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We investigate the Crewther relation at high loop order in a variety of renormalization schemes and
gauges. By examining the properties of the relation in schemes other than modified minimal subtraction
(MS) at the fixed points of quantum chromodynamics we propose a generalization of the Crewther relation
that extends the MS construction of Broadhurst and Kataev. A derivation based on the properties of the
renormalization group equation is provided for the generalization which is tested in various scenarios.
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I. INTRODUCTION

In [1] Crewther made an interesting and remarkable
connection between the Adler D-function and the Bjorken
sum rule in non-Abelian gauge theories. Using the then
available explicit perturbative expressions for those seem-
ingly unrelated quantities Crewther showed that their
product was a constant and there was no OðaÞ correction
where a is related to the strong coupling constant. When the
higher order corrections subsequently became available in
the modified minimal subtraction (MS) scheme [2–4] it was
apparent that Crewther’s observation of constancy of the
product was not retained at these orders. It was demon-
strated in [5] however that the nonzero a dependence could
be written as the product of two functions of a. One of the
functions was the β-function of quantum chromodynamics
(QCD). While the presence of a nonzero term appeared to
undermine the ethos that Crewther’s observation was an
exact result, it was in fact in keeping with a more general
property which is that of conformal symmetry [6–8].
Indeed this nonzero Oða2Þ term is referred to as the
conformal symmetry breaking term [5] since the β-function
vanishes when conformal symmetry is present. Later the
improvement in loop technology meant the Oða4Þ terms of
both the Adler D-function and Bjorken sum rules became
available in [9]. It was shown in [9] that the resultingOða4Þ
correction to the conformal symmetry breaking term could
also be accommodated within the product of the two loop
β-function and a correction to the other function in the
breaking term as a function of a. Thus the conformal aspect
of the Crewther relation was reinforced.

In briefly summarizing the background to the develop-
ment of Crewther’s observation it is important to note that
the so-called conformal symmetry breaking term was
always determined in the MS scheme in the first instance
[5,9]. More recently there have been several detailed
studies of the Crewther construction in other renormaliza-
tion schemes in [10–12]. One of the motivations in carrying
out such investigations is to ascertain whether or not
the conformal symmetry breaking term is always the
product of the β-function and another function of a in
schemes other than MS. Amongst the schemes examined
in [10–12] were the V scheme and the minimal momentum
(mMOM) scheme. The former is based on the static quark
potential [13,14] while the latter is defined with respect to
the ghost-gluon vertex of QCD [15]. In particular it
preserves the nonrenormalization property of that vertex
in the Landau gauge, discovered by Taylor in [16], but
extended to an arbitrary linear covariant gauge. The
renormalization group functions of the mMOM scheme
are known to five loops [15,17–19]. Although the Crewther
relation mMOM scheme study only required four loop
information, one of its main conclusions was that at leading
order the factorization of the conformal symmetry breaking
term only occurred for specific values of the covariant
gauge fixing parameter α [12]. These were α ¼ 0, −1 and
−3. It was also recognized that the special cases of α ¼ 0
and −3 arose in other schemes [12]. At the subsequent
order the factorization only occurred in the Landau gauge
where α vanishes. While disappointing, detailed investiga-
tions of the structure of where the factorization [12] failed
did provide significant insight into and key clues as to how
to reconcile the hope that the Crewther construction could
accommodate other schemes. Indeed this has to be the case
if the Crewther relation is to be regarded as a fundamental
property of a non-Abelian gauge theory.
One interesting aspect of the emergence of the particular

case of α ¼ −3 is that this value has already been noted as
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having special significance in situations primarily associ-
ated with phenomenology or infrared dynamics in QCD.
For instance, one of the earliest occurrences was in [20]
where it emerged in a study of the Wilson loop and its
renormalization properties. This connection was noted
again later in the case of Wilson operators in deep inelastic
scattering in [21]. In a different context [22], Schwinger-
Dyson methods were used to examine models of chiral
symmetry breaking and this choice of the gauge parameter
was shown to be necessary for a scale invariant solution. In
other words when the ansätzen for the form factors have a
power law behavior then the underlying equations can be
solved to determine when chiral symmetry breaking occurs.
Separately in [23,24], where the worldline formalism was
used to construct gauge invariant variables to study parton
distribution functions, the choice of α ¼ −3was required to
ensure there were no divergences associated with rapidity.
The same choice of α was also needed in the related area of
deep inelastic scattering in [25] where renormalon chains of
bubble graphs were examined in the large Nf expansion as
that particular value of α identified an Abelian character-
istic of the underlying renormalization in a similar vein to
[20,21]. At leading order the approximation was relatively
accurate for α ¼ −3 but corrections to this value were also
established to preserve the Abelian property [26].
This leading order value also appeared in an exploration of

Yang-Mills theory at low energy. In particular in [27–29] an
effective Lagrangian was constructed in terms of dimension
six gluonic operators that was a solution to the infrared
Schwinger-Dyson equations. Indeed itwas argued in [27–29]
that to have a scaling solution for the gluon propagator which
would lead to a linearly rising static quark potential asso-
ciated with confinement required α ¼ −3. Similarly the role
this particular value plays in the behavior of the effective
coupling constant derived in quark-quark scattering was
discussed in [30]. Specifically at α ¼ −3 the effective
coupling decreases as a function of the exchanged momen-
tum consistent with asymptotic freedom. A more phenom-
enological origin for this gauge parameter choice was noted
in [31]. Moreover the appearance of α ¼ −3 was not res-
tricted to strong dynamics. It was shown in [32] that the Z
boson is multiplicatively renormalizable for this gauge para
meter choice in the electroweak sector of the StandardModel.
In support of the infrared connection the critical proper-

ties of the QCD renormalization group equations in [33]
indicated that there was a fixed point similar to that of
Banks and Zaks [34] but with a value of α close to −3. That
it was not exactly a negative integer was primarily because
that critical point analysis was carried out at four loops
which was an order much higher than the previous work
on this special value. This would suggest that while the
infrared dynamics observations are pointing to the same
underlying property, quantum corrections will necessarily
have to be taken into account too. Our Crewther study
will also lend weight to that point of view. Indeed the

connection provided in [34] also directs our attention to
perhaps the most significant clue to accommodate schemes
for the Crewther relation. This is the fact that in examining
the critical properties of the renormalization group func-
tions of QCD treated in the ða; αÞ plane there is a fixed
point in the neighborhood of α ¼ −3 in the conformal
window. While it is not precisely this value it is however
suggestive of a connection to the Crewther relation with the
discrepancy somehow being accounted for by higher order
corrections lurking within a reconciliation of the factori-
zation issue with the conformal symmetry property.
It is therefore the aim of this article to extend the Crewther

relation in some way that it is inclusive of schemes beyond
the MS one, yet at the same time obeying the conformal
aspects on top of respecting the renormalization group. In our
investigation in order to gain as wide a picture as possiblewe
will consider not only the mMOM scheme but a similar one
used in lattice gauge theories, termed the modified regulari-
zation invariant (RI0) scheme [35,36], as well as the kin-
ematic momentum subtraction (MOM) schemes developed
by Celmaster and Gonsalves [37,38]. In addition we will
examine the relation in two other gauges which are nonlinear
covariant gauge fixings. The reason for this is that while the
Lorenz suite of covariant gauges is canonically used in
computations, with α arbitrary or zero, gauge independent
results should be blind to the choice of the particular gauge
fixing functional. Our aim is to construct a generalization of
the conformal symmetry breaking term that is consistentwith
the properties of the renormalization group equation and
preserves the conformal symmetry property as well as
putting the origin of the special case of α ≈ −3 of the linear
covariant gauge fixing on a solid footing. To achieve all these
aims required both numerical examination of the perturbative
expansions of the product of the Adler D-function and
Bjorken sum rule as well as the analytic expressions.
These will be studied at the highest available loop order in
each of the different gauges and schemes.
Indeed the way the article is structured it will follow the

same development ethos of [5] where numerical and
analytic evidence was presented that led to and justified
the factorization property of the original conformal sym-
metry breaking term of [5]. By assemblying this different
scheme and gauge evidence a clear picture emerges which
allows us to formulate the generalization of the Crewther
relation decomposition, ahead of providing an analytic
justification of our observations. This is then robustly and
satisfactorily tested across the various schemes and gauges.
It would be remiss of us at this point not to mention the
related work in this area provided in [39]. There the
principle of maximal conformality was used to provide a
way of setting the renormalization scale for phenomeno-
logical applications from the Crewther relation.
The article is organized as follows. We recall the core

observations surrounding the Crewther relation in Sec. II as
well as details of the factorization property in the mMOM
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scheme. The focus of Sec. III is to present numerical
evidence that the conformal symmetry breaking term
vanishes at a large number of fixed points of the QCD
renomalization group equations for nonzero α. Based on
those observations the consequences for the Crewther
relation in the mMOM scheme are studied analytically
in Sec. IV where a generalization of [5] is introduced. The
consistency of this generalization is then tested in other
schemes and gauges in Sec. V as well as several other
schemes in the linear covariant gauge in Sec. VI. The
formalization of the generalized Crewther relation within
the renormalization group is presented in Sec. VII.
Section VIII by contrast is devoted to explaining the
relation of the gauge parameter critical point values to
the special cases of the gauge parameter that were indicated
in the mMOM scheme in [12]. An overview of the field

theory origin of certain properties of the Crewther relation
that we observe is provided in Sec. IX. Conclusions are
provided in Sec. X ahead of two appendices. Expressions
illustrating the structure of key functions in the Crewther
relation in a MOM scheme for a general Lie group are
recorded in Appendix A. Finally Appendix B presents the
renormalization group functions for a new renormalization
scheme that is introduced in Sec. VI.

II. BACKGROUND

It is instructive to first review the construction given in
[5] which revealed Crewther’s observation that the product
of the Bjorken sum rule and Adler D-function is not a
constant. Instead there is a discrepancy which depends on
the β-function in the MS scheme. We recall the sum rule
and D-function to Oða3Þ are [2–4]

CMS
Bjr ðaÞ ¼ 1 − 3CFaþ

�
21

2
C2
F − 23CFCA þ 8NfTFCF

�
a2

þ
�
440

3
ζ5CFC2

A þ 1241

9
C2
FCA þ 7070

27
NfTFCFCA þ 48ζ3NfTFCFCA

−
10874

27
CFC2

A −
920

27
N2

fT
2
FCF −

176

3
ζ3C2

FCA −
160

3
ζ5NfTFCFCA

−
133

9
NfTFC2

F −
80

3
ζ3NfTFC2

F −
3

2
C3
F

�
a3 þOða4Þ ð2:1Þ

and

CMS
AdlðaÞ ¼

�
1þ 3CFaþ

�
123

2
CFCA −

3

2
C2
F − 44ζ3CFCA − 22NfTFCF þ 16ζ3NfTFCF

�
a2

þ
�
160

3
ζ5NfTFCFCA þ 4832

27
N2

fT
2
FCF þ 7168

9
ζ3NfTFCFCA þ 90445

54
CFC2

A

−
31040

27
NfTFCFCA −

10948

9
ζ3CFC2

A −
1216

9
ζ3N2

fT
2
FCF −

440

3
ζ5CFC2

A

−
69

2
C3
F − 572ζ3C2

FCA − 320ζ5NfTFC2
F − 127C2

FCA − 29NfTFC2
F

þ304ζ3NfTFC2
F þ 880ζ5C2

FCA

�
a3 þOða4Þ

�
dR ð2:2Þ

in the MS scheme where CF, CA and TF are the usual color
group Casimirs, Nf is the number of (massless) quark
flavors, dR is the dimension of the fundamental represen-
tation and ζn is the Riemann zeta function. Although the
Oða4Þ terms of both are available [9] and involve higher
rank 4 color Casimirs, the Oða3Þ expressions are sufficient
for the moment to illustrate the properties of the discrep-
ancy. We note that our focus will be on the flavor nonsinglet

construction throughout the article. For clarity we define
the product in the same way as [5] through

CMS
Bjr ðaÞCMS

AdlðaÞ ¼ dR
h
1þ ΔMS

csb ðaÞ
i

ð2:3Þ

where csb on ΔMS
csb ðaÞ labels the conformal symmetry

breaking term [5]. The scheme that the variables are in
will be indicated by the superscript label throughout. It is
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clear from the product of (2.1) and (2.2) that ΔMS
csb ðaÞ is

Oða2Þ. The subsequent Oða2Þ term is partly comprised of
the sum of the two Oða2Þ terms of (2.1) and (2.2) which
results in five terms where the coefficient of the C2

F term is
9. The remaining Oða2Þ part arises from the product of the
one loop terms of each of (2.1) and (2.2) that precisely
cancels the other C2

F contribution. In total four terms
remain. One pair has rational coefficients and the other
pair involves ζ3. While this summarizes the underlying
algebra the major result of [5] was to observe that the

remaining terms factorize with one of the factors equivalent
to the one loop β-function coefficient of [40,41].

Consequently it was proposed that ΔMS
csb ðaÞ took the all

orders form

ΔMS
csb ðaÞ ¼

βMSðaÞ
a

KMS
a ðaÞ: ð2:4Þ

We recall explicit computation produced [5]
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a ðaÞ ¼
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ζ3CFC2
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36
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FCA
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2
FCF þ 488ζ3C3

F þ 576ζ23NfTFC2
F

þ4000ζ5NfTFC2
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F

�
a3 þOða4Þ ð2:5Þ

which we include as a reference point for later.

One subsequent question that was studied after the
establishment of (2.3) and (2.4) was whether or not this
relation took the same form in renormalization schemes
other than MS. This was examined at length in the mMOM
scheme in several articles [10–12]. The scheme is based on
preserving the nonrenormalization property of the ghost-
gluon vertex in the Landau gauge, that Taylor observed in
[16], in an arbitrary linear covariant gauge. QCD has been
renormalized to high loop order in mMOM in [15,17–19].
In order to carry out a Crewther relation study the

expressions for the Adler D-function and Bjorken sum
rule had first to be established in the mMOM scheme [12].
This was achieved by mapping the MS coupling constant

dependence inCMS
Bjr ðaÞ andCMS

AdlðaÞ to the mMOM coupling

constant using the explicit relations between the variables
in both schemes that are available in [15,17] for instance.
As this mapping is gauge parameter dependent it therefore
produces expressions that are α dependent [12]. In order
to facilitate our subsequent analysis we note [12]
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CmMOM
Bjr ða; αÞ ¼ 1 − 3CFaþ
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αCFCA −
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and

CmMOM
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þ
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F þ 143

4
αζ3CFC2
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3
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A
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FCF

−16αζ3NfTFCFCA − 8α2ζ3NfTFCFCA þ 96N2
fT

2
FCF þ 256ζ3NfTFC2

F

þ880ζ5C2
FCA

�
a3 þOða4Þ

�
ð2:7Þ

where we include the explicit gauge parameter dependence
in the mMOM scheme in the arguments of the functions.
A general observation is that (2.3) has to be replaced by the
more accommodating formal relation

CS
Bjrða; αÞCS

Adlða; αÞ ¼ dR
h
1þ ΔS

csbða; αÞ
i

ð2:8Þ

where S labels the scheme which for the moment is
mMOM. In [12] the objective was to write aΔmMOM

csb ða; αÞ
in the form βmMOMða; αÞKmMOM

a ða; αÞ which was partially
successful. By this we mean that while the coefficient of

the leading term of KmMOM
a ða; αÞ had the same value as the

MS scheme, the next order term, being α dependent, could
not be accommodated within (2.4) except for several
specific values of α. These were α ¼ 0, −1 and −3, [12].
At the subsequent loop order neither of the last two values
preserved the structure of (2.4). Indeed the situation for
the failure of α ¼ −3 was examined in depth. In particular
where the breakdown arose was distilled to a set of terms
with identifiable color factors. In summarizing the state of
play for the mMOM scheme [12], it might appear that the
relation (2.4) limits Crewther’s original relation [1] and its
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extension to include a term proportional to the β-function
to a subset of schemes. However we do not believe this to
be a satisfactory situation.
Instead while the establishment of (2.3) and (2.4) is an

important observation, the properties of the MS scheme
perhaps overlook aspects of the renormalization group
functions in other schemes that actually gave a direction
as to how to resolve the difficulty with the mMOM scheme.
There will be several threads to our argument. One of the
β-function properties has already been incorporated into
(2.6) and (2.7) which is that in general the β-function is
gauge dependent. In the MS scheme the β-function is
independent of the gauge parameter [42]. In addition the
gauge parameter is in essence a second coupling constant in
a gauge theory even though its origin is in the quadratic part
of the Lagrangian rather than in a higher order interaction.
The renormalization group function associated with the
renormalization of α, that is not usually referred to as a
β-function as such, is the anomalous dimension of the
gauge parameter which we will denote by γαða; αÞ here.
Indeed the relevance of this anomalous dimension can be
seen in the renormalization group equation, derived from
ensuring that a finite renormalized n-point Green’s function
ΓðnÞðμ; a; αÞ is independent of the renormalization scale μ
associated with a regularization, since�
μ
∂

∂μ
þ βða; αÞ ∂

∂a
þ αγαða; αÞ

∂

∂α
− nγϕða; αÞ

�
× ΓðnÞðμ; a; αÞ ¼ 0: ð2:9Þ

Wehave appended anα dependence in the β-function since in
general it will depend on the gauge parameter. It is only in a
subset of schemes such as MS and RI0 that the β-function is
independent of α. Here γϕða; αÞ represents the anomalous
dimensions of all the fields of the n-point function and we
have simplified to the massless case. While this is a standard
expression for a gauge theory if one interprets α as a second
coupling constant then the second and third terms of (2.9)
could be rewritten as the differential operator

β1ðgiÞ
∂

∂g1
þ β2ðgiÞ

∂

∂g2
ð2:10Þ

where g1 ¼ a, g2 ¼ α and

β1ða; αÞ≡ βða; αÞ; β2ða; αÞ≡ αγαða; αÞ: ð2:11Þ

The final thread of our argument rests in the observation of

[5] that ΔMS
csb ðaÞ vanishes at a fixed point of the underlying

theory. This is clearly the case in MS as the β-function zeros
determine the critical points of the renormalization group
flow. In other schemes where the β-function is gauge
parameter dependent the situation is more involved.
For instance, in [43] the fixed point properties of QCD were

studied to several loop orders in schemes other thanMS such
as theMOMschemes ofCelmaster andGonsalves [37,38]. In
the analysis of [43] the gauge parameter was treated as a
second coupling constant and the critical point values of a
and α, where the functions of (2.11) are zero, were deter-
mined.On top of theGaussian andBanks-Zaks critical points

[34,44] that were derived from thevanishing of βMSðaÞ, there
are fixed points for both a and α nonzero simultaneously.
More recently the analysis of [43] has been extended to
several further loop orders [45] for the MS, mMOM and the
MOM schemes of [37,38] in the linear covariant gauge as
well as the nonlinear gauges considered here. Not only is the
nontrivial infrared stable fixed point observed in [43]
preserved to higher order it also has analogs in the nonlinear
gauges as well. Therefore considering all these ingredients
together it should be the case that the product of
CmMOM
Bjr ða; αÞ and CmMOM

Adl ða; αÞ gives dR not only at the
Gaussian and Banks-Zaks fixed points but also at the other
nontrivial critical points.

III. NUMERICAL EVIDENCE

In order to test the idea given in [5] that
CmMOM
Bjr ða; αÞCmMOM

Adl ða; αÞ reflects some conformal prop-
erty of the underlying field theory at a fixed point, we have
carried out a numerical investigation in the first instance
using the data given in [45]. In particular the critical point
values of the coupling constant and gauge parameter are
known to various loop orders in different renormalization
schemes and gauges. The numerical analysis of this section
will be for the SUð3Þ color group. Also as the Crewther
relation is a purely four dimensional one the fixed points we
consider include all real solutions with positive coupling
constant where the functions of (2.11) vanish. To remain
within the perturbative domain of applicability, our analysis
was restricted to values of Nf close to the top of the
conformal window which is at Nf ¼ 16 for SUð3Þ
[34,44]. As a guide to this reasoning we have recorded
the successive loop order evaluation of CmMOM

Bjr ða; αÞ×
CmMOM
Adl ða; αÞ at criticality in Table I for Nf ¼ 16. In the

table the various three or four critical values of a and α,
denoted bya∞ andα∞ in the same notation as [43], are given
at two to five loops respectively in four subsectors as
indicated by the subheading. The critical values are
recorded to higher precision than [45]. In each subsector
the first fixed point is the Banks-Zaks solution [34,44],
which is a saddle point in the ða; αÞ plane. The second fixed
point is the infrared stable one whose critical coupling
value tends to that of the Banks-Zaks one as the loop order
increases. The remaining one or two fixed point solutions
are artifacts of solving polynomial equations at higher loop
order. While their critical coupling values are outside the
range of perturbative validity they are included as they are
relevant to subsequent arguments. The data in the final two
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columns are theOða3Þ andOða4Þ values ofCmMOM
Bjr ða; αÞ ×

CmMOM
Adl ða; αÞ at criticality.
Several features emerge from the table. The first is that

for the first two critical points the combination of the Adler
function and Bjorken sum rule produces a value very close
to the expected value of 3. Moreover there is a clear but
slow convergence to 3 as the loop order increases. We
qualify the lack of precise agreement by noting that in
computing the product there will be errors from the
truncation of the series. With the available Oða4Þ expres-
sions for both series the product will have terms up to
Oða8Þ. However this would not be the true Oða8Þ expres-
sion for CmMOM

Bjr ða; αÞCmMOM
Adl ða; αÞ since the as yet unde-

termined Oða5Þ term of one factor would lead to an Oða8Þ
contribution from the knownOða3Þ term of the other factor
for instance. For the purposes of the tables we do not
include such incomplete higher order contributions.
Therefore the most reliable indication of the value of
CmMOM
Bjr ða; αÞCmMOM

Adl ða; αÞ is that from the five loop critical
points at both Oða3Þ and Oða4Þ. A guide to this is that the
final two fixed points produce a value significantly closer to
3 than might have seemed possible from the corresponding
lower loop data even at four loops. That the value for these

two five loop fixed points is not as accurate as the Banks-
Zaks or the infrared stable ones resides in the fact that one is
still outside the domain of perturbative reliability. More
importantly for the two that are clearly within the domain the
critical value of CmMOM

Bjr ða; αÞCmMOM
Adl ða; αÞ remains close to

3.We have analyzed the small deviation from 3 for these two
fixed points in a variety of ways and concluded that the
discrepancy is due to the terms beyondOða4Þ that result from
the product of two perturbative functions of a. Perhaps one
clear indication of this is to repeat the same exercise that
producedTable I but for theMS scheme as that case led to the

expressions for ΔMS
csb ðaÞ in (2.3). The results are recorded in

Table II to the same loop order. What is apparent is that the

same numerical accuracy emerges for CMS
Bjr ðaÞCMS

AdlðaÞ at
each loop order for the Banks-Zaks and infrared stable fixed
points as the corresponding cases in the mMOM scheme. So
the deviation from the value of 3 in the mMOMscheme is on
a similar footing to MS.While this reinforces the notion that
the Crewther relation has a connection to conformal proper-
ties it does not resolve how the observations of [12] can be
accommodated.
We conclude this section by recording the situation in

other schemes as well as gauges. In [45] the fixed point

TABLE I. Values of CmMOM
Bjr ða; αÞCmMOM

Adl ða; αÞ at critical points at successive loop orders for Nf ¼ 16.

mMOM 2 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0033112583 0.0000000000 2.9999991596 3.0000039877
0.0032001941 −3.0301823312 2.9999982468 3.0000012469
9.1803474173 2.4636080795 1271156.8083213258 17202735.3015072510

mMOM 3 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031177883 0.0000000000 2.9999963264 3.0000001212
0.0031380724 −3.0274210489 2.9999973439 3.0000001217
0.1279084604 1.9051106246 6.2952539870 10.1893903424

mMOM 4 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031213518 0.0000000000 2.9999963720 3.0000001843
0.0031430130 −3.0273541344 2.9999974127 3.0000002080
0.1162651496 0.5286066929 5.3930704057 11.8942763573
0.1902883419 0.0000000000 13.5399867931 66.1969134786

mMOM 5 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031220809 0.0000000000 2.9999963814 3.0000001972
0.0031434144 −3.0273765993 2.9999974183 3.0000002151
0.0502252330 −3.8653031470 3.1912609578 3.2787374506
0.0577103776 0.0000000000 3.2818695828 3.7273436677
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TABLE II. Values of CMS
Bjr ðaÞCMS

AdlðaÞ at critical points at successive loop orders for Nf ¼ 16.

MS 2 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0033112583 0.0000000000 3.0000005633 3.0000037708
0.0033112583 −2.9529847269 3.0000005633 3.0000037708
0.0033112583 −203.8803486064 3.0000005633 3.0000037708

MS 3 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031618421 0.0000000000 2.9999981298 3.0000007963
0.0031618421 −2.9458392416 2.9999981298 3.0000007963

MS 4 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031699203 0.0000000000 2.9999982498 3.0000009437
0.0031699203 −2.9459051005 2.9999982498 3.0000009437
0.0031699203 −126.8989470199 2.9999982498 3.0000009437
0.0917000502 0.0000000000 4.1865556391 6.0730678402
0.0917000502 2.6061754737 4.1865556391 6.0730678402
0.0917000502 −4.8367657559 4.1865556391 6.0730678402

MS 5 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031708402 0.0000000000 2.9999982636 3.0000009605
0.0031708402 −2.9459382941 2.9999982636 3.0000009605
0.0468980276 0.0000000000 3.1531010299 3.2821634001
0.0468980276 −3.7013593081 3.1531010299 3.2821634001

TABLE III. Values of CMOMi
Bjr ða; αÞCMOMi

Adl ða; αÞ at critical points at successive loop orders for Nf ¼ 16.

MOMg 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0029141531 0.0000000000 2.9999877567 2.9999976812
0.0029387804 −3.0259847376 2.9999876182 2.9999981783

MOMc 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0031361417 0.0000000000 2.9999980055 2.9999998120
0.0031893967 −3.0263835218 2.9999980117 3.0000010487
0.0108889865 −9.6139587420 3.0017410493 3.0006478718

MOMq 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0031361417 0.0000000000 2.9999974139 2.9999999355
0.0031893967 −3.0263835218 3.0000000826 2.9999999820
0.0108889865 −9.6139587420 3.0015252800 3.0013631672
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properties of QCD in the MOM schemes of Celmaster and
Gonsalves were studied in the linear covariant gauge as
well as two nonlinear gauges. These were the Curci-Ferrari
gauge and the maximal Abelian gauge (MAG) whose more
technical properties we discuss later but note that for both
gauges the perturbative renormalization group functions are
only available to three loops. Our results for the linear
gauge are given in Table III while those for the other gauges
are noted in Tables IV and V respectively where MOMg,
MOMc and MOMq denote the three distinct MOM

schemes based on the triple gluon, ghost-gluon and
quark-gluon 3-point vertices respectively. For brevity we
have solely recorded the situation at three loops. Again a
very similar state to the five loop analysis arises. In each
case and particularly at three loops the product of the Adler
function and the Bjorken sum rule in effect evaluate to 3.
Moreover it reinforces the observation that the Crewther
relation has to accommodate properties consistent with
the critical points of the underlying theory for a variety of
schemes and gauges.

TABLE IV. Values of CMOMi
Bjr ða; αÞCMOMi

Adl ða; αÞ at critical points at successive loop orders for Nf ¼ 16 in the
Curci-Ferrari gauge.

Curci-Ferrari MOMg 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0029141531 0.0000000000 2.9999877567 2.9999976812
0.0031077787 −5.8860065418 2.9999745145 2.9999979271
0.0069944637 −6.2196239630 2.9999956606 3.0006212984

Curci-Ferrari MOMc 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0031822955 0.0000000000 2.9999996960 3.0000000816
0.0033905650 −5.8484574473 3.0000096730 2.9999996739
0.0256527015 −17.6663992530 3.0598055895 2.4987327333
0.0776442642 2.1961076699 3.7711417659 2.5429487508

Curci-Ferrari MOMq 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0031361417 0.0000000000 2.9999974139 2.9999999354
0.0032120881 −5.8504247987 3.0000013385 2.9999998776
0.0068658178 −12.1450763308 3.0002807117 3.0002920650

TABLE V. Values ofCMOMi
Bjr ða; αÞCMOMi

Adl ða; αÞ at critical points at successive loop orders forNf ¼ 16 in the MAG.

MAG MOMg 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0028654266 −0.4168022707 2.9999860489 2.9999968722
0.0029254124 −5.5625872573 2.9999889816 2.9999980333

MAG MOMc 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0031683606 −0.4162766338 2.9999989914 3.0000000637
0.0031577946 −5.5686496127 2.9999979720 3.0000000132
0.0014328961 −60.7998590768 3.0000187570 2.9999749282

MAG MOMq 3 loops

a∞ α∞ Oða3Þ Oða4Þ
0.0031256674 −0.4162158544 2.9999968662 2.9999999505
0.0031921140 −5.5677230790 3.0000001817 3.0000000315
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IV. mMOM SCHEME

In light of these arguments and numerical evidence as
well as the association of βða; αÞ and γαða; αÞ with the
underlying β-functions of gauge fixed QCD, we propose
that the extension of the Crewther relation of [5] to
accommodate renormalization schemes other than MS is

ΔS
csbðaS; αSÞ ¼

βSðaS; αSÞ
aS

KS
a ðaS; αSÞ

þ αSγ
S
α ðaS; αSÞKS

α ðaS; αSÞ ð4:1Þ

where S labels the scheme. Again we have included α in the
argument of the β-function to be as general as possible.
While (4.1) reflects the combination (2.10) with the
identification of (2.11) in (2.9), unlike its MS counterpart
two functions Kaða; αÞ and Kαða; αÞ are now required to

satisfy the vanishing ofΔcsbða; αÞ at all the critical points of
theory in a scheme S. In other words if the origin of the
Crewther relation rests in the fact that it reflects conformal
symmetry, which is related to vanishing β-functions, then
this property should not be a pure MS one. The combi-
nation of the Bjorken sum rule and AdlerD-function that is
the Crewther relation should vanish at the fixed points of
another scheme as suggested by our numerical investiga-
tion. So this can be resolved for other schemes provided the
relevant β-functions are present as proposed in (4.1).
In keeping with the ethos of [5] where the coefficients of

the renormalization group functions of (4.1) were estab-
lished by explicit calculation we now focus in this section
on the mMOM scheme to study theK-functions partly to be
able to compare and contrast with [10–12]. Therefore we
have constructed the following functions in the mMOM
scheme:

KmMOM
a ða; αÞ ¼

�
12ζ3CF −

21

2
CF

�
a

þ
�
21

4
CFCAα

2 þ 21

2
CFCAα −

2591

12
CFCA þ 397

6
C2
F − 240ζ5C2

F

−48ζ3NfTFCF − 12ζ3CFCAα − 6ζ3CFCAα
2 þ 62NfTFCF þ 136ζ3C2

F

þ182ζ3CFCA

�
a2

þ
�
2471

12
C3
F −

1840145

288
CFC2

A −
14740

3
ζ5C2

FCA −
8000

3
ζ5NfTFCFCA

−
5092

9
NfTFC2

F −
4792

3
ζ3NfTFC2

F −
4312

3
ζ3NfTFCFCA

−
2961

16
ζ3CFC2

Aα
2 −

2113

2
ζ23CFC2

A −
1568

3
N2

fT
2
FCF −

397

4
C2
FCAα

−
397

8
C2
FCAα

2 −
63

4
ζ3CFC2

Aα
3 −

31

2
NfTFCFCAα

2 þ 27

2
ζ23CFC2

Aα
2

þ 155

3
NfTFCFCAαþ 391

8
ζ3CFC2

Aαþ 561

32
CFC2

Aα
3 þ 4051

96
CFC2

Aα

þ 6251

32
CFC2

Aα
2 þ 11900

3
ζ5CFC2

A þ 71251

18
NfTFCFCA þ 132421

72
C2
FCA

þ 152329

48
ζ3CFC2

A − 5720ζ5C3
F − 840ζ7C2

FCA − 204ζ3C2
FCAα

−102ζ3C2
FCAα

2 − 99ζ23CFC2
Aα − 40ζ3NfTFCFCAα

þ12ζ3NfTFCFCAα
2 þ 160ζ23NfTFCFCA þ 180ζ5C2

FCAα
2

þ224ζ3N2
fT

2
FCF þ 320ζ5N2

fT
2
FCF þ 360ζ5C2

FCAαþ 488ζ3C3
F

þ2400ζ5NfTFC2
F þ 3608ζ3C2

FCA þ 5040ζ7C3
F

�
a3 þOða4Þ ð4:2Þ

and
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KmMOM
α ða; αÞ ¼

�
21

4
CFCA þ 21

4
CFCAα − 6ζ3CFCA − 6ζ3CFCAα

�
a2

þ
�
189

32
α2CFC2

A þ 341

3
NfTFCFCA þ 2035

48
αCFC2

A þ 2109

8
ζ3CFC2

A

þ9ζ23CFC2
Aαþ 120ζ5C2

FCA þ 120ζ5C2
FCAα −

9773

32
CFC2

A

−
443

8
ζ3CFC2

Aα −
397

12
C2
FCA −

397

12
C2
FCAα −

27

4
ζ3CFC2

Aα
2

−88ζ3NfTFCFCA − 68ζ3C2
FCA − 68ζ3C2

FCAα − 33ζ23CFC2
A

�
a3

þOða4Þ: ð4:3Þ

These expressions were arrived at perturbatively by
solving for the two unknown K-functions at each order
in the coupling constant. This approach was taken from
the point of view of seeing whether such an ansatz would
admit an explicit solution and is a valid method to apply.
What it did reveal was that one property of the K-
functions is they are not strictly unique. This is in the
sense that one could in principle arrange terms in one of
the K-functions to be absorbed into the other in such a
way that the vanishing of Δcsbða; αÞ at all the fixed points
is preserved. One noteworthy property of KmMOM

α ða; αÞ is
that the leading term, which is always Oða2Þ for this
function, vanishes at α ¼ −1 but not for the Oða3Þ term.
This particular gauge parameter value was singled out for
specific comment in [12] as being of special interest.
Equally it was noted that its special status was not
preserved at next order. Similar observations were also
made for the case of α ¼ −3 and we will discuss both
cases in a later section.

V. MOM SCHEMES

While the Crewther relation has been studied previously
in various schemes but at length in the mMOM scheme in
[12], it is instructive to study several specific schemes as

well as gauges other than the commonly used linear
covariant gauge. This is the topic for this section and we
examine the MOM schemes of [37,38]. In particular we
will focus on the MOMg scheme associated with the triple
gluon vertex as the mathematical content of theK-functions
of each of the three MOM schemes is similar. The MOMg
renormalization group functions of [37,38] and the other
two schemes were extended to three loops in [46] numeri-
cally as well as analytically for an arbitrary linear gauge
in [47]. More recently the four loop Landau gauge
renormalization group functions were determined in
[48]. One reason we have not used the results of [48] in
our calculations is partly as they are recorded for a specific
gauge. However, another is that those higher order correc-
tions will not contribute to the K-functions. This can be
seen by simply examining the orders of a in the two terms
of (4.1) and the fact that the Adler and Bjorken expressions
are only available to Oða4Þ. As the mapping between the
coupling constants and gauge parameters in the MS and
MOMg schemes are known [47], we have found
CMOMg
Bjr ða; αÞ and CMOMg

Adl ða; αÞ to Oða4Þ. Consequently
we have been able to determine the two K-functions
parallel to those of the mMOM scheme. For instance the
SUð3Þ Yang-Mills expressions are

KMOMg
a ða; αÞjSUð3Þ

Nf¼0 ¼ ½16ζ3 − 14�a

þ
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and

KMOMg
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where ψðzÞ is the Euler psi function. Its appearance is directly related to the symmetric point configuration of the triple
gluon vertex and also arises in the other two MOM schemes based on the ghost-gluon (MOMc) and quark-gluon (MOMq)

vertices. In [47] the expressions for the renormalization group functions additionally involved harmonic polynomials Hð2Þ
i

as well as
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snðzÞ ¼
1ffiffiffi
3

p Im
�
Lin

�
eizffiffiffi
3

p
��

ð5:3Þ

where LinðzÞ is the polylogarithm function. In [48] it was
shown using the PSLQ algorithm that the actual number

basis for MOM schemes was rationals, π, ζ2, ζ3, ζ4, ζ5,
ψ 0ð1

3
Þ and ψ 000ð1

3
Þ. The absence of harmonic polylogarithms

and the polylogarithm function was because they were not
independent of this basis. Indeed we have demonstrated
this by verifying that the relation

s2

�
π

6

�
¼ 1

11664

�
324

ffiffiffi
3

p
lnð3Þπ − 27

ffiffiffi
3

p
ln2ð3Þπ þ 29

ffiffiffi
3

p
π3 − 1944ψ 0

�
1

3

�
þ23328s2

�
π

2

�
þ 19440s3

�
π

6

�
− 15552s3

�
π

2

�
þ 1296π2

�
ð5:4Þ

holds numerically. We have incorporated (5.4) in our
computations and therefore any MOM scheme expressions
will only involve the basis of [48]. We have also established
relations similar to the MOMg ones of (5.2) for the other
MOM schemes. Those results as well as the MOMg ones
are available for an arbitrary color group and Nf ≠ 0 in the
data file associated with this article [49]. As there was a
special value for α in the mMOM case that means the Kα

function was absent at leading order, we have examined
KMOMg

α ða; αÞ for SUð3Þ to see if the same or another value
of α arises to produce a zero leading order term of the
MOMg Kα function. For Nf ≠ 0 this term is Nf indepen-
dent but unlike the mMOM case it is quadratic in α.
Although there are analytic solutions for α when the
leading term vanishes, the numerical values are α ¼
−1.617608 and 2.492398. The fact that neither values
are integer is solely due to the presence of ψð1

3
Þ, ζ3 and π

contributions which result from the renormalization pre-
scription defining each MOM scheme and the particular
external momentum configuration of the 3-point vertices
where the renormalization constants are defined. For the
MOMc and MOMq schemes the respective values of α are
−2.358904 and −7.145900 as both leading order Kα

functions are linear in the gauge parameter.
Having concentrated on the linear covariant gauge to this

point we turn our attention to two nonlinear gauges which
are the Curci-Ferrari gauge [50] and the MAG [51–53].
However both gauges are not unrelated. The MAG is a
gauge fixing where the gluon fields are partitioned into
those whose associated group generator form an Abelian
subgroup of the non-Abelian gauge group and the remain-
der. The former are referred to as the diagonal gluons and
there are Nd

A such fields while there are No
A remaining off-

diagonal fields where Nd
A ¼ Nc − 1 and No

A ¼ NcðNc − 1Þ
for the group SUðNcÞ. The gauge fixing functional takes a
different form in both sectors where the diagonal gluons are
fixed in the Landau gauge but the No

A gluons have a
nonlinear functional that involves the ghosts associated
with the off-diagonal gluons. These ghost fields differ from
those of the Abelian subgroup gluons. The MAG has
several similarities with the background field gauge in that

the diagonal gluons behave like background field gluons.
The Curci-Ferrari gauge is different from the MAG in that
the gluons are not distinguished in the gauge fixing but do
share a similar quadratic ghost term in the gauge fixing
functional. Both gauges have quartic ghost interactions that
have no analog in the linear covariant gauge fixing. What
does connect the MAG to the Curci-Ferrari gauge, how-
ever, is the fact that taking the formal Nd

A → 0 limit
produces the Curci-Ferrari gauge. This is of practical
benefit as a check on any computations involving the
MAG since the Curci-Ferrari gauge expressions have to be
reproduced as Nd

A → 0.
Although both the Bjorken sum rule and the Adler

D-function were originally computed perturbatively to high
loop order in the linear gauge, since the operators involved
in the underlying field theory formalism are gauge inde-
pendent the MS expressions for both quantities will be the
same in either the Curci-Ferrari gauge or MAG. Therefore
to determine the extension to the Crewther relation we have
carried out the mapping of the MS coupling constant to the
Curci-Ferrari coupling in the MOMg scheme as well as also
the MOMc and MOMq schemes. As a check on this
procedure, however, we carried out the explicit direct
computation of the Adler D-function in both the Curci-
Ferrari gauge and the MAG to high loop order. This could
only be achieved by using the FORCER package [54,55]
written in the symbolic manipulation language FORM

[56,57]. The FORCER algorithm evaluates massless 2-point
Feynman graphs up to four loops very efficiently. In
carrying out this exercise it is important to recognize that
in the Curci-Ferrari gauge there are several extra Feynman
graphs to be evaluated for the D-function than the linear
gauge due to the extra quartic ghost interaction. By contrast
in the case of the MAG there are considerably more
diagrams to evaluate compared to the other two gauges
not only due to quartic ghost interactions but because there
are twice as many gluon and ghost fields. These have
intricately connected interactions. On top of this one has to
implement a routine to handle the color group factors
associated with gluon and ghost fields as they lie in two
sectors. So the group generators and structure functions
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obey a more complicated algebra. Useful in this context
were the identities used in the three loop MS renormaliza-
tion of the MAG, [58]. The overall outcome was that the
MS Adler D-function resulted as expected. Once that was
established for both gauges it was a simple exercise to
change the renormalization of the D-function to another
scheme such as the MOMg one for both gauges.
Consequently this checked that the direct application of

the mapping from the linear gauge expression was con-
sistent. The various coupling constant mappings were
originally determined in [59].
Having summarized the background to both gauges we

have managed to construct the respective K-functions in
keeping with (4.1). The expressions for the Curci-Ferrari
(CF) gauge are not dissimilar to those of the linear covariant
gauge since
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and
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for SUð3Þ Yang-Mills. For the MAG a similar picture emerges since
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3

�
2

ζ3α
2

þ 2048

243
ψ 0
�
1

3

�
ζ3π

2α3 þ 3395

1458
π4α3 þ 4571

144
ψ 000

�
1

3

�
αþ 5135

324
π2α3

þ 5311

12
ζ3α

2 þ 6076

81
ψ 0
�
1

3

�
π2α2 þ 9320

243
ζ3π

4α2 þ 10409

45
π4

þ 19598

81
ζ3π

2α2 þ 20480

27
ζ5π

2 þ 22400

3
ζ7 þ

28160

27
ζ5π

2α

þ 56359

15
ψ 0
�
1

3

�
ζ3αþ 112168

405
ψ 0
�
1

3

�
2

ζ3αþ 169595

648
ψ 0
�
1

3

�
α2

þ 392588

1215
ψ 0
�
1

3

�
π2αþ 448246

405
ζ3π

2 þ 485200

27
ζ5 þ

695693

240
α

þ 801292

3645
ζ3π

4αþ 5544823

3240
ψ 0
�
1

3

�
þ 9335291

4860
π2α − 24900ζ23

−640ζ5α2 − 22ζ23α
3 − 12ζ23α

4 − 12ψ 0
�
1

3

�
ζ3α

4 − 7π2α4 þ 8ζ3π
2α4

þ107ψ 000
�
1

3

�
ζ3 þ 522ζ23α

2 þ 1576ζ23αþ 1920ζ5α

�
a3 ð5:7Þ

and

KMOMg
αMAGða; αÞjSUð3Þ

Nf¼0 ¼
�
21 −

352

27
ζ3π

2 −
154

9
ψ 0
�
1

3

�
−
56

27
π2α −

32

9
ψ 0
�
1

3

�
ζ3αþ 28

9
ψ 0
�
1

3

�
α

þ 64

27
ζ3π

2αþ 176

9
ψ 0
�
1

3

�
ζ3 þ

308

27
π2 − 24ζ3 − 14αþ 16ζ3α

�
a2

þ
�
640ζ5 −

16773443

9720
ψ 0
�
1

3

�
−
1763246

1215
ζ3π

2 −
775271

7290
π4

−
325472

1215
ψ 0
�
1

3

�
ζ3π

2 −
289513

972
ψ 0
�
1

3

�
α −

71197

405
ψ 0
�
1

3

�
2

−
64139

30
ζ3

−
41876

243
ζ3π

2α −
14080

27
ψ 0
�
1

3

�
ζ5 −

12152

243
ψ 0
�
1

3

�
π2α −

9136

729
ζ3π

4α

−
5120

81
ζ5π

2α −
3472

81
ψ 0
�
1

3

�
2

ζ3α −
2140

243
ζ3π

4α2 −
1904

81
ψ 0
�
1

3

�
π2α2

−
1280

3
ζ5α −

665

8
ψ 0
�
1

3

�
α2 −

653

54
ψ 000

�
1

3

�
ζ3 −

544

27
ψ 0
�
1

3

�
2

ζ3α
2

−
448

243
ψ 0
�
1

3

�
ζ3π

2α3 −
392

729
π4α3 −

329

8
α3 −

190

3
ζ3π

2α2 −
121

4
ζ3α

2
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−
98

81
ψ 0
�
1

3

�
2

α3 −
28

3
π2α3 −

22

9
ψ 000

�
1

3

�
ζ3α −

1

18
ψ 000

�
1

3

�
ζ3α

2

þ 7

144
ψ 000

�
1

3

�
α2 þ 32

3
ζ3π

2α3 þ 77

36
ψ 000

�
1

3

�
αþ 112

81
ψ 0
�
1

3

�
2

ζ3α
3

þ 392

243
ψ 0
�
1

3

�
π2α3 þ 448

729
ζ3π

4α3 þ 476

27
ψ 0
�
1

3

�
2

α2 þ 665

12
π2α2

þ 693

16
α2 þ 707

18
ζ3αþ 1576

3
ζ23 þ

2176

81
ψ 0
�
1

3

�
ζ3π

2α2 þ 2345

108
α

þ 2560

27
ψ 0
�
1

3

�
ζ5αþ 3038

81
ψ 0
�
1

3

�
2

αþ 3745

486
π4α2 þ 4571

432
ψ 000

�
1

3

�
þ 7994

729
π4αþ 13888

243
ψ 0
�
1

3

�
ζ3π

2αþ 20938

81
ψ 0
�
1

3

�
ζ3αþ 28160

81
ζ5π

2

−16ψ 0
�
1

3

�
ζ3α

3 þ 81368

405
ψ 0
�
1

3

�
2

ζ3 þ
284788

1215
ψ 0
�
1

3

�
π2 þ 289513

1458
π2α

þ 443012

3645
ζ3π

4 þ 881623

405
ψ 0
�
1

3

�
ζ3 þ

1405969

720
þ 16773443

14580
π2

−22ζ23α2 − 16ζ23α
3 þ 14ψ 0

�
1

3

�
α3 þ 61ζ3α

3 þ 95ψ 0
�
1

3

�
ζ3α

2 þ 348ζ23α

�
a3 þOða4Þ ð5:8Þ

for the same theory. What is evident in both cases is that the leading term of the MOMg Ka in both gauges, as well as the
MOMc andMOMq schemes, is the same as that of the linear gauge in all schemes. In other words the remaining terms ofKa
and all in Kα carry both the scheme and gauge dependence. Moreover by construction the Crewther relation vanishes at the
corresponding fixed points of the Curci-Ferrari and MAG renormalization group functions. In these two nonlinear gauges
γαða; αÞ is linearly independent of the gluon anomalous dimension γAða; αÞ unlike the linear covariant gauge. In other
words the critical points of both gauges are different.
What is not apparent from the SUð3Þ expressions is the connection between the Curci-Ferrari gauge and MAG which

requires the results for an arbitrary color group. To assist with seeing how the Nd
A → 0 limit takes effect we record the

situation for the Oða2Þ K-functions in detail as the next order expressions are large but available in the associated data
file [49]. In the Curci-Ferrari gauge we have

KMOMg
aCF ða; αÞ ¼

�
12ζ3CF −

21

2
CF

�
a

þ
�
136ζ3C2

F −
512

27
ζ3π

2NfTFCF −
321

2
CFCA −

224

9
ψ 0
�
1

3

�
NfTFCF

−
161

27
π2CFCA −

112

3
ζ3NfTFCF −

92

9
ψ 0
�
1

3

�
ζ3CFCA −

21

2
CFCAα

2

−
21

2
ψ 0
�
1

3

�
CFCAα −

14

9
π2CFCAα

2 −
8

3
ψ 0
�
1

3

�
ζ3CFCAα

2

þ 7

3
ψ 0
�
1

3

�
CFCAα

2 þ 7

4
CFCAα

3 þ 16

9
ζ3π

2CFCAα
2 þ 63

4
CFCAα

þ 158

3
NfTFCF þ 161

18
ψ 0
�
1

3

�
CFCA þ 184

27
ζ3π

2CFCA

þ 256

9
ψ 0
�
1

3

�
ζ3NfTFCF þ 356

3
ζ3CFCA þ 397

6
C2
F þ 448

27
π2NfTFCF

−240ζ5C2
F − 18ζ3CFCAα − 8ζ3π

2CFCAα − 2ζ3CFCAα
3

þ7π2CFCAαþ 12ζ3CFCAα
2 þ 12ψ 0

�
1

3

�
ζ3CFCAα

�
a2 þOða3Þ ð5:9Þ
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and

KMOMg
αCF ða;αÞ¼

�
6ψ 0

�
1

3

�
ζ3CFCAþ12ζ3CFCAα−

21

2
CFCAα−

21

4
ψ 0
�
1

3

�
CFCA

−
14

9
π2CFCAα−

8

3
ψ 0
�
1

3

�
ζ3CFCAαþ

7

2
π2CFCAþ

7

3
ψ 0
�
1

3

�
CFCAα

þ16

9
ζ3π

2CFCAαþ
21

8
CFCAα

2þ63

8
CFCA−9ζ3CFCA−4ζ3π

2CFCA−3ζ3CFCAα
2

�
a2þOða3Þ ð5:10Þ

while the MAG partners are

KMOMg
aMAGða; αÞ ¼

�
12ζ3CF −

21

2
CF

�
a

þ
�
7

3
ψ 0
�
1

3

�
CFCAα

2 −
512

27
ζ3π

2NfTFCF −
321

2
CFCA −

224

9
ψ 0
�
1

3

�
NfTFCF

−
161

27
π2CFCA −

112

3
ζ3NfTFCF −

104

3
ζ3π

2
Nd

A

No
A
CFCA

−
92

9
ψ 0
�
1

3

�
ζ3CFCA −

91

2
ψ 0
�
1

3

�
Nd

A

No
A
CFCA −

63

4

Nd
A

No
A
CFCAα

−
35

9
π2

Nd
A

No
A
CFCAα −

32

9
ζ3π

2
Nd

A

No
A
CFCAα

2 −
21

2
CFCAα

2

−
21

2
ψ 0
�
1

3

�
CFCAα −

21

4

Nd
A

No
A
CFCAα

3 −
20

3
ψ 0
�
1

3

�
ζ3

Nd
A

No
A
CFCAα

−
14

3
ψ 0
�
1

3

�
Nd

A

No
A
CFCAα

2 −
14

9
π2CFCAα

2 −
8

3
ψ 0
�
1

3

�
ζ3CFCAα

2

þ 7

4
CFCAα

3 þ 16

3
ψ 0
�
1

3

�
ζ3

Nd
A

No
A
CFCAα

2 þ 16

9
ζ3π

2CFCAα
2

þ 28

9
π2

Nd
A

No
A
CFCAα

2 þ 35

6
ψ 0
�
1

3

�
Nd

A

No
A
CFCAαþ 40

9
ζ3π

2
Nd

A

No
A
CFCAα

þ 63

4
CFCAαþ 91

3
π2

Nd
A

No
A
CFCA þ 158

3
NfTFCF þ 161

18
ψ 0
�
1

3

�
CFCA

þ 184

27
ζ3π

2CFCA þ 256

9
ψ 0
�
1

3

�
ζ3NfTFCF þ 356

3
ζ3CFCA þ 397

6
C2
F

þ 448

27
π2NfTFCF − 240ζ5C2

F − 24ζ3
Nd

A

No
A
CFCAα

2 − 18ζ3CFCAα

−8ζ3π2CFCAα − 2ζ3CFCAα
3 þ 6ζ3

Nd
A

No
A
CFCAα

3 þ 7π2CFCAα

þ12ζ3CFCAα
2 þ 12ψ 0

�
1

3

�
ζ3CFCAαþ 18ζ3

Nd
A

No
A
CFCAα

þ21
Nd

A

No
A
CFCAα

2 þ 52ψ 0
�
1

3

�
ζ3

Nd
A

No
A
CFCA þ 136ζ3C2

F

�
a2 þOða3Þ ð5:11Þ

and
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KMOMg
αMAGða;αÞ¼

�
7

2
π2CFCA−

63

8

Nd
A

No
A
CFCA−

63

8

Nd
A

No
A
CFCAα

2−
35

18
π2

Nd
A

No
A
CFCA

−
32

9
ζ3π

2
Nd

A

No
A
CFCAα−

21

2
CFCAα−

21

4
ψ 0
�
1

3

�
CFCA

−
14

3
ψ 0
�
1

3

�
Nd

A

No
A
CFCAα−

14

9
π2CFCAα−

10

3
ψ 0
�
1

3

�
ζ3
Nd

A

No
A
CFCA

−
8

3
ψ 0
�
1

3

�
ζ3CFCAαþ

7

3
ψ 0
�
1

3

�
CFCAαþ

16

3
ψ 0
�
1

3

�
ζ3
Nd

A

No
A
CFCAα

þ16

9
ζ3π

2CFCAαþ
20

9
ζ3π

2
Nd

A

No
A
CFCAþ

21

8
CFCAα

2

þ28

9
π2

Nd
A

No
A
CFCAαþ

35

12
ψ 0
�
1

3

�
Nd

A

No
A
CFCAþ

63

8
CFCA

−24ζ3
Nd

A

No
A
CFCAα−9ζ3CFCA−4ζ3π

2CFCA−3ζ3CFCAα
2

þ 6ψ 0
�
1

3

�
ζ3CFCAþ9ζ3

Nd
A

No
A
CFCAþ9ζ3

Nd
A

No
A
CFCAα

2þ12ζ3CFCAαþ21
Nd

A

No
A
CFCAα

�
a2þOða3Þ: ð5:12Þ

Deleting the terms with aNd
A=N

o
A factor in (5.11) and (5.12)

reproduces (5.9) and (5.10) respectively. We have checked
that this is also the case for the Oða3Þ terms.

VI. OTHER SCHEMES

One question of interest concerns whether or not there are
any schemes other than the MS one where Δcsbða; αÞ
involves only the β-function. It turns out in fact that, aside
from the V scheme of [13,14] whose β-function is inde-
pendent of the gauge parameter by construction, there is at
least one other such scheme which is the RI0 scheme,
[35,36]. It was introduced in relation to lattice regularized
QCD calculations and has a continuum spacetime analog
which has been used to renormalize the theory to high loop
order [60–63]. The prescription requires that the wave
function renormalization constants of the gluon, ghost
and quark fields are defined so that there are no OðaÞ
corrections to their 2-point functions at the subtraction point.
In this sense it incorporates the approach of the MOM
schemes of [37,38]. The RI0 scheme differs however in
respect of the coupling constant renormalization. For each
vertex function the coupling renormalization constant is
defined according to the MS prescription at the subtraction
point. So the RI0 scheme can be regarded as a halfway house
between the MS and the suite of MOM schemes of [37,38].
In terms of the resulting renormalization group functions the
relevant issue for this article is that the RI0 β-function is
formally equivalent to that of the MS β-function. By this we
mean that although the coupling constantwill be the variable
in the respective schemes the actual coefficients of the
coupling constant polynomial of the RI0 scheme β-function

are identically the same as their MS counterparts. We have
checked explicitly that the same reasoning applies to the
structure of KRI0

a ðaÞ whose coefficients are precisely the

same as those of KMS
a ðaÞ with in addition now

KRI0
α ða; αÞ ¼ 0: ð6:1Þ

In other words the ansatz of (2.3) holds primarily as a direct
result of the RI0 renormalization prescription of the vertex
function.
Although this means that there is a scheme other than

MS that takes the same form as (2.4) it is a relatively trivial
observation. However the nature of the RI0 scheme gives a
more important insight into some of the underlying issues.
In essence it indicates that the scheme the fields are
renormalized in plays no role in whether a Kαða; αÞ
function is needed. Instead it is the prescription for the
coupling constant renormalization that is key. This is
understandable since the MS Crewther construction is α
independent. In light of this, one question that is of interest
is what occurs if one considers a scheme that is opposite to
the prescription of the RI0 scheme. By this we mean one
where the fields, gauge parameter and quark mass are
renormalized in an MS way but the vertex functions, and
thereby the coupling constant, are renormalized in a non-
MS fashion. It is possible to explore this possibility given
the four loop data that is available in [18,63]. In this new
scheme the gluon, ghost and quark 2-point functions as
well as the quark 2-point function with the quark mass
operator inserted [63] are renormalized in the linear
covariant gauge by including only the poles in ϵ into the

CREWTHER’S RELATION, SCHEMES, GAUGES, AND FIXED … PHYS. REV. D 108, 056006 (2023)

056006-21



respective renormalization constants. To determine the
coupling constant renormalization we have chosen to use
the ghost-gluon vertex in the configuration where the
momentum of one ghost field is zero. This is the setup
that is used to define the mMOM renormalization. The
reason for choosing this vertex is that in the Landau gauge
the vertex is finite according to Taylor’s observation [16].
Therefore in this new scheme the renormalization group
functions ought to differ from the MS ones in a minimal

way. We have labeled this scheme as gRIc0 reflecting that it
is based on the ghost-gluon vertex, being a variation of
the RI0 scheme, and constructed the renormalization group
equations to five loops. Expressions for them in an arbitrary
gauge for a general color group are given in the associated
data file [49]. To appreciate their structure we have

recorded the SUð3Þ expressions for the β-function and
gauge parameter anomalous dimension in Appendix B as
these are relevant to the current discussion. However it is

worth noting that our expectation that the gRIc0 scheme has a
minimal effect on the β-function structure is met in that the

coefficients of the coupling constant in β
fRIc0 ða; 0Þ are

precisely the same as those of βMSðaÞ to five loops.

Equipped with the gRIc0 renormalization group functions

we have determined the relation between the MS and gRIc0
coupling constant and gauge paremeter that allows us to

examine what ΔfRIc0
csb ða; αÞ is. By following the procedure

used for other schemes it transpires that K
fRIc0
α ða; αÞ has to

be nonzero. More specifically we found

K
fRIc0
a ða; αÞ ¼

�
12ζ3CF −

21

2
CF

�
a

þ
�
326

3
NfTFCF þ 397

6
C2
F þ 884

3
ζ3CFCA −

629

2
CFCA −

304

3
ζ3NfTFCF

−240ζ5C2
F − 24ζ3CFCAαþ 21CFCAαþ 136ζ3C2

F

�
a2

þ
�
81

2
ζ23CFC2

Aαþ 85

16
ζ3CFC2

Aα
2 þ 211

16
CFC2

Aα
2 −

406043

36
CFC2

A

−
45517

48
ζ3CFC2

Aα −
40336

9
ζ3NfTFCFCA −

24880

3
ζ5C2

FCA

−
9824

9
N2

fT
2
FCF −

8000

3
ζ5NfTFCFCA −

7729

18
NfTFC2

F −
652

3
NfTFCFCAα

−
397

2
C2
FCAα −

27

2
ζ23CFC2

Aα
2 þ 608

3
ζ3NfTFCFCAαþ 2471

12
C3
F

þ 6496

9
ζ3N2

fT
2
FCF þ 11900

3
ζ5CFC2

A þ 16570

3
ζ3C2

FCA þ 44939

48
CFC2

Aα

þ 67520

9
NfTFCFCA þ 72028

9
ζ3CFC2

A þ 99757

36
C2
FCA − 5720ζ5C3

F

−3668ζ3NfTFC2
F − 1232ζ23CFC2

A − 840ζ7C2
FCA − 408ζ3C2

FCAα

−128ζ23NfTFCFCA þ 320ζ5N2
fT

2
FCF þ 488ζ3C3

F þ 576ζ23NfTFC2
F

þ720ζ5C2
FCAαþ 4000ζ5NfTFC2

F þ 5040ζ7C3
F

�
a3 þOða4Þ ð6:2Þ

and

K
fRIc0
α ða; αÞ ¼

�
21

2
CF − 12ζ3CF

�
CAa2

þ
�
27

2
ζ23CFCA þ 231

8
ζ3CFCAαþ 3461

48
CFCA −

1477

16
ζ3CFCA −

397

6
C2
F

−
147

8
CFCAα − 136ζ3C2

F − 9ζ23CFCAαþ 240ζ5C2
F

�
CAa3 þOða4Þ: ð6:3Þ
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Although this exercise did not produce another scheme
whose Crewther structure was the same as those of MS and

RI0, KfRIc0
α ða; αÞ does have a different structure. For instance

unlike the other schemes considered earlier the leading
term is α independent and the linear terms in α at the next
order are proportional to the leading term. Also like

KmMOM
α ða; αÞ we note that K

fRIc0
α ða; αÞ is proportional to

CA. These properties can be traced directly back to those of
the vertex function that this scheme was based on.

VII. RENORMALIZATION GROUP CONNECTION

Having accumulated evidence to support the ansatz (4.1)
a natural question is whether it can be derived directly
and in general from some renormalization group principle.
This is important since our analysis so far indicating an
extension to (2.4) is needed has been concerned with values
of Nf in the conformal window. Any generalization should
not be restricted to this range. It turns out the key lies in the
way one maps the parameters of a theory in one scheme to
the corresponding parameters in another scheme as well as
the relation between the renormalization group functions.
For instance if for the moment we regard a as the MS
coupling constant and aS and αS as the respective coupling
constant and gauge parameter in another scheme S then we
found the AdlerD-function and the Bjorken sum rule using
the relations

CMS
Bjr ðaÞ ¼ CS

BjrðaS;αSÞ; CMS
AdlðaÞ ¼ CS

AdlðaS;αSÞ ð7:1Þ

where

a≡ aðaS; αSÞ ð7:2Þ

expresses the MS coupling in terms of the coupling and
gauge parameter in scheme S and implies

ΔMS
csb ðaÞ ¼ ΔS

csbðaS; αSÞ: ð7:3Þ

Using properties of the renormalization group equation the
MS β-function is related to that in another scheme by

βMSðaÞ ¼ βSðaS; αSÞ
∂

∂aS
aðaS;αSÞ

þ αSγ
S
α ðaS; αSÞ

∂

∂αS
aðaS; αSÞ ð7:4Þ

which recalling (2.4) implies ΔS
csbðaS; αSÞ can be written as

ΔS
csbðaS; αSÞ ¼

βSðaS; αSÞ
aS

K̄S
a ðaS; αSÞ

þ αSγ
S
α ðaS; αSÞK̄S

α ðaS; αSÞ ð7:5Þ

where

K̄S
a ðaS; αSÞ ¼ aS

�
1

a
KMS

a ðaÞ
�����

MS→S

∂

∂aS
aðaS; αSÞ;

K̄S
α ðaS; αSÞ ¼

�
1

a
KMS

a ðaÞ
�����

MS→S

∂

∂αS
aðaS; αSÞ: ð7:6Þ

The restriction on each appearance ofKMS
a ðaÞ indicates that

the MS coupling needs to be mapped to its S scheme
counterpart by inverting (7.2) so that the variables are in the
S scheme. By setting S in (4.1) to be the MS scheme and
comparing with (2.4) clearly implies

K̄MS
α ða; αÞ ¼ 0: ð7:7Þ

However (7.6) demonstrates the consistency of this obser-
vation trivially. For instance if in the second relation of
(7.6) we choose S to be the MS scheme itself then ∂a

∂α

vanishes as a and α are independent in the MS scheme.
While the use of (7.4) formally justifies our ansatz of

(4.1) it provides another way of constructing explicit
expressions for the K-functions. However it turns out that
the perturbative construction of the K-functions are not in
agreement with those derived from (7.6). In other words for
each of the schemes and gauges considered here we define
the quantities

ΘS
a ða; αÞ ¼ KS

a ða; αÞ − K̄S
a ða; αÞ;

ΘS
α ða; αÞ ¼ KS

α ða; αÞ − K̄S
α ða; αÞ ð7:8Þ

to illustrate the lack of uniqueness and note they are
nonzero. This nonuniqueness of the perturbative expansion
of the K-functions does not invalidate the observation that
ΔS

csbðaS; αSÞ vanishes at critical points of the renormaliza-
tion group equation. This still follows due to the coeffi-
cients of the K-functions of (7.5) being the quantities
defining the fixed point locations. By way of example we
record a few expressions for both ΘS

i ða; αÞ in various
schemes. First in the linear covariant gauge we have

ΘmMOM
a ða;αÞ ¼

�
434

3
αNfTFCFCA −

2821

12
αCFC2

A þ 182αζ3CFC2
A − 112αζ3NfTFCFCA þ

31

8
α2CFC2

A þ 31α2NfTFCFCA

−3α2ζ3CFC2
A − 24α2ζ3NfTFCFCA þ

93

8
α3CFC2

A − 9α3ζ3CFC2
A

�
a3 þOða4Þ;
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ΘmMOM
α ða; αÞ ¼

�
434

3
NfTFCFCA −

2387

6
CFC2

A þ 308ζ3CFC2
A − 112ζ3NfTFCFCA

−
341

4
αCFC2

A þ 31αNfTFCFCA þ 66αζ3CFC2
A − 24αζ3NfTFCFCA

�
a3 þOða4Þ ð7:9Þ

for the mMOM scheme. By contrast the partially related gRIc0 scheme expressions are simpler since

ΘfRIc0
a ða; αÞ ¼

�
326

3
αNfTFCFCA −

2119

12
αCFC2

A þ 494

3
αζ3CFC2

A −
304

3
αζ3NfTFCFCA

þ 163

4
α2CFC2

A − 38α2ζ3CFC2
A

�
a3 þOða4Þ;

ΘfRIc0
α ða; αÞ ¼

�
326

3
NfTFCFCA −

1793

6
CFC2

A þ 836

3
ζ3CFC2

A −
304

3
ζ3NfTFCFCA

�
a3 þOða4Þ: ð7:10Þ

For balance we record the MOMg scheme SUð3Þ Yang-Mills differences are

ΘMOMg
a ða; αÞjSUð3Þ

Nf¼0 ¼
�
98

3
π2α4 þ 411

8
α4 −

238303

108
ψ 0
�
1

3

�
α −

128596

81
ζ3π

2α −
99008

729
ζ3π

4α

−
86632

243
ψ 0
�
1

3

�
π2α −

24752

81
ψ 0
�
1

3

�
2

ζ3α −
15680

243
ζ3π

4α2 −
15001

36
ψ 0
�
1

3

�
α2

−
13720

81
ψ 0
�
1

3

�
π2α2 −

7372

27
ζ3π

2α2 −
3920

27
ψ 0
�
1

3

�
2

ζ3α
2 −

3445

3
ζ3α

−
3299

8
α3 −

1792

27
ψ 0
�
1

3

�
ζ3π

2α3 −
1568

81
π4α3 −

392

9
ψ 0
�
1

3

�
2

α3

−
112

3
ζ3π

2α4 þ 448

9
ψ 0
�
1

3

�
2

ζ3α
3 þ 928

3
ζ3π

2α3 þ 1568

27
ψ 0
�
1

3

�
π2α3

þ 1792

81
ζ3π

4α3 þ 2623

8
α2 þ 3430

27
ψ 0
�
1

3

�
2

α2 þ 3686

9
ψ 0
�
1

3

�
ζ3α

2

þ 13720

243
π4α2 þ 15001

54
π2α2 þ 15680

81
ψ 0
�
1

3

�
ζ3π

2α2 þ 21658

81
ψ 0
�
1

3

�
2

α

þ 51415

24
αþ 64298

27
ψ 0
�
1

3

�
ζ3αþ 86632

729
π4αþ 99008

243
ψ 0
�
1

3

�
ζ3π

2α

þ 238303

162
π2α − 464ψ 0

�
1

3

�
ζ3α

3 − 284π2α3 − 229ζ3α
2 − 49ψ 0

�
1

3

�
α4

−33ζ3α4 þ 56ψ 0
�
1

3

�
ζ3α

4 þ 257ζ3α
3 þ 426ψ 0

�
1

3

�
α3
�
a3 þOða4Þ;

ΘMOMg
α ða; αÞjSUð3Þ

Nf¼0 ¼
�
1078

3
ψ 0
�
1

3

�
α2 þ 2464

9
ζ3π

2α2 −
217624

81
ζ3π

2 −
201641

54
ψ 0
�
1

3

�
−
167552

729
ζ3π

4 −
146608

243
ψ 0
�
1

3

�
π2 −

41888

81
ψ 0
�
1

3

�
2

ζ3 −
39424

243
ζ3π

4α

−
34496

81
ψ 0
�
1

3

�
π2α −

29216

27
ζ3π

2α −
14102

9
ψ 0
�
1

3

�
α −

9856

27
ψ 0
�
1

3

�
2

ζ3α

−
5830

3
ζ3 −

2156

9
π2α2 −

1507

4
α2 −

1232

3
ψ 0
�
1

3

�
ζ3α

2 þ 2783

2
α
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þ 8624

27
ψ 0
�
1

3

�
2

αþ 14608

9
ψ 0
�
1

3

�
ζ3αþ 28204

27
π2αþ 34496

243
π4α

þ 36652

81
ψ 0
�
1

3

�
2

þ 39424

81
ψ 0
�
1

3

�
ζ3π

2αþ 43505

12
þ 108812

27
ψ 0
�
1

3

�
ζ3

þ 146608

729
π4 þ 167552

243
ψ 0
�
1

3

�
ζ3π

2 þ 201641

81
π2 − 836ζ3αþ 242ζ3α

2

�
a3 þOða4Þ ð7:11Þ

to illustrate the situation for a kinematic scheme. While the above linear covariant gauge expressions for ΘS
a ða; αÞ

each vanish when α ¼ 0 this is not the case for the MAG as the α dependence of the respective γαða; αÞ leading terms
differ [58]. For instance in the MOMc scheme in that gauge we find

ΘMOMc
aMAGða; αÞ ¼

�
2

3
π2CFC2

Aα
2 þ 2

3
ψ 0
�
1

3

�
ζ3CFC2

Aα
2 þ 8

9
ζ3π

2
Nd

A

No
A
CFC2

Aα
2

−
3751

3

No
A

½No
A þ 2Nd

A�
CFC2

Aα −
1425

4

Nd
A

No
A
CFC2

A −
1395

8

Nd
A

No
A
CFC2

Aα

−
1323

8

Nd
A
2

No
A
2
CFC2

Aα
2 −

1179

4

Nd
A
2

No
A
2
CFC2

Aα −
1023

2

No
A

½No
A þ 2Nd

A�
CFC2

A

−
775

18
ψ 0
�
1

3

�
Nd

A

No
A
CFC2

Aα −
621

4

Nd
A
2

No
A
2
CFC2

A −
560

27
ζ3π

2
Nd

A

No
A
CFC2

Aα

−
475

3
NfTFCFCAα −

344

27
π2Nf

Nd
A

No
A
TFCFCAα −

153

2
ζ3

Nd
A

No
A
CFC2

Aα
2

−
128

9
ψ 0
�
1

3

�
ζ3Nf

Nd
A

No
A
TFCFCAα −

93

4

Nd
A
2

No
A
2
CFC2

Aα
3 −

86

3
π2

Nd
A
2

No
A
2
CFC2

A

−
86

3
π2

Nd
A
2

No
A
2
CFC2

Aα −
64

27
ζ3π

2NfTFCFCAα −
52

9
π2CFC2

Aα

−
52

9
ψ 0
�
1

3

�
ζ3CFC2

Aα −
43

9
π2

Nd
A
2

No
A
2
CFC2

Aα
2 −

19

18
π2

Nd
A

No
A
CFC2

Aα
2

−
16

3
ζ3π

2
Nd

A

No
A
CFC2

A −
16

3
ψ 0
�
1

3

�
NfTFCFCAα −

16

3
ψ 0
�
1

3

�
ζ3

Nd
A
2

No
A
2
CFC2

Aα
2

−
9

2
ζ3CFC2

Aα
2 −

9

2
ζ3CFC2

Aα
3 −

4

3
ψ 0
�
1

3

�
ζ3

Nd
A

No
A
CFC2

Aα
2

−
4

9
ζ3π

2CFC2
Aα

2 þ 19

12
ψ 0
�
1

3

�
Nd

A

No
A
CFC2

Aα
2 þ 26

3
ψ 0
�
1

3

�
CFC2

Aα

þ 32

9
π2NfTFCFCAαþ 32

9
ζ3π

2
Nd

A
2

No
A
2
CFC2

Aα
2 þ 32

9
ψ 0
�
1

3

�
ζ3NfTFCFCAα

þ 43

6
ψ 0
�
1

3

�
Nd

A
2

No
A
2
CFC2

Aα
2 þ 64

3
ζ3π

2
Nd

A
2

No
A
2
CFC2

A þ 64

3
ζ3π

2
Nd

A
2

No
A
2
CFC2

Aα

þ 83

16
CFC2

Aα
2 þ 93

16
CFC2

Aα
3 þ 104

27
ζ3π

2CFC2
Aα

þ 172

9
ψ 0
�
1

3

�
Nf

Nd
A

No
A
TFCFCAαþ 256

27
ζ3π

2Nf
Nd

A

No
A
TFCFCAα

þ 280

9
ψ 0
�
1

3

�
ζ3

Nd
A

No
A
CFC2

Aαþ 775

27
π2

Nd
A

No
A
CFC2

Aαþ 1023

2
CFC2

A

þ 1364

3
Nf

No
A

½No
A þ 2Nd

A�
TFCFCAαþ 1571

16

Nd
A

No
A
CFC2

Aα
2 þ 18451

24
CFC2

Aα
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− 591ζ3CFC2
Aα−396ζ3CFC2

A−352ζ3Nf
No

A

½No
Aþ2Nd

A�
TFCFCAα

− 69Nf
Nd

A

No
A
TFCFCAα−62Nf

Nd
A

No
A
TFCFCAα

2−32ψ 0
�
1

3

�
ζ3
Nd

A
2

No
A
2
CFC2

A

− 32ψ 0
�
1

3

�
ζ3
Nd

A
2

No
A
2
CFC2

Aα−24ζ3NfTFCFCAα
2−12ψ 0

�
1

3

�
Nd

A

No
A
CFC2

A

− ψ 0
�
1

3

�
CFC2

Aα
2þ8π2

Nd
A

No
A
CFC2

Aþ8ψ 0
�
1

3

�
ζ3
Nd

A

No
A
CFC2

A

þ 18ζ3
Nd

A
2

No
A
2
CFC2

Aα
3þ31NfTFCFCAα

2þ43ψ 0
�
1

3

�
Nd

A
2

No
A
2
CFC2

A

þ 43ψ 0
�
1

3

�
Nd

A
2

No
A
2
CFC2

Aαþ48ζ3Nf
Nd

A

No
A
TFCFCAα

2þ56ζ3Nf
Nd

A

No
A
TFCFCAα

þ 120ζ3NfTFCFCAαþ125ζ3
Nd

A

No
A
CFC2

Aαþ126ζ3
Nd

A
2

No
A
2
CFC2

A

þ 129ζ3
Nd

A
2

No
A
2
CFC2

Aα
2þ234ζ3

Nd
A
2

No
A
2
CFC2

Aαþ270ζ3
Nd

A

No
A
CFC2

A

þ 396ζ3
No

A

½No
Aþ2Nd

A�
CFC2

Aþ968ζ3
No

A

½No
Aþ2Nd

A�
CFC2

Aα

�
a3þOða4Þ;

ΘMOMc
αMAGða;αÞ¼

�
32

9
π2NfTFCFCAþ

32

9
ψ 0
�
1

3

�
ζ3NfTFCFCAþ

44

3
ψ 0
�
1

3

�
CFC2

A

−
3751

3

No
A

½No
Aþ2Nd

A�
CFC2

A−
704

27
ζ3π

2
Nd

A

No
A
CFC2

A−
475

3
NfTFCFCA

−
473

9
ψ 0
�
1

3

�
Nd

A

No
A
CFC2

A−
344

27
π2Nf

Nd
A

No
A
TFCFCA−

341

4
CFC2

Aα

−
128

9
ψ 0
�
1

3

�
ζ3Nf

Nd
A

No
A
TFCFCA−

88

9
π2CFC2

A−
88

9
ψ 0
�
1

3

�
ζ3CFC2

A

−
64

27
ζ3π

2NfTFCFCA−
16

3
ψ 0
�
1

3

�
NfTFCFCAþ

172

9
ψ 0
�
1

3

�
Nf

Nd
A

No
A
TFCFCA

þ176

27
ζ3π

2CFC2
Aþ

256

27
ζ3π

2Nf
Nd

A

No
A
TFCFCAþ

341

2

Nd
A

No
A
CFC2

Aα

þ352

9
ψ 0
�
1

3

�
ζ3
Nd

A

No
A
CFC2

Aþ
759

4

Nd
A

No
A
CFC2

Aþ
946

27
π2

Nd
A

No
A
CFC2

A

þ1364

3
Nf

No
A

½No
Aþ2Nd

A�
TFCFCAþ

5225

12
CFC2

A

−352ζ3Nf
No

A

½No
Aþ2Nd

A�
TFCFCA−330ζ3CFC2

A−154ζ3
Nd

A

No
A
CFC2

A

−132ζ3
Nd

A

No
A
CFC2

Aα−69Nf
Nd

A

No
A
TFCFCA−62Nf

Nd
A

No
A
TFCFCAα

−24ζ3NfTFCFCAαþ31NfTFCFCAαþ48ζ3Nf
Nd

A

No
A
TFCFCAα

þ56ζ3Nf
Nd

A

No
A
TFCFCAþ66ζ3CFC2

Aαþ120ζ3NfTFCFCAþ968ζ3
No

A

½No
Aþ2Nd

A�
CFC2

A

�
a3þOða4Þ: ð7:12Þ

By contrast the parallel expressions in the Curci-Ferrari gauge are
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ΘMOMc
aCF ða; αÞ ¼

�
31NfTFCFCAα

2 þ 377ζ3CFC2
Aα −

11557

24
CFC2

Aα −
64

27
ζ3π

2NfTFCFCAα

−
52

9
π2CFC2

Aα −
52

9
ψ 0
�
1

3

�
ζ3CFC2

Aα −
16

3
ψ 0
�
1

3

�
NfTFCFCAα −

9

2
ζ3CFC2

Aα
2

−
9

2
ζ3CFC2

Aα
3 −

4

9
ζ3π

2CFC2
Aα

2 þ 2

3
π2CFC2

Aα
2 þ 2

3
ψ 0
�
1

3

�
ζ3CFC2

Aα
2

þ 26

3
ψ 0
�
1

3

�
CFC2

Aαþ 32

9
π2NfTFCFCAαþ 32

9
ψ 0
�
1

3

�
ζ3NfTFCFCAα

þ 83

16
CFC2

Aα
2 þ 93

16
CFC2

Aα
3 þ 104

27
ζ3π

2CFC2
Aαþ 889

3
NfTFCFCAα

−232ζ3NfTFCFCAα − 24ζ3NfTFCFCAα
2 − ψ 0

�
1

3

�
CFC2

Aα
2

�
a3 þOða4Þ;

ΘMOMc
αCF ða; αÞ ¼

�
31NfTFCFCAαþ 66ζ3CFC2

Aαþ 638ζ3CFC2
A −

9779

12
CFC2

A −
341

4
CFC2

Aα

−
88

9
π2CFC2

A −
88

9
ψ 0
�
1

3

�
ζ3CFC2

A −
64

27
ζ3π

2NfTFCFCA

−
16

3
ψ 0
�
1

3

�
NfTFCFCA þ 32

9
π2NfTFCFCA þ 32

9
ψ 0
�
1

3

�
ζ3NfTFCFCA

þ 44

3
ψ 0
�
1

3

�
CFC2

A þ 176

27
ζ3π

2CFC2
A þ 889

3
NfTFCFCA − 232ζ3NfTFCFCA

−24ζ3NfTFCFCAα

�
a3 þOða4Þ: ð7:13Þ

Again when α ¼ 0 for this and each of the other MOM
schemes then ΘS

aCFða; αÞ vanishes.

VIII. ANOTHER ANGLE ON CREWTHER’S
RELATION

While the relation (4.1) appears to hold in all the
schemes and gauges that we have considered so far it is
instructive to return to Crewther’s original relation (2.4) and
consider gauges for which it is valid especially in light of
the earlier analysis. In other words to determine some
gauge ᾱ for which

Δcsbða; ᾱÞ ¼
βða; ᾱÞ

a
K̂aða; ᾱÞ ð8:1Þ

holds. This was the approach taken in [12] but here rather
than assume the gauge parameter is a pure constant we
will incorporate loop corrections. The motivation to do so
is that various observations noted earlier had properties
requiring a fixed value of α ¼ −3 at a particular loop order
which turned out to be inconsistent when higher order
effects were included. An approach in a similar vein to
explore schemes where (8.1) holds was given recently
in [64]. In particular the V scheme of [13,14] was again
studied since the coupling constant in that scheme is by

construction gauge parameter independent being based on
the static quark potential. The four loop renormalization
group functions are known [65] and we note that the
coefficients of the V scheme β-function are independent of
the gauge parameter. The first step to achieve the form
(8.1) is to recognize that for a gauge dependent scheme we
have a two dimensional space parametrized by a and ᾱ.
We can attempt to find a gauge for which (8.1) holds
by considering curves ᾱ ¼ ᾱðaÞ which are defined by
some relation Fða; ᾱÞ ¼ 0. In particular, we are interested
in curves that contain fixed points of the running coupling
constant. A natural choice for this is the set of curves
satisfying

γαða; ᾱÞ þ Sγaða; ᾱÞ ¼ 0 ð8:2Þ

where

γaða; αÞ≡ βða; αÞ
a

ð8:3Þ

since outside the Landau gauge our fixed points are
defined by the requirement that γαða; αÞ ¼ 0 and
γaða; αÞ ¼ 0. The parameter S will be tuned later to
examine various scenarios. Under these constraints
(4.1) becomes
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Δcsbða; ᾱÞ ¼ ½Kaða; ᾱÞ − SKαða; ᾱÞ�γaða; ᾱÞ ð8:4Þ

meaning that

K̂aða; ᾱÞ ¼ ½Kaða; ᾱÞ − SKαða; ᾱÞ� ð8:5Þ
when comparing with (8.1).
In keeping with our perturbative approach we will

expand ᾱ as a function of a via

ᾱðaÞ ¼
X∞
n¼0

αðnÞan ð8:6Þ

as well as taking a similar expansion for the two renorm-
alization group functions

γaða; αÞ ¼ −β0a −
X∞
n¼1

�XPm

m¼0

βðmÞ
n αm

�
anþ1;

γαða; αÞ ¼
X∞
n¼1

�XQm

m¼0

γðmÞ
n αm

�
an ð8:7Þ

where P1 ¼ 4, P2 ¼ 7, P3 ¼ 5, P4 ¼ 6, Q1 ¼ 1, Q2 ¼ 4,
Q3 ¼ 7, Q4 ¼ 5, and Q5 ¼ 6 cover all the schemes
considered here. The specific values of Pm and Qm were
deduced from the α dependence in the MOMg scheme with
the four and five loop ones corresponding to the mMOM
scheme. With these two expressions and (8.6) solving (8.2)
produces equations that determine αðmÞ. We find the formal
solution is

αð0Þγð1Þ1 ¼ Sβ0− γð0Þ1 ;

αð1Þγð1Þ1 ¼ S
h
βð4Þ1 αð0Þ4þβð3Þ1 αð0Þ3þβð2Þ1 αð0Þ2þβð1Þ1 αð0Þ þβð0Þ1

i
−
h
γð4Þ2 αð0Þ4þ γð3Þ2 αð0Þ3þ γð2Þ2 αð0Þ2þ γð1Þ2 αð0Þ þ γð0Þ2

i
;

αð2Þγð1Þ1 ¼ S
h
βð7Þ2 αð0Þ7þβð6Þ2 αð0Þ6þβð5Þ2 αð0Þ5þβð4Þ2 αð0Þ4þβð3Þ2 αð0Þ3þβð2Þ2 αð0Þ2þβð1Þ2 αð0Þ þβð0Þ2

i
−
h
γð7Þ3 αð0Þ7þ γð6Þ3 αð0Þ6þ γð5Þ3 αð0Þ5þ γð4Þ3 αð0Þ4þ γð3Þ3 αð0Þ3þ γð2Þ3 αð0Þ2þ γð1Þ3 αð0Þ þ γð0Þ3

i
þαð1Þ

h
S
h
4βð4Þ1 αð0Þ3þ3βð3Þ1 αð0Þ2þ2βð2Þ1 αð0Þ þβð1Þ1

i
−
h
4γð4Þ2 αð0Þ3þ3γð3Þ2 αð0Þ2þ2γð2Þ2 αð0Þ þ γð1Þ2

ii
;

αð3Þγð1Þ1 ¼
XP4

n¼0

SβðnÞ3 αð0Þn−
XQ4

n¼0

γðnÞ4 αð0Þnþαð1Þ
XP3

n¼1

nSβðnÞ2 αð0Þn−1−
XQ3

n¼0

nγðnÞ3 αð0Þn−1þ2αð0Þ2
h
2αð0Þαð2Þ þ3αð1Þ2

ih
Sβð4Þ1 − γð4Þ2

i
þ3αð0Þ

h
αð0Þαð2Þ þαð1Þ2

ih
Sβð3Þ1 − γð3Þ2

i
þ
h
2αð0Þαð2Þ þαð1Þ2

ih
Sβð2Þ1 − γð2Þ2

i
þαð2Þ

h
Sβð1Þ1 − γð1Þ2

i
ð8:8Þ

for the first few orders. We recall that although our first
interest at the moment is on the Crewther relation by
finding the expression for ᾱ that solves (8.2) the second
component is to find the value of a∞ that is the solution to
γaða∞; ᾱða∞ÞÞ ¼ 0. In this way we will arrive at the fixed
points of the running parameters of the theory. Taking
this approach avoids the Banks-Zaks fixed point and will
return a value of α ≈ −3. This particular integer value was
discussed previously in [20–32]. In fact, varying the
defining equation

Fða; α; SÞ≡ γαða; αÞ þ Sγaða; αÞ ð8:9Þ

with respect to S results in

dFða; α; SÞ
dS

¼ γaða; αÞ ð8:10Þ

which should evaluate to zero at a fixed point. So the positions
of the fixed points determined in this way should be
independent of S up to truncation.Wewill produce numerical
data as evidenceof this. Inparticular choosingS ¼ 0 results in
a procedure analogous to the typical process for finding fixed

points where the curves are defined such that the gauge
parameter is stationary and the value of the coupling constant
can then be chosen so that it is also stationary.
Before considering the details for a specific scheme it is

instructive to examine the leading order equation for the
various gauges. First while β0 will be the same for all
gauges since

β0 ¼ −
4

3
NfTF þ 11

3
CA; ð8:11Þ

γ1 is different in each of the three gauges. In a linear
covariant gauge fixing we have

γ1 ¼ −
1

2
αCA þ 13

6
CA −

4

3
NfTF ð8:12Þ

which means we can write

αð0Þ ¼ 2

CA

�
S

�
4

3
NfTF−

11

3
CA

�
−
4

3
NfTFþ

13

6
CA

�
: ð8:13Þ

As this would be singular in the Abelian limit it is best to
redefine the parameter S as S ¼ 1þ 3σCA which gives
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αð0Þ ¼ −3þ ½8NfTF − 22CA�σ: ð8:14Þ

So S ¼ 1 produces αð0Þ ¼ −3 corresponding to the solution
pointed out in [12]. The higher order corrections will be
scheme dependent. Repeating this leading order exercise
produces

αð0ÞCF ¼ −6þ ½16TFNf − 44Ca�σ ð8:15Þ

for the Curci-Ferrari gauge. To analyse the MAG the
following modification has to be made to the defining
equation

FMAGða; α; SÞ ¼ ᾱγαða; αÞ þ ᾱSγaða; αÞ ð8:16Þ

because the leading order term in γMAG
α ða; αÞ is

proportional to α−1. So the equations for αðiÞ then need
to be modified in this case. The resulting leading order
equation produces two solutions. For S ¼ 1 the numerical

values are αð0ÞMAG ¼ −0.430953 and −5.569047. The first
of these solutions corresponds to that termed as the

Banks-Zaks one found in [45]. For each of the three
gauges the S ¼ 1 solutions are independent of Nf unlike
the S ¼ 0 case.
This leading order analysis is scheme independent but

this ceases to be the case when corrections are included. For
instance, it was shown in [12] that for the linear covariant
gauge the form of Crewther’s original relation, given
in (2.4) but in the mMOM scheme, was satisfied at next
order for particular values of α which were 0, −1 and −3.
For α ¼ 0 this followed from the α dependence in γαða; αÞ
whereas α ¼ −1 emerged as a special case sinceKαγαða; αÞ
was proportional to (αþ 1) at second order. The situation
where α ¼ −3 is that value that solves γaða; αÞ ¼
−γαða; αÞ at leading order which is suggestive of the α ≈
−3 infrared stable fixed point discussed earlier. It is worth
examining whether this point of view has any credibility at
higher order. Therefore we calculated higher order terms in
the expansion in (8.6) for a variety of schemes and gauges.
The full set of expressions for αðiÞ are provided in the
associated data file but we record the SUð3Þ values for the
first few terms are

αð0ÞmMOMjSUð3Þ ¼ −3þ 4σNf − 66σ;

αð1ÞmMOMjSUð3Þ ¼ 725274σ3 þ 41283σ2 þ 3881196σ4 −
51

2
− 96σ3N3

f þ 5832σ3N2
f

− 114048σ3Nf þ 132σ2N2
f − 4680σ2Nf − 864σ4N3

f þ 42768σ4N2
f

− 705672σ4Nf þ 31σNf þ Nf þ
261

2
σ;

αð2ÞmMOMjSUð3Þ ¼ −6562749600σ6N2
f þ 59382298800σ6Nf þ 103680σ6N5

f − 9720000σ6N4
f

þ 359251200σ6N3
f −

542619

2
ζ3σ

2 −
1485

2
ζ3σ − 4498659ζ3σ

3

− 25150150080σ7N2
f þ 207488738160σ7Nf þ 559872σ7N5

f − 46189440σ7N4
f

þ 1524251520σ7N3
f − 17465382ζ3σ

4 − 684712835928σ7 − 27604036251σ5

− 213252314220σ6 þ 6841137204σ5Nf − 12384σ4N4
f − 662256σ5N4

f

þ 30458592σ5N3
f − 658776888σ5N2

f þ 5184σ5N5
f −

78139809

2
σ3

þ 2146905

4
σ2 −

3436534431

2
σ4 þ 3408σ3N3

f − 233370σ3N2
f þ 5290650σ3Nf

þ 7242σ2N2
f −

271143

2
σ2Nf − 72σ2N3

f −
782

9
σN2

f þ 954396σ4N3
f

− 27691794σ4N2
f þ 356848173σ4Nf − 6ζ3Nf −

10

3
N2

f −
9405

8
− 702ζ3σ

2N2
f

þ 28026ζ3σ
2Nf þ

20

3
ζ3σN2

f − 65ζ3σNf þ 432ζ3σ
3N3

f − 30780ζ3σ
3N2

f

þ 662904ζ3σ
3Nf þ 3888ζ3σ

4N3
f − 192456ζ3σ

4N2
f þ 3175524ζ3σ

4Nf

þ 6517

4
σNf þ

551

4
Nf þ 153ζ3 þ

909

8
σ ð8:17Þ
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in the mMOM scheme. Up to the truncation order this gives
the solution to γ̄aðaÞ ¼ γ̄αðaÞ allowing us to find a fixed point
a∞ with γ̄aða∞Þ ¼ 0. When Nf ¼ 16 and S ¼ 1 we have

αð0ÞmMOMjNf¼16 ¼ −3;

αð1ÞmMOMjNf¼16 ¼ −9.5;

αð2ÞmMOMjNf¼16 ¼ 243.558910 ð8:18Þ
which gives

γaða; ᾱÞ ¼ −0.333333aþ 103.666667a2

þ 152.000000a3 þ 1060.437500a4

þ 1929.093750a5 þOða6Þ ð8:19Þ

to the two loop level. By this we mean the two loop solution
of the equations γ̄aðaÞ ¼ 0 and γ̄αðaÞ ¼ 0. These have
a positive fixed point at a∞ ¼ 0.0032000819 implying α∞ ¼
−3.030400777 at this approximation order. The respective
two loop mMOM fixed point values from [45] are
0.0032001941 and −3.0301823312 which shows our Nf ¼
16 solution is in reasonable correspondence. We note that by
solving this way we have introduced an additional truncation
in the series for α. So it is not unexpected that the fixed point
found in this way does not result in fully the same value.
However by including higher order corrections we would
expect that therewouldbe adegree of convergence.Repeating
the exercise at the three loop level we find two real fixed point
solutions on the ða; αÞ plane which are ð0.0031380752;
−3.0274132638Þ and (0.1624143964, 1.8817663994). The
first of these has a clear counterpart in the fixed point analysis
of [45] which is ð0.0031380724;−3.0274210489Þ and is an
infrared stable fixed point. The second solution is not as
straightforward to place with a known fixed point in [45]
but may map to the stable fixed point (0.1279084064,
1.9051106246).

While this gives a flavor of the situation at the first few
orders for Nf ¼ 16 we have analyzed the remaining values
of Nf in the conformal window and the results are recorded
inTableVI. In that table columns 3 and 4 record the solutions
for all values of Nf in the conformal window for the SUð3Þ
group. The next pair of columns records the values of the
critical point solutions of (2.11) from [45] for comparison.
The final two columns record the difference δa and δα of
the respective values of a∞ and α∞. At the upper end of the
conformal window, where perturbation theory is more
reliable, there is a clear indication that the solution for ᾱ
is in good agreement with the fixed point of [45]. This
continues to be the case for lower values of Nf but the
agreement becomes less pronounced except at high loop
order. Below aroundNf ¼ 10 one strays into territorywhere
the critical coupling value ceases to be small and perturba-
tion theory may be less reliable for drawing a precise
conclusion. However in the region of validity it does support
the premise that the Crewther relation reflects conformal
properties. Indeed to complete this mMOM analysis we
have calculated the value of CmMOM

Bjr ða; αÞCmMOM
Adl ða; αÞ for

Nf ¼ 16 at successive loop orders and present the outcome
in Table VII. Again we observe that in effect the product
evaluates to 3 similar to the earlier cases.
One question that arises is whether the choice of S affects

the analysis and if so to what extent. While we could
consider the numerical fixed points for an array of values of
S, instead we will consider the fixed points in the MS and
RI0 schemes since the running of the coupling constant is α
independent in both these schemes. This will allow us to
calculate the fixed points as a function of S. The procedure
is the same as for the mMOM scheme except that γaða∞Þ ¼
0 immediately determines a∞. So solving γαða; αÞ þ
Sγaða; αÞ ¼ 0 means the S dependence appears solely in
ᾱða∞Þ and allows us to study the relation to the loop order.
Repeating the earlier example for Nf ¼ 16 we find

αð0Þ
MS

¼ −2.777778 − 0.222222S;

αð1Þ
MS

¼ −52.851852þ 67.092593S − 0.074074S2;

αð2Þ
MS

¼ −78.713043þ 968.858403Sþ 45.225583S2 − 0.006173S3;

αð3Þ
MS

¼ 5792.714293 − 7038.053127S − 6394.380328S2 þ 5.436159S3 − 0.008942S4;

αð4Þ
MS

¼ 29279.884317 − 325028.480677S − 166111.075407S2 − 1468.595029S3 þ 10.989272S4 − 0.000301S5 ð8:20Þ

which lead to expressions for ᾱða∞Þ given in Table VIII at
successive loop orders as a function of S. Included in the
table are the evaluation of ᾱða∞Þ at S ¼ 1 and the critical
point value from [45] to compare with. Clearly in the first
instance the S ¼ 0 values are an accurate estimate of the
eventual S ¼ 1 value. Equally as the loop order increases

the dependence on S washes out quickly if one uses the
coefficients of S itself as a guide. At four and five loops
additional fixed points emerged. In each case the coeffi-
cients of S in the polynomial are relatively large for low
powers which is due to the large critical coupling constant
value.
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While this analysis is in the MS scheme, similar to that of the original Crewther study [5], it is worth repeating the
exercise in the RI0 scheme to ascertain whether the same picture emerges. Therefore taking Nf ¼ 16 again we find

αð0ÞRI0 ¼ −2.777778 − 0.222222S;

αð1ÞRI0 ¼ −77.074074þ 65.430041S − 0.168724S2 − 0.008230S3;

αð2ÞRI0 ¼ −712.810800þ 1384.485718Sþ 95.815127S2 þ 7.080171S3 − 0.042219S4 − 0.001524S5;

αð3ÞRI0 ¼ 58371.788435þ 26052.906414S − 10453.261109S2 − 1844.453717S3

þ 47.775386S4 þ 2.099823S5 − 0.013971S6 − 0.000373S7;

αð4ÞRI0 ¼ 1094061.824587þ 115396.980509S − 836720.663333S2 þ 98112.588891S3

− 18705.923877S4 − 1077.589340S5 þ 23.656656S6 þ 0.690162S7 − 0.004954S8 − 0.000104S9 ð8:21Þ

TABLE VI. Fixed points solutions for a∞ and α∞ to the curve γaða; ᾱÞ ¼ −γαða; ᾱÞ, in the columns headed with ᾱ and the
corresponding solutions for the fixed points in the ða; αÞ plane given in [45] together with the difference δ in values in the final pair of
columns up to the five loop level in the mMOM scheme.

ᾱ [45] Difference

Nf Loop a∞ α∞ a∞ α∞ δa δα

8 2 0.049337 −3.863406 0.052219 −3.795565 −0.002882 −0.067841
4 0.064323 −3.359243 0.060959 −3.485534 0.003364 0.126291
5 0.046971 −2.951933 0.047937 −3.192836 −0.000966 0.240903

9 2 0.046323 −3.764323 0.048504 −3.705259 −0.002181 −0.059064
4 0.056983 −2.993633 0.055612 −3.212828 0.001371 0.219195
5 0.042375 −2.887326 0.043123 −3.003521 −0.000748 0.116195

10 2 0.042400 −3.657192 0.043898 −3.608171 −0.001498 −0.049021
4 0.046825 −3.006516 0.046629 −3.124397 0.000196 0.117881
5 0.038413 −2.930885 0.039060 −2.975110 −0.000647 0.044225

11 2 0.037453 −3.543073 0.038351 −3.505155 −0.000898 −0.037918
3 0.043328 −3.551534 0.042908 −3.513882 0.000420 −0.037652
4 0.038483 −3.055520 0.038443 −3.114044 0.000040 0.058524
5 0.034366 −3.013171 0.034890 −3.025124 −0.000524 0.011953

12 2 0.031475 −3.424915 0.031919 −3.398484 −0.000444 −0.026431
3 0.031275 −3.329545 0.031269 −3.323533 0.000006 −0.006012
4 0.030877 −3.101381 0.030859 −3.126726 0.000018 0.025345
5 0.029525 −3.092376 0.029873 −3.093637 −0.000348 0.001261

13 2 0.024644 −3.308050 0.024812 −3.292241 −0.000168 −0.015809
3 0.023188 −3.213527 0.023188 −3.213214 0.000000 −0.000313
4 0.023552 −3.122593 0.023543 −3.131342 0.000009 0.008749
5 0.023430 −3.131575 0.023575 −3.130751 −0.000145 −0.000824

14 2 0.017346 −3.199477 0.017389 −3.191979 −0.000043 −0.007498
3 0.016146 −3.138109 0.016146 −3.138534 0.000000 0.000425
4 0.016447 −3.112174 0.016445 −3.114255 0.000002 0.002081
5 0.016525 −3.119407 0.016555 −3.118834 −0.000030 −0.000573

15 2 0.010064 −3.105672 0.010070 −3.103310 −0.000006 −0.002362
3 0.009537 −3.080460 0.009537 −3.080626 0.000000 0.000166
4 0.009636 −3.076696 0.009636 −3.076936 0.000000 0.000240
5 0.009658 −3.078272 0.009660 −3.078166 −0.000002 −0.000106

16 2 0.003200 −3.030401 0.003200 −3.030182 0.000000 −0.000219
3 0.003138 −3.027413 0.003138 −3.027421 0.000000 0.000008
4 0.003143 −3.027352 0.003143 −3.027354 0.000000 0.000002
5 0.003143 −3.027378 0.003143 −3.027377 0.000000 −0.000001
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with the subsequent implications for αða∞Þ recorded in
Table IX. We recall that as the RI0 β-function has the same
coefficients as those of the MS scheme, the critical
couplings will be the same and so there will also be four
and five loop solutions. However comparing the solutions

for each coefficient αðiÞRI0 with its MS partner we note that
in the RI0 scheme the degree of the polynomial solution in
S at each loop order is higher. Despite this the same out-
come emerges when S is set to unity in that the numerical
value is in very good agreement with the fixed point values
given in [45]. Again the convergence to a practically S

independent solution for αða∞Þ transpires. This is indica-
tive of the idea argued earlier that the condition γaða; αÞ þ
Sγαða; αÞ ¼ 0 can be used to find the stable infrared fixed
point and also that the value of S is unimportant. This
means that while the value of S ¼ 1 has properties of
interest specifically to studies of the Crewther relation the
relation of this particular curve to the stable infrared fixed
point is no more important than any similar curve generated
from any other value of S.
To this point we have concentrated on the linear

covariant gauge with this approach. However we have
also examined the two nonlinear gauges in depth and for

TABLE VII. Values of CmMOM
Bjr ða; αÞCmMOM

Adl ða; αÞ from the solution for ᾱ at successive loop orders for Nf ¼ 16.

mMOM 2 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0032000819 −3.0304007777 2.9999982454 3.0000012447

mMOM 3 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031380752 −3.0274132638 2.9999973440 3.0000001217
0.1624143964 1.8817663994 9.7789795843 20.2267682549

mMOM 4 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031430140 −3.0273515306 2.9999974127 3.0000002081
0.0922743518 0.7554173647 4.1917263936 6.5855502329

mMOM 5 loop

a∞ α∞ Oða3Þ Oða4Þ
0.0031434057 −3.0273781422 2.9999974182 3.0000002149
0.0498699873 −3.9546945229 3.1876456375 3.2609125084

TABLE VIII. Values of ᾱða∞Þ for Nf ¼ 16 in the MS scheme as a function of S.

Loop a∞ ᾱða∞Þ S ¼ 1 [45]

2 0.003311 −2.952784 − 0.000061S − 0.000245S2 −2.953090 −2.952985
3 0.003162 −2.945674 − 0.000400Sþ 0.000218S2 −2.945856 −2.945839

−6.171139 × 10−8S3

4 0.003170 −2.945920 − 0.000033Sþ 0.000016S2 −2.945937 −2.945935
þ1.111287 × 10−7S3 − 2.848273 × 10−10S4

0.091700 −3.819444þ 8.65019S − 4.55718S2 0.2776970 −4.407403
þ0.00413990S3 − 6.895175 × 10−6S4

5 0.003171 −2.945966þ 1.06321 × 10−6S − 8.15566 × 10−7S2 −2.945966 −2.945965
−3.72127 × 10−8S3 þ 8.257949 × 10−10S4

−3.041220 × 10−14S5

0.046999 −4.691390þ 2.754610S − 1.377941S2 −3.321283 −3.682521
−0.006615S3 þ 0.000053S4 − 1.467961 × 10−9S5
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the kinematic schemes of [37,38] although we are limited
to three loops in this case. The outcome is in essence the
same as the linear gauge case except that the leading value
of ᾱ is in the neighborhood of αCF ¼ −6 for the Curci-
Ferrari gauge. Due to the nature of γαða; αÞ for the MAG
the leading value of α is αMAG ¼ −5.56. For both gauges
the same property is present as the linear gauge in that
over the range of the conformal window the higher order
corrections do not unduly alter these respective α values.
Equally for values of Nf down to around 12 the solutions
for ᾱ are in keeping with the fixed point solutions of [45].
We would expect this to be improved for lower values of
Nf when higher order corrections become available. This
viewpoint can be seen in Table X. Similar tables are also
available in the data file associated with this article [49]
but they are more comprehensive in that they include extra
fixed points which have a mapping to the ᾱ solution. In
addition we include the results for all the schemes and
gauges we have discussed in the article. Examining these
wider tables it is evident that for certain schemes and
gauges the connection with the fixed points of [45] and the
solutions found by the method of this section is remark-
ably stable even at the lower end of the conformal window.
Although for the MOM schemes of [37,38] only a few
perturbative orders are available. We note that in several
schemes there were no fixed point solutions for various Nf

values in [45]. In that instance there are no entries but
we did find solutions for ᾱ. It is not clear whether this is
indicating that there will be solutions for fixed points in
these cases when higher order perturbative results become
available in those schemes.

IX. WIDER PERSPECTIVE

It is worth taking stock of the wider perspective that our
investigations have arrived at. We begin by putting the
choice of the left-hand side of (8.2) in a field theory context.
Clearly the combined renormalization group function

γ̂αða; αÞ ¼ γαða; αÞ þ γaða; αÞ ð9:1Þ

plays an important role in the analysis of the Crewther
relation extension as well as being connected to the special
choice of α ¼ −3 in the linear covariant gauge as illustrated
in the previous section. To understand the origin of (9.1) we
recall the purely gluonic sector of the Lagrangian of a non-
Abelian gauge theory is

Lgluonic ¼ −
1

4
Ga

μνGa μν −
1

2α

�
∂
μAa

μ

	
2 ð9:2Þ

for a linear covariant gauge fixing. The field strength tensor
is given by

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν ð9:3Þ

where g is the coupling and fabc are the gauge group
structure constants. While this is invariably the usual
presentation of the gluonic sector and the one used for
perturbative computations one can always redefine the
fields and variables without altering any physical predic-
tions. Therefore defining the rescaling

Âa
μ ¼ gAa

μ ð9:4Þ

TABLE IX. Values of ᾱða∞Þ for Nf ¼ 16 in the RI0 scheme as a function of S.

Loop a∞ ᾱða∞Þ S ¼ 1 [45]

2 0.003311 −3.032990 − 0.005566S − 0.000559S2 −3.039142 −3.040393
−0.000027S3

3 0.003162 −3.028600 − 0.001502Sþ 0.000424S2 −3.029633 −3.029389
þ0.000045S3 − 4.220754 × 10−7S4 − 1.523738 × 10−8S5

4 0.003170 −3.027400 − 0.000072Sþ 0.000095S2 −3.027390 −3.027317
−0.000014S3 þ 1.097536 × 10−6S4 þ 5.156952 × 10−8S5

−4.450271 × 10−10S6 − 1.186739 × 10−11S7

0.091700 29.170852þ 37.509021S − 7.270245S2 58.084230 −7.001486
−1.363470S3 þ 0.036484S4 þ 0.001606S5

−0.000011S6 − 2.872889 × 10−7S7

5 0.003171 −3.027362þ 7.648957 × 10−6Sþ 0.000011S2 −3.027348 −3.027350
−3.795632 × 10−6S3 − 7.923119 × 10−7S4

−5.731136 × 10−8S5 þ 1.945960 × 10−9S6

−5.788853 × 10−11S7 − 5.007868 × 10−13S8

−1.052508 × 10−14S9

0.046999 3.423566þ 9.178962S − 4.964152S2 7.849534 −6.454812
þ0.302490S3 − 0.086406S4 − 0.005043S5

þ0.000114S6 þ 3.328853 × 10−6S7 − 2.417239 × 10−8S8

−5.080334 × 10−10S9
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we have

Lgluonic ¼ −
1

4a
Ĝa

μνĜ
a μν −

1

2αa
ð∂μÂa

μÞ2 ð9:5Þ

where a ¼ g2=ð16π2Þ and Ĝa
μν corresponds to (9.3) at the

formal value of g ¼ 1. Formulating the gluonic sector in
this way identifies the renormalization of the dimension
four operator Ĝa

μνĜ
aμν with its associated coupling which is

TABLE X. Fixed points solutions for a∞ and α∞ to the curve γaða; ᾱÞ ¼ −γαða; ᾱÞ in the Curci-Ferrari gauge and MAG in the MS
scheme.

Curci-Ferrari Gauge

ᾱ [45]

Nf Loop a∞ α∞ a∞ α∞

8 3 0.116505 5.425313 0.116505 −0.525277

9 2 0.416667 7.333333 0.416667 −2.387888
3 0.081803 1.386711 0.081803 −1.239118

10 2 0.175676 0.207207 0.175676 −2.981627
3 0.060824 −0.762250 0.060824 −1.988405

11 2 0.098214 −2.202381 0.098214 −3.548192
3 0.046039 −2.180305 0.046039 −2.744498

12 2 0.060000 −3.480000 0.060000 −4.078489
3 0.034607 −3.235417 0.034607 −3.479125

13 2 0.037234 −4.312057 0.037234 −4.569040
3 0.025191 −4.075904 0.025191 −4.169158

14 2 0.022124 −4.923304 0.022124 −5.020489
3 0.017070 −4.768441 0.017070 −4.796907

15 2 0.011364 −5.409091 0.011364 −5.435844
3 0.009818 −5.342638 0.009818 −5.347954

16 2 0.003311 −5.816777 0.003311 −5.819105
3 0.003162 −5.808281 0.003162 −5.808458

MAG

8 3 0.116505 −14.454928 0.116505 −14.732061

9 2 0.416667 −5.748610 0.416667 −1.775685
3 0.081803 −9.342567 0.081803 −6.679483

10 2 0.175676 −5.644755 0.175676 −2.041475
3 0.060824 −7.302268 0.060824 −9.374058

11 2 0.098214 −5.611372 0.098214 −2.385628
3 0.046039 −6.350328 0.046039 −1.943195

12 2 0.060000 −5.594904 0.060000 −2.822900
3 0.034607 −5.885931 0.034607 −2.691103

13 2 0.037234 −5.585093 0.037234 −3.356225
3 0.025191 −5.668820 0.025191 −3.414438

14 2 0.022124 −5.578581 0.022124 −3.968278
3 0.017070 −5.583155 0.017070 −4.074876

15 2 0.011364 −5.573944 0.011364 −4.620179
3 0.009818 −5.563763 0.009818 −4.684705

16 2 0.003311 −5.570474 0.003311 −5.263519
3 0.003162 −5.568155 0.003162 −5.273175
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1=a and whose renormalization group function is related to
the β-function. One can view the second term of (9.5) in
the same light and regard the coupling associated with the
linear gauge fixing term as αa. Clearly both operators are
independent which can be seen by focussing on the
quadratic part of (9.5). The field strength term is transverse
while the other is purely longitudinal. Therefore the
running of the associated couplings will be different with
that of the latter operator being governed by (9.1). At a
more formal level the treatment of the transverse and
longitudinal components of the gauge field as separate
entities within loop computations has been recognized
earlier. See, for instance, [16,66–70]. Indeed in [69,70]

the concept of invariant charges of the two operators was
coined and formalized within the Hopf algebra construct
of renormalization theory. Therefore from the point of view
of (9.5) a more appropriate formulation would be to treat
αa as a second coupling constant in the renormalization
group running in a gauge theory. Moreover while we
concentrated on the linear covariant gauge repeating the
rescaling argument for the Curci-Ferrari gauge and MAG
will produce the same observation with regard to the
definition of a second coupling from the two independent
operators of the quadratic sector of Lgluonic. For complete-
ness we note the first few terms of (9.1) for the three
gauges are

γ̂lin;MS
α ða; αÞ ¼ −½αþ 3�CAa

2
þ
h
40NfTF − 6α2CA − 33αCA − 95CA

iCAa2

24
þOða3Þ;

γ̂CF;MS
α ða; αÞ ¼ −½αþ 6�CAa

4
þ
h
80NfTF − 3α2CA − 51αCA − 190CA

iCAa2

48
þOða3Þ;

γ̂MAG;MS
α ða; αÞ ¼ −

h
2α2Nd

A þ α2No
A þ 12αNd

A þ 6αNo
A þ 12Nd

A

i CAa
4αNo

A

þ
h
512Nd

AN
o
ANfTF þ 80αNo

A
2NfTF − 30α3CANd

A
2 − 27α3CANd

AN
o
A

− 3α3CANo
A
2 − 366α2CANd

A
2 − 339α2CANd

AN
o
A − 51α2CANo

A
2

þ 294αCANd
A
2 − 647αCANd

AN
o
A − 190αCANo

A
2 þ 160αNd

AN
o
ANfTF

þ 2016CANd
A
2 − 928CANd

AN
o
A

i CAa2

48αNo
A
2
þOða3Þ: ð9:6Þ

Clearly the leading terms of the first two gauges indicate
the special gauge choices that emerged in the Crewther
analysis. For the MAG the leading term vanishes at two
values of α which are

αMAG ¼ −3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½2Nd

A þ 3No
A�

½2Nd
A þ No

A�

s
ð9:7Þ

and reproduces the Curci-Ferrari values in the Nd
A → 0

limit. Also for example

αMAGjSUðNcÞ ¼ −3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½3Nc þ 2�
½Nc þ 2�

s
: ð9:8Þ

For SUð3Þ the two values are − 3�
ffiffiffiffi
33
5

q
which equate to

−0.43095348 and −5.56904651 respectively. It is impor-
tant to note that these special gauge parameter values are
constructed from the scheme independent terms of γ̂ða; αÞ
and therefore will be the foundation for the infrared stable
fixed points in all schemes at higher orders.
It is clear the Crewther relation has provided another

example where a special value of the gauge parameter plays
a crucial role in a deeper property of QCD as observed

in [12] in the mMOM scheme. The other situations where
this occurred were in a variety of different problems and it
was worth pausing to understand if there is any underlying
connections as to when this arises. Moreover by doing so
would provide a signpost where to expect the special case to
occur in other computations. Examining the various articles
where α ¼ −3 has been singled out [20–32] several
common themes emerge. For instance, in [23–26] the quark
2-point function was the main topic. In [23] this involved
solving the Schwinger-Dyson equation defining the quark
2-point function to examine the quark mass gap to ascertain
the condition when chiral symmetry was broken. Although
[24,25] dealt with mesonic quark bound states in a gauge
invariant setup the path integral and worldline approach
effectively trade off gauge invariance for path dependence.
This resulted in what was termed the connector having a
renormalization that at one loop depended on (αþ 3). The
special choice appeared to remove residual dependence on
path and gauge at one loop. For the approaches in [25,26,30]
the common thread was the resummation of a class of
Feynman diagrams which invariably were one loop bubble
graphs. In [25,26] this naive non-Abelianization was used to
study the evolution of quark bilinear operators that underpin
deep inelastic scattering processes. As the treatment of these
operators was by insertion in a quark 2-point function the
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Green’s function is α dependent.Whatwas interesting is that
the choice of α ¼ −3 provided a reliable estimate of the
one loop Nf independent part of the operator anomalous
dimension for a range of moments. This accuracy was not
as reliable for the two loop case. Similarly in [30] a quark
based Green’s function was studied from which an effective
coupling was constructed. Its partial resummation indicated
that asymptotic freedom was conditional on the special
gauge value. In [31] the same gauge parameter choice
showed a remarkable connection between a set of gluonic
bubble insertions in a quark current correlation function and
the one loop gluonic contribution to the V scheme coupling
constant derived from the static quark potential. By contrast
the emergence of α ¼ −3 was not restricted to quark based
quantities. In [27–29] a dimension six operator correction to
the Yang-Mills action was used to probe infrared gluon
dynamics to determine what conditions if any led to the
gluon propagator having a double pole in the p2 where p is
the momentum. Such a behavior would lead to a linear
confining potential. Solving the Schwinger-Dyson equation
for the ghost propagator with a massless double pole gluon
propagator, that derived from the dimension six operator, the
solution required α ¼ −3.
From an overall point of view the studies that have

identified α ¼ −3 as having particular significance share
several similar features. Aside from all using the linear
covariant gauge the calculations were all carried out using
the MS scheme. In addition most involved calculations of
Green’s functions which would introduce gauge parameter
dependence. For instance, although the twist-2 operators
used in the operator product expansion for deep inelastic
scattering that were the focus of [25,26] are gauge invariant,
the quark 2-point function where they were inserted is
gauge variant. Therefore the expression will be α dependent
but the operator renormalization constant extracted from
this Green’s function will be gauge parameter independent
in the MS scheme. By contrast if the 2-point correlation
function for the twist-2 operator was evaluated then it
would be gauge parameter independent in the MS scheme
since the operator is gauge invariant. In other words the
same result would ensue for the operator correlation
function if it was evaluated in the Curci-Ferrari gauge or
MAG in the MS scheme. However if the operator corre-
lation function was evaluated in a scheme such as mMOM
or the MOM schemes of [37,38] then it would depend on
the gauge parameter. This is similar to the situation of the
anomalous dimension of a gauge invariant operator which
depends on the gauge parameter in general but not in a
scheme such as MS. In other words the correlation function
of gauge invariant operators is in general gauge parameter
dependent but independent of it in a subset of renormal-
ization schemes.
In distilling the essence of previous observations of a

special gauge parameter value it is evident now where the
Crewther relation rests within this framework. The two

ingredients of the relation are correlation functions of
gauge invariant operators which are the vector and axial
vector quark currents. Therefore in the MS scheme each
correlation function will be gauge parameter independent
meaning the Crewther relation will be too. Equally apply-
ing the formalism to effect a change of scheme to say
mMOM will produce gauge parameter dependence in the
separate correlation functions and hence produce a similar
dependence in Δcsbða; αÞ. This is evident in [12]. We have
shown how that can be accommodated consistently using
the renormalization group formalism in (7.5). A similar
mapping that established (7.5) for the Crewther case
could equally well be applied to the quantities computed
in [22–26,30,31]. What is important to remember is that the
gauge parameter dependence of any operator correlation
function does not affect any prediction from its evaluation.
The two underlying parameters, a and α, both run with
respect to the renormalization mass scale μ in a way derived
from their definition in the renormalization group equation.
The formal dependence of each on μ will be different in
different schemes but ultimately within the domain of
perturbative applicability the behavior of the correlation
function with respect to μ will be very similar since the
scheme and gauge dependence will wash out as the loop
order increases.

X. DISCUSSSION

We have examined the Crewther relation at high loop
order from a variety of different angles to first ascertain
whether it is possible to consistently extend the observation
of [5] to schemes other than MS such as mMOM and
several kinematic schemes [37,38] in different non-Lorenz
covariant gauge fixings. In other words to see if the
multiplicative form that the relation has in the MS and
V schemes is retained universally in other schemes and
gauges. While we have added the RI0 scheme to that list,
albeit for trivial reasons, the main conclusion is that the
multiplicative form is not universal. In schemes where the
β-function depends on the gauge parameter, which is not
the case for the MS, V and RI0 schemes, the Crewther
relation is already known to depend on the gauge param-
eter. This is despite the fact that the two correlation
functions that lead to the relation involve gauge invariant
operators. Instead in this situation the relation has to be
extended to accommodate the gauge parameter depend-
ence. Moreover we have extensively shown that this is fully
consistent with quantum field theoretic considerations and
primarily the properties of the renormalization group
equation. Essentially the gauge parameter acts as a second
coupling and therefore its associated β-function has to be in
included as indicated in (4.1). While we deduced this
initially by probing the product of the Bjorken sum rule and
Adler D-function using the fixed point properties of QCD,
as the β-function will always be zero at such points, we
showed how to effect scheme changes on the coupling and

J. A. GRACEY and R. H. MASON PHYS. REV. D 108, 056006 (2023)

056006-36



gauge parameters in general to verify (4.1) formally.
Subsequently the robustness of this structure was probed
from a different angle when we posed the problem of trying
to find what conditions on the gauge parameter would
preserve the multiplicative structure akin to that of (4.1). In
doing so we showed that the infrared stable critical point
value of the gauge parameter resulted, thereby completing
the circle of our analysis. Equally by doing so we provided
a concrete example of the invariant charge concept defined
by the couplings associated with the transverse and
longitudinal components of the gluon field. It would seem
that this is not restricted to the Crewther relation since the
gauge variant quantities studied in [22–26,30,31] could
equally well be recast in the two coupling language whence
the reasons for the emergence of a special gauge parameter
value underlying key properties of each quantity would be
apparent. If one took a wider viewpoint concerning where
this study appears to point it might be that caution is
advised when trying to adduce general properties of
seemingly gauge independent quantities from one specific
renormalization scheme such as MS. The minimal way

the underlying divergences are subtracted in divergent
Green’s function would appear to cloud more general
considerations.

The data representing the high loop order equations
appearing here are accessible in electronic form from [49].
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APPENDIX A: RESULTS FOR A GNERAL
COLOR GROUP

To illustrate aspects of the K-functions for an arbitrary
color group we record them for the MOMg scheme in a
linear covariant by way of an example. We have

KMOMg
a ða; αÞ ¼

�
12ζ3CF −

21

2
CF

�
a

þ
�
7

3
ψ 0
�
1

3

�
CFCAα

2 −
512

27
ζ3π

2NfTFCF −
321

2
CFCA −

224

9
ψ 0
�
1

3

�
NfTFCF

−
161

27
π2CFCA −

112

3
ζ3NfTFCF −

92

9
ψ 0
�
1

3

�
ζ3CFCA −

21

2
CFCAα

2

−
21

2
ψ 0
�
1

3

�
CFCAα −

14

9
π2CFCAα

2 −
8

3
ψ 0
�
1

3

�
ζ3CFCAα

2 þ 7
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CFCAα
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9
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2CFCAα
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ψ 0
�
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�
CFCA
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27
ζ3π

2CFCA þ 256

9
ψ 0
�
1

3

�
ζ3NfTFCF þ 356

3
ζ3CFCA þ 397

6
C2
F

þ 448

27
π2NfTFCF − 240ζ5C2

F − 18ζ3CFCAα − 8ζ3π
2CFCAα

−2ζ3CFCAα
3 þ 7π2CFCAαþ 12ζ3CFCAα

2 þ 12ψ 0
�
1

3

�
ζ3CFCAαþ 136ζ3C2

F

�
a2

þ
�
1

48
ψ 000

�
1

3

�
ζ3CFC2

Aα
3 −

5457913
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CFC2

A −
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ψ 0
�
1

3

�
CFC2

Aα

−
177919

2916
ψ 0
�
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3
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π2CFC2

Aα −
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ψ 0
�
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2 þ 1792

243
ψ 0
�
1

3

�
ζ3π

2NfTFCFCAα
2 þ 2471

12
C3
F

þ 2548

729
ζ3π

4CFC2
Aα

2 þ 3115

324
ψ 0
�
1

3

�
2

ζ3CFC2
Aα

2 þ 3128

27
ζ3π

2C2
FCA

þ 3328

27
ψ 0
�
1

3

�
NfTFC2

F þ 3703

324
ψ 0
�
1

3

�
2

ζ3CFC2
A þ 4384

27
ψ 0
�
1

3

�
N2

fT
2
FCF

þ 4501

3888
π4CFC2

Aα
3 þ 4508

81
ψ 0
�
1

3

�
2

NfTFCFCA þ 5120

9
ζ5π

2NfTFC2
F

þ 5504

9
ψ 0
�
1

3

�
ζ3NfTFC2

F þ 5632

81
ζ3π

2N2
fT

2
FCF

þ 7168

81
ψ 0
�
1

3

�
2

ζ3N2
fT

2
FCF þ 7594

3
ζ3C2

FCA þ 8960

729
π4NfTFCFCA

þ 9131

162
π2C2

FCA þ 9487

162
ζ3π

2CFC2
Aα

2 þ 10711

96
ζ3CFC2

Aα
2

þ 11900

3
ζ5CFC2

A þ 13388

27
ψ 0
�
1

3

�
ζ3NfTFCFCA þ 14257

36
ψ 0
�
1

3

�
CFC2

A

þ 19972

81
ζ3π

2CFC2
A þ 20608

243
ψ 0
�
1

3

�
ζ3π

2NfTFCFCA

þ 21805

1944
ψ 0
�
1

3

�
π2CFC2

Aα
2 þ 21952

243
ψ 0
�
1

3

�
2

ζ3NfTFCFCAα

þ 23975

81
ψ 0
�
1

3

�
NfTFCFCAαþ 25088

243
ψ 0
�
1

3

�
π2N2

fT
2
FCF
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þ 25921

1944
ψ 0
�
1

3

�
π2CFC2

A þ 28672

729
ζ3π

4N2
fT

2
FCF þ 35689

81
π2NfTFCFCA

þ 39227

81
ψ 0
�
1

3

�
ζ3CFC2

Aαþ 47353

36
C2
FCA þ 48080

243
ζ3π

2NfTFCFCAα

þ 50834

729
ψ 0
�
1

3

�
ζ3π

2CFC2
Aαþ 76832

729
ψ 0
�
1

3

�
π2NfTFCFCAα

þ 78529

864
ψ 0
�
1

3

�
CFC2

Aα
2 þ 87808

2187
ζ3π

4NfTFCFCAα

þ 110051

36
NfTFCFCA þ 116683

8748
π4CFC2

Aαþ 177919

3888
ψ 0
�
1

3

�
2

CFC2
Aα

þ 190267

11664
π4CFC2

A þ 327281

576
CFC2

Aαþ 336299

972
π2CFC2

Aα

þ 741599

288
ζ3CFC2

A − 5720ζ5C3
F − 1464ζ3NfTFC2

F − 840ζ7C2
FCA

−360ζ5C2
FCAα

2 − 360ψ 0
�
1

3

�
ζ5C2

FCAα − 306ζ3C2
FCAα

−136ζ3π2C2
FCAα − 34ζ3C2

FCAα
3 − 3ζ23CFC2

Aα
3 − 3ψ 000

�
1

3

�
ζ3CFC2

Aα

þ 60ζ5C2
FCAα

3 þ 80ψ 0
�
1

3

�
ζ5C2

FCAα
2 þ 171ζ23CFC2

Aαþ 204ζ3C2
FCAα

2

þ 204ψ 0
�
1

3

�
ζ3C2

FCAαþ 240ζ5π
2C2

FCAαþ 320ζ5N2
fT

2
FCF þ 488ζ3C3

F

þ 540ζ5C2
FCAαþ 640ζ23NfTFCFCA þ 2080ζ5NfTFC2

F þ 5040ζ7C3
F

�
a3 þOða4Þ ðA1Þ

and

KMOMg
α ða; αÞ ¼

�
12ζ3CFCAα −

21

2
CFCAα −

21

4
ψ 0
�
1

3

�
CFCA −

14

9
π2CFCAα

−
8

3
ψ 0
�
1

3

�
ζ3CFCAαþ 7

2
π2CFCA þ 7

3
ψ 0
�
1

3

�
CFCAαþ 16

9
ζ3π

2CFCAα

þ 21

8
CFCAα

2 þ 63

8
CFCA − 9ζ3CFCA − 4ζ3π

2CFCA − 3ζ3CFCAα
2

þ 6ψ 0
�
1

3

�
ζ3CFCA

�
a2

þ
�
1

2
ζ23CFC2

Aα −
548047

1296
ψ 0
�
1

3

�
CFC2

A −
177037

2916
ψ 0
�
1

3

�
π2CFC2

A

−
69841

243
ζ3π

2CFC2
A −

44750

2187
ζ3π

4CFC2
A

−
39424

729
ψ 0
�
1

3

�
ζ3π

2NfTFCFCA −
34496

2187
π4NfTFCFCA

−
28204

243
π2NfTFCFCA −

25291

486
ψ 0
�
1

3

�
2

ζ3CFC2
A

−
20231

432
ψ 0
�
1

3

�
CFC2

Aα −
14608

81
ψ 0
�
1

3

�
ζ3NfTFCFCA −

11221

36
ζ3CFC2

A

J. A. GRACEY and R. H. MASON PHYS. REV. D 108, 056006 (2023)

056006-40



−
8624

243
ψ 0
�
1

3

�
2

NfTFCFCA −
3323

192
CFC2

Aα −
2783

18
NfTFCFCA

−
2009

108
ψ 0
�
1

3

�
π2CFC2

Aα −
971

27
ζ3π

2CFC2
Aα −

777

32
CFC2

Aα
3

−
616

81
ζ3π

4CFC2
Aα −

397

8
C2
FCA −

397

18
π2C2

FCA −
397

24
C2
FCAα

2

−
397

27
ψ 0
�
1

3

�
C2
FCAα −

385

36
π2CFC2

Aα
3 −

320

9
ζ5π

2C2
FCAα

−
287

18
ψ 0
�
1

3

�
2

ζ3CFC2
Aα −

272

9
ψ 0
�
1

3

�
ζ3C2

FCAα −
245

144
ψ 0
�
1

3

�
CFC2

Aα
4

−
136

3
ζ3π

2C2
FCA −

112

81
ψ 0
�
1

3

�
ζ3π

2CFC2
Aα

3 −
98

243
π4CFC2

Aα
3

−
85

8
ζ3CFC2

Aα
4 −

55

3
ψ 0
�
1

3

�
ζ3CFC2

Aα
3 −

49

6
ψ 0
�
1

3

�
π2CFC2

Aα
2

−
49

54
ψ 0
�
1

3

�
2

CFC2
Aα

3 −
49

64
CFC2

Aα
5 −

49

288
ψ 000

�
1

3

�
CFC2

Aα

−
35

24
π2CFC2

Aα
2 −

35

27
ζ3π

2CFC2
Aα

4 −
23

8
ζ3CFC2

Aα
2

−
19

6
ζ3π

4CFC2
Aα

2 −
7

384
ψ 000

�
1

3

�
CFC2

Aα
2 −

5

2
ψ 0
�
1

3

�
ζ3CFC2

Aα
2

þ 1

48
ψ 000

�
1

3

�
ζ3CFC2

Aα
2 þ 5

3
ζ3π

2CFC2
Aα

2 þ 7

8
ζ3CFC2

Aα
5

þ 7

8
ψ 000

�
1

3

�
CFC2

A þ 7

36
ψ 000

�
1

3

�
ζ3CFC2

Aαþ 28

3
ψ 0
�
1

3

�
ζ3π

2CFC2
Aα

2

þ 28

27
ψ 0
�
1

3

�
2

ζ3CFC2
Aα

3 þ 35

16
ψ 0
�
1

3

�
CFC2

Aα
2 þ 35

18
ψ 0
�
1

3

�
ζ3CFC2

Aα
4

þ 49

8
ψ 0
�
1

3

�
2

CFC2
Aα

2 þ 98

81
ψ 0
�
1

3

�
π2CFC2

Aα
3 þ 110

9
ζ3π

2CFC2
Aα

3

þ 111

4
ζ3CFC2

Aα
3 þ 112

243
ζ3π

4CFC2
Aα

3 þ 133

48
π4CFC2

Aα
2

þ 160

3
ψ 0
�
1

3

�
ζ5C2

FCAαþ 245

216
π2CFC2

Aα
4 þ 251

48
CFC2

Aα
2

þ 279

16
ζ3CFC2

Aαþ 385

24
ψ 0
�
1

3

�
CFC2

Aα
3 þ 397

6
C2
FCAα

þ 397

12
ψ 0
�
1

3

�
C2
FCA þ 539

81
π4CFC2

Aαþ 544

27
ζ3π

2C2
FCAα

þ 574

27
ψ 0
�
1

3

�
ζ3π

2CFC2
Aαþ 595

64
CFC2

Aα
4 þ 794

81
π2C2

FCAα

þ 836

9
ζ3NfTFCFCA þ 971

18
ψ 0
�
1

3

�
ζ3CFC2

Aαþ 2009

144
ψ 0
�
1

3

�
2

CFC2
Aα

þ 9856

243
ψ 0
�
1

3

�
2

ζ3NfTFCFCA þ 14102

81
ψ 0
�
1

3

�
NfTFCFCA

þ 20231

648
π2CFC2

Aαþ 29216

243
ζ3π

2NfTFCFCA
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þ 34496

729
ψ 0
�
1

3

�
π2NfTFCFCA þ 39424

2187
ζ3π

4NfTFCFCA

þ 50582

729
ψ 0
�
1

3

�
ζ3π

2CFC2
A þ 69841

162
ψ 0
�
1

3

�
ζ3CFC2

A þ 156625

8748
π4CFC2

A

þ 177037

3888
ψ 0
�
1

3

�
2

CFC2
A þ 248837

576
CFC2

A þ 548047

1944
π2CFC2

A

−240ζ5C2
FCAα − 120ψ 0

�
1

3

�
ζ5C2

FCA − 102ζ3C2
FCA − 34ζ3C2

FCAα
2

−7ψ 0
�
1

3

�
2

ζ3CFC2
Aα

2 − 3ζ23CFC2
Aα

2 − ψ 000
�
1

3

�
ζ3CFC2

A þ 57ζ23CFC2
A

þ 60ζ5C2
FCAα

2 þ 68ψ 0
�
1

3

�
ζ3C2

FCA þ 80ζ5π
2C2

FCA þ 136ζ3C2
FCAαþ 180ζ5C2

FCA

�
a3 þOða4Þ: ðA2Þ

The corresponding MAG expression depends on Nd
A and No

A and is available in the data file [49].

APPENDIX B: gRIc0 SCHEME β-FUNCTION

We record the SUð3Þ expressions for the two key renormalization group equations that are central to the Crewther relation

in the gRIc0 scheme. The five loop β-function is

β
fRIc0 ða; αÞjSUð3Þ ¼

�
2

3
Nf − 11

�
a2 þ

�
38

3
Nf þ

39

2
α −

9

2
α2 − 102 − 2Nfα

�
a3

þ
�
21

4
Nfα

2 þ 27

8
α3 −

2857

2
−
2655

16
α2 −

325

54
N2

f −
137

2
Nfα −

81

8
ζ3α

3

−
9

4
ζ3Nfα

2 þ 351

16
ζ3α

2 þ 729

16
ζ3αþ 4599

16
αþ 5033

18
Nf

�
a4

þ
�
29

2
ζ3N2

fαþ 243

8
ζ3Nfα

3 −
1172325

128
α −

717363

128
α2 −

149753

6

−
50065

162
N2

f −
6472

81
ζ3N2

f −
6321

16
Nfα −

2025

16
ζ5α

4 −
1725

4
ζ3Nfα

−
1323

2
ζ3α

3 −
1093

729
N3

f −
621

16
ζ3α

2 −
567

8
α4 −

243

2
ζ3Nfα

2

−
177

8
Nfα

3 −
75

4
ζ5Nfα

3 −
45

2
ζ5Nfα −

13

8
N2

fαþ 3465

16
ζ5α

3

þ 3645

4
ζ5α

2 þ 4131

32
ζ3α

4 þ 4185

8
ζ5αþ 6508

27
ζ3Nf þ

17169

32
Nfα

2

þ 33705

64
α3 þ 197307

32
ζ3αþ 1078361

162
Nf − 3564ζ3

�
a5

þ
�
152

81
ζ3N4

f þ
159

4
ζ23N

2
fα −

15970474577

9216
α −

372908785

3072
α2

−
207136629

8192
ζ7α

2 −
32567937

512
ζ3α

2 −
25960913

1944
N2

f

−
14959621

144
ζ3Nfα −

13960107

8192
ζ7α

3 −
9452457

256
ζ23α −

8157455

16

−
5668191

1024
α4 −

3852207

512
ζ5α

4 −
3388995

128
ζ3α

3 −
3383613

256
ζ4α
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−
2636597

216
N2

fα −
1358995

27
ζ5Nf −

1209579

1024
ζ7Nfα −

941891

256
ζ5Nfα

2

−
886581

128
ζ5Nfα −

793143

512
ζ5α

3 −
698531

81
ζ3N2

f −
621885

2
ζ3

−
580203

256
ζ4α

2 −
573237

2048
ζ7α

5 −
476263

1728
N2

fα
2 −

404607

128
Nfα

3

−
191727

256
ζ4α

3 −
151875

128
ζ6Nfα −

92097

256
ζ3α

5 −
63693

2048
ζ7Nfα

4

−
43011

256
ζ23α

4 −
40365

64
ζ23Nfα

2 −
35559

256
ζ4α

4 −
34845

32
ζ5Nfα

3

−
33935

6
ζ4Nf −

16235

96
ζ3N2

fα
2 −

14175

256
ζ6α

5 −
14175

256
ζ6Nfα

2

−
5895

32
ζ3Nfα

4 −
3105

256
ζ5α

5 −
1809

16
ζ23Nfα

3 −
1618

27
ζ4N3

f

−
1575

256
ζ6Nfα

4 −
1353

8
ζ4N2

fα −
1205

2916
N4

f −
460

9
ζ5N3

f −
382

9
ζ3N3

fα

−
153

16
ζ4N2

fα
2 −

100

3
ζ5N3

fαþ 243

32
ζ4Nfα

3 þ 459

128
ζ4Nfα

4

þ 1701

64
ζ23Nfα

4 þ 4131

128
ζ4α

5 þ 5931

8
ζ23Nfαþ 6025

48
ζ5N2

fα
2

þ 6093

64
Nfα

4 þ 10526

9
ζ4N2

f þ
10935

64
ζ23α

5 þ 13273

16
ζ5N2

fαþ 16605

128
α5

þ 19465

81
N3

fαþ 27285

256
ζ5Nfα

4 þ 46143

128
ζ4Nfα

2 þ 48722

243
ζ3N3

f

þ 88209

2
ζ4 þ

126891

64
ζ4Nfαþ 188529

64
ζ3Nfα

3 þ 207225

1024
ζ6α

4

þ 324577

128
ζ3Nfα

2 þ 381760

81
ζ5N2

f þ
502929

256
ζ23α

3 þ 630559

5832
N3

f

þ 948933

512
ζ5αþ 1075275

1024
ζ6α

3 þ 1816857

2048
ζ7Nfα

2 þ 2023353

256
ζ3α

4

þ 2116639

432
ζ3N2

fαþ 2480247

256
ζ23α

2 þ 3067875

1024
ζ6α

2 þ 3572667

8192
ζ7α

4

þ 4811164

81
ζ3Nf þ

24148125

1024
ζ6αþ 24208323

512
ζ5α

2 þ 33423111

1024
α3

þ 51960893

2304
Nfα

2 þ 192323061

8192
ζ7αþ 336460813

1944
Nf þ

435326091

512
ζ3α

þ 1723650635

6912
Nfαþ 6ζ4N3

fαþ 15ζ23N
2
fα

2 þ 288090ζ5

�
a6 þOða7Þ ðB1Þ

while the gauge parameter anomalous dimension also in the linear covariant gauge is

γ
fRIc0
α ða; αÞjSUð3Þ ¼

�
13

2
−
3

2
α −

2

3
Nf

�
aþ

�
þ 9

4
α2 þ 531

8
þ 2Nfα −

255

8
α −

61

6
Nf

�
a2

þ
�
9

4
ζ3Nfα

2 þ 81

16
ζ3α

3 þ 215

27
N2

f −
27315

32
α −

8155

36
Nf −

675

16
ζ3α

2

−
243

16
ζ3 −

135

32
α3 −

27

4
ζ3Nfα −

21

4
Nfα

2 þ 409

4
Nfαþ 729

16
ζ3αþ 5445

32
α2 þ 29895

32
þ 33ζ3Nf

�
a3
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þ
�
17

2
ζ3N2

fαþ 45

4
ζ4Nfαþ 75

4
ζ5Nfα

3 −
23350603

5184
Nf −

21210899

768
α

−
1012023

256
ζ3 −

184473

64
ζ3α

2 −
177021

256
α3 −

46755

128
ζ5α

3 −
44331

64
Nfα

2

−
13781

108
N2

fα −
13149

256
ζ3α

4 −
12549

16
ζ3Nfα −

8955

16
ζ4Nf −

3355

2
ζ5Nf

−
255

4
ζ5Nfα

2 −
243

8
ζ3Nfα

3 −
45

2
ζ5Nfα −

27

16
ζ4Nfα

2 −
8

3
ζ3N3

f

þ 177

8
Nfα

3 þ 243

64
ζ4α

3 þ 405

8
ζ4α

2 þ 1809

64
α4 þ 2017

81
ζ3N2

f

þ 4017

16
ζ3Nfα

2 þ 4427

1458
N3

f þ
4455

128
ζ5α

4 þ 8019

32
ζ4 þ

16443

64
ζ4α

þ 40905

4
ζ5 þ

43033

162
N2

f þ
68625

128
ζ5α

2 þ 87831

128
ζ3α

3 þ 198315

128
ζ5α

þ 311301

128
ζ3αþ 387649

216
ζ3Nf þ

712315

144
Nfαþ 2137221

256
α2 þ 10596127

768
þ 33ζ4N2

f

�
a4

þ
�
3248889939

4096
ζ5 −

40020851929

36864
α −

15059970043

124416
Nf

−
9151899939

16384
ζ7 −

514366083

16384
ζ7α −

322439503

4608
ζ3Nfα

−
281043751

4608
Nfα

2 −
169349259

1024
ζ3α

2 −
110282119

864
ζ5Nf

−
70747047

8192
ζ7α

2 −
65529567

2048
ζ23 −

46637683

3456
N2

fα −
45332901

2048
ζ5α

3

−
44784819

2048
ζ23α −

32357475

2048
ζ6α −

31012901

768
ζ4Nf −

17999415

16384
ζ7α

4

−
12215151

2048
ζ3α

4 −
3696633

64
α3 −

3378739

1296
ζ5N2

f −
2259077

11664
N3

f

−
2249775

8
ζ6 −

1905231

512
ζ3Nfα

3 −
1633959

1024
ζ23α

3 −
987899

256
ζ5Nfα

2

−
726489

2048
ζ4α

3 −
393579

4096
α5 −

370305

4096
ζ5α

5 −
257775

512
ζ6Nfα

−
231399

2048
ζ7Nfα

3 −
123525

1024
ζ6α

2 −
105921

128
ζ23Nfα

2 −
94527

2048
ζ23α

5

−
80771

243
ζ3N3

f −
45441

4096
ζ4α

5 −
40139

96
ζ3N2

fα
2 −

28575

512
ζ6Nfα

3

−
27285

256
ζ5Nfα

4 −
16775

6
ζ6N2

f −
6093

64
Nfα

4 −
2659

3
ζ23N

2
f

−
1701

64
ζ23Nfα

4 −
1317

4
ζ4N2

fα −
729

2
ζ4Nfα

2 −
675

8
ζ6Nfα

2

−
459

128
ζ4Nfα

4 −
50

3
ζ5N3

fα −
32

81
ζ3N4

f −
8

3
ζ4N4

f þ
99

16
ζ4N2

fα
2

þ 139

9
ζ3N3

fαþ 159

8
ζ23N

2
fαþ 1321

27
ζ4N3

f þ
1575

256
ζ6Nfα

4 þ 2164

9
ζ5N3

f

þ 2299

48
ζ5N2

fα
2 þ 4715

2916
N4

f þ
5895

32
ζ3Nfα

4 þ 7425

1024
ζ6α

4 þ 11045

144
N3

fα

þ 14851

32
ζ5N2

fαþ 16119

256
ζ4α

4 þ 17469

512
ζ4Nfα

3 þ 28305

256
ζ23Nfα

3
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þ 63693

2048
ζ7Nfα

4 þ 65817

16
Nfα

3 þ 70875

2048
ζ6α

5 þ 86103

128
ζ4α

2

þ 114075

128
ζ6α

3 þ 163139

72
ζ4N2

f þ
187509

2048
ζ7Nfαþ 440809

64
ζ23Nf

þ 543079

432
N2

fα
2 þ 638961

256
ζ23Nfαþ 820773

4096
ζ3α

5 þ 863541

16384
ζ7α

5

þ 996423

512
ζ5Nfα

3 þ 1164213

2048
ζ23α

4 þ 1477789

864
ζ3N2

fαþ 1816857

2048
ζ7Nfα

2

þ 2670405

512
ζ4Nfαþ 2988559

128
ζ3Nfα

2 þ 3662827

48
ζ7Nf þ

4089225

512
ζ5Nfα

þ 5660469

1024
ζ23α

2 þ 7740549

2048
α4 þ 10890829

2592
ζ3N2

f þ
17186355

4096
ζ5α

4

þ 24104115

8192
ζ7α

3 þ 25440057

2048
ζ3 þ

32297109

2048
ζ5α

2 þ 39034359

512
ζ4

þ 48001201

3888
N2

f þ
61806555

4096
ζ5αþ 77357835

4096
ζ4αþ 97546581

2048
ζ3α

3

þ 302449841

20736
ζ3Nf þ

612462769

2048
þ 676597463

1536
α2 þ 877406273

3456
Nfα

þ 1067166537

4096
ζ3α − 3ζ4N3

fαþ 15ζ23N
2
fα

2 þ 63175ζ6Nf

�
a5 þOða6Þ: ðB2Þ

The five loop expressions for these as well as the other renormalization group equations in an arbitrary Lie group are
provided in the associated data file [49].
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