text{offline}}$ increases, the 3-pion BEC rapidly decreases, due to the changes in the extension R_1 (1–4 fm). Moreover, the intercepts at $Q = 0.0$ GeV are about 3.0, providing the equal weight.
- (C7) To investigate the role of the $LRC_(Gauss)$, i.e., Eq. [\(4\)](#page-1-2), we reanalyzed the BEC at $0.\dot{9}$ TeV and 7 TeV, with the results presented in Appendix [B](#page-6-1). The estimated χ^2 values became smaller than those of LRC _(linear) [\[9](#page-10-5)].
- (C8) As portrayed in Table [III,](#page-4-0) the BEC in the intervals $0 \leq N_{\text{trk}}^{\text{offline}} \leq 4$ and $10 \leq N_{\text{trk}}^{\text{offline}} \leq 12$ cannot be analyzed with better χ^2 values. A more complicated model may be necessary.
- (C9) From Table [III,](#page-4-0) we can observe behaviors of R_1s and R_2 s at 13 TeV in Fig. [6](#page-5-1) (left panel). The larger extension R_1 s seem to be saturated at larger $N_{\text{trk}}^{\text{offline}}$. To confirm that, of course, more data are needed.

FIG. 4. Diagrams for the third-order BEC. The matrix indicates the exchange of identical pions.

FIG. 5. Prediction of upper limit of the 3π BEC in pp collisions at 13 TeV by means of Eq. [\(6\)](#page-2-1) with Eqs. [\(2\)](#page-0-1)–[\(4\).](#page-1-2) $N^{(BG)}$ means $N_{MC}^{(3+3-)}$, because of no BECs in the Monte Carlo events.

FIG. 6. Behaviors of R_1 s and R_2 s at 13 TeV and 7 TeV are shown from Tables [III](#page-4-0) and [VI.](#page-9-0) The smaller extension R_2 s are almost the constants.

FIG. 7. Behaviors of R_1 s and R_2 s at 7 TeV are shown from Table [VI](#page-9-0). The smaller extension R_2 decreases as k_T increases. See an interesting paper [\[24\]](#page-10-20); therein the latter behavior is predicted.

We also analyzed the data at 7 TeV with the constraint 0.1 GeV $\leq k_T \leq 0.3$ GeV (fixed) and three intervals $2 \leq N_{ch} \leq 9$, $10 \leq N_{ch} \leq 24$ and $25 \leq N_{\rm ch} \leq 80$. We observe that R_1 s increase and that R_2 s are almost constants in Fig. [12](#page-10-19) in Appendix [B](#page-6-1).

(C10) Moreover, Fig. [7](#page-6-2) shows an interesting behavior. Observe Fig. [12](#page-9-1) and Table [VI](#page-9-0) in Appendix [B](#page-6-1), where data at 7 TeV with the constraints $0.1 \le k_T \le 0.3$, $0.3 \le k_T \le 0.5$, and $0.5 \text{ GeV} \le k_T \le 1.0 \text{ GeV}$ and $2 \leq N_{ch} \leq 9$ (fixed) are analyzed. See also consideration for two kinds of extensions mentioned in Refs. [\[15](#page-10-10)[,24](#page-10-20)]. Their arguments are quantitatively supported.

Provided that data on BEC at 13 TeV with $0.1(0.2) \le k_T \le 0.3, 0.3 \le k_T \le 0.5$, and $0.5 \text{ GeV} \le$ $k_T \le 1.0$ GeV with $2 \le N_{\text{ch}} \le 9$ (fixed) were reported, we could obtain an interesting information based on comparisons of those expected data with Fig. [7.](#page-6-2)

ACKNOWLEDGMENTS

One of the authors (M. B.) would like to thank his colleagues at the Department of Physics, Shinshu University.

APPENDIX A: ANALYSIS OF BEC AT 13 TeV USING THE τ MODEL WITH EQ. [\(4\)](#page-1-2)

We are interested in the influence of Eq. [\(4\)](#page-1-2) on the τ model. To investigate this, we reanalyzed the BEC using the following formula

$$
F_{\tau\text{-Gauss}} = [1 + \lambda \cos((r_0 Q)^2 + \tan(\alpha_\tau \pi/4)(Qr)^{\alpha_\tau})e^{-(Qr)^{\alpha_\tau}}] \times \text{LRC}_{(\text{Gauss})}.
$$
\n(A1)

Our findings are presented in Fig. [8](#page-6-3) and Table [IV.](#page-7-0) It can be seen that the interaction-range r values are smaller than 10 fm.

As illustrated in Fig. [9](#page-7-1), three LRC's appear to be various. Therein the behavior of LRC for $0 \leq N_{\text{trk}}^{\text{offline}} \leq 4$ is related to the negative α . For the sake of reference, we demonstrate the effective degree of coherence in the τ model

$$
\lambda_{\rm eff} = \lambda \cos((r_0 Q)^2 + \tan(\alpha_{\tau} \pi/4)(Qr)^{\alpha_{\tau}})
$$

in Fig. [9](#page-7-1). By making use of λ_{eff} s and LRCs, we can estimate the intercepts at $Q = 0.0$ GeV, which are shown in Fig. [8](#page-6-3).

APPENDIX B: REANALYSIS OF CMS BEC AT 0.9 TeV AND 7 TeV [\[2\]](#page-10-1) BY LRC, EXPRESSED BY EQ. [\(4\)](#page-1-2)

We examined the changes in the values of χ^2 when LRC _(linear) was replaced with Eq. [\(4\)](#page-1-2) in the reanalysis of BEC at 0.9 TeV and 7 TeV [\[2](#page-10-1)]. Our new results obtained using Eq. [\(4\)](#page-1-2) are presented in Fig. [10](#page-7-2) and in Table [V](#page-8-0) and compared with those obtained elsewhere [[9](#page-10-5)], where the linear form for the LRC = $C(1 + \delta Q)$ was used. These results are also shown in Table [V.](#page-8-0) We show the LRCs in Fig. [11](#page-8-1).

FIG. 8. Fit to the BEC measurements by CMS in pp collisions at 13 TeV by Eq. [\(A1\)](#page-6-4) with Eq. [\(4\)](#page-1-2).

$N_{\text{trk}}^{\text{offline}}$	r_0 (fm)	r (fm)		α_{τ}	α		χ^2 /n.d.f.
$0 - 4$	0.22 ± 0.02	2.12 ± 0.52	1.02 ± 0.12	0.595 ± 0.047	-0.169 ± 0.017	5.60 ± 0.49	169.6/92
$10 - 12$	0.25 ± 0.01	9.89 ± 1.69	2.49 ± 0.25	0.417 ± 0.014	0.099 ± 0.060	0.17 ± 0.13	138.7/92
$31 - 33$	0.16 ± 0.01	3.27 ± 0.45	1.76 ± 0.10	0.566 ± 0.022	0.177 ± 0.024	19.86 ± 1.02	85.9/92
$80 - 84$	0.00°	3.76 ± 0.06	1.65 ± 0.02	0.566 ± 0.002	0.159 ± 0.003	23.83 ± 0.31	166.2/92
$105 - 109$	0.13 ± 0.01	5.61 ± 0.54	1.84 ± 0.08	0.517 ± 0.012	0.119 ± 0.010	25.48 ± 0.73	103.1/92
$130 - 250$	0.18 ± 0.02	9.02 ± 3.43	2.18 ± 0.42	0.468 ± 0.037	0.076 ± 0.024	21.63 ± 3.39	78.5/92

TABLE IV. Fit parameters of the CMS measurements of BEC in pp collisions at 13 TeV (0.0 GeV $\leq k_T \leq 1.0$ GeV) using the τ model with Eq. [\(4\)](#page-1-2).

It can be said that the Gaussian distribution of the LRC in the two-component model is better than that of the linear form, because the $LRC_{(Gauss)}$ converges to 1.0 in the region of $Q \ge 2.0$ GeV. The reason is as follows: The emitting source functions and/or the LRCs in the Euclidean space $(Q' = \sqrt{(\mathbf{p}_1 - \mathbf{p}_2)^2 + (E_1 - E_2)^2}$ and $\xi' = \sqrt{(\mathbf{r}_1 - \mathbf{r}_2)^2 + (t_1 - t_2)^2}$ are calculated as

$$
F_{\text{source}}(\xi', R) = \frac{1}{(2\pi)^2 \xi'} \int_0^\infty Q'^2 E_{\text{BE}}(Q', R) J_1(Q'\xi') dQ',
$$
\n(B1)

where $J_1(Q\xi)$ is the Bessel function. For the LRC, we should replace E_{BE} with $(LRC - 1.0)$ and R with β in Eq. [\(B1\),](#page-7-3) respectively. In other words, the

FIG. 9. λ_{eff} 's and LRCs of BEC measurements by CMS in pp collisions at 13 TeV by Eq. [\(A1\)](#page-6-4). The vertical line at $Q = 2.0 \text{ GeV}$ represents the effective range of the LRC (0 GeV $\le Q \le 2$ GeV).

FIG. 10. Fit to the CMS BEC measurements in pp collisions at 0.9 TeV and 7.0 TeV by Eqs. [\(2\)](#page-0-1)–[\(4\).](#page-1-2)

	R_1 (fm)	R_2 (fm)	\mathcal{N}_1	λ_2	δ (GeV ⁻¹) or $(\alpha, \beta$ (GeV ⁻²))	χ^2 /n.d.f.	
$\sqrt{s} = 0.9 \,\text{TeV}$							
LRC _(linear) [9]	3.37 ± 0.19	0.62 ± 0.01	0.80 ± 0.04	0.14 ± 0.01	0.029 ± 0.001	356/192	
Equation (4)	2.83 ± 0.16	0.48 ± 0.03	0.78 ± 0.03	0.13 ± 0.01	$(0.07 \pm 0.01, 1.27 \pm 0.13)$	216/191	
\sqrt{s} = 7 TeV							
LRC _(linear) [9]	3.88 ± 0.18	0.71 ± 0.01	0.84 ± 0.03	0.12 ± 0.01	0.023 ± 0.001	540/192	
Equation (4)	3.13 ± 0.13	0.51 ± 0.02	0.80 ± 0.03	0.10 ± 0.01	$(0.06 \pm 0.01, 1.46 \pm 0.11)$	217/191	

TABLE V. Fit parameters of the CMS BEC measurements in pp collisions at 0.9 TeV and 7.0 TeV by Eqs. [\(2\)](#page-0-1)–[\(4\).](#page-1-2)

 $(\text{LRC}_{\text{(Gauss)}} - 1.0) = \sum_{k=1}^{\infty} (-\alpha e^{-\beta Q^2})^k$ is preferable to the $(LRC_(linear) - 1.0) = \delta Q$, because the former converges, as Q is large. Finally, we should adopt the inverse Wick rotation for ξ' [[14](#page-10-9),[17](#page-10-12)]; $\xi = \sqrt{(\mathbf{r}_1 - \mathbf{r}_2)^2 - (t_1 - t_2)^2}$.

Moreover, we analyzed data on BEC at 7 TeV with three intervals $(0.1 \le k_T \le 0.3, 0.3 \le k_T \le 0.5$ and 0.5 GeV $\leq k_T \leq 1.0$ GeV) and those for N_{ch} $(2 \leq N_{\rm ch} \leq 9, 10 \leq N_{\rm ch} \leq 24, \text{ and } 24 \leq N_{\rm ch} \leq 80) \text{ in}$ Ref. $[2]$ by means of Eqs. (2) – (4) . The smaller extensions with 0.1 GeV $\leq k_T \leq 0.3$ GeV are almost constant. This fact is similar to Fig. [6](#page-5-1) (left panel). From estimated parameters with the constraint $2 \leq N_{ch} \leq 9$ (fixed) in the low column, we see that R_2 s are probably decreasing.

FIG. 11. LRCs by LRC_(linear) [\[9\]](#page-10-5) and LRC_(Gauss) [Eq. [\(4\)](#page-1-2)] of CMS BEC measurements in pp collisions at 0.9 TeV and 7.0 TeV are presented. The vertical line at $Q = 2.0$ GeV represents the effective range of the LRC (0 GeV $\le Q \le 2$ GeV).

FIG. 12. Fit to the BEC measurements by CMS in pp collisions at 7 TeV with 0.1 GeV $\leq k_T \leq 0.3$ GeV by Eqs. [\(2\)](#page-0-1)–[\(4\)](#page-1-2).

TABLE VI. Fit parameters of the CMS BEC measurements in pp collisions at 7.0 TeV with 0.1 GeV $\leq k_T \leq 0.3$ GeV and 2 \leq $N_{ch} \le 9$ by Eqs. [\(2\)](#page-0-1)–[\(4\)](#page-1-2) with $0 \le \lambda_1 \le 1$ and $\lambda_2 = 1 - \lambda_1$. N_{ch} means the charged particle multiplicity. C (top to bottom): 1.037 ± 0.011 , 1.013 ± 0.001 , 1.008 ± 0.001 , 1.010 ± 0.008 , and 1.037 ± 0.011 .

	R_1 (fm)	R_2 (fm)	λ_1	λ_2	α	β (GeV ⁻²)	χ^2 /n.d.f.
$0.1 \le k_T \le 0.3$ (fixed)							
$2 \leq N_{ch} \leq 9$	1.16 ± 0.31	0.36 ± 0.19	0.95 ± 0.10	0.05 ± 0.10	0.14 ± 0.04	0.80 ± 0.28	212/192
$10 \le N_{ch} \le 24$	2.05 ± 0.25	0.46 ± 0.04	0.95 ± 0.10	0.05 ± 0.10	0.14 ± 0.03	2.42 ± 0.24	188/192
$25 \le N_{ch} \le 80$	2.77 ± 0.14	0.47 ± 0.04	0.91 ± 0.02	0.09 ± 0.02	0.08 ± 0.02	2.47 ± 0.26	176/192
$2 \leq N_{ch} \leq 9$ (fixed)							
$0.1 \leq k_T \leq 0.3$	1.16 ± 0.31	0.36 ± 0.19	0.95 ± 0.10	0.05 ± 0.10	0.14 ± 0.04	0.80 ± 0.28	212/192
$0.3 \leq k_T \leq 0.5$	1.47 ± 0.20	0.29 ± 0.05	0.86 ± 0.03	0.14 ± 0.03	0.15 ± 0.04	0.99 ± 0.23	198/192
$0.5 \leq k_T \leq 1.0$	0.97 ± 0.41	0.25 ± 0.07	0.71 ± 0.10	0.29 ± 0.10	0.43 ± 0.08	1.16 ± 0.32	177/192

- [1] A. M. Sirunyan et al. (CMS Collaboration), [J. High Energy](https://doi.org/10.1007/JHEP03(2020)014) [Phys. 03 \(2020\) 014.](https://doi.org/10.1007/JHEP03(2020)014)
- [2] V. Khachatryan et al. (CMS Collaboration), [J. High Energy](https://doi.org/10.1007/JHEP05(2011)029) [Phys. 05 \(2011\) 029.](https://doi.org/10.1007/JHEP05(2011)029)
- [3] H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester and New York, 1990).
- [4] K. Itô, Kakuritsu Katei (Translation from the English language edition, "Stochastic Processes") (Springer-Verlag, Berlin, Heidelberg, 2004).
- [5] S. Navin, Diffraction in ALICE and trigger efficiencies, Report No. CERN-THESIS-2011-378.
- [6] ATLAS Collaboration, Charged particle multiplicities in pp interactions for track $pT > 100$ MeV at sqrts $= 0.9$ and 7 TeV measured with the ATLAS detector at the LHC, Report No. ATLAS-CONF-2010-046.
- [7] W. Lukas, Measurement of charged-particle distributions in proton–proton interactions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC, Report No. CERN-THESIS-2016-420.
- [8] I. Zborovský, J. Phys. G 40[, 055005 \(2013\)](https://doi.org/10.1088/0954-3899/40/5/055005).
- [9] M. Biyajima and T. Mizoguchi, [Int. J. Mod. Phys. A](https://doi.org/10.1142/S0217751X19502038) 34, [1950203 \(2019\).](https://doi.org/10.1142/S0217751X19502038)
- [10] T. Mizoguchi and M. Biyajima, [J. Phys. Soc. Jpn. Conf.](https://doi.org/10.7566/JPSCP.26.031032) Proc. 26[, 031032 \(2019\).](https://doi.org/10.7566/JPSCP.26.031032)
- [11] T. Åkesson et al. (Axial Field Spectrometer Collaboration), Z. Phys. C 36[, 517 \(1987\).](https://doi.org/10.1007/BF01630589)
- [12] N. M. Agababyan et al. (EHS/NA22 Collaboration), Z. Phys. C 59[, 195 \(1993\).](https://doi.org/10.1007/BF01566684)
- [13] B. Lorstad, [Int. J. Mod. Phys. A](https://doi.org/10.1142/S0217751X8900114X) 04, 2861 (1989).
- [14] R. Shimoda, M. Biyajima, and N. Suzuki, [Prog. Theor.](https://doi.org/10.1143/ptp/89.3.697) Phys. 89[, 697 \(1993\).](https://doi.org/10.1143/ptp/89.3.697)
- [15] V. A. Khoze, A. D. Martin, M. G. Ryskin, and V. A. Schegelsky, [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-016-4055-3) 76, 193 (2016).
- [16] P.D. Acton et al. (OPAL Collaboration), [Phys. Lett. B](https://doi.org/10.1016/0370-2693(91)90540-7) 267, [143 \(1991\)](https://doi.org/10.1016/0370-2693(91)90540-7).
- [17] T. Mizoguchi, S. Matsumoto, and M. Biyajima, [Int. J. Mod.](https://doi.org/10.1142/S0217751X22501482) Phys. A 37[, 2250148 \(2022\)](https://doi.org/10.1142/S0217751X22501482).
- [18] M. Biyajima, A. Bartl, T. Mizoguchi, O. Terazawa, and N. Suzuki, [Prog. Theor. Phys.](https://doi.org/10.1143/ptp/84.5.931) 84, 931 (1990); See also 88[, 157](https://doi.org/10.1143/ptp/88.1.157) [\(1992\).](https://doi.org/10.1143/ptp/88.1.157)
- [19] N. Suzuki and M. Biyajima, Phys. Rev. C 60[, 034903 \(1999\).](https://doi.org/10.1103/PhysRevC.60.034903)
- [20] G. A. Kozlov, O. V. Utyuzh, G. Wilk, and Z. Wlodarczyk, [Phys. At. Nucl.](https://doi.org/10.1134/S1063778808090020) 71, 1502 (2008).
- [21] M. Aaboud et al. (ATLAS Collaboration), [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-016-4335-y) 76[, 502 \(2016\).](https://doi.org/10.1140/epjc/s10052-016-4335-y)
- [22] G. Aad et al. (ATLAS Collaboration), [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-022-10472-0) 82, [608 \(2022\)](https://doi.org/10.1140/epjc/s10052-022-10472-0).
- [23] M. Biyajima, T. Mizoguchi, and S. Matsumoto (to be published).
- [24] V. A. Schegelsky, A. D. Martin, M. G. Ryskin, and V. A. Khoze, [Phys. Lett. B](https://doi.org/10.1016/j.physletb.2011.07.085) 703, 288 (2011).