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We present scheme-independent calculations of the anomalous dimensions γψ̄ψ ;IR and γχ̄χ;IR of fermion
bilinear operators ψ̄ψ and χ̄χ at an infrared fixed point in an asymptotically free SU(Nc) gauge theory with
massless Dirac fermion content consisting of NF fermions ψa

i in the fundamental representation and NA2

fermions χabj in the antisymmetric rank-2 tensor representation, where i, j are flavor indices. For the case

Nc ¼ 4, NF ¼ 4, and NA2
¼ 4, we compare our results with values of these anomalous dimensions

measured in a recent lattice simulation and find agreement.
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I. INTRODUCTION

An asymptotically free gauge theory with sufficiently
many massless fermions has an infrared zero in its beta
function, which is an infrared fixed point (IRFP) of the
renormalization group [1–3]. At this IRFP the theory is
scale-invariant and is inferred to be conformally invariant
[4], whence the commonly used term “conformal window”
(CW). Because of the asymptotic freedom, one can use
perturbation theory reliably in the deep ultraviolet (UV)
where the gauge coupling approaches zero, and then follow
the renormalization-group flow toward the infrared. These
statements apply to both vectorial and chiral gauge theo-
ries; here we restrict our consideration to vectorial gauge
theories. As the fermion content is reduced, the gauge
coupling at the IRFP increases in strength and eventually
exceeds a value such that there is generically spontaneous
chiral symmetry breaking and dynamical fermion mass
generation. This defines the lower end of the conformal
window. Theories that lie slightly below this lower end
exhibit quasiconformal behavior over a large interval of
Euclidean energy/momentum scales, over which the gauge
coupling runs slowly due to a small beta function. Such
theories just below the lower end of the conformal window
can be relevant to approaches to composite-Higgs scenarios
and associated physics beyond the Standard Model (BSM).
Considerable progress has been made in studies of

quasiconformal vectorial gauge theories with several fla-
vors of fermions transforming according to a single
representation of the gauge group, e.g., SU(3) with NF¼8
Dirac fermions in the fundamental representation [5–7].
For an operator O, the full scaling dimension is denoted

as DO and its free-field value as DO;free. The anomalous
dimension of this operator, denoted γO, is defined via the
relation DO ¼ DO;free − γO. The anomalous dimensions of
gauge-invariant operators at an IRFP are of basic physical
interest. While the simplest gauge theories have used
fermions transforming according to a single representation
of the gauge group, a natural generalization is to study
theories with multiple fermions transforming according to
different representations of the gauge group. In previous
work [8], we presented scheme-independent perturbative
calculations of anomalous dimensions of fermion bilinears
at an IRFP in the conformal window in a theory of this type
(in d ¼ 4 spacetime dimensions at zero temperature), with
a general non-Abelian gauge groupG and massless fermion
content consisting of Nf fermions f in a representation
R and Nf0 fermions f0 in a representation R0 of G [9].
Our calculational method applies at an exact IRFP in the
conformal window (sometimes called the non-Abelian
Coulomb phase). In [10] with S. Girmohanta we studied
theories of this type with G ¼ SUðNcÞ, R equal to the
fundamental representation, and R0 equal to the adjoint
or rank-2 tensor representation and investigated a type of
’t Hooft-Veneziano limit, Nf → ∞, Nc → ∞ with Nf=Nc

and Nf0 fixed.
We denote a gauge theory with gauge group

G ¼ SUðNcÞ and (massless) fermion content consisting
of NF Dirac fermions in the fundamental representation,
denoted F, and NA2

Dirac fermions in the antisymmetric
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rank-2 tensor representation, denoted A2, as ðNc; NF; NA2
Þ

for short. Recently, Ref. [11] reported interesting results
from lattice simulations of the ðNc; NF; NA2

Þ ¼ ð4; 4; 4Þ
theory (for theoretical motivations, see [12]). Since the A2

representation in SU(4) is self-conjugate, the NA2
Dirac

fermions are equivalent to 2NA2
Majorana fermions.

Reference [11] finds evidence for an IRFP inferred to lie
in the conformal window, near its lower end, and presents
measurements of the anomalous dimensions of the F and

A2 fermion bilinears γð4Þm and γð6Þm (where the superscripts
refer to the dimensionalities of these representations of
SU(4)), and of gauge-singlet composite-fermion operators.
Given the conclusion in [11] that this theory is in the
conformal window, a relevant question is whether our
general higher-order perturbative calculations of anoma-
lous dimensions of fermion bilinears in [8], when special-
ized to this theory, yield results in agreement with the
values measured in [11]. To our knowledge, this question
has not been previously investigated in the literature.
In the present work we address and answer this question

for the anomalous dimensions γð4Þm and γð6Þm by extracting the
requisite special case of our general calculations of anoma-
lous dimensions of fermion bilinears in [8] for the
ðNc; NF; NA2

Þ ¼ ð4; 4; 4Þ theory. To state our conclusions
in advance, to within the uncertainties in our finite-
order perturbative calculation, we find agreement with
the lattice results in [11]. The authors of Ref. [11] also
observed that their conclusion that the (4,4,4) theory is in
the conformal window disagreed with a calculation in [13]
(denoted KHL) of the lower boundary of this conformal
window in the ð4; NF; NA2

Þ theory based on a critical

condition on maxðγð4Þm ; γð6Þm Þ, denoted γCC. We investigate
this further here.
As noted above, our calculations of anomalous dimen-

sions of fermion bilinears in [8] were for a general non-
Abelian gauge group G and fermion representations R
and R0. Before presenting our calculations for SU(4) theory,
we will first specialize the results from [8] to the case of the
gauge group G ¼ SUðNcÞ with massless fermion content
consisting of NF Dirac fermions in the fundamental
representation andNA2

Dirac fermions in the antisymmetric
rank-2 tensor representation of SU(Nc), i.e., theories of the
type ðNc; NF; NA2

Þ in our shorthand notation. We then
further specialize to the case Nc ¼ 4, and then finally to
the (4,4,4) theory.
We denote the massless Dirac fermions in the F and A2

representations as ψa
i and χabj ¼ −χbaj , where a, b are

SU(Nc) gauge indices, and i, j are flavor indices
with i ¼ 1;…; NF and j ¼ 1;…; NA2

. We shall use our
general results in [8] to calculate scheme-independent
series expansions for the anomalous dimensions at the
IRFP, denoted γψ̄ψ ;IR and γχ̄χ;IR, of the respective (gauge-
invariant) fermion bilinears

ψ̄ψ ¼
XNf

i¼1

ψ̄a;iψ
a
i ð1:1Þ

and

χ̄χ ¼
XNA2

j¼1

χ̄ab;jχ
ab
j ; ð1:2Þ

where the sums over color indices are understood and
run from 1 to Nc. Although we take the fermions to be
massless, the operators (1.1) and (1.2) would be mass
operators (with all fermion flavors taken to have equal
mass) if these fermions were massive, and for this reason
another common notation for the anomalous dimensions is

γðFÞm ≡ γψ̄ψ ;IR and γðA2Þ
m ≡ γχ̄χ;IR. In the special case Nc ¼ 4,

these are also written with reference to the respective
dimensionalities 4 and 6 of the F and A2 representations

as γð4Þm ≡ γψ̄ψ ;IR and γð6Þm ≡ γχ̄χ;IR. The color and flavor
indices will often be suppressed in the notation.
It should be mentioned that studies were also performed

of the (4,2,2) theory, due to its possible role as a model
for a composite Higgs boson and a partially composite top
quark [14–16]. However, as we noted in [8], the (4,2,2)
theory is in the chirally broken phase, where there is no
exact IRFP and hence where our calculations are not
directly applicable. In general, BSM theories with fermions
in higher-dimensional representations have long been of
interest; in addition to Refs. [11] and [14–16], some of the
many works include [12,17,18].
This paper is organized as follows. In Sec. II we briefly

discuss some relevant background and our general calcula-
tional methods. Section III contains our results for the
anomalous dimensions for SU(Nc) with general NF and
NA2

in the conformal window, while Sec. IV presents the
corresponding formulas for Nc ¼ 4 and for the specific
ðNc; NF; NA2

Þ ¼ ð4; 4; 4Þ theory. Our conclusions are
given in Sec. V.

II. CALCULATIONAL METHODS

In this section we briefly review our calculational
methods and relevant notation. In the context of the general
SU(Nc) gauge group, we first mention two degenerate
cases. If Nc ¼ 2, then the A2 representation is a singlet and
hence decouples from the dynamics, so the theory reduces
to one with fermions in just the fundamental representation.
Hence, in all expressions involving the number NA2

, this
number always occurs multiplied by the factor ðNc − 2Þ.
If Nc ¼ 3, then A2 ¼ F̄, i.e., the A2 representation is the
conjugate fundamental representation of SU(3). Taking
into account the fact that a Dirac fermion f has a
decomposition into chiral components f ¼ fL þ fR and
the property that a left-handed chiral component of a
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fermion can be equivalently written as the charge conjugate
of a right-handed antifermion, it follows that if Nc ¼ 3,
then the theory reduces to one with NF þ NA2

fermions in
the fundamental representation. If Nc ≥ 4, then the F and
A2 representations are distinct.

A. Relevant range of NF and NA2

We denote the running gauge coupling as g ¼ gðμÞ,
where μ is the Euclidean energy/momentum scale at which
this coupling is measured. We define αðμÞ ¼ gðμÞ2=ð4πÞ.
As noted before, since we require the theory to be
asymptotically free, its properties can be computed per-
turbatively in the UV limit at large μ, where αðμÞ → 0. The
dependence of αðμÞ on μ is described by the renormaliza-
tion-group (RG) beta function,

β ¼ dαðμÞ
d ln μ

: ð2:1Þ

The argument μ will generally be suppressed in the
notation. The series expansion of β in powers of α is

β ¼ −2α
X∞
l¼1

blal; ð2:2Þ

where

a≡ g2

16π2
¼ α

4π
; ð2:3Þ

and bl is the l-loop coefficient. For a theory with a
gauge group G and Dirac fermions f and f0 in respective
representations R and R0 of G, the one-loop coefficient in
the beta function is [1]

b1 ¼
1

3

h
11CA − 4ðNfTf þ Nf0Tf0 Þ

i
; ð2:4Þ

and the two-loop coefficient is [2]

b2 ¼
1

3

h
34C2

A − 4NfTfð5CA þ 3CfÞ

− 4Nf0Tf0 ð5CA þ 3Cf0 Þ
i
; ð2:5Þ

where CA, Cf, and Tf are group invariants (see [19] and the
Appendix). With an overall minus sign extracted, as in
Eq. (2.1), the condition of asymptotic freedom is that
b1 > 0. Setting R ¼ F and R0 ¼ A2 and substituting the
values of the group invariants for G ¼ SUðNcÞ, the con-
dition b1 > 0 reads

NF þ ðNc − 2ÞNA2
<

11Nc

2
: ð2:6Þ

The resultant upper (u) limits on NF and NA2
imposed by

the requirement of asymptotic freedom are thus

NF;u ¼
11

2
Nc − ðNc − 2ÞNA2

ð2:7Þ

and

NA2;u ¼
11Nc − 2NF

2ðNc − 2Þ : ð2:8Þ

The maximal order to which the beta function is indepen-
dent of the scheme used for regularization and renormal-
ization is the two-loop order. With b1 > 0, the condition
that this two-loop beta function should have an IR zero is
that b2 < 0. For the SU(Nc) theory, this is the condition

NFð13N2
c − 3Þ þ 2NA2

ðNc − 2Þð8N2
c − 3Nc − 6Þ > 34N3

c:

ð2:9Þ

The region of the first quadrant in the ðNF;NA2
Þ plane

where the inequalities (2.6) and (2.9) are both satisfied will
be denoted IIRZ, where the subscript refers to the existence
of an IR zero (IRZ) in the beta function. We label the upper
and lower boundaries of the IIRZ region as BIRZ;u and
BIRZ;l, respectively. In plotting these boundaries, one
formally generalizes NF and NA2

from positive integers
(or half-integers for NA2

if Nc ¼ 4) to positive real
numbers, with the understanding that the physical cases
are integral (or half-integral for NA2

if Nc ¼ 4).
Analogously, we denote the upper and lower boundaries
of the conformal window as BCW;u and BCW;l, respectively.
The upper boundary BCW;u ¼ BIRZ;u is the solution locus to
the condition b1 ¼ 0. The lower boundary BCW;l is not
exactly known even for the case of theories with fermions
transforming in only one representation; indeed, much
work using lattice simulations has been, and continues
to be, devoted to determining the approximate location
of this lower conformal-window boundary [20,21]. We
discuss this lower boundary BCW;l further below for the
Nc ¼ 4 theory.
Following our labeling convention in [8], we take the

horizontal and vertical axes of the first quadrant of the
ðNF;NA2

Þ plane to be the NF and NA2
axes, respectively.

The boundaries of the IIRZ region given by the equations
b1 ¼ 0 and b2 ¼ 0 are both line segments in this first
quadrant of the ðNF;NA2

Þ plane. In general, the slope of the
line b1 ¼ 0 is

dNA2

dNF
¼ −

1

Nc − 2
; ð2:10Þ
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and the slope of the line b2 ¼ 0 is

dNA2

dNF
¼ −

ð13N2
c − 3Þ

2ðNc − 2Þð8N2
c − 3Nc − 6Þ : ð2:11Þ

B. Higher-order terms in beta function

For a theory with a general gauge group G and Nf

fermions in a single representation, R, the coefficients b1
and b2 were calculated in [1,2], while b3, b4, and b5 were
calculated in the commonly used MS scheme [22] in
[23,24,25,26], respectively (see also [27]). For the analysis
of a theory with fermions in multiple different representa-
tions, one needs generalizations of these results. These are
straightforward to derive in the case of b1 and b2, but new
calculations are required for higher-loop coefficients. These
were performed in [28] (again in the MS scheme) up to
four-loop order, and we used the results of Ref. [28] in [8].

C. Anomalous dimensions

The conventional expansion of the anomalous dimension
γf̄f of the fermion bilinear f̄f in a gauge theory, in terms of
the squared gauge coupling, is

γf̄f ¼
X∞
l¼1

cðfÞl al; ð2:12Þ

where cðfÞl is the l-loop coefficient, and correspondingly
for γf̄0f0 in a theory with both f and f0 fermions. These
expansions apply, in particular, at an IRFP. They may
also be useful in the analysis of a quasiconformal field
theory with parameters such that it lies slightly below the
lower end of the conformal window and hence exhibits UV
to IR evolution over an extended interval of μ governed by

an approximate IRFP. The one-loop coefficient cðfÞ1 is

scheme-independent, while the cðfÞl with l ≥ 2 are

scheme-dependent, and similarly with the cðf
0Þ

l . For a
general gauge group G and Nf fermions in a single

representation R of G, the cðfÞl have been calculated up
to loop order l ¼ 4 in [29,30] and l ¼ 5 in [31]. For the
case of multiple fermion representations, the coefficients

cðfÞl have been calculated up to four-loop order in [32] in
the MS scheme.
Physical quantities such as anomalous dimensions at an

IRFP clearly must be scheme-independent. In conventional
computations of these quantities, one first writes them as
series expansions in powers of the coupling as in (2.12),
and then evaluates these series expansions with α set equal
to αIR, calculated to a given loop order. These calculations
have been performed for anomalous dimensions of gauge-
invariant fermion bilinears in a theory with a single fermion
representation up to the four-loop level [33–35] and to the

five-loop level in [36]. However, as is well known, these
conventional (finite-order) series expansions are scheme-
dependent beyond the leading terms. Studies of scheme
dependence in the context of an IRFP have been carried out
in [37–42]. The fact that the conventional series expansions
for physical properties are scheme-dependent does not,
by itself, reduce the usefulness of these expansions. For
example, this scheme dependence is also true of higher-
order calculations in quantum chromodynamics (QCD),
which were used to analyze data from hadron colliders such
as the Tevatron at Fermilab and the Large Hadron Collider
at CERN. Considerable effort has been, and continues to
be, expended to construct and apply schemes that minimize
higher-order contributions in these QCD calculations [43].
Indeed, in QCD, because the RG fixed point is an ultra-
violet fixed point at the origin in coupling constant space, it
is, in principle, possible to transform to a scheme where the
beta function has no terms higher than two-loop order (the
’t Hooft scheme) [44]. However, as was shown in [37,38], it
is considerably more difficult to try to carry out such a
scheme transformation to remove terms at loop order 3 and
higher for a fixed point away from the origin.
Thus, in the analysis of the properties of a theory at a

fixed point away from the origin, as in the case of the IRFP
of interest here, it is useful to employ a series expansion
method for calculating physical quantities, such as anoma-
lous dimensions, with the property that the results to each
order are scheme-independent. A simple fact makes this
possible: at the upper end of the conformal window,
as b1 → 0, this implies that αIR → 0. Hence, one can
reexpress a series expansion at an IRFP in the conformal
window as an expansion in the manifestly scheme-
independent variable b1. For a theory with fermions f in
a single representation, it is natural to use the scheme-
independent Banks-Zaks variable [3,45] Δf ¼ Nf;u − Nf.
Such calculations were carried out in [46–54].
In [8] we generalized this analysis to theories with

fermions f and f0 in different representations R and R0
of a general gauge group, G. The corresponding expansion
variables for the scheme-independent series expansions of
physical quantities at an IRFP are

Δf ¼ Nf;u − Nf

¼ 11CA − 4Nf0Tf0 − 4NfTf

4Tf

¼ 3b1
4Tf

; ð2:13Þ

and similarly for Δf0 with f ↔ f0. Note that these expan-
sion variables satisfy the relation

Δf0 ¼
Tf

Tf0
Δf: ð2:14Þ
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The scheme-independent expansion for γf̄f;IR is

γf̄f;IR ¼
X∞
j¼1

κðfÞj Δj
f; ð2:15Þ

and similarly for γf̄0f0;IR with f → f0. The calculation of the

coefficient κðfÞj in Eq. (2.15) requires, as inputs, the values
of the bl in Eq. (2.2) for 1 ≤ l ≤ jþ 1 and the cl for
1 ≤ l ≤ j. We refer the reader to our previous papers for
further details of the calculations.
Using the calculation of the beta function for multiple

fermion representation to four-loop order in [28],
together with the calculation in [32] of the anomalous
dimension coefficients in (2.12) up to l ¼ 3 loop order,
we can calculate γf̄fIR to order OðΔ3

fÞ and γf̄0f0;IR to order
OðΔ3

f0 Þ. Parenthetically, note that we cannot make use of

the four-loop calculation of the cðfÞl in [32] to compute
γf̄f;IR to order OðΔ4

fÞ and γf̄0f0;IR to OðΔ4
f0 Þ, because this

would require, as an input, the five-loop coefficient b5
in the beta function for this case of multiple fermion
representations, and, to our knowledge, this has not been
calculated.
In our specific application here, where the f and f0

fermions transform according to the representations R ¼ F
and R0 ¼ A2 of SU(Nc), we will write these scheme-
independent series expansions as

γψ̄ψ ;IR ¼
X∞
j¼1

κðFÞj Δj
F ð2:16Þ

and

γχ̄χ;IR ¼
X∞
j¼1

κðA2Þ
j Δj

A2
; ð2:17Þ

where

ΔF ¼ 11

2
Nc − NF − ðNc − 2ÞNA2

ð2:18Þ

and

ΔA2
¼ 11Nc − 2NF − 2ðNc − 2ÞNA2

2ðNc − 2Þ : ð2:19Þ

For this ðNc; NF; NA2
Þ theory, Eq. (2.14) reads

ΔA2
¼ TF

TA2

ΔF ¼ ΔF

Nc − 2
: ð2:20Þ

The truncation of the series (2.16) to order OðΔp
FÞ is

denoted as γψ̄ψ ;IR;Δp
F
and similarly, the truncation of the

series (2.17) to orderOðΔp
A2
Þ is denoted γχ̄χ;IR;Δp

A2
. In accord

with the remarks on the Nc ¼ 3 special of the theory at the
beginning of this section, we note the identities

Nc ¼ 3 ⇒ κðFÞj ¼ κðA2Þ
j ;

ΔF ¼ ΔA2
;

γψ̄ψ ;IR;Δp
F
¼ γχ̄χ;IR;Δp

A2
: ð2:21Þ

In general, series expansions in powers of interaction
couplings in quantum field theory are asymptotic expan-
sions rather than Taylor series. As we discussed in [52],
the scheme-independent expansion (2.15) is also generi-
cally an asymptotic expansion rather than a Taylor series
expansion with finite radius of convergence. This is a
consequence of the property that in order for a series
expansion of a function fðzÞ in powers of z to be a Taylor
series with finite radius of convergence, it is necessary
(and sufficient) that fðzÞ must be analytic at the origin of
the complex z plane. With z ¼ Δf, this means that the
properties of the theory should remain qualitatively similar
for small positive and negative real Δf. However, as Δf

passes from real positive values through zero to negative
real values, i.e., as Nf increases through the value Nf;u,
the theory changes qualitatively from being asymptotically
free to being IR-free. Nevertheless, just as with perturba-
tive calculations in quantum electrodynamics, one may
still use the scheme-independent expansions (2.16)
and (2.17) to get approximate information about
these anomalous dimensions. In our previous works,
e.g., [46–49,51,52], we have carried out the requisite
assessment of higher-order contributions, up to order
OðΔ4

fÞ for γf̄f;IR and OðΔ5
fÞ for β0IR in theories with

fermions in a single representation. These showed that
the scheme-independent series expansions are reasonably
convergent throughout the conformal window, although,
of course, the higher-order terms make relatively larger
contributions as one approaches the lower end of this
window. The curves that we will show below for γψ̄ψ ;IR;Δp

F

and γχ̄χ;IR;Δp
A2

for 1 ≤ p ≤ 3 provide an analogous quanti-

tative measure of the effective convergence of these
expansions.
Interestingly, in [50] we studied the N ¼ 1 supersym-

metric SU(Nc) theory with matter content consisting of NF
copies of chiral superfields and their conjugates, for which
the anomalous dimension of the gauge-invariant chiral
superfield bilinear is exactly known [55,56], and we
showed (a) that the κj coefficients precisely reproduce
the series expansion coefficients of the exact results to all
orders, and (b) the scheme-independent expansion of this
anomalous dimension is convergent throughout the full
non-Abelian Coulomb phase, which corresponds to the
conformal window in that theory.
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D. Condition on anomalous dimensions
for conformal window

On the basis of analyses of the Schwinger-Dyson
equation for the propagator of a fermion f, operator product
expansions, and other arguments [57–60], it has been
suggested that an upper bound

γf̄f;IR ≤ 1 ð2:22Þ

applies for an IRFP in the conformal window. In view of the
uncertainties pertaining to strong coupling and nonpertur-
bative effects, this bound is also sometimes stated as
γf̄f;IR ≲ 1; here we will take this as implicit in our
discussions. Since γf̄f;IR increases as one moves down
through the conformal window from the upper end where
b1 ¼ 0, it follows that when the inequality (2.22) is
saturated, i.e, when the critical condition (denoted γCC)

γf̄f;IR ¼ 1 ð2:23Þ

holds, this defines the lower end of the conformal window,
BCW;l. As we discussed in [50], this is true in the case of an
N ¼ 1 supersymmetric theory with gauge group SU(Nc)
and a set of chiral superfields in the F and F̄ representa-
tions, where the anomalous dimension of the gauge-
invariant chiral superfield bilinear is exactly known
[55,56]. The occurrence of the quadratic equation

γf̄f;IRð2 − γf̄f;IRÞ ¼ 1 ð2:24Þ

as a critical condition for fermion condensation and its
connection with the condition (2.23) was noted in [57].
This quadratic equation (2.24) has a double root at
γf̄f;IR ¼ 1, and hence an exact solution of the quadratic
equation (2.24) yields the same result as the linear con-
dition (2.23). However, when applied in the context of
series expansions such as Eq. (2.16) and (2.17), as
calculated to finite order, the results differ from those
obtained with the linear condition (2.23). This difference
arises because the quadratic condition (2.26) generates
higher-order terms in powers of the scheme-independent
expansion variable, and leads to different coefficients of
lower-order terms [13,61]. In a theory with Nf fermions
transforming according to a single representation of the
gauge group, the use of the quadratic condition (2.24) was
found [13,61] to (i) show better convergence as a function
of increasing order of truncation of the series (2.15) than
the linear condition (2.23) and (ii) predict that the lower
boundary BCW;l of the conformal window occurs at a
higher value of Nf than the linear condition.
In a theory with multiple fermions in different repre-

sentations of the gauge group, the generalization of the
condition (2.23) for the lower boundary BCW;l of the
conformal window is that this lower boundary is reached

when the larger of the anomalous dimensions increases
through unity, since this would be expected to result in the
dynamical mass generation for the fermion with the larger
anomalous dimension, thereby driving the system out of the
conformal window. Thus, in our present theory, this lower
end of the conformal window occurs if

maxðγψ̄ψ ;IR; γχ̄χ;IRÞ ¼ 1: ð2:25Þ

In this type of theory, the quadratic form of the critical
condition is Eq. (2.24) with γf̄f;IR being given by
maxðγψ̄ψ ;IR; γχ̄χ;IRÞ. Since γχ̄χ;IR > γψ̄ψ ;IR here, Eq. (2.24)
reduces to

γχ̄χ;IRð2 − γχ̄χ;IRÞ ¼ 1: ð2:26Þ

Because of the approximations involved in applying either
the linear condition (2.23) or the quadratic condition (2.24)
in the context of finite-order series expansions, it is useful
to compare the lower boundary BCW;l predicted by each of
these for the present theory. The difference gives a measure
of the uncertainties involved in the determination of this
lower boundary using the γCC condition. The boundary
BCW;l was calculated in [13] using the quadratic γCC
condition. We have checked and confirmed the result for
BCW;l obtained in [13] with the quadratic γCC condition.
For the comparison, here we will calculate the prediction
for this boundary using the linear condition.
As a side note to our study, it may be recalled that

the conditions (2.22) and (2.25) have a connection to
approaches to physics beyond the Standard Model involv-
ing dynamical electroweak symmetry breaking (EWSB). In
such approaches there has been interest in models featuring
a new gauge interaction that becomes strongly coupled on
the TeV scale, producing fermion condensates and thus
EWSB. Models with the property of having a slowly
running gauge coupling and approximate scale invariance
over an extended interval of Euclidean energy/momentum
scales, due to an approximate zero of the relevant beta
function, have been of particular interest. One reason for
this is that when the approximate scale invariance in the
theory is dynamically broken by the formation of fermion
condensates, this gives rise to an approximate Nambu-
Goldstone boson, namely a dilaton [62]. In turn, insofar as
the observed Higgs boson is modeled as a composite
particle, at least partially dilatonic in nature, this can
provide a means of helping to protect its mass against
large radiative corrections. Although the observed proper-
ties of the Higgs boson, including the production cross
section and couplings to the W and Z vector bosons and to
Standard-Model fermions, are in excellent agreement with
SM predictions [63,64], experimental work will continue to
search for, and set constraints on, Higgs compositeness and
possible deviations from SM predictions. A second reason
is that a renormalization-group flow from the UV to the IR
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that is influenced by an approximate IRFP can naturally
give rise to large anomalous dimension(s) γf̄f;IR ≃ 1 for the
fermions f subject to the strongly coupled gauge inter-
action. This has been useful in the effort to produce
a realistically large top quark mass while suppressing
flavor-changing neutral-current processes and minimizing
corrections to precision electroweak observables. (In this
model-building effort, one must also confront the challenge
of producing the requisite large splitting between the t and
b quark masses.) Examples of reasonably UV-complete
models with dynamical EWSB that also feature sequential
breaking of an extended gauge symmetry to produce a
generational hierarchy in quark and charged lepton masses,
as well as neutrino masses, and make use of this γf̄f;IR ≃ 1

property, are discussed, e.g., in [65]. With fermions in a
single representation of the gauge group, such as SU(3)
with NF ¼ 8 fermions in the fundamental representation,
lattice simulations [5–7] have found an anomalous dimen-
sion γm ∼ 1 for the strongly coupled fermion and have
shown that the spectrum of the theory includes a light 0þþ
state consistent with being an approximate dilaton. Lattice
simulations have also been carried out for other models,
including an SU(3) theory with two flavors of fermions in
the sextet representation [18].
We recall that a rigorous upper bound on γf̄f;IR in a

conformal field theory is that [66–68]

γf̄f;IR ≤ 2; ð2:27Þ

where here, f refers to any fermion in the theory. This is
evidently less restrictive than the bound (2.22) and need
not be saturated at the lower boundary BCW;l of the
conformal window.
In passing, it should be mentioned that an approximate

condition for spontaneous chiral symmetry breaking via
formation of the condensate hf̄fi derived from analysis of
the Schwinger-Dyson equation for the f fermion propa-
gator is that this occurs as the coupling α exceeds the value
αcr ¼ π=ð3CfÞ. As applied to estimate the lower boundary
of the conformal window, this would be a condition on
the value of αIR at the IRFP as one approaches this lower
boundary. While this is a reasonable rough guide, the
maximal scheme-independent level to which it can be
applied is the two-loop level, since the value of the n-loop
(nl) IR coupling αIR;nl at higher-loop level, as calculated

from the beta function (2.2), is scheme-dependent.
Furthermore, as one approaches the strongly coupled
regime near the lower end of the conformal window, the
value of the IR zero of the n-loop beta function, αIR;nl,
changes substantially as one goes from two-loop order to
higher-loop order. For example, as listed in Table II of [47],
for SU(3) with NF ¼ 9 fermions in the fundamental
representation, αIR;2l ¼ 5.24, while αIR;3l ¼ 1.03, as cal-
culated in the widely used MS scheme. Consequently, here
we focus on the γCC condition (2.25), since it can be
applied in a scheme-independent manner.

III. SCHEME-INDEPENDENT CALCULATION
OF ANOMALOUS DIMENSIONS OF FERMION

BILINEAR OPERATORS

In this section, for a theory with an SU(Nc) gauge group
and (massless) fermion content consisting of NF fermions
in the fundamental representation, F, and NA2

fermions in
the antisymmetric rank-2 representation, A2, we present

explicit calculations of the coefficients κðFÞj and κðA2Þ
j with

j ¼ 1; 2; 3 using the scheme-independent expansions of
the anomalous dimensions γψ̄ψ ;IR and γχ̄χ;IR in Eqs. (2.15)
and the analog for γχ̄χ;IR with 1 ≤ j ≤ 3. These yield the
anomalous dimensions γψ̄ψ ;IR and γχ̄χ;IR up to OðΔ3

FÞ and
OðΔ3

A2
Þ, respectively.

It is convenient to define factors that occurs repeatedly in
the denominators of γIR;F and γIR;A2

, namely

DF ¼ Ncð25N2
c − 11Þ þ 2NA2

ðNc − 2ÞðNc þ 1ÞðNc − 3Þ
ð3:1Þ

and

DA2
¼ Ncð18N2

c − 11Nc − 22Þ − NFðNc − 3ÞðNc þ 1Þ:
ð3:2Þ

For the first two coefficients we calculate

κðFÞ1 ¼ 4ðN2
c − 1Þ
DF

; ð3:3Þ

κðA2Þ
1 ¼ 4ðNc − 2Þ2ðNc þ 1Þ

DA2

; ð3:4Þ

κðFÞ2 ¼ 4ðN2
c − 1Þ

3D3
F

h
Ncð9N2

c − 2Þð49N2
c − 44Þ þ 4NA2

ðNc − 2ÞðNc þ 1ÞðNc − 3Þð3Nc − 2Þð5Nc þ 3Þ
i
; ð3:5Þ

and

κðA2Þ
2 ¼ðNc−2Þ3ðNcþ1Þ

3D3
A2

h
Ncð11N2

c−4Nc−8Þð93N2
c−88Nc−176Þ−2NFðNc−3ÞðNcþ1Þð37N2

c−16Nc−33Þ
i
: ð3:6Þ
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Following our notation in [8], we write the third-order coefficients in the form

κðFÞ3 ¼ 8ðN2
c − 1Þ

27D5
F

h
AðFÞ
0 þ AðFÞ

1 NA2
þ AðFÞ

2 N2
A2

þ AðFÞ
3 N3

A2

i
ð3:7Þ

and

κðA2Þ
3 ¼ ðNc − 2Þ3ðNc þ 1Þ

54D5
A2

h
AðA2Þ
0 þ AðA2Þ

1 NF þ AðA2Þ
2 N2

F þ AðA2Þ
3 N3

F

i
; ð3:8Þ

and we calculate

AðFÞ
0 ¼ N2

c

��
274243N8

c − 455426N6
c − 114080N4

c þ 47344N2
c þ 35574

�
− 4224N2

cð4N2
c − 11Þð25N2

c − 11Þζ3
�
; ð3:9Þ

AðFÞ
1 ¼ 4NcðNc − 2ÞðNc − 3Þ

��
16981N7

c þ 35460N6
c þ 42927N5

c þ 47342N4
c þ 9432N3

c − 12849N2
c − 18843Nc − 11616

�

− 576N2
c

�
25N4

c þ 198N3
c þ 187N2

c − 121Nc − 121
�
ζ3

�
; ð3:10Þ

AðFÞ
2 ¼ 8ðNc−2ÞðNc−3Þ

��
689N8

c−1402N7
c−9208N6

c−15693N5
c−9219N4

cþ16662N3
cþ19860N2

cþ10617Ncþ5598
�

−192N2
c

�
3N5

c−65N4
c−238N3

c−165N2
cþ231Ncþ198

�
ζ3

�
; ð3:11Þ

AðFÞ
3 ¼ 128NcðNc − 2Þ2ðNc − 3Þ2ðNc þ 1Þð3N2

c þ 7Nc þ 6Þð−11þ 24ζ3Þ; ð3:12Þ

AðA2Þ
0 ¼ N2

c

��
1670571N9

c − 7671402N8
c þ 2181584N7

c þ 25294256N6
c − 13413856N5

c − 17539136N4
c þ 16707328N3

c

þ 3046912N2
c − 27320832Nc − 18213888

�
− 8448N2

cðNc þ 2Þð18N2
c − 11Nc − 22Þð3N3

c − 28N2
c þ 176Þζ3

�
;

ð3:13Þ

AðA2Þ
1 ¼ −4NcðNc − 3Þ

��
60552N8

c − 150015N7
c − 373894N6

c þ 138737N5
c þ 300380N4

c þ 421197N3
c þ 768345N2

c

þ 858660Nc þ 435468
�
− 192N2

c

�
141N5

c − 2075N4
c − 6226N3

c þ 1056N2
c þ 17424Nc þ 11616

�
ζ3

�
; ð3:14Þ

AðA2Þ
2 ¼ 8ðNc − 3Þ

��
1148N8

c − 3919N7
c − 17365N6

c − 5724N5
c þ 35724N4

c þ 84915N3
c þ 70641N2

c þ 32928Nc þ 15588
�

− 192N2
c

�
3N5

c − 164N4
c − 271N3

c þ 396N2
c þ 1320Nc þ 792

�
ζ3

�
; ð3:15Þ

and

AðA2Þ
3 ¼ −128NcðNc þ 1ÞðNc − 3Þ2ð3N2

c þ 7Nc þ 6Þð−11þ 24ζ3Þ: ð3:16Þ

Here, ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function, and ζ3 ¼ 1.2020569… We have remarked above on the reason for the

occurrence of ðNc − 2Þ factors (or powers thereof) in conjunction with the numbersNA2
. The occurrence of ðNc − 3Þ factors

in various expressions reflects the reduction of the theory to one with NF þ NA2
fermions in the fundamental representation

in the case Nc ¼ 3. We straightforwardly check that our general-Nc results above satisfy the identities (2.21).
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IV. SU(4) THEORY

In this section, for the case Nc ¼ 4, i.e., G ¼ SUð4Þ, we
list the special cases of the general-Nc expressions for the

coefficients κðFÞj and κðA2Þ
j with 1 ≤ j ≤ 3 and the resultant

expressions for γψ̄ψ ;IR;Δp
F
and γχ̄χ;IR;Δp

A2
with 1 ≤ p ≤ 3.

A. Direct calculations of anomalous dimensions

For Nc ¼ 4, the upper end of the conformal window,
defined by the condition b1 > 0, is

NF þ 2NA2
< 22; ð4:1Þ

and the condition that the two-loop beta function should
have an IR zero is

205NF þ 440NA2
> 2176: ð4:2Þ

As before, we denote the region in the first quadrant of the
ðNF;NA2

Þ plane where the inequalities (4.1) and (4.2) are
simultaneously satisfied as IIRZ. The lines that are the upper
and lower boundaries of the IIRZ region have slopes that
are almost equal. From Eq. (2.10), the upper boundary,
i.e., the solution to the condition b1 ¼ 0 has slope
dNA2

=dNF ¼ −1=2, while from Eq. (2.11), the lower
IIRZ boundary, i.e., the solution to the condition b2 ¼ 0,

has slope dNA2
=dNF ¼ −41=88 ¼ −0.4659. Regarding

the figures to be presented below, we note that if one sets
NF ¼ 4, then the IIRZ interval in NA2

is 3.082 < NA2
< 9

and if one sets NA2
¼ 4, then the IIRZ interval in NF is

2.029 < NF < 14. In the (4,4,4) theory, ΔF ¼ 10
and ΔA2

¼ 5.

Substituting Nc ¼ 4 in the results for κðFÞj and κðA2Þ
j given

for G ¼ SUðNcÞ in the previous section, we find the
following:

κðFÞ1 ¼ 15

389þ 5NA2

; ð4:3Þ

κðFÞ2 ¼ 25ð5254þ 115NA2
Þ

ð389þ 5NA2
Þ3 ; ð4:4Þ

κðA2Þ
1 ¼ 80

888 − 5NF
; ð4:5Þ

and

κðA2Þ
2 ¼ 400ð19456 − 165NFÞ

ð888 − 5NFÞ3
: ð4:6Þ

κðFÞ3 ¼ 5

36ð389þ 5NA2
Þ5
h
ð8039476475 − 696689664ζ3Þ þ ð479848740 − 197766144ζ3ÞNA2

þ ð−16264767þ 46568448ζ3ÞN2
A2

þ ð−288640þ 629760ζ3ÞN3
A2

i
; ð4:7Þ

and

κðA2Þ
3 ¼ 640

27ð888 − 5NFÞ5
h
ð28645111296þ 7201751040ζ3Þ − ð120552246þ 1055342592ζ3ÞNF

þ ð−12526131þ 33675264ζ3ÞN2
F þ ð72160 − 157440ζ3ÞN3

F

i
: ð4:8Þ

For the theorywithNc ¼ 4, i.e.,G ¼ SUð4Þ,NF ¼ 4, and
NA2

¼ 4, our general expressions yield the following (where
floating-point values are quoted to the indicated precision):

κðFÞ1 ¼ 15

409
¼ 3.6675 × 10−2; ð4:9Þ

κðFÞ2 ¼ 142850

ð409Þ3 ¼ 2.0879 × 10−3; ð4:10Þ

κðFÞ3 ¼ 48400811015

36 · ð409Þ5 −
715520

3 · ð409Þ4 ζ3
¼ 2.37475 × 10−4; ð4:11Þ

κðA2Þ
1 ¼ 20

217
¼ 0.092166; ð4:12Þ

κðA2Þ
2 ¼ 117475

ð217Þ3 ¼ 1.1497 × 10−2; ð4:13Þ

and

κðA2Þ
3 ¼ 17479439035

27 · ð217Þ5 þ 3368960

9 · ð217Þ4 ζ3
¼ 1.5484 × 10−3; ð4:14Þ

where partial factorizations are shown for denominators.
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Substituting these coefficients into Eqs. (2.16) and (2.17),
with ΔF ¼ 2ΔA2

¼ 10 for this (4,4,4) theory, we have

γψ̄ψ ;IR;ΔF
¼ 0.367; ð4:15Þ

γψ̄ψ ;IR;Δ2
F
¼ 0.576; ð4:16Þ

γψ̄ψ ;IR;Δ3
F
¼ 0.683; ð4:17Þ

γχ̄χ;IR;ΔA2
¼ 0.461; ð4:18Þ

γχ̄χ;IR;Δ2
A2
¼ 0.748; ð4:19Þ

and

γχ̄χ;IR;Δ3
A2
¼ 0.942: ð4:20Þ

Because κðFÞj and κðA2Þ
j are positive for all of the orders

j ¼ 1; 2; 3 for which we have calculated them, several
monotonicity relations follow. These are the analogs, in the
current theory, of the relations noted in [8]. First, for these
orders, with fixed ΔF ¼ 2ΔA2

, the anomalous dimensions
γψ̄ψ ;IR;Δp

F
and γχ̄χ;IR;Δp

A2
are monotonically increasing func-

tions of p. Second, for a fixed p, γψ̄ψ ;IR;Δp
F
is a monoton-

ically increasing function of ΔF and γχ̄χ;IR;Δp
A2

is a

monotonically increasing function of ΔA2
.

Since finite-order perturbative calculations of this
type tend to become progressively less accurate as one
approaches the lower boundary BCW;l of the conformal
window, one is motivated to assess the effect of higher-
order corrections. One approach for this purpose is to
perform a rough extrapolation (ext) of our results for p ¼
1; 2; 3 to p ¼ ∞. This yields values for γψ̄ψ ;IR and γχ̄χ;IR that
we estimate to be approximately 10%–20% larger than our
respective γψ̄ψ ;IR;Δ3

F
and γχ̄χ;IR;Δ3

F
values, namely γψ̄ψ ;IR;ext ≃

0.7–0.8 and γχ̄χ;IR;ext ≃ 1.0–1.1. We next compare these
results with the values obtained from lattice simulations in

Ref. [11], namely γð4Þm ≃ 0.75 and γð6Þm ≃ 1.0. [Recall the

equivalences of notation for this SU(4) theory: γð4Þm ≡ γψ̄ψ ;IR
and γð6Þ ≡ γχ̄χ;IR.] To within the uncertainties in our
extrapolation and in the lattice measurements, our calcu-
lations are in agreement with these values of anomalous
dimensions obtained in [11]. This agreement between our
perturbative calculations, which require an IR fixed point in
the conformal window, and the values of these anomalous
dimensions measured in the lattice simulations, is consis-
tent with the conclusion in [11] that this theory is in the
conformal window (near the lower boundary, since the

measured γð6Þm ≃ 1 and our γχ̄χ;IR;ext ≃ 1). A cautionary
remark is that the uncertainties in the perturbative calcu-
lation of anomalous dimensions are substantial at the lower

end of the conformal window, as are the uncertainties in our
rough extrapolation.

B. Calculation of Padé approximants
for anomalous dimensions

Another useful approach to estimating anomalous
dimensions from finite series expansions is the use of
Padé approximants, and we have used these in our earlier
work for theories with fermions in a single representation
[36,47–49,52]. Given a series expansion calculated to a
finite order, a ½p; q� Padé approximant is a rational function
with numerator and denominator having respective degrees
p and q in the expansion variable and satisfying the
property that the Taylor series expansion of this rational
function fits all of the coefficients in the original series
expansion [69,70]. In our present context, for a given
fermion f (equal to ψ in the F representation or χ in the A2

representation of SU4)), let us consider the scheme-
independent expansion calculated to order s:

γf̄f;IR;Δs
f
¼

Xs

j¼1

κðfÞj Δj
f

¼ κðfÞ1 Δf

�
1þ 1

κðfÞ1

Xs
j¼2

κðfÞj Δj−1
f

�
: ð4:21Þ

We calculate the ½p; q� Padé approximant to the expression
in square brackets, which has the form

γf̄f;IR;½p;q� ¼ κðfÞ1 Δf

�
1þPp

i¼1 N f;iΔi
f

1þPq
j¼1 Df;jΔ

j
f

�
; ð4:22Þ

where pþ q ¼ s − 1. With s ¼ 3, the possible Padé
approximants to the expression in square brackets are then
[2,0], [1,1], and [0,2]. The [2,0] approximant is just the
original series, which we have already used to calculate
γf̄f;IR;Δ3

f
for f ¼ ψ and f ¼ χ, so we focus on the [1,1]

and [0,2] approximants here. In addition to providing a
closed-form rational-function approximation to the finite
series (4.21), a Padé approximant also can be used in
another way, namely to yield an estimate of the effects of
higher-order terms.
By construction, the ½p; q� Padé approximant in (4.22)

is analytic at Δf ¼ 0, and if it has q > 0, then it is a
meromorphic function with q poles. The radius of con-
vergence of the Taylor series expansion of the ½p; q� Padé
approximant is set by the magnitude of the pole nearest
to the origin in the complex Δf plane. Consequently, a
necessary condition that must be satisfied for a Padé
approximant to be useful for our analysis here is that,
considered as a function of the general variable Δf, it
should not have a pole at any Δf;pole that is closer to the
origin than the actual value of Δf in the theory of interest.
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We recall that for the (4,4,4) theory, ΔF ¼ 10 and ΔA2
¼ 5.

A further caveat with this method is that if a ½p; q� Padé
approximant has a pole that is near to the physical value of
the expansion parameter, even if it is farther from the origin,
this might produce a spuriously large value of the anoma-
lous dimension.
We focus here on approximants for γχ̄χ;IR, since it is

larger than γψ̄ψ ;IR. We calculate the following [1,1] and
[0,2] Padé approximants for this anomalous dimension:

γχ̄χ;IR;½1;1� ¼ 0.092166ΔA2

�
1 − 0.0099444ΔA2

1 − 0.13468ΔA2

�
; ð4:23Þ

and

γχ̄χ;IR;½0;2�

¼ 0.092166ΔA2

�
1

1 − 0.12474ΔA2
− 0.0012404Δ2

A2

�
:

ð4:24Þ

The approximant γχ̄χ;IR;½1;1� has a pole at ΔA2
¼ 7.42492,

and γχ̄χ;IR;½0;2� has poles at ΔA2
¼ 7.46299 and −108.022.

These are farther from the origin than the physical value
ΔA2

¼ 5, although the poles at 7.42 and 7.46 are moder-
ately close to the physical value, ΔA2

¼ 5. Evaluating these
approximants at this value of ΔA2

, we obtain γχ̄χ;IR;½1;1� ¼
1.34 and γχ̄χ;IR;½0;2� ¼ 1.33, somewhat larger than our rough
extrapolations discussed above.

C. Estimates of lower boundary of conformal window

Reference [11] observed that its conclusion that the
ðNc; NF; NA2

Þ ¼ ð4; 4; 4Þ theory has an IRFP, and is thus in
the conformal window, disagreed with the lower boundary
BCW;l of the conformal window presented in [13] on the
basis of the γCC condition in quadratic form (2.24). As
noted in [11], the (4,4,4) theory is below the lower
boundary of the conformal window from the γCC condition
shown in Fig. 4 of [13] as a function of ðNF;NA2

Þ and
reproduced in Fig. 1 of [11]. (In referring to Fig. 4 in [13],
we remind the reader that the symbol NA2

used in that
figure is the number of Majorana A2 fermions and hence is
equal to 2NA2

in our notation, where our NA2
is the number

of Dirac A2 fermions.) So the implication from the lower
boundary BCW;l in [13] is that the (4,4,4) theory is in the
chirally broken phase, not in the conformal window.
To investigate this further, we have performed an

alternative calculation of BCW;l using our results for
γψ̄ψ ;IR;Δ3

F
and γχ̄χ;IR;Δ3

F
in conjunction with the linear γCC

critical condition,

maxðγψ̄ψ ;IR;Δ3
F
; γχ̄χ;IR;Δ3

A2
Þ ¼ 1: ð4:25Þ

In applying this condition, the maximal anomalous dimen-
sion is γχ̄χ;IR;Δ3

A2
, which is larger here, for a given ðNF;NA2

Þ,
than γψ̄ψ ;IR;Δ3

A2
. Therefore, Eq. (4.25) reduces to

γχ̄χ;IR;Δ3
A2
¼ 1: ð4:26Þ

We show our results in Fig. 1. The uppermost line (blue)
is the upper boundary BCW;u ¼ BIRZ;u of the conformal
window, given by the condition b1 ¼ 0. The locations of
the lower boundary BCW;l as calculated in [13] from the
quadratic γCC condition (green), and as calculated here
from the linear γCC condition (4.25), which reduces
to (4.26) (red), are shown. Both of these calculations of

BCW;l use the κ
ðFÞ
j and κðA2Þ

j calculated to order j ¼ 3 from
the general results in [8]. The dashed line is the solution
locus of the equation b2 ¼ 0 and is the lower boundary
BIRZ;l of the IRZ region. For general Nc and, in particular,
for Nc ¼ 4, the conditions (4.25) and (4.26) are nonlinear
equations in the variables NF and NA2

, but the coefficients
of the nonlinear terms are small compared to the coef-
ficients of the linear terms and get smaller as the total
degree sþ t of a term Ns

FN
t
A2

increases, so that the solution
locus is close to being linear in the ðNF;NA2

Þ plane. As is

FIG. 1. Plot of regions and boundaries in the ðNF; NA2
Þ plane

for G ¼ SUð4Þ. The upper solid line (blue) is the solution locus
of the equation b1 ¼ 0 and is the upper boundary BCW;u of the
conformal window. The plot shows the locations of the boundary
BCW;l, as calculated in [13] from the quadratic γCC condition
(green), and as calculated here from the linear γCC condition
(red). The theory ðNF;NA2

Þ ¼ ð4; 4Þ and some others near to
BCW;l are indicated with dots. The dashed line is the solution
locus of the equation b2 ¼ 0 and is the lower boundary BIRZ;l of
the IRZ region.
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evident in Fig. 1, the use of the linear form of the γCC in
Eq. (4.26) yields a boundary BCW;l that lies to the lower
left of the boundary BCW;l obtained with the use of the
quadratic γCC condition in the ðNF;NA2

Þ plane. As was
discussed in Sec. II D, this is a consequence of the fact that
the quadratic γCC condition (2.24) generates higher-order
terms in powers of the scheme-independent expansion
variables and leads to different coefficients for lower-order
terms. With BCW;l as determined from (4.26) and shown in
Fig. 1, the (4,4,4) theory is within the conformal window,
close to the lower boundary. Along the diagonalNF ¼ NA2

,
the boundary BCW;l calculated from (4.26) crosses the
point ðNF;NA2

Þ ¼ ð3.88; 3.88Þ, slightly to the lower left of
the point ðNF;NA2

Þ ¼ ð4; 4Þ. [We indicate this point (4,4)
with a dot and also indicate some other SU(4) ðNF;NA2

Þ
theories close to BCW;l with dots.] Therefore, with BCW;l

computed via the linear form of the γCC condition, (4.25)
or (4.26), the (4,4,4) theory is in the conformal window.
This is in accord with our result that at cubic order in the
scheme-independent expansion coefficients, the values of
anomalous dimensions that we obtain, namely γχ̄χ;IR;Δ3

A2
¼

0.942 in Eq. (4.20) and γψ̄ψ ;IR;Δ3
F
¼ 0.683 in Eq. (4.17) in

the (4,4,4) theory, are both less than 1. Our comparative
analysis showing the difference in the location of the
boundary BCW;l as computed via the quadratic γCC
condition in [13] and as computed via the linear γCC

condition here (with inputs for the κðA2Þ
j and κðFÞj calculated

up to the same maximal order, j ¼ 3) provides a quanti-
tative measure of the importance of higher-order terms in
the scheme-independent expansions and hence the uncer-
tainty in the determination of the location of BCW;l. This
comparison makes it clear that these higher-order correc-
tions are significant.
Since the anomalous dimensions increase as one moves

downward within the conformal window toward the lower
boundary BCW;l, the linear form of the γCC condition
implies that for any theory below this lower boundary, at
least some fermion f has an anomalous dimension γf̄f;IR
that is larger than 1, where here, ffg ¼ fψ ; χg, i.e.,
fF; A2g. A peculiar feature of the quadratic form of the
γCC condition is that if one uses it to determine BCW;l with

input coefficients κðfÞj calculated to the same maximal order
as with the linear γCC condition, then this boundary BCW;l

from the quadratic γCC condition has the property that
there are theories that lie outside the conformal window but
in which all fermions f have anomalous dimensions γf̄f;IR
that are less than 1. This situation occurs here; our direct
calculation of γψ̄ψ ;IR and γχ̄χ;IR in the (4,4,4) theory, with

input values for the κðFÞj and κðA2Þ
j computed to the j ¼ 3

order, yields values for γχ̄χ;IR;Δ3
A2
and γψ̄ψ ;IR;Δ3

F
that are both

less than 1, but the point ðNF;NA2
Þ ¼ ð4; 4Þ lies outside the

conformal window, as calculated in [13] via the quadratic

γCC condition with the same inputs for κðFÞj and κðA2Þ
j

computed up to order j ¼ 3.
To investigate the behavior of γψ̄ψ ;IR;Δp

F
and γχ̄χ;IR;Δp

F
for

p ¼ 1, 2, 3 further in this SU(4) theory, we calculate how
they vary as functions of NF and NA2

, in particular, when
one sets NF ¼ 4 and varies NA2

or one sets NA2
¼ 4 and

varies NF. These intervals are, respectively, a vertical
and a horizontal line segment in the ðNF;NA2

Þ plane,
which both pass through the point of primary interest,
ðNF;NA2

Þ ¼ ð4; 4Þ. Our results are presented in Figs. 2–5.
As one can see from Figs. 4 and 5, for NF ¼ 4, this yields
the value NA2

¼ 3.8 as being on BCW;l calculated from the
linear γCC condition (4.26), and for NA2

¼ 4, it yields the
value NF ¼ 3.6 as being on this boundary. These calcu-
lations thus serve as a check on our calculation of the

FIG. 3. Plot of γψ̄ψ ;IR;Δp
F
calculated to order p ¼ 1, 2, 3 for

G ¼ SUð4Þ, and NF ¼ 4, as a function of NA2
∈ IIRZ. From

bottom to top, the curves refer to γψ̄ψ ;IR;ΔF
(red), γψ̄ψ ;IR;Δ2

F
(green),

and γψ̄ψ ;IR;Δ3
F
(blue).

FIG. 2. Plot of γψ̄ψ ;IR;Δp
F
calculated to order p ¼ 1, 2, 3 for

G ¼ SUð4Þ, and NA2
¼ 4, as a function of NF ∈ IIRZ. From

bottom to top, the curves refer to γψ̄ψ ;IR;ΔF
(red), γψ̄ψ ;IR;Δ2

F

(green), and γψ̄ψ ;IR;Δ3
F
(blue). The vertical axis is simply labeled

as γψ̄ψ for short.
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boundaryBCW;l from the linear γCC condition (4.26), since
one can verify that this boundary does pass through the
points ðNF; AA2

Þ ¼ ð4.0; 3.8Þ and (3.6,4.0).
One of the interesting features of this SU(4) theory is that

the gauge-singlet particle spectrum contains composite
fermion(s), ffsg. The lattice simulations in [11] yield
anomalous dimensions for several composite-fermion oper-
ators, which are found to be ≲0.5, smaller than desired for
models of a partially composite top quark. Comparison is
made with one-loop perturbative calculations of the anoma-
lous dimensions for these gauge-singlet composite fermion
operators. In future work, it could be useful to carry out
higher-order scheme-independent perturbative calculations

of the anomalous dimensions for these composite-fermion
operators. This is beyond the scope of our present work,

since the requisite higher-order coefficients cðfsÞl in the
conventional series expansions (2.12) have not, to our
knowledge, been calculated.

V. CONCLUSIONS

In this paper we have used our general results in [8] to
calculate scheme-independent expansions for anomalous
dimensions γψ̄ψ ;IR and γχ̄χ;IR of the fermion bilinear
operators ψ̄ψ and χ̄χ at an infrared fixed point in an
asymptotically free SU(Nc) gauge theory with massless
fermion content consisting of NF fermions ψa

i in the
fundamental representation and NA2

fermions χabj in the
antisymmetric rank-2 tensor representation. These calcu-
lations were performed to the highest order, namely cubic
order in the respective expansion variables ΔF and ΔA2

,
for which the necessary inputs are available. We have
taken the special case Nc ¼ 4 and compared the results
with values of these anomalous dimensions in an SU(4)
theory with NF ¼ 4 and NA2

¼ 4 from a lattice simulation
in [11]. We find agreement with these measured values at
the cubic order to which we have performed the pertur-
bative calculations, and we have given estimates of
higher-order corrections to our results. More generally,
we have studied the dependence of γψ̄ψ ;IR and γχ̄χ;IR as
functions of NF and NA2

in the SU(4) theory and have
compared different ways of calculating the lower boun-
dary of the conformal window.
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APPENDIX: GROUP INVARIANTS

In this appendix we identify our notation for various
group invariants. Let Ta

R denote the generators of the Lie
algebra of a group G in the representation R, where a is a
group index, and let dR denote the dimension of R. The
Casimir invariants C2ðRÞ and TR are defined as follows:
Ta
RT

a
R ¼ C2ðRÞI, where here I is the dR × dR identity

matrix, and TrRðTa
RT

b
RÞ ¼ TðRÞδab. For a fermion f trans-

forming according to a representation R, we often use the
equivalent compact notation Tf ≡ TðRÞ and Cf ≡ C2ðRÞ.
We also use the notation CA ≡ C2ðAÞ≡ C2ðGÞ. Thus, e.g.,
for the F and A2 representations of SU(Nc), TðFÞ ¼ 1=2,
C2ðFÞ ¼ ðN2

c − 1Þ=ð2NcÞ, TðA2Þ ¼ ðNc − 2Þ=2, and
C2ðA2Þ ¼ ðNc − 2ÞðNc þ 1Þ=Nc.

FIG. 4. Plot of γχ̄χ;IR;Δp
A2
, calculated to order p ¼ 1, 2, 3 for

G ¼ SUð4Þ, and NA2
¼ 4, as a function of NF ∈ IIRZ. From

bottom to top, the curves refer to γχ̄χ;IR;ΔA2
(red), γχ̄χ;IR;Δ2

A2

(green), and γχ̄χ;IR;Δ3
A2
(blue). The vertical axis is simply labeled

as γχ̄χ for short.

FIG. 5. Plot of γχ̄χ;IR;Δp
A2
, calculated to order p ¼ 1, 2, 3 for

G ¼ SUð4Þ, and NF ¼ 4, as a function of NF ∈ IIRZ. From
bottom to top, the curves refer to γχ̄χ;IR;ΔA2

(red), γχ̄χ;IR;Δ2
A2

(green), and γχ̄χ;IR;Δ3
A2

(blue).
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The coefficients κðfÞj with j ≥ 3 also involve higher-
order group invariants. In general, for a given representa-
tion R of G,

dabcdR ¼ 1

3!
TrR

h
TaðTbTcTd þ TbTdTc þ TcTbTd

þ TcTdTb þ TdTbTc þ TdTcTbÞ
i
: ðA1Þ

In [8] we use the notation dabcdR ≡ dabcdf and for R ¼ Adj,

we write dabcdR ¼ dabcdA . The κðfÞ3 coefficients contain
dependence upon products of these dabcdR of the form
dabcdR dabcdR0 ≡ dabcdf dabcdf0 , summed over the group indices a,
b, c, d. For further details on these higher-order group
invariants, see [19] and references therein.
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