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We present a formulation of lepton family numbers, based on quantum field theory, for neutrino
oscillation phenomenology that can be applied to nonrelativistic and relativistic energies for neutrinos. It is
formulated for both types of neutrinos, Dirac and Majorana. The formulation is constructed as the time
evolution of a lepton family number density operator. Then, the time evolution of the lepton family number
density operator becomes dependent on the mass and new features appear. The expectation value of the
density operator is evaluated for the initial state with a Gaussian distribution for the momentum amplitude.
This enables us to study wave-packet-like decoherence effects. We show in the nonrelativistic regime, the
type of neutrino mass are distinguishable even under the presence of wave-packet-like decoherence effects.
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I. INTRODUCTION

Neutrinos were originally formulated, within the weak
interactions of the Standard Model (SM), to be massless
fermions. However, hints of massive neutrinos appeared in
the second half of the 20th century with the solar neutrino
problem [1]. Eventually, updated solar models and experi-
ments from the Kamiokande laboratory and the Sudbury
Neutrino Observatory proved the disappearance is caused
by flavor oscillations [2,3]. For neutrinos the existence
of flavor oscillations mean there is a mixing between mass
and flavor eigenstates. The mixing between mass and flavor
is governed by the unitary Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, which has six (four) free parameters
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inthe 3 x 3 instance [4,5]. Thus, the mixing caused by flavor
oscillations is direct evidence that neutrinos are massive and,
consequently, require physics beyond the SM.

In this decade, the six parameters related to the PMNS
matrix; the oscillation angles 6,, 0,3, and 6,3, the mass
squared differences Am3, and Am3,, and the Dirac CP
violating phase §,,, are expected to be measured within a few
percentages by neutrino oscillation experiments [6—11]. In
addition, the absolute mass of the lightest neutrino, 1, or m,
is expected to be directly limited down to the sub-eV range by
the Karlsruhe Tritium Neutrino Experiment [12]. However,
even with these precision measurements, questions remain in
neutrino phenomenology. Specifically, the question of what
type of mass neutrinos possess, Dirac or Majorana remains.
This question could be answered by future neutrinoless
double- (Ovpf) decay experiments [13-17]. Arguably,
additional approaches to answer those questions would
be ideal.

For this work, we present a unified description of neutrino
phenomenology that leads to an additional approach for
investigations of the previously mentioned questions. We
define unified to mean a description that includes neutrino
flavor oscillations and, particle-antiparticle or chiral oscil-
lations. In addition, our description is different from the usual
neutrino oscillation theory that assumes neutrinos are rela-
tivistic. The relativistic assumption is often taken, because
cosmological limits on the neutrinos absolute masses place
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them in the sub-eV range [18]; whereas, experiments are
performed on neutrinos with energies in the keV, MeV, GeV,
and recently the PeV ranges [19]. Nonrelativistic neutrinos
are predicted to exist in nature as the cosmic neutrino
background (CvB). Experiments to detect the CvB are under
preparation (see for example [20]), and we plan future studies
of the CvB as an application of our description.

For studies of the CvB we need to build a framework
that uses a momentum distribution [21]. Since the state
of the CvB can be described by a mixed state at their
decoupling time, their momentum distribution should be
given by a density matrix. For oscillation experiments, if
the neutrino is produced with a localized space, then it
should be described by a pure state with a momentum
distribution. Descriptions of that type have been done
using wave packet formulations [22-26]. To incorporate a
momentum distribution in our framework, we consider
densities of lepton family numbers that are localized in
space as pure states. We have previously discussed details
of the formulation for the Majorana mass case using
plane waves [27-29].

In future work we can extend this study to the mixed
state required by CuvB, and further consider the time
evolution of lepton numbers under the expansion of the
Universe. Then, we may be able to clarify when the CvB
transits from the relativistic regime to the nonrelativistic
regime. One may also find how the coherence for a given
momentum distribution will continue or will be lost as the
CuB is redshifted due to the expansion. Therefore, our
present work can be useful to clarify those natures of
the CuB.

II. BRIEF OUTLINE OF RELATED STUDIES

Consider the decay of a positively charged pion at rest to
an antimuon and neutrino,

at > ut +u,. (1)

The Standard Model defines the neutrino flavor, «, to be a
muon-neutrino v,. This definition is from connecting the
neutrino and charged lepton with the electroweak doublets,
ie., (v.e), (v,.u), and (v,, 7). Then, theory introduced
lepton family numbers as a way to express those con-
nections; L,, L,, and L, [30,31]. A consequence is the
Standard Model conserves lepton family numbers in all
processes.

Yet, neutrino masses imply lepton family numbers are
not necessarily conserved [32]. This is evident in neutrino
oscillation experiments. Consider the example of Eq. (2),
which uses the produced antimuon to identify a muon
neutrino at the production point. Then after the neutrino
propagates over a macroscopic distance, either a muon
neutrino or electron neutrino is identified at a detector:

N f propagation [ ¥, +X — p~ +Y disappearance
at— v,—> .
s g v,+X—e +Y appearance

(2)

If we compare the family of the charged leptons from
production to the appearance detection, then a change of L,
to L, occurs. Models explain this change by treating the
interacting and propagating neutrinos differently.

In the quantum mechanics model, the interacting neu-
trinos are from a flavor basis and the propagating neutrinos
are from a mass basis [33,34]. Those bases are related to
each other by a unitary transformation with a unitary matrix
called the PMNS matrix, U},;. Then, a neutrino flavor state
|lv,) is written as a coherent superposition of massive states
weighted by the PMNS matrix,

3
va) = Usily). (3)
i=1

Each forms an orthogonal basis (v,|vs) = J,s and
(vilv;) = 6; ;. Sometimes these flavor states are called
Pontecorvo states in the literature. However, it was shown
that the states of Eq. (3) cannot be applied to quantum field
theory [35-37]. Consequently, effort has been made to
understand the nature of flavor in quantum field theory.
We introduce some quantum field theory models that are
relevant to our work.

A common quantum field theory model treats the
produced or detected neutrino flavor state is different from
the Pontecorvo states in Eq. (3). The difference appears in
the amplitudes of the superposition to each mass eigenstate.
They are not given by the PMNS matrix elements alone.
They depend on the additional factor coming from either
the production or detection amplitude of each mass
eigenstate. Then, that model derives the neutrino flavor
states based on the production or detection processes
[38,39]. As a result, the neutrino flavor states are process
dependent and modify the amplitudes of neutrino flavor
oscillation probabilities. In the appearance experiment of
Eq. (2), it also results in the detected neutrino flavor state
and the produced neutrino flavor state being nonorthogonal
to each other even before oscillations start. Nevertheless,
if the neutrinos are treated as ultrarelativistic particles, the
modifications are lost.

In a different model, wave packets for the external
particles are introduced, and the neutrinos appear as
intermediate states between production and detection
[40-44]. For this model, no neutrino flavor states are
considered or calculated. Only the source current of the
neutrino and the detector current appear as physical
particles. If the method is applied to Majorana neutrinos,
then two processes are required. The first process is to
detect the chirality and lepton number conserving propa-
gation. The second process is for chirality and lepton
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number violating propagation of the intermediate neutri-
nos. In our framework, both of the chirality conserving and
violating effects are included in the lepton family numbers.

Lastly, another model considers the neutrino flavor states
to be from a physical Fock space. The resulting neutrino
flavor states are related to massive neutrino states by a
Bogoliubov transformation, which leads to inequivalent
vacua [45-49]. This model introduces nonzero Dirac mass
to each flavor neutrino field [50-52]. A flavor charge is
defined through vector current of the flavor neutrino. In our
framework, the flavor charge for active neutrinos is defined
based on the weak eigenstates that form SU(2) doublets
with the mass eigenstates of the charged leptons. Therefore,
the charge is defined through the left-handed current of the
weak eigenstates. We call this charge lepton family number.
Then in the formula for the lepton family number, only the
neutrino masses for the mass eigenstates appear and addi-
tional mass parameters for the flavor neutrinos are not
introduced.

III. LEPTON NUMBER DENSITY

We take an approach to define lepton family numbers for
neutrinos based on the isospin doublet used for charged
current weak interactions. Meaning, in the diagonal basis
for charged lepton mass, the lepton family number is
assigned to each lepton doublet ¥;, = (v;, er,)' as
well as the right-handed charged lepton eg,. Definitely,
under a U, (1) transformation of the lepton family number
L,, they transform as

!
r a )\ __ 0, __ ,i0 a ! IO
LPLO((/ >el a‘PLafel ”( )’ eRa*el aeRa,
€la €La
(4)

where the subscript L and R denote the left-handed

. _5 5 .
projection operator P; = lTy and P, = 1% respectively.

The associated Noether current is defined by

DRt = tey e + U Pryg:, (5)
where the colon: implies normal ordering. Note, the lepton
family current consists of a vector current of the charged
lepton and a left-handed current of the neutrino. We
describe the effects of mass of neutrinos on lepton number
in this particular weak basis where the charged lepton mass
matrix is real and diagonal. Through the detection of a
charged lepton flavor, the state of the neutrino is projected
to the flavor associated to the charged lepton. In the
process, the lepton family number is assumed to be
conserved. For the example, zt — ' + v, the produced
neutrino is assumed to have a muon number +1. The
projected state has a left-handed chirality with a definite
lepton family number. We will see that the neutrino field
with definite chirality can be expanded by the plane wave

solution and spinors with helicity —%. The effect of the
nonzero mass of neutrino is encoded in nontrivial time
dependence of creation and annihilation operators, which
we will evaluate below.

A. Majorana neutrino formulation

In the flavor basis where the charged lepton mass matrix
is real and diagonal, the free part of the Lagrangian for
Majorana neutrinos is

£M = miyﬂaﬂVLa 5 ((VLrl)Cm(I/)’UL/i + m(mZﬂ) (UL/)')C)‘

2
(6)

The equation of motion for the Majorana neutrino in the
flavor basis is written as

iWre = mZﬁ(VLﬁ)C7

ia(yLa)C = maﬂ(”Lﬁ)’ (7)

where m,; is a Majorana mass matrix. The greek subscripts
represent the flavors e, y, and 7. In the flavor basis, the
Majorana mass matrix is complex and symmetric. In
addition, we have used the notation (v;,)¢ for charge
conjugation. The solution of Eq. (7) can be written with the
form of the expansion with the massless spinors plus a zero-
mode contribution. The details on how we quantize this
situation is written in Appendix. The remainder of the main
text will focus on the massless spinor, i.e., the non-zero-
mode contributions,

Vialt.x) = / '%m(p, iy (p) e
T i (p. 1), (p)e®%), (8)

where [’ implies the exclusion of zero momentum mode
from the integration. The massless spinors u; (p) and v; (p)
are given by [27]

wl) = =) = VERI( ) O

n-o¢.(n) =+¢.(n), n= (10)

Ip|’

where the two component spinors ¢, (+n) are written by
the polar angle 0 and the azimuthal angle ¢ specifying the
direction of the momentum p,

e~ cos? —e % sin?
- 2 2
b= ) em=(
e'2sin? e'2cos?

2 2
(11)
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.(—n)=ip_(n),  ¢_(-n)=ip,(m). (12)
We then formulate a Heisenberg operator for LY where
a = (e,u,7), from the lepton number density /¥ (¢,x) by
integrating over space

Ly(t)_/dsxzyg,x)_/'( Tk 1k, Dag(k, )

27)32|K|
— bi(k.1)b,(k.1)], (13)
B, x) = 04(1. %)y vp0(1.%) 2, (14)

where the colon: denotes normal ordering. In the absence of
mass matrix, the time evolution of creation and annihilation
operators are

as(p.t) = au(p, to)e—i\P\(t—to)’
bZ(P» 1) = bj,(p, to)ei\l’l(f—lo). (15)

In this case, all three lepton family number operators are
separately conserved,

However as can be seen from Eq. (7), their time depend-
ence is governed by nondiagonal mass matrix. To obtain
the time dependence of the lepton number operator in
Eq. (13), we need to know the time dependence of the
flavor operators a,(k, t) and b, (k, ). In order to evolve the
operators to time ¢ from the initial time 7,, one needs to
express them at 7, as a superposition of operators with
definite masses. This is because the operators with definite
masses m; evolve like e*'5!, with E; = \/|p|*> + m?. Then
the time dependence of the flavor operator can be derived.

We begin by diagonalizing the mass matrix in Eq. (7)
with a unitary matrix V as

miéij = (VT)iam(lﬂVﬁj’ (17)
Vig = V(lil/Liv (18)

where v;; denotes an operator of the mass basis. v;; and
its charge conjugation form the operator for the Majorana
field as

wui(X, 1) = vpi(x,1) + (vLi(x, 1)<,
= V:iVaL(X’t) +Vai(l/aL(X’t))C' (19)

Since Eq. (19) satisfies the Majorana condition, it can be

L/ (1) = LY (1o). (16)  expanded as
|
3
wai(X. 1) = //gi—p (api(p, A)u;(p, A)e~(Ei=Px) 4 aLi(PJ)Uz’(P’i)ei(E"t_p'x))v (20)
(27)72E;(p) =

where E; = \/|p|> + m? denotes the energy of the mass eigenstate and u;(p, 1) and v;(p,4) denote the massive Dirac
spinors with the definite helicity A and mass m;. For the details of the definitions, see Appendix A in Ref. [27]. The operators
ay;i(p, 4) of Eq. (20) are distinct from the operators with the massless spinors in Eq. (8). We will call a,;(p, 4) the Majorana

operators, and they obey the anticommutation relation,

{ai(p.4). aj;(q. )} = 2E;(p)(27)*5%) (p — q)5;;6,1. (21)

with all others being zero.

Using Eq. (19) with the expansions Egs. (20) and (8), one can derive the relation between the operators a,(p, ), b,(p, t)
and the operators for massive fields a,;(p,4) for arbitrary time #:

V2Ipl(E;(p) + Ip]) < : im; : _
a,(£p, 1) = Vg api(Ep, —)e B £ 14T (Fp, —)eEip) ), o)
S 2E,(p) ui(+P. ) E(p) + [p] “¥i (TP @)
V2Ip|(Ei(p) + Ip) ( : im; ; _
ba j:p,t = Vm. Ay ip7 + e—lEi(P)t + "t 4 ; Fp. + elE[(p)t , 23
p.1) 2E(p) i ) Ei(p) + |p| il ) (23)

where +p denotes the momentum directed toward the positive y-axis hemisphere (0 < ¢ < z) and —p denotes the
momentum directed toward the negative y-axis hemisphere (7 < ¢ < 27). Notice, the relations are a nontrivial mixing of
the Majorana annihilation and creation operators forming a,(+p, ) and b,(+p, r). Furthermore, we can identify the
relations as a Bogoliubov transformation that occurs between the operators [53]. The operators a,(+£p, ¢) and b, (+£p, 1), in
Egs. (22) and (23), satisfy the anticommutation relations,

{aa(£p, 1), aj(+q, 1)} = {ba(£p, 1), bj(£q, 1)} = 2|p[(27)*5) (p — )34p, (24)
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with all other relations being zero. The inverse relations at ¢ = 7, are also obtained as

ayi(Ep, =) = e (2)7p—||—|p|< iap(EP.to) F Vi EN 1;11+ D] /; (Fp. %0 ) (25)
al(ctp. ) = 00y [EOLE R ) 2 vy () ) (20
i (P, +) = elE®) %(Vﬂlbﬁ(ip,to) TV (’;”H |bT :Fp,to) (27)
alutetp. ) = 50 [EE R (. 1) v () ). (28)

By substituting the inverse relations Egs. (25)—(28) into Egs. (22) and (23), we obtain relations between the arbitrary time
operators (a,(=£p, 1), b,(£p,?)) and the initial time operators (a,(£p. ty), b, (£P. 19)):

(0.0) = 3257 (Vi soss o)1= 0] = 2l 01— )] .

p=e Jj )

 VagViy iy SOlE )t )] 1)) (29)
(5p.0) = 33 (Vi ool ) ) = 1 8 sl = ] 210

FVigVis g (g SR = )6 (7. 10) ). (30)

Equations (29) and (30) tell us the relations between the operators (a,(%p, 1), b,(£p, 1)) and (a,(Ep, ty), be(£P. ty))
depend on time through the difference T = ¢ — t,,.
We rewrite the Majorana density operator of Eq. (14) using the expansion with massless spinors in Eq. (8):

' Pk [1 dp

M(1,x) = (k.1 L (k)y° —ikp)x 4 p (K, 1 NTL(K)y° i(k-+p)x
a( X) (27[)32|k| (2”)32|p|[a ( )aa(p )ML( )}/ uL(p)e + (l( )aa(p )UL( )]/ ML(p)e
+ al(k, )be(p, 1)ug (K)y v, (p)e " ® X — bl(p, 1)b,(K, 1)v (K)y vy (p)e’P)¥], (31)
|
where the integration region |” does not include the zero v (g% 0., to) = 1 !
momentum mode. Next, we can write the time evolution Vold™0q)-fo) = V/0q(27) 3/4 \/_ / 20|

the Majorana density, solely in terms of the operators
a,(p,ty) and b,(p,t,) by substituting the relations of
Egs. (29) and (30). The result for the time evolution of
Eq. (13) was first presented in Ref. [27]. )

To study the spacetime evolution, we take the expect- ~ Where A = (27)5%(0) denotes the area for the two-dimen-
ation value of the Majorana density operator (i, (¢°; o), sional space (xl.,x.3) perpendlc.ula.r to the direction of the
momentum. This is a normalization factor that leads to
<l//o'(q0; Uq)v Z‘0|er(t = t0)|l//6(q0; Uq)v t0> = 1. The vacuum
|0(1y)) satisfies

_(4—00)2

xe i ag(q.10)|0(to)) (32)

1o (1, X)W, (" 0,). 1g). We assume the initial momen-
tum state of [y, (¢°;6,). o) is sharply peaked at zero in the
first and third components, but has a Gaussian distribution
in the second, i.e., ¢ = (0,¢,0). This leads to a shape
similar to a 1D Gaussian wave packet, a(p. 10)[0(19)) = b(p. 10)|0(z9)) = 0. (33)
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for all nonzero p. In Eq. (32), 6, is the width of the Gaussian distribution in the second component of the momentum. The

second component of the mean momentum ¢° is positive for the Gaussian distribution. Sandwiching the Majorana density
operator of Eq. (31) with Eq. (32) and taking the integration over k and p results in

1 ’ dq/dq _(q’—qo)zj(q—qo)z_i(q/_q)ez.x
<l//0(q0;6q)’tO‘lg[(t’X)|W0'(q0;0q)’t0> = G (27[)3/2 // A ¢ 42
q

{Zv* VoV Ve, (cosE,-(q’)T—i—i |q,

Ei(q')
X <cosEj(q)T—i 4l s1nEj(q)T>
Ej(q)
m; m;
=) ViViVeiVei——FrsinE;(q sin E;(q T], (34
lzj: ] jE,(q’) ) E;(Q) ( ) )

where T = 1 — 1 is the time difference and e} = (0, 1, 0) is the unit vector. The integration over x; and x5 results in a linear
density, which we denote as

j'il'/[—wz(T i tO’XZ) = // dxldx3<l//0(q0;aq)7 t0|lg/l(t’ X)|l//0.(q0;6q), t0>' (35)

The result of the integration is

_(d'=a"?+(a=¢"2
WM (T =t—19,x)) = N / / dg'dge EamUal {ZV*V VeV <cosEi(q’)T—|—iE sinE,-(q')T>

isinE,.(q)T] . (36)

Ei(q)

la| .
% ((oSEj(q)T =i rsinEy(q)T ) = ViViiViVoj e sin Ej(¢/)T
( / Ej(q) ! i woita GJE (q)

where x, = e, - x. We note that a factor of 1/A is absent in the linear density because f[dxldx3(1 JA) =1.

To perform the integration over ¢’ and ¢ in Eq. (36) we must assume two properties about the Gaussian distributions.
First, the distributions are sharply peaked around the mean momentum value ¢°, i.e., 5, < ¢°. Second, the width (variance)
of the distribution ¢, does not change in spacetime. Those two assumptions allow us to approximate the ¢’ and g integration
as Gaussian because

Eila”) = Bigld) + 5= (0 = ) (37)

The Gaussian integration of Eq. (36) leads to

1 )
AT =t =19, 2,) = (27) 1/2 VaiVoiVaiVsjz [(vi0 + vjo + 1 + vigwjo) e Eld" ) EN@NT g=eillxa=vT)*+ (=0T}
) E : . A

— (vi() + Uj() -1 = /Ul.O/UjO)e_i(Ei(qo)_Ej(qn))Te_aé[<x2+v[OT)2+(x2+ijT)2]
+ (Uio — Uj() + 1 — viovjo)ei(Ei(qo)+Ej(qo))Te_o':z/[(XZ_”iOT)2+(x2+Uj0T)Z]

—(vjp — vio— 1+ UioUj())e—i(E[(q“)-kE‘/-(q“))Te—o-ﬁ[(x2+v[0T)2+(x2—v,0T)2]}

Oq % Y% T ,—62[(x2=v;T)*+(x2—v;oT)?
G ZV’“V‘”V Vain/1 /1= 1} 4NT =03 [(x2=vi0T)*+(x2=00T)*]
LJ

+ e~ (Ei(@")~Ej(°))T p=ogl(xa+vioT) +(x2+vjoT)] _ pi(Ei(q°)+E;(¢°NT p=0g[(xa=vioT)*+(x2+0,0T)?]

— ¢ IE(d)HE(@")T g=ogl(xatoioT )+ (ea=vj0T)]] (38)
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where v; ;o = q°/E; j(qo) are the group velocities of the distributions. The terms with the PMNS matrix combination
V3iVsiVaijVsj are dependent on the Majorana phases and are suppressed by the small masses of neutrinos

at ool

1- 1;12 jo=mi;/E; j(qo). Lastly, to compare with our previous work’s result that considered only the time evolution

of plane waves, we integrate the linear density of Eq. (38) over all space,

1 )
/ﬂ‘yﬁa(T = 1= 1, X%)dx) = 1 E ViiVaiVaiViil(vio + vjo + 1+ UioUjo)e’(Ei(qo)_E’(qO))Te_g"
i

— (vi0 + vjo = 1 = vigwy)e Bl )E @ NT ¢=03

+ (vio — vjo + 1 — vy )€/ Bl ENENT =i

2
2(1','0“_/0)27'
2

2 ig+0j0)* T
2
272

(vio=vjo)
2

5 (ig=j0)>T?

= (vig = vjo — 1 + vygvjo) e EldIHEHINT g=oi—

1 o
- Z Zv(livaivajvgjmm
LJ

« [N BB (T 4 pmilE )BT ot 2
. . (i —v; )2T2
— (!B )+E(aNT 4 o=ilEia"I+E(¢)T ) gm0t (39)

The result of our previous work [27] is recovered in the
plane wave limit, for which we take the width o, of the
density in momentum space to zero.

B. Dirac neutrino formulation

For a Dirac neutrino, we start from the following
Lagrangian:

LP = Vr,iy",v1e + Ural?" 0uVRa
— (UraMapVip + U—Ixx(mT)(z/}VR,b’)' (40)

The first and second terms are Kinetic ones and third term is
a Dirac mass one. The equation of motion is derived as

i}/”a”l/La = (mT)(l//)l/Rﬂ’ (41)

i}/ﬂaﬂl/Ra = maﬁl/Lﬂ. (42)

We expand left and right chiral fields by massless spinors

Vialt.X) = / K TP, (p)aga(p. e

27)°2|p|
+0L(p)bro(p. 1)eP), (43)
— /6137[) u a €i X
nal1.0) = [ G (). )
+0p(p)0 (o)), (44)

We have introduced a creation and annihilation operators
for the fields for each chirality. The massless spinors for the

left chirality field v, are the same as Eq. (9), while the
following massless spinors are used for right chirality field:

) = —ont0) = VI (T ) e

In contrast to the Majorana case, the Dirac mass matrix is
diagonalized by two mixing matrices,

IJL/} = V/ijVLjv (46)
Vra = Ugilgi> (47)
(UT)iaapV 5 = miS;;. (48)

Then the equations of motion, Eqs. (41) and (42), for the
mass basis turn into the following form:

i}’”aﬂyu = M;VRi, (49)

iy'0,vg; = my;. (50)

The Dirac field with the definite mass m; is constructed as
wpi(X, 1) = vp(X, 1) + vgi(X, 1), (51)

= Vaitra(X. 1) + Ugivre(x, 7). (52)

We expand the Dirac field in Eq. (51) using massive
spinors,
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" dp , .
(x,0)= [ ——— § (p, A)a;(p, A)e i (Eit-px) (p, )b (p, A)eiEit=px)) 33
WDZ(X ) / (277)32Ei(p) - (ul(p )al(p )e + Uz(p ) i (p )e ) ( )

where A is the helicity. The mass operators a;(p,4) and b;(p, ) obey the usual anticommutation relations,
{ai(p,4), a;(q,/l)} = (2”)32Ei(l))5ij5(3>(13 -q), (54)

{bi(p.4).b}(q. 1)} = (27)*2E;(p)5,;6% (p — q). (55)

All other anticommutation relations are zero. Using Eqgs. (43), (44), and (51)—(53), the operators for the flavor basis can be
related to the mass basis:

1 3 VE; . , . .
apa(tp. 1) = 3 v, VEAR) L IP] (a,(ip, L e —>efEf<P>f), (56)

V2/p] 2E,(p) Ei(p) +[p

1 : E(p) + [p] ~ m, :
b (Ep.1) =) Ve b} (£p, +)e PP i —q,(Fp, +)e EP)N ). (57)
N Z 2E;(p) Ei(p) + |p|

Where the relations for the right-handed operators ag,, bg, are found by replacing the PMNS matrices V — U and flipping
the operator helicity a;(£p, £) — a;(£p, F), b;(£p.+) — b;(£p, F).' Again, the operators obey the usual anticom-
mutation relations of

{ara(£p. 1), a} 5(+q,1)} = 2[p|(27)*5 (p — q)5,, (58)

{bra(£p.1), b} 5(+q,1)} = 2|p|(27)*5%) (p — q)5,, (59)

with all others being zero. Similar anticommutation relations hold for the right-handed operators.

The time evolution of Egs. (56) and (57) starting from operators defined at t = ¢, can be calculated using a similar
method to the Majorana case, Eqs. (29) and (30). We first write the massive operators a;(p. 1) and b! (p, 1) in terms of the
operators d; (P, to), bra(P, 1), dra(Ps to), and by, (P, ty) using the inverted relations of Egs. (56) and (57), and their right-
handed counterparts. Then we substitute those inverted relations at ¢ = ,, into the massive operators of Egs. (56) and (57) to
find the time evolution to be

3 T
« . P . L M
apa(Ep.1) = z z [Vaiv/ﬁ <005 E(p)T - lE| (| )smEi(p)T) ars(£p. to) F ViU E )sm E;(p)Thy,(Fp, fo)],
i=1 f=e i p i p
(60)
3 T T
% . p . « ml' .
a (Ep.t) =D > ViV, (cos E(p)T + ’E|. (Il)) sin £;(p)T ) ay,(+p.1y) F ViU Ep)th E;(p)Tbr,(Fp. lo)] ;
i=1 y=e L J :
(61)
3 T T b
" . P . ” m;
bra(£p.1) = Z Z VaiVpi (COS E(p)T - lE| (| >s1nEi(p)T) brs(£p.to) F VaiUﬂimmnEi<p)Ta;ﬂ(:Fp’ to) |
i=1 p=e L i\P (P |
(62)
3 T -
. . 1P . L Mmoo
bro(Ep.1) = Z Z |:Vaivyi <COS E(p)T + ZE|~([|)) sin Ei(P)T) by, (£p. 1) F VainiWSIH E;(p)Tag,(Fp. 1)
i=1 y=e ! t R
(63)

'"The Dirac case operator relations first appeared in the thesis of [29].
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where the right-handed operators are just replacements of the PMNS matrices U — V, V — U and the handedness
agr) — ARy b.r) = by We define the lepton family number density, for both the left- and right-handed Dirac

neutrinos,
15(1.x) = 00,(£. %) w14 (2.X) 2, (64)
R(1,%) = gt X)7 a1 ). (65)

Then, the evolution of the lepton family number density for the left-handed case Eq. (64) is obtained by substituting the time
dependent form of Eq. (43),

" Pk 4 d3p ¥ _ —i i X
lé(t,X) :/ (271')32|k| (2”)32|p| [aLa(k’t)aLa(p’t)uL<k)y0uL(p) (k=) +bLa(k t)aLa(p7 ) (k)youL(p)e (t+p)

+ag (K. )by (. uL (K)y v (p)e™ 6> — b] o (p.1)bpo (K. )T (K)y v (p)e ™)), (66)
whereas the right-handed form is a replacement of the spinors and operators from L to R. Next, we write the expectation
value using a similar state [y,(¢%; ). fo) as Eq. (32), but with the left-handed operator replaced as al(q, ty) — aj,(q. f).

We sandwich the left-handed density for the lepton family number of Eq. (66) with the left-handed state |y (¢°; 0,). 1) and
integrate over Kk, p to result in

rdd'dg -4=2la=d? q°> <q 2 _i(g'=q)
(vl 6‘1) tol 15 (1. %) w5 (q"; 104), fo) s (2x 3/2// ; q R
L]

/
[Zvalv VeV, (cosEi(q/)T+i |q|, sinE,.(q')T)
Ei(q')

x (cos E(q)T - iE',-?q) sinEj(q)T)]. (67)

An initial right-handed state of Eq. (67), (wX(¢°;0,). 1|I8(2,x)|w%(q°; 6,). 1), is obtained by interchanging the matrices
as U —» V, V - U. Lastly, we perform the integration over g and ¢’ using the approximation of Eq. (37) to write the
integrand in Gaussian form. The result is the linear density expectation value of the left-handed lepton family number,

1 . 2 2
/L,L_,a(T =t—1y,X) Qjﬁzv‘tlv VWV:'J 5 [(vio + v+ 1+ 1)[01)]0)g’(Ei(‘IO)—Ej(‘IO))Te—Ué[(xz—UiUT)'Jr(xz—?fjoT)']
iJ
— (vjp + vjo—1— 1}[.0Ujo)e—i(Ei(‘IO)—Ef(qO)>Te—”zz,[(x2+ﬂioT)2+(x2+ﬂjoT)2]
+ (UiO —_ Uj() + 1 —_ /Ul.oijO)ei(EI(qO)‘l'Ei(qo))Te_o%[(XZ_UIOT)Z+(X2+17jOT>2]
— 14 vav ) e {E@)HE(@NT g=og(xa+viT) +(x2=vjoT)*]] 68

( Vio — + i0 ]0) } ( )
Where we have defined A5, (T = 1 — 1o, x;) = [[dx,dx3(w5(q"; 0,), 0|15 (2, %)[w5 (¢°; 0,), o). The process for solving for

the linear density of the right-handed lepton family number of Eq. (65) is the same. After sandwiching the right-handed
density of Eq. (65) with the left-handed state [y (¢°;0,). 1)) and integrating over k, p our result is

’dq/dq == gy x
WE(q% 0,), 10l15 (1, x) W& (q% 0,). 10) @) // “

[ZU ViU LsinE(q’)T i
el Ei(¢) 777 Eiq)

sinE;(q)T|. (69)

Thus, we write the resulting linear density expectation value of the right-handed lepton family number,
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/15_,0,(T=t—t0,x2)~—27[2,/1_v /1 1) e g (v} +075)T*+2x3)

x {Re(U%,V 5iUgy; V. )[cosh(Za (vjo + vjo)Tx2) cos((E;(¢°) — E;(¢°))T)

aj ¥ oj

— cosh(267 (v;0 —

vjo)Txz) cos((E

i(4°) + E(q°)T)]

- Im(U, VU V* )[sinh(26% (vio + v;0)Txy) sin((E;(¢°) — E;(¢°))T)

aj V¥ oj

— sinh(262 (v;9 —

where A8 (T =t — 19, x,) = /fdxldx3<l//§(q0§ 04)s
tol 15 (1. X) w5 (q"% o,). 10)-

C. Comparison to wave packet formulations

The results we present in Egs. (38), (68), and (70) are based
on the evolution of a density operator. We will now discuss an
interpretation of those results based on wave packet for-
mulations. Specifically, wave packets have been used in
connection with neutrino oscillation phenomenology (see
Ref. [41] for a review) as several forms; the quantum
mechanical (QM) formulation [22], and the external wave
packet quantum field theory (QFT) formulation [38,40]. We
will focus on comparisons to interpretations in the quantum
mechanical formulation, because it is the simplest in
literature.

Often discussed in literature see Refs. [23-25,33],
neutrino oscillations occur when three types of coherence
are satisfied:

(1) The different massive neutrino components are

coherently produced.

(2) Coherent propagation of massive neutrino com-

ponents.

(3) Coherent detection of the different massive com-

ponents.
We do not consider any production or detection processes,
so we cannot discuss the possibility of coherent detection in
our formulation. The initial density state of Eq. (32)
captures the properties of coherent propagation, similar
to the QM wave packet.
|

v0)Tx,) sin((E

i(a°) + Ej(¢°)T)]} (70)

|

A prediction of the QM wave packet formulation is the
coherence length LCOh for oscillations [26]. The coherence
length is a measure of the group velocities for the mass
eigenstates that appears after integration over time. It acts
as a damping factor on the oscillations in space. We find a
similar damping in our density formulation. The damping
appears as a real exponential component that depends
quadratically on spacetime,

e~ 0alaEvT) +(xa£0;0T)?] ,

(71)

e~ (atvigT) + (72)

(2 Fv,0T)]

These real components are a nonlinear damping that is
applied to the density oscillation. An important distinction
between our density formulation and the QM formulation
are the types of damping. The QM formulation of Eq. (3) in
Ref. [22] has a single type of damping to coincide with the
single type of oscillation

e_”z[(x2_7’i0T)2+(xz_”jOT)z]’ (73)
which we denote as (—, —). Whereas, our density formu-
lation has four different types damping, (—,—),(—,+),
(+,-), (+,+). Each damping is applied to a different
oscillation in Egs. (38), (68), and (70). The (+, +) is the
strongest damping factor and (—, —) is the weakest damp-
ing, which we illustrate by minimizing the polynomials
inside the exponentials assuming x, > 0:

2 Vig — Vig)?
P, (xz, T=_2 > = x%(’oijo)z from(—, —), (74)
Vip + Vjo (vio + vj0)
2 3(vi + v:0)% 4+ 202 + 02
P, (xz, T——"2 ) _ gg 20t ) + 2 i ) from(+. 1), (75)
Vo + Vjo (vio + vjo)
2x, ”2'0
Pilx, T=—"= ) =2x24+8x2—" _ from(—,+), 76
3( ? Uio+vj0> ? 2(”i0+vj0)2 ( ) (76)
2x, V2
Pylxy) T=—"—) =2x2+832—C __ from(+,-). 77
4( ? Uio+vjo> ? 2(”i0+vj0)2 ( ) (77)

Notice the peak value of (—, —) is damped at the peak by P, < 2x3 causing it to be weak. Whereas the peak values of

(+.4), (= +), and (+

,—) are damped with P,3, > 2x3 strengthening their suppression of the oscillations.
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If we perturb slightly away from the peak time, then the
strength of the damping factors depend directly on the
velocities. For example,

2 2
PI(XZ’T: g +AT)—P1<X2,T:#)
Vo + Vjo Vip + Vjo
2 = )2
— (13 + v} (AT)? | 2l =00\ (78)

Uio + Uj()

So, a decrease in the velocities lead to longer damp-
ing times.

After we integrate over all space to arrive at Eq. (39), the
damping factors appear as two types =+:

V2
T~ — = (79)
Yoy (vig E vjo)
which we write as a coherence time Tff’jh. In the usual QM
case only a single damping factor appears for the oscil-
lations (v;9 + v}9). However, new oscillation terms appear

in our formulation corresponding to e*/Ei(@)TE@T o
which a new damping factor (v;y — v;) is applied.

IV. COMPARISON OF THE DIRAC
AND MAJORANA FORMULATIONS

From the expectation value equations of Egs. (38), (68),
and (70) we find signatures of the Dirac and Majorana
formulations. First, the terms proportional to the PMNS
matrix combination of V3,V ;V,; V7 are common between
the formulations. Those terms are the first summation from
Eq. (38) of the Majorana formulation and the left-handed
Dirac formulation Eq. (68). The difference between the
formulations is the secondary term of the Majorana
formulation and the right-handed Dirac formulation
Eq. (70). The secondary term of the Majorana formulation
has the PMNS combination V;,;V;,V,;V,; that is related to
the Majorana phases and is subtracted from the common
oscillation terms. Whereas, the second unitary matrix U,
from the right-handed Dirac formulation is present in
Eq. (70) and is added to Eq. (68) as AL (T =t — ty, x,) =
Jfaxidxs(wi (g% 0,), t0ll (2, %) + 15 (1. %) Wi (¢ 0,), 10)-
The sign of the different terms, subtraction for Majorana and
addition for Dirac, is responsible for total lepton number
violation in the Majorana case. To help emphasize the affect
of the sign difference we write the expectation value of the
total lepton number for the Dirac formulation case,

Z/Ia—m =1- tO’x2)
Zlm

(1= wig)e T, (50

1+ 1)[0 —253, (xo—v;oT)?

where integration over x, would result in total lepton number
conservation for all times. Next, from Eq. (38), we also take
the summation over the lepton family numbers a as follows:

2 AT
z—qz|v '|2[1}~0(1 + U'o)e_zgg(XZ_UioT)z
\/ﬂ i oi i i

—20‘5 (x2+0;0T)?

=1— to,X2)

— V(1 —vj)e

+2(1 = v3)) e 20uaT* ) cos 2E;(¢°)T). (81)

In Eq. (80) for the Dirac case, there is no oscillation term
and the linear density of the total lepton number is always
positive. For a nonrelativistic Majorana neutrino (v, << 1) in
Eq. (81), the oscillation term can dominate and the sign of the
linear density can change with respect to time.

V. ILLUSTRATION OF NONRELATIVISTIC
DIFFERENCES

From inspection of the expectation values, Eqs. (38),
(68), and (70), and the discussions in Secs. III C and IV we
see two key results:

(i) Differences between our formulation and the usual

QM formulation are negligible under the ultrarela-

tivistic assumption.
'ZfE = /1 =v}/1 =07 sup-

press any modifications by the Dirac or Majorana

mass formulations.

To illustrate those results we choose Mg = 0.01 €V <
q° = 0.2 eV for the linear density expectations of Egs. (38)
and (68). Even for a momentum an order of magnitude
greater than the mass, differences between the Majorana
and Dirac cases are not visible (Figs. 1 and 2). We used
the best fit values of the PMNS mixing angles 6,, 6,3, and
013, the CP violating phase dcp, and the mass squared
differences Am3, and Am3, from the work of the NuFIT
5.0 (2020) collaboration [54]. Then, we are left to choose
the absolute mass of the lightest neutrino m; or mjs, the
neutrino mass hierarchy, normal m; < m, < ms; or
inverted ms < m; < m,, the value of the mean momentum
g, the width of the initial Gaussian density Gy the time
T =t —ty, the distance x,, and the Majorana phases ay;
and a3,. The definition of the Majorana phases is given as
oy =2arg(V,,) and a3 =2arg(V,3). Any changes
caused by different Majorana phases are also hidden,
because the differences between the Majorana and Dirac
cases are not visible for mjjgpeq = 0.01 eV < q° =02eV.

The decoherence effects discussed in Sec. III C from the
real exponentials of Egs. (38), (68), and (70) cause the
oscillations to be localized to a spacetime region. In Fig. 3,
we show the 2D spacetime contour for an electron number
linear density for the 6 = e - a = e case. The region
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(a) Majorana Expectation Value

(b) Dirac Expectation Value

0.4

0.3

0.2 1

linear Lepton Number density A

0.1 i vW |

0.0

‘ |
n»w

T T \W"“

T T
0 50 100 150

FIG. 1.

T T
0 50 100 150

Time T (ps)

Time evolution of the linear density for the expectation value of a lepton family number with Majorana (a) or Dirac (b) mass.

We take an arbitrary distance slice at x, = 2.5 cm. The initial momentum density is a Gaussian distribution with a width of
6, = 0.00001 and a mean momentum of g° = 0.2 eV. Normal mass hierarchy is considered. Oscillation parameters are the best fit

values from the NuFIT 5.0 (2020) collaboration [54].

where the electron number linear density has a maximum
peak of ~0.4 propagates from the spacetime origin
(t,x,) = (0,0) toward the upper right corner at a constant
velocity. The initial Gaussian shape is maintained during
propagation because we assumed no wave packet spreading
in the approximation of Eq. (37).

We discussed in Sec. IV how the total lepton number
becomes violated in the Majorana case, and we illustrate

(a) Majorana Expectation Value

that by decreasing the momentum to ¢° = 0.0002 <
Miighiest = 0.01 €V in Fig. 4. This leads to the distinction
between the Majorana and Dirac cases, in which the
Majorana case has negative expectation values. Both cases
feature the small period oscillations of the inset graph
because of lines 4 and 5 from Eq. (68). Those lines are not
present in the usual QM formulation, so these small period
oscillations can distinguish our formulation.

(b) Dirac Expectation Value

linear Lepton Number density A

T T
0 50 100 150

T T
0 50 100 150

Time T (ps)

FIG. 2. Similar to Fig. 1, time evolution of the linear density for the expectation value of a lepton family number at x, = 2.5 cm.
However, we now consider the 6 = e, @ = 7 lepton family number values. The initial momentum density is a Gaussian distribution with
a width of ¢, = 0.00001 and a mean momentum of ¢° = 0.2 eV. Normal mass hierarchy is considered. Oscillation parameters are the

best fit values from the NuFIT 5.0 (2020) collaboration [54].
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0.4

0.3 1
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linear Lepton Number density A
o
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FIG. 3. Two-dimensional spacetime contour of the linear density for the expectation value of the electron family number with a Dirac

mass. The initial momentum density is a Gaussian distribution with a width of ¢,

4 = 0.00001 and a mean momentum of q° =0.2eV.

Normal mass hierarchy for neutrinos is considered. Lepton mixing angles, the Dirac CP phase, and the mass squared differences are the
reported best fit values from the work of the NuFIT 5.0 (2020) collaboration [54].

By comparing Figs. 1 and 4, the oscillations occur for
longer times when the average momentum is smaller. This
was discussed in Sec. III C, where Eq. (78) was given as an
example. To recall, the strength of the damping factors
depend directly on the velocities. So, a decrease in the
velocities lead to longer damping times.

Next, in the distance plane of Fig. 5 the smaller momenta
suppress the peak value for the linear density of the lepton

(a) Majorana Expectation Value

family numbers. This follows directly from Eq. (74),
where for ¢ = 0.2 eV the polynomial is larger than for
g° = 0.0002 eV. Thus, the propagation coherence occurs
at smaller distances, which is sometimes stated as a smaller
coherence length. Even with this in mind, at smaller
momenta the Dirac and Majorana cases are distinguishable.
Similar to Fig. 4, the Majorana case has negative expect-
ation values and the Dirac case is always positive.

(b) Dirac Expectation Value

0.10
<
5
‘» 0.05+
c
[0
©
]
E
S 0.00
z 0.10
c
[e]
a
3 0.05 -
5 -0.05+
(0]
£ 0.00 T T T
4500 4501 4502 4503 4504
‘01 0 T T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time T (ps)

FIG. 4. Time evolution of the linear density for the expectation value of a lepton family number at x, = 2.5 cm. We now consider the
initial momentum density to have a mean momentum of ¢° = 0.0002 eV for a Gaussian distribution with a width of o, = 0.00001.
Compared to the preceding figures, differences between Majorana and Dirac are visible because ¢° = 0.0002 < Myjghest = 0.01 V.

Normal mass hierarchy is considered. Oscillation parameters are the

reported best fit values from the work of the NuFIT 5.0 (2020)

collaboration [54]. In addition, we choose the Majorana phases to be arbitrary values of a,; = # and a3; = 0.57.
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(@) Majorana Expectation Value

(b) Dirac Expectation Value

linear Lepton Number density A

Lepton Number
—o=ea=c¢€
—o=ea=/

—o=ea=T

Momentum
— ¢"=0.0002
— T'=9312 (ps)
== ¢"=0.2
--- T=167 (ps)

0 5 10 O

Distance x2 (cm)

FIG. 5.

Distance evolution of the linear density for the expectation value of a lepton family number. We have taken different time slices

corresponding to when the peak of the linear densities are near x, = 5.0 cm. Normal mass hierarchy is considered, and we choose the
Majorana phases to be arbitrary values of @,; = 7 and @3; = 0.5z. Oscillation parameters are the reported best fit values from the work

of the NuFIT 5.0 (2020) collaboration [54].

VI. CONCLUSION

We have proposed a novel formulation for neutrino
oscillations from a QFT point of view. This formula-
tion can be applied to both relativistic and nonrelativistic
energies for neutrinos. The previous formulation was limited
to Majorana neutrinos with a fixed momentum. We have
extended the previous formulation to the Dirac neutrino case
and have applied to the case with a momentum distribution.
To study the oscillation of neutrino with a momentum
distribution, we have considered the linear lepton number
density and the initial state with a Gaussian distribution along
a one spacial direction. After taking the expectation value of
the density with the state, we find a result similar to the
quantum mechanical wave packet approach used to describe
neutrino flavor oscillations. Our result has additional terms
that result in interesting behavior. In particular, we have
studied type of decoherence ascribed to wave packet sepa-
ration. We have found how the peak value of lepton number
density is suppressed as it propagates. Even with that
decoherence our formulation can distinguish between the
neutrino mass type at nonrelativistic energies. The mass
types, the expectation value of the lepton number density for
Majorana neutrinos can take both positive and negative value
while for Dirac neutrinos, it does not change the sign.
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APPENDIX: QUANTIZATION WITH THE ZERO
MODE AND THE MASSLESS SPINORS

In this appendix, we demonstrate the quantization with
the massless spinor in Eq. (8) by adding the zero mode. The
zero mode corresponds a massive fermion in its rest frame.
The quantization based on the Dirac bracket is carried out.
For simplicity, we consider only the single flavor version of
the Lagrangian in Eq. (6). We write the Lagrangian in terms
of two component spinor # including the zero mode as will
be shown in Eq. (A13),

0
v (x, 1) = ( ) (A1)
n(x.1)
Then the Lagrangian is given as follows:
. m . .
L =n'ie"dn—5 (=n'ioyn” +n"ioyn).  (A2)
By treating 7' as independent variables,
oc . oL
m, = P in', my = o =0, (A3)
one obtains the following two constraints:
¢ =m,—in" =0, ¢ =m,; =0. (A4)
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The Hamiltonian is given by

H= i/dx:fo- - Vp +%/ dx(—nTicon* +nTioyn).

(AS)

Following Dirac, we aim to obtain the anticommutation relation, for #, based on the Dirac bracket. For instance, the Dirac

bracket for 7 and ;" is calculated to be

{n(x, 1).77° (y. ) }pg = {n(x. ). 0" (v. ) }pp = D / Py {n(x, 1), pa(x. 1) }pg (N 7)o (X' ¥ )6 (¥ 1) 11" (y. 1) Fp.

a=1,2

(A6)

where PB denotes the Poisson bracket and DB the Dirac bracket. N, is a matrix of the Poisson bracket for the constraints

Nap(x,y) = {Pa(x. 1), dp(y. 1) }pp = (f)

where 1,,, represents a two-by-two unit matrix that acts on
the two component spinors. The inverse matrix (N~!),, is
calculated to be

(N"Dap = <O

1

(i)>5(3)(x —¥) . (A8)

Then the Dirac brackets among 7 and ;" are given as

{n(x.1).n"(y. 1) }pp = =i6® (x =y) 1o, (A9)
{n(x,1).n(y. ) }pp = {n"(x.1).7°(y. 1) }pg = 0. (A10)
Then the anticommutation relations are

{n(x.0).0'(y.0)} =8V (x =y)Toa,  (AlL)
{n(x.0).n(y.0)} = {n"(x.0).n"(y.0)} =0.  (Al2)

Now, we write the two component spinor 7 with the
massless, nonzero mode expansion from Eq. (8) and
include a zero mode contribution,

— ' d3p a P
0 = | Gy /] PO

= b'(p.1)p_(my)e™PX) + 5°(1). (A13)

3

nx.1) = (6) + / ap

pea (27)*1/2/p]

+la(=p. 1)p_(-mp) = b7 (p. )¢—(mp) e}

Then the Fourier transformation is carried out:

dxn(x,t)e” 9% =
/ 2|q|

la(q.t)p_ (nq> - b+(“lv t)¢—(_nq)]’

. (A7

1
)5<3><x ¥,

[
In the right-hand side of Eq. (A13), the first term represents
nonzero modes while the second term represents zero mode
defined as

/d3xr](x, 1) = Vn'(1), (A14)

with V = (27)*6®) (p = 0). Our goal is to determine the
equal-time operator relations among the creation and
annihilation operators for both zero mode and nonzero
modes with the knowledge of Egs. (All) and (A12).
Additionally, we will introduce the zero mode contribution
to the lepton number density operator and its expectation
value. The anticommutation for the zero mode is extracted
with Eq. (A11) by integrating over x and y,

0001 (00} =0 (A1)

where we denote the two component spinor indices with i,
Jj =1, 2. Next we focus on the non-zero modes. Recall that
the meaning of f/, in Eq. (A13), is from Eq. (8) and results
in two momenta regions for the spinors. We use that to
explicitly rewrite the integration as a single momenta
region, which we label A,

{[a(p, ))p_(ny) — b (=p, 1)p_(—ny )]

(A16)

(A17)
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1
2|q|

/ Pxn(x. 169 = [a(~q. 1)p_(—ng) - b (q. ) (ng)]. (Al8)

where q is a momentum in the A region. This leads to expressions for the operators of nonzero q,

t gx — ! a xol (- X ei"‘:—l a(—
/d3X¢—(nq)ﬂ(X,t)e X = a (q.1), /d3 PL(—ng)n(x, 1)e’ NG (-q.1), (A19)

1

v2ld|

/ Pxpt (ng)r(x. 1)es™ = -1 pi(q.1), / Pxpt (-ngn(x. e = —— L _piq.n).  (A20)

1
V2|q]

Similar expressions are found for the Hermitian conjugate n' (1, x),

[ @ xnp-mgens = —a@n. [ dxxap(-nge = a0, (A21)

1
V2|9

/ d3xn*<x,r>¢_<nq>e-fq-x=—ﬁb<q,r>, [ @i xu)p-(-ng)en = - —b(-q.0). (a22)

Now we can calculate the equal-time operator relations for a(p, ) and b(p, 1),
{a(g.1).a"(p.0)} = (22)°2[p[8®) (p - q). (A23)

{b(q.1).b™(p.1)} = (27)°2/p|6™ (p — q). (A24)

with all other relations being zero. In addition to these anticommutation relation for nonzero modes, the relation for the zero
mode is given in Eq. (A15). Notice the nonzero mode relations match Eq. (24), which were calculated using the Bogoliubov
transformation. We rewrite the Hamiltonian in Eq. (A5) with the creation and annihilation operators. After the normal
ordering, the result is

l 3
H=H,+ / ﬁ p|[a’(p.t)a(p.?) + b’ (p.1)b(p.1)]
d3
+m /peA ng [—ia(p,t)a(—p,t) — ib(p, t)b(—p,t) + H.c], (A25)

where H|, is the Hamiltonian for the zero mode and it is defined as

m . + . %
Hy = 5 [T (2)ioan" (1) — 0" (2)ioan™ (1)]V. (A26)
The time evolution of the zero mode reads
. d .
i 5(0) = [ H] = (=i (1), (A27)
o d . "
i (=i (1)) = m (1) (A28)

The solution to both Egs. (A27) and (A28) is given by
n°(1) = cosm(t = to)n°(to) — i sinm(t — to)(~ican" (1)). (A29)

For the nonzero modes, considering p € A, the equations of motion are

"%a(PJ) = [a(p.1). H] = Ipla(p. 1) — ima’(-p. 1), (A30)
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L 0 (=p.t) = [a! (=p.).H] = ~lpla’(~p.1) + ima(p.1). .

These lead to solutions consistent with Eq. (29) for the multiflavor case

a(p, 1) = [cos E(p)T - iE|E)p) sinE(p)T} a(p. 1) - % sin[E(p)T]a’ (—p. 1), (A32)
at(-p.1) = [cos E(p)T + iElz)l)') sin E(p)T] at (=p. o) + %sin[E(p)T]a(p, t). (A33)

We used the definition T = ¢ — f,,. The relations consistent with Eq. (30) hold for b(p, ) and b'(—p, ). A difference
between the zero-mode solution of Eq. (A29) and nonzero modes of Eq. (A32) is the amplitude factors. For the zero-mode
cosine and sine amplitudes are not modified by |p|/E(p) or m/E(p).

Next we study the contribution to the lepton number density including the zero mode. The zero mode is represented with
n°(#) and its charge conjugation —ic,7"(¢) as shown in Eq. (A16). We relate the zero mode to a massive Majorana field.
The Fourier expansion of the massive Majorana field is

wu(X.1) = /‘P—p > (au(p.s)u(p,s)e™™ + ap(p. s)v(p, s)e™) (A34)
(27)2E(p) £,

where s is related to the spin component in an arbitrary direction at the rest frame. To extract the zero mode from that
expansion, we integrate over all space

LD 3 (s u(s)e ¢ a(5(s)e ), (a35)

s==+1

W (1)

where the operator is ay(s) = ay(p = 0, s). We have defined u(s) = u(p = 0, s) and v(s) = v(p = 0, 5) as the positive
and negative energy solutions for the particle at rest. In spinor/chiral representation of the gamma matrices, they are given as

u@—wﬂﬁﬁ, mwwww—ﬁiﬂww) (A36)

Jro) o)

One can choose the two component spinors y*)(s = 4-1) as spin up or down with respect to an arbitrary direction. Thus,
they satisfy

(n - o)ys=F) = £ylo=+), (A37)
The zero mode of the expansion in Eq. (A35) should be matched to the zero mode of Eq. (A1) through the relation
v (X, 1) = v (%, 1) + (v (x, 7). (A38)

That relation is equivalent to Eq. (19). We compare the zero modes of both sides of the equation to obtain

o OF
—ioyn’ (1)
= (770 ). (A39)
n° ()
To facilitate the comparison, we rewrite the right-hand side of Eq. (A39) using Eq. (A29),
—io Ot (¢ —im(t—tg) 0(t:) — ic 1t (1 im(t=t) /' _(19(1,) 4 ic-n°T (¢
< wi’? ()) _¢ <770( 0) 1.02’7()*( o)) +€ ( (’(7) (to) .102’(7” (0))) (A40)
(1) 2 n’(ty) — ioan’" (to) 2 1 (to) + ioon”" (1)
The left-hand side of Eq. (A39) is given by Eq. (A35)
0 =5 5 [auts) () Ve + i) (7% Y (A41)
=— ay(s e ay(s e |.
VI = 5 my 2 [ o M o)
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Comparing both sides of Eq. (A39) given by Egs. (A40) and (A41), one obtains

1

10 = 5 7y 3 law e + al (i
= 5y Dol s (51 e (A%2)
where we use the relation ic,y("* = —sy(=%). By substituting the two component spinors y(*) explicitly, we rewrite
Eq. (A42)
= > Cls. 1), (A43)
s==1

where the new operator C(s, t) is given by

ay(s)e™™ + sal (—s)ei™

C(s,t Ad4
(s.1) = \/——V 7 (A44)
That obeys the anticommutation relation following Eq. (A15),
1
{C(s,1),C'(s", 1)} = V5ss'- (A45)
Additionally, it satisfies the differential equation,
dC(s,t
i (s. ) = —smC'(=s,1). (A46)
dt
The solution is given by the operator defined at ¢ = £, as
C(s,t) = cosm(t — ty)C(s, ty) + issinm(t — 1) CT(=s, ty). (A47)

This completes the expansion of Eq. (A16) in terms of the operators for the nonzero modes a(+p, ¢) and b(+£p, t), and the
zero mode operator C(s, 7). The result is

000 = 3200+ [ B (a0 (.0 (e

+a(-p.1)p_(-np) = 0" (p. 1)_(my)] =P} (A48)

Next, we consider the lepton number density operator including the zero mode contribution. This can be viewed as an
extension of Eq. (31) for a single flavor,

M1, x) = :op(x, 0y v (x,1): = Y CP(s.0)C

s==+1

/ o WZcm DX = b7 (p, e ) (1 - _(ny)

s==x1

N(a'(k,1)e ™ > — b(k, 1)e™®*)C(s, 1)

/ (27)* \/flr;i:l

r Pk ' dp
/ 2” \/2|—k \/m(fp (l’lk)T-(ﬁ_(flp))

x :(a'(k,t)e kx — b(k, t)e’k X)(a(p,t)e®* — b (p,t)e”PX):. (A49)
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The first term of Eq. (A49) comes from the zero mode. It is given by the operator defined at r = ¢, in Eq. (A47) to be

> Ci(s.0)C(s. 1) = % (1= cos2m(t — tg)) + cos 2m(t — tg) > _ C'(s.19)C(s. 1o)
s==+1 s==+1

—i{C(=1,15)C(1,1y) — CT(1,15)CT (=1, 1)} sin2m(t — t,). (A50)

The second and third lines of Eq. (A49) are more complicated because they are a mixture of zero with nonzero modes. Line
four of Eq. (A49) is equivalent to a single flavor version of Eq. (31). We take the expectation value of the lepton number
density with the following momentum distribution

|‘P(CIO’%’ *(s0)). t0) = |W(qo§ﬂq), 10) + ¢°(s0)C (50, 10)|0(29)) (AS1)

where |y (¢°;6,), fo) is similar to the initial Gaussian distribution of Eq. (32). It is given by a superposition of the nonzero
modes,

1 ’ _(g=4")?

] i @) (a52)

where q = (0, ¢,0). In addition to nonzero mode contribution, we add the zero mode contribution with the amplitude c°(s).

Note that the dimension of the coefficient is /V. The expectation value of the lepton number densities given by the sum of
the following terms

(W(q°. 04."(s0)). 0|1 (2. X)[¥(q%, 64. °(50)). t0) = (w(q®s04). o] (1. X)w(q"; 0,). 1)
+ s0)(w (g 04), 101 (2, x)C" (50, 10)|0(20)) + H.c.
+ 1c%(s50)[7(0(20)| C (5. 1) I (2. X) C" (50, 1) [0(10)).- (AS3)

We start with the first line by substituting Eq. (A49),

lw(q%0,). 1) =

1 —cos Zm(t — 1)

(w(q%0,). 10lw(q% 0,). 10)

/dq/dq _ qo)i (4-4°)% —i(¢ q) |: m ] m .
* —sinE(¢')T——sin E(q)T
(27 3/2// E(q') () E(q) @

+ <CosE(q’)T—|—z AR )T) (cosE(q)T—i 4 sinE(q)Tﬂ. (A54)

(w(q%0q). to|1™ (1. %)y (q" 0,). t0) =

E(q") E(q)

Although, this result is similar to main text of Eq. (34), the term proportional to 1 — cos 2m(¢ — t) is from the zero mode.
For the last line of Eq. (53), we are able to compute the matrix elements with

(0(t9)|C(s0.19) Y C* (5. 1)C(s.)C (50, 10) |0(10)) =%, (AS55)
s==+1
CO S 2
1€9(s0) PAO(0) s 1) (1, X)C (50, 10) 001)) = (Vf s (A56)

Finally, the third line of Eq. (A49) is computed to be

)" ) (a" (K, 1)e™™ X = b(k, 1)) C(s,1)C7 (50, 1)[0(10)).

G
q 0|/ V2|ks :I:l

/ (2m) \/2|T< S (- m) 1) (. ). tola (. )]0(10) e (0(10) (s )CF (5 10)]0(10).
)’ s==%1
/ 3
-/ #m ()" £9) (g% 0,). tla" (0 1)10(10)) e 1 cos m = 1) (AS7)
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We perform the integral over k using the definition of Eq. (A52) for the bra- vector,

/ &k Tyl 0. i —ikx
/ T(fﬁ—("k)* 7 (g% 0,). t0la" (k. 1)[0(10) e

52K
/ () ) / e % 0(to)la(g, to)a" (k, 1)|0(19))
= T 2 0)ld s lg)a ) 0/)/»
(27)°/2(K] Ac,(2n )3/2,/2 |q
—(”_qg)z—iqez»x
/ &k b (m)’ (m))/ﬂodqe 4 (cos E(q)t + i gl sin E(q)1)
= —————(_ ()" "
kea (27)%/2|K| +0 Aaq(zﬂ)m /24|

x (27)*2lq5(k")5(k* — q)5(k*)

Bk “odge *i l 'x(cosE(q)t + i 14 sin E(q)1)
g |
kei (27)

*V2[K| —oo Ao, (27)3/2\/2]q]
x (27)°2|q|6(k")6(k> — Q)5(k3)v
LR ey g
= (¢ 200 / ———e <cos E(g)t+i sin E(q)t)
+0 Ao, (27) 3/2 E(q)
dg ey 4
+ (p_(—ey)" - / — T e " <cos E(q)t+l sin E(q)t), (A58)
Ac (271)3/2 E(q)

where f dq implies integration over positive ¢ and f dq for negative ¢. If we choose y{*) such that n = e, in
Eq. (A37), then

p-(€)" 7=V =0, (e 0=V =1, (A59)

P_(—ey)" - y 0=l = —i, p_(—ey)" - y0="D = 0. (A60)

By adding all the contributions, the expectation value for the lepton number density Eq. (A49) given by the matrix element
with the state Eq. (A51) is

1 —cos2m(t —ty) N |c(sg = 1)]?

(P(q°. 4. (50 = D)|IM(£.x)[¥(q°. 04. (59 = 1))) =

Vv V2
B ico(so =1)cosmT [-0 dq cos - —(ng)z—iqxz
| qu@ﬂ)s/zz( (EQ@D) + i sinB@n )¢ )
(sg=1)" cosmT [0 dq —iL o e_@;:g)ZHqXZ
iR [ g (costEta)r) = i 2 sin(EtaT) )
dg'dg ~HELE iy g2 , A , gl .
2”)3/2 // 194, @ [(cosE(q)T—l— IEE]q’) smE(q)T) <cosE(q)T— lE(qq) smE(q)T)
- msm E(q’)TE(q) sin E(q)T} . (A61)
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For the opposite direction of the spin state of the zero mode s, = —1, the result is
1 —cos2m(t—ty) |c(so=—1)?
(P(q°.04. (50 = —1))|1M(I,X)\‘I’(q0,0q, cO(so = —1))) = 7 U=to) ) Ov2
0 T _(q—llo)z_i 2
L Sl =—Deosm / <cos E(q)T +i—Tsin E(q)T> € <
+0 Ao, (2m) 3/29 E(q)
® T _(q—q;))eri 2
L “cosm / <cos E(q)T —i—1sin E(q)T> (e =
+0 Ao, (27) 3/29 E(q)
’dq’dq _ 4)4 (a=4"? —i(q'—q)x* |:( |q/| ) |C]| )
° cosE(¢"T + i sin E(¢")T ) cos E(q)T — i sin E(q)T
yeR / I (@) + iy sin ) (@) =i sinElg)
m
- E(¢"\T ——sinE(q)T|. A62
gy BT gm0 (A%

Both Egs. (A61) and (A62) imply that even if the zero mode amplitude c®(s, = +1) vanishes in the initial state, the
expectation value has the new contribution. To examine the effect, we compute the linear density as done in the text by

integrating the lepton number density over the area A = [ [ dx'dx?. The result for Eq. (A62) is

IM(T =t —ty,x*) = /dxldx3<‘{‘(q0,o*q, AO(so = —=1))[IM(2,x)|¥(¢% 6. °(so = —1)))

1 —cos2m(t — o) N |0 (so = =1)?
B L VL
0 — _1 T _(q—ﬂo)z_i 2
¢ (SO ) cosm / <COSE )T + i ——sin E(q)T) (e wy )
/o ,(27) 3/22 E(Q)

(4=4°)%

— +igx?
i sinE(q)T) (e 7 'qx)

1)* cosmT/ (
cos E(q
/o (2,[ 322 E(q)
’ _d -4° Jrz("q)—i(q—q)x
+0—(27[)3/_2 // dq/dqe 4oy
q

x [(cosE(q’)T—l—i 9 sinE(q’)T) (cosE(q)T—i 4l sinE(q)T>

c(so -

E(q) E(q)
m m
——sinE(q’)T—sinE(q)T}, (A63)
E(q) E(q)
where we use V = AL.
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