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We study the fermion pair creation phenomenon due to the time dependence of curves, where
boundary conditions are imposed on a Dirac field in 2þ 1 dimensions. These conditions, which lead to
nontrivial relations for the normal component of the fermionic current, depend on the value of a
dimensionless parameter. We show that the pair creation effect is maximized for bag boundary
conditions, obtained for a particular value of that parameter. The effect is studied in terms of the effective
action to extract information on the probability of vacuum decay, using an expansion in powers of
the deformation of the curves with respect to straight lines. We demonstrate that the first nontrivial
contributions to this process can be obtained from the electromagnetic vacuum polarization tensor for a
Dirac field coupled to static boundaries.
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I. INTRODUCTION

Many interesting quantum field theory (QFT) effects
arise from the presence of boundaries affecting one or more
of the fields relevant to the phenomenon being described.
A well-known example of this is the Casimir effect [1,2]
which, in its static version, manifests itself in the existence
of macroscopic forces between neutral objects. These
forces exhibit a nontrivial dependence of the vacuum
energy on the geometry of the boundaries.
Nonstatic boundaries, the case that we consider here,

lead instead to the dynamical Casimir effect, whereby a
suitable time dependence in the boundary conditions leads
to the creation of particles, real quanta of the vacuum field.
It should be noted that the time dependence of the boundary
conditions may be due to a rapid variation of the media
properties, without necessarily changing their geometry.
Regardless of its specific origin, the situation is that of an
open system. Typically, it is necessary for an agent to exert
work on the system, which is then converted into radiation:
a dissipative effect. This effect depends, among other
things, on the kind of vacuum field involved. The most
extensively studied case is that of an Abelian gauge field
in 3þ 1 dimensions, not just because of the ubiquitous
nature of the electromagnetic field, but also due to the fact
that the required boundary conditions can be experimen-
tally imposed in a rather straightforward fashion. In this

paper, we deal with the Dirac field in 2þ 1 space-time
dimensions, a kind of field that finds a realization in the
realm of condensed matter physics [3]. Indeed, such kind of
QFT model, including nontrivial boundary conditions,
naturally appears in graphene nanoribbons: narrow strips
derived from two-dimensional graphene [4,5]. On the other
hand, the effect of imposing different (static) boundary
conditions on such systems and the special role played
by bag conditions has been clearly elucidated in [6]. Note
that similar conditions may emerge due to the presence of
impurities, domain walls, and other kinds of defects, and
not necessarily because of the existence of a physical
boundary. In this and related contexts, interesting works
continue to appear; for instance, dealing with the Casimir
effect the lattice fermions [7,8], or in the presence of
explicit Lorentz symmetry breaking [9].
In this paper, we study a system consisting of Dirac

fermions in 2þ 1 dimensions, coupled to moving boun-
daries. This work generalizes the results presented in [10]
to more than one dimension and shows novel relations with
apparently unrelated effects, like vacuum polarization.
This paper is organized as follows: in Sec. II, we describe

the model that we study in this work, and introduce our
notation and conventions. The total probability of fermion
pair creation is evaluated in Sec. III, via the calculation of
the effective action of the system and its imaginary part. We
do that for different situations, involving one or two walls.
Finally, in Sec. IV we present our conclusions.

II. THE MODEL

We shall work with a model which we conveniently
define by its (real-time) action S, a functional of a
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Dirac field ψ and its adjoint ψ̄ , as well as of an external
function V:

Sðψ̄ ;ψ ;VÞ ¼
Z

d3xψ̄ðxÞDψðxÞ; ð1Þ

where the operator D is given by

D≡ i=∂ −m − VðxÞ: ð2Þ

The “potential” VðxÞ is used to introduce boundary con-
ditions (see below), and m denotes the mass of the fermion
field. In our conventions, both ℏ and the speed of light are
set equal to 1, the space-time coordinates are denoted by xμ,
μ ¼ 0, 1, 2, x0 ¼ t, and we use the Minkowski metric
gμν ≡ diagð1;−1;−1Þ. Dirac’s γ matrices, on the other
hand, are chosen to be in the representation: γ0 ≡ σ1,
γ1 ≡ iσ2, γ2 ≡ iσ3, where σi (i ¼ 1, 2, 3) denote the usual
Pauli’s matrices.
Following the approach of [11–13], to impose boundary

conditions on a given space-time region Σ, we use a
potential V, proportional to δΣðxÞ; namely, a Dirac’s δ
function concentrated on a manifold of codimension 1.
Since we work in 2þ 1 dimensions, Σwill be the surface(s)
swept by time-dependent spatial curve(s).
Let us briefly recall the kind of boundary condition

introduced by this kind of potential in a particularly simple
case, VðxÞ ¼ gδðx2Þ. We can use the following heuristic
argument: integrating the Dirac equation from x2 ¼ −ϵ to
x2 ¼ ϵ, we get a possible discontinuity in the Dirac field at
x2 ¼ 0, since its jump at that location is related to its value
at x2 ¼ 0. Following [14], we replace the integral of the δ
function times ψ by the average of the two lateral limits:

iγ2
�
ψðxk;ϵÞ− ψðxk;−ϵÞ

�
−
g
2

�
ψðxk;ϵÞ þ ψðxk;−ϵÞ

�
¼ 0;

ð3Þ

where xk ¼ ðx0; x1Þ. Introducing the orthogonal projectors,
P� ≡ 1�iγ2

2
, this is equivalent to

ð1 ∓ g=2ÞP�ψðxk; ϵÞ ¼ ð1� g=2ÞP�ψðxk;−ϵÞ: ð4Þ

This implies, for g ¼ 2, that P�ψðxk;∓ ϵÞ ¼ 0, i.e., bag
boundary conditions [12,15] on both sides of the wall. The
previous formal argument will be seen to hold true in more
concrete terms, in what follows: indeed, as it was the case
for the static Casimir effect for a Dirac field, we shall see
that the dissipative effects are also maximized for the very
same value: g ¼ 2.
In this work, we deal with two cases, depending on

whether boundary conditions are imposed on one or two
curves. The space-time geometry swept by each curve
will be defined in terms of a single function, φ, namely,

x2 ¼ φðxkÞ. We will use indices from the beginning of the
Greek alphabet (α; β;…), taking the values 0 and 1, to label
the coordinates of xk, used to parametrize the boundaries.
When dealing with two boundaries, which we will

denote by L and R, we shall distinguish between two
situations: first, L will be regarded in motion, and deter-
mined by the equation x2 ¼ φLðxkÞ, while the other, R, will
be defined by x2 ¼ a > 0. Second, the two boundaries will
be allowed to move, such that L and R will be determined
by x2 ¼ φLðxkÞ and x2 ¼ aþ φRðxkÞ, respectively.
The form of V for a single boundary shall be assumed to

be given by the expression

VðxÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∂αφðxkÞ∂αφðxkÞ

q
δ
�
x2 − φðxkÞ

�
; ð5Þ

where the square root factor has been included to ensure
reparametrization invariance of the corresponding term in
the action. This is required, on physical grounds, by the
(assumed) homogeneity of the boundary conditions on the
region defined by V.
Finally, when two walls are present, one simply adds the

corresponding potentials. For example, when L moves and
R is static,

VðxÞ ¼ gL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∂αφLðxkÞ∂αφLðxkÞ

q
δ
�
x2 − φLðxkÞ

�
þ gRδðx2 − aÞ; ð6Þ

where the constants gL and gR can be set equal to their bag-
model values gL ¼ gR ¼ 2 at any point in the calculation.

III. IMAGINARY PART OF THE
EFFECTIVE ACTION

Let us introduce here the (in-out) effective action Γ, and
then evaluate the leading term contributing to its imaginary
part, using a perturbative approach, in powers of the
amplitude of deviation of the boundaries with respect to
static straight lines.
Γ is obtained, in the functional integral formulation, by

integrating out the Dirac field,

eiΓ ¼
R
DψDψ̄eiSðψ̄ ;ψ ;VÞR
DψDψ̄eiSðψ̄ ;ψ ;V0Þ : ð7Þ

Here, V is assumed to be the one corresponding to the
situation being considered, namely, one or two walls, while
V0 is the function V restricted to static straight lines (φ ¼ 0,
or φL ¼ φR ¼ 0, depending on the case). The denominator
thus incorporates the static fermionic Casimir effect [12],
while the effective action encompasses the strictly dynami-
cal effects, since (we assume) the time average of the
deformation vanishes. Should this not be the case, any finite
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value for that average could be compensated by a redefi-
nition of the x2 coordinate.
The imaginary part of Γ is related to the vacuum

persistence probability through the relation

jh0outj0inij2 ¼ e−2ImΓ; ð8Þ

which represents the probability of no particles being
created from the vacuum field [16]. The total probability
P for the creation of a fermion pair is expressed as follows:

P ¼ 1 − e−2ImΓ ≃ 2ImΓ; ð9Þ

where we have considered ImΓ ≪ 1. The first significant
process to consider is the formation of a single particle-
antiparticle pair. By retaining only the first nontrivial term
in the perturbative expansion of Γ, we can calculate the
probability of producing just one such pair.
Let us consider the perturbative expansion for Γ. For

clarity, we will construct the expansion for the case of a
single moving wall, mentioning results for the other cases
more succinctly.

A. Single boundary

We first deal with the case of a single wall, evolving
around an average configuration, which, in our choice of
coordinates, is x2 ¼ 0. The effective action for this situation
is a functional of φ, and we shall use a perturbative
approach to obtain the first nontrivial terms of its expansion
in powers of that function. We recall that this function
describes the departure of the border from its average
configuration.
To proceed, we write it in an equivalent way by splitting

the action into two terms, namely,

eiΓðφÞ ¼ heiSIðφÞi; ð10Þ

where SI ≡ S − S0 (S0 ≡ Sjφ¼0), and

h� � �i ¼
R
DψDψ̄ � � � eiS0ðψ̄ ;ψÞR
DψDψ̄eiS0ðψ̄ ;ψÞ : ð11Þ

Here,

SI ¼ −
Z

d3xvðxÞψ̄ðxÞψðxÞ; S0ðψ̄ ;ψÞ≡ Sðψ̄ ;ψ ;V0Þ

ð12Þ

with

vðxÞ≡ g
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ∂αφðxkÞ∂αφðxkÞ
q

δ
�
x2 − φðxkÞ

�
− δðx2Þ

i
:

ð13Þ

We shall expand Γ in powers of φ up to the second order.
It is rather straightforward to see that, to this order, we need
SI just to the first order,

SI ¼ g
Z

d3xφðxkÞδ0ðx2Þψ̄ðxÞψðxÞ þ � � � : ð14Þ

To evaluate the different terms emerging from the
expansion of Γ in powers of the deformation, we need
functional averages of fields, with a weight determined by
the quadratic action S0. By Wick’s theorem, the resulting
terms may be written in terms of the relevant pairwise
contractions of fermion operators, the only nontrivial one
among them being the fermion propagator, SF,

SFðx; yÞ ¼ hψðxÞψ̄ðyÞi
¼ SFðxk − yk; x2; y2Þ; ð15Þ

resulting from the action S0, where we have used the time
independence and x1 translation invariance of V0.
In the expansion in powers of φ, the would-be first order

term vanishes, because of our condition on its time average
[the term is proportional to

R
d2xkφðxkÞ], which equals

zero. To the second order, we also have real terms which
would renormalize the kinetic term and mass terms of φ.
Discarding them since they do not contribute to the vacuum
decay probability, we are then left with a term, denoted
by Γ2, and depending on a kernel γ as the only source of
dissipative effects:

Γ ≃ Γ2 ≡ 1

2

Z
d2xk

Z
d2ykφðxkÞγðxk − ykÞφðykÞ; ð16Þ

where

γðxk − ykÞ ¼ −ig2∂x2∂y2
n
tr
h
SFðxk − yk; x2; y2Þ

× SFðyk − xk; y2; x2Þ
io

jx2;y2→0: ð17Þ

Rather than calculating γðxk − ykÞ directly, it is convenient
to do so for its Fourier transform with respect to the xk
coordinates. Indeed, transforming the propagator and the
deformation,

SFðxk − yk; x2; y2Þ ¼
Z

d2pk
ð2πÞ2 e

−ipk·ðxk−ykÞS̃Fðpk; x2; y2Þ

φðxkÞ ¼
Z

d2pk
ð2πÞ2 e

−ipk·xk φ̃ðpkÞ; ð18Þ

the expression for Γ2 in (16) becomes

Γ2 ¼
1

2

Z
d2kk
ð2πÞ2 γ̃ðkkÞjφ̃ðkkÞj

2; ð19Þ

DYNAMICAL CASIMIR EFFECT FOR FERMIONS IN 2þ 1 … PHYS. REV. D 108, 056005 (2023)

056005-3



where

γ̃ðkkÞ ¼ −ig2
Z

d2pk
ð2πÞ2 ∂x2∂y2 tr

h
S̃Fðkk þ pk; x2; y2ÞS̃Fðkk; y2; x2Þ

i���
x2;y2→0

: ð20Þ

The next step, in order to evaluate γ̃, involves knowing the derivatives of the fermion propagator with respect to the x2, y2

coordinates, and then taking the limit when they approach a static boundary. To that end, we start from the property that the
propagator is the Green’s function for the Dirac equation, therefore

iγ2∂x2 S̃Fðpk; x2; y2Þ þ
�
=pk −m − gδðx2Þ

�
S̃Fðpk; x2; y2Þ ¼ iδðx2 − y2Þ

−i∂y2 S̃Fðpk; x2; y2Þγ2 þ S̃Fðpk; x2; y2Þ
�
=pk −m − gδðy2Þ

�
¼ iδðx2 − y2Þ: ð21Þ

Hence, we can write the derivatives required in (20) as follows:h
∂x2 S̃Fðpk; x2; y2Þ

i���
x2;y2→0

¼ −iγ2ð=pk −mÞS̃Fðpk; 0; 0Þh
∂y2 S̃Fðpk; x2; y2Þ

i���
x2;y2→0

¼ S̃Fðpk; 0; 0Þð=pk −mÞiγ2h
∂x2∂y2 S̃Fðpk; x2; y2Þ

i���
x2;y2→0

¼ γ2ð=pk −mÞS̃Fðpk; 0; 0Þð=pk −mÞγ2: ð22Þ

Thus, all the derivatives may be written in terms of a single
object: S̃Fðpk; 0; 0Þ which is, we recall, the propagator in the
presence of the x2 ¼ 0 wall, approaching the wall on both

arguments. This, in turn, can be obtained from S̃ð0ÞF ðpk; 0; 0Þ,
its free-space (i.e., g ¼ 0) counterpart, as follows:

S̃Fðpk; 0; 0Þ ¼
S̃ð0ÞF ðpk; 0; 0Þ

1þ igS̃ð0ÞF ðpk; 0; 0Þ
; ð23Þ

with

S̃ð0ÞF ðpk; 0; 0Þ ¼
1

2

=pk þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k −m2

q : ð24Þ

The square root above should be understood as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k −m2

q
¼ θðp2

k −m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k −m2

q
þ iθðm2 − p2

kÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − p2

k
q

: ð25Þ

Introducing the expressions for the derivatives of the
propagator into (20), discarding again terms which have the
form of a mass or kinetic term counterterm, after a lengthy
but otherwise straightforward calculation, we get

γ̃ðkkÞ¼ ig2
Z

d2kk
ð2πÞ2 tr

h
γ2=kkS̃Fðpkþkk;0;0Þγ2=kkS̃Fðpk;0;0Þ

i
:

ð26Þ

Let us now reinterpret (26) in 1þ 1 dimensional terms.
First, we note that the object S̃FðpkÞ≡ S̃Fðpk; 0; 0Þ acts as
the propagator corresponding to fermionic fields on the
boundary, namely, it is the Fourier transform of

SFðxk − yk; 0; 0Þ ¼ hψðxk; 0Þψ̄ðyk; 0Þi: ð27Þ

Besides, (26) is a loop integral over a 1þ 1 dimensional
momentum. Finally, γ2 behaves as a γ5 chirality matrix
from the 1þ 1 dimensional point of view, and therefore we
have the relation

γ2γα ¼ −iεαβγβ: ð28Þ

This may be taken advantage of in order to write

γ̃ðkkÞ ¼ εαα
0
kαεββ

0
kβΠ̃α0β0 ðkkÞ; ð29Þ

where Π̃α0β0 ðkkÞ denotes a 1þ 1 dimensional version of the
electromagnetic vacuum polarization tensor corresponding
to Dirac fields on the boundary:

Π̃αβðkkÞ≡ −ig2
Z

d2pk
ð2πÞ2 tr

h
γαS̃Fðpk þ kkÞγβS̃FðpkÞ

i
:

ð30Þ

The full, 2þ 1 dimensional object of which the above is
a projection, is
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Πμνðx; yÞ ¼
Z

d2kk
ð2πÞ2 e

−ikk·ðxk−ykÞΠ̃μνðkk; x2; y2Þ

¼ −ig2tr
h
γμSFðx; yÞγνSFðy; xÞ

i
; ð31Þ

so that Π̃αβðkkÞ ¼ gμαgνβ½Π̃μνðkk; x2; y2Þ�jx2;y2→0, where we
used the mixed tensor version of the 2þ 1 dimensional
metric ½gμν� ¼ diagð1;−1;−1Þ.
Let us recall that this expression has appeared when

we wrote the derivatives of the propagator with respect
to the coordinates normal to the wall, by using the
equation satisfied by the propagator. A related property
is that the reduced tensor does not satisfy a projected
version of the Ward identity in 2þ 1 dimensions; namely,
∂μΠμνðx; yÞ ¼ 0, which holds true, does not imply
kαkΠ̃αβðkkÞ ¼ 0. Indeed, current may flow from a boundary

to the bulk.
We have then arrived to an expression with a vacuum

polarization tensor in a system where the fermions are
coupled to an effective electromagnetic field, with a “gauge
field” AαðxkÞ associated to the deformation,

AαðxkÞ ¼ εαβ∂βφðxkÞ; ð32Þ

such that the second order term may be written, in Fourier
or coordinate space, as follows:

Γ2 ¼
1

2

Z
d2kk
ð2πÞ2 Ã

�
αðkkÞΠ̃αβðkkÞÃβðkkÞ

¼ 1

2

Z
d2xk

Z
d2ykAαðxkÞΠαβðxk − ykÞAβðykÞ: ð33Þ

It is important to recall that the effective gauge field is not
free to undergo gauge transformations, since by construc-
tion it has the form of a 1þ 1 dimensional curl of the scalar
φ. So, even though there is no gauge invariance with respect
to gauge transformations of Aα, a would-be “pure gauge”
configuration Aα ¼ ∂αω should give no contribution. That
is indeed the fact, since it is tantamount to

∂
αω ¼ εαβ∂βφ: ð34Þ

But the only solution to the equations above, by recalling
that we are perturbing in powers of the deformation, which
therefore has to be small, and as a consequence vanish at
infinity, is a vanishing deformation.
By analogy with the electromagnetic vacuum polariza-

tion, we see that an imaginary part will appear when the
external field (determined by the deformation) is such that
it may create fermion pairs. The imaginary part, on the
other hand, may be computed by using standard techniques
and found exactly for the case of massless fermions.
By computing the momentum integral in (30) by dimen-
sional regularization, and taking its imaginary part, we get

Im γ̃ðkkÞ ¼
1

16

� g
2

1þ ðg
2
Þ2
�
2

θðjk0kj − jk1kjÞ
h
ðk0kÞ2 − ðk1kÞ2

i
2
:

ð35Þ

We observe the dissipative effects are maximized when
g ¼ 2. This behavior is consistent with the results for the
static Casimir effect, where the effects are also maximized
for the same value of g [12].

B. Two walls, one of them static

We now consider the case of a system consisting of
two walls, L and R, where L undergoes motion, with a
position determined by the equation x2 ¼ φLðxkÞ, where R
remains static, at x2 ¼ a. As in the single-wall case,
the function φðxkÞ denotes the departure of the moving
wall from its average position, and satisfies the relationR
d2xkφðxkÞ ¼ 0.
The potential for this model is (6), and we enforce bag

boundary conditions on both walls by setting gL ¼ gR ¼ 2,
i.e., we study the dissipative effects of a cavity whose
interior is between L and R. These boundary conditions
must be applied as one approaches the walls from the
interior of the cavity.
Expanding the effective action in terms of the departure,

and using the same arguments as before, we arrive at an
identical equation for the effective action up to second
order in terms of a kernel,

Γ2 ≡ 1

2

Z
d2xk

Z
d2ykφLðxkÞγLLðxk − ykÞφLðykÞ; ð36Þ

with

γLLðxk − ykÞ ¼ −ig2L∂x2∂y2 tr
h
SFðxk − yk; x2; y2Þ

× SFðyk − xk; y2; x2Þ
i���

x2;y2→0
; ð37Þ

where the fermion propagator now corresponds to a
Dirac field in the presence of two (rather than one) static
boundaries, and it is evaluated at the position of the wall L.
Again, this may be written in an entirely analogous way

as in the single boundary case, yet with a gauge field
defined in terms of φL, and with a vacuum polarization
tensor:

Π̃LL
αβ ðkkÞ

≡ −ig2L

Z
d2pk
ð2πÞ2 tr

h
γαS̃Fðpk þ kk; a; aÞγβS̃Fðpk; a; aÞ

i
:

ð38Þ

In order to compute the imaginary part of Γ, we adopt
a different approach to the one that we took before.
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Following the procedure outlined [10], we decompose the
propagator into positive and negative energy projectors.
These projectors are constructed in terms of the eigenfunc-
tions of the unperturbed Hamiltonian of the system with
two static walls and gL ¼ gR ¼ 2. The decomposition of
the propagator is as follows:

SFðxk − yk; x2; y2Þ

¼
Z

dk1
X
k2

h
θðx0 − y0Þe−ik0ðx0−y0Þ

× Pþ
k ðx1 − y1; x2; y2Þ − θðy0 − x0Þe−ik0ðy0−x0Þ

× P−
kðx1 − y1; x2; y2Þ

i
; ð39Þ

and the energy projectors introduced are expressed as

Pþ
k ðx1 − y1; x2; y2Þ ¼ ukðx1; x2Þūkðy1; y2Þ;

P−
kðx1 − y1; x2; y2Þ ¼ vkðx1; x2Þv̄kðy1; y2Þ: ð40Þ

The eigenfunctions ukðx1; x2Þ≡ ψk;þðx1; x2Þ and
vkðx1; x2Þ≡ ψk;−ðx1; x2Þ are positive- and negative-
normalized solutions of the Dirac equation with bag
boundary conditions:

ψk;�ðx1; x2Þ ¼
ffiffiffi
l

p
Nke�ik1x1

 
�ðk0−k1k2 Þ sinðk2x2Þ

cosðk2x2Þ þ m
k2 sinðk2x2Þ

!
;

Nk ≡ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ k1Þ

2πk0ðaððk0Þ2 − ðk1Þ2Þ þmÞ

s
: ð41Þ

Here, Nk is a normalization constant, and l is the length
of the walls in the x1 direction, which must be regarded in
the limit l → ∞. The solutions are orthogonal and nor-
malized as

Z
∞

−∞
dx1

Z
a

0

dx2ψ†
k0;σ0 ðx1; x2Þψk;σðx1; x2Þ

¼ δðσ0k01 − σk1Þδk02;k2δσ0;σ: ð42Þ

We also define k0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2 þm2

p
, and label the

eigenfunctions by k ¼ ðk1; k2Þ, where k1 ∈R, while k2

takes values determined by the transcendental equation:

cosðk2aÞ þ m
k2

sinðk2aÞ ¼ 0; ð43Þ

which yields a discrete spectrum [17,18]. The index k
corresponds to the particles’ spatial momenta when the size
of the cavity tends to infinity, i.e., when a → ∞.
Given the previous conventions, and using the propa-

gator written in terms of the energy projectors, we can
evaluate the effective action:

Γ2 ¼ −4
Z
k1;p1

X
k2;p2

���ðūkð0; x2Þvpð0; x2ÞÞ0���2
x2→0

×
Z

dν
2π

jφ̃Lðν; k1 þ p1Þj2
ν − ðEk þ EpÞ þ iε

; ð44Þ

where the term iε is derived from the Fourier integral
representation of the Heaviside function.
Now, by extracting the imaginary part of Γ2, we can

determine the vacuum-decay probability:

P ≃ 2ImΓ2 ¼
Z
k1;p1

X
k2;p2

ρðk;pÞ; ð45Þ

where we have identified the pair-production probability
density:

ρðk;pÞ¼4jðūkð0;x2Þvpð0;x2ÞÞ0j2x2→0
jφ̃LðkkþpkÞj2

¼4l2N2
kN

2
pððk0−k1Þ−ðp0−p1ÞÞ2jφ̃LðkkþpkÞj2:

ð46Þ

The quantity ρðk;pÞmust be understood as a probability
density in the k space for a wall with length l. For further
illustration, if we consider rigid motion, i.e., the departure
φL is independent of x1, the expression simplifies to
jφ̃Lðkk þ pkÞj2 ¼ 2π

l jφ̃Lðk0 þ p0; 0Þj2, which allows us to
write the probability density per unit length of the wall:

ρðk;pÞ
l

¼ 8πN2
kN

2
p

�
ðk0 − k1Þ − ðp0 − p1Þ

�
2

× jφ̃Lðk0 þ p0; 0Þj2: ð47Þ

The results obtained here serve to extend the formula
derived in [10]. In particular, the original formula appli-
cable to 1þ 1 dimensions can be replicated by setting
k1 ¼ 0 and p1 ¼ 0, with the exception of a normalization
factor of 1

ð2πÞ2. Additionally, we observe that when we

interchange the roles of L and R, and use the same function
for the departure as before, the result for P remains
unchanged. This consistency is due to the invariance of
the unperturbed action under parity transformations.
Finally, we mention that, employing the methodologies

outlined in [10], we can further corroborate our previous
findings through the computation of the matrix elements of
the T matrix:

ρðk;pÞ ¼ jhfjTjiij2: ð48Þ

Within this context, the calculation of the transition
amplitude considers initial state as the unperturbed vacuum
of the system: jii≡ j0i and a fermion antifermion pair in
the final state: jfi≡ b†kd

†
pj0i, where b†k and d†p are the

particle and antiparticle creation operators, respectively.
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C. Single wall as the boundary of a semi-infinite space

In this subsection, we explore the scenario involving a
single wall at the boundary of a semi-infinite space.
To study this particular case, we build on the results from

Sec. III B, where the cavity’s width is considered in the
limit as it tends towards infinity (a → ∞). This asymptotic
behavior implies that only the wall denoted by L will
remain. By considering this limit, the vector labels origi-
nally described in the solutions (41) now correspond to the
momenta of the particles, with the component in the x2

direction taking continuous values, k2 ∈Rþ
0 . This shift

transforms the discrete sums found in (45) into integrals,
which must be appropriately weighted in the momentum
space.
After implementing these modifications, we arrive at the

following expression:

P ¼
Z
k;p

ρðk;pÞ; ð49Þ

with

ρðk;pÞ ¼ 4l2

ð2πÞ4
ðk2Þ2ðp2Þ2ððk0 − k1Þ − ðp0 − p1ÞÞ2

k0p0ðk0 − k1Þðp0 − p1Þ
× jφ̃Lðkk þ pkÞj2: ð50Þ

D. Two moving walls

We conclude this section by writing the result for two
moving walls. The wall denoted as L possesses an average
position of x2 ¼ 0 and a deviation of φLðxkÞ. Similarly, the
wall denoted as R holds an average position of x2 ¼ a and
deviates by φRðxkÞ. Again, we enforce bag boundary
conditions on both walls: gL ¼ gR ¼ 2. Consequently,
the resultant effective action to the second order comprises
a sum of three terms; two relate to a static wall and a
moving one, plus a mixed term:

Γ2 ¼ ΓL
2 þ ΓR

2 þ ΓLR
2 : ð51Þ

The mixed term, denoted by ΓLR
2 , represents the interaction

between the walls, and can be expressed as

ΓLR
2 ¼

Z
d2xk

Z
d2ykφLðxkÞγLRðxk − ykÞφRðykÞ

¼
Z

d2xk

Z
d2ykAα

LðxkÞΠLR
αβ ðxk − ykÞAβ

RðykÞ; ð52Þ

with

γLRðxk − ykÞ ¼ −igLgR∂x2∂y2 tr
h
SFðxk − yk; x2; y2Þ

× SFðyk − xk; y2; x2Þ
i���

x2→0;y2→a
; ð53Þ

and

Π̃LR
αβ ðkkÞ≡ −igLgR

Z
d2pk
ð2πÞ2 tr

h
γαS̃Fðpk þ kk; 0; aÞγβ

× S̃Fðpk; a; 0Þ
i
: ð54Þ

Just as with the effective action, the probability density
function comprises three elements:

ρ ¼ ρL þ ρR þ ρLR; ð55Þ

where

ρLRðk;pÞ ¼ 2gLgRRe
h
φ�
Lðkk þ pkÞφRðkk þ pkÞfðk;pÞ

i
;

ð56Þ

and

fðk;pÞ
¼ ∂x2∂y2

h�
ūkðx2Þvpðx2ÞÞ�ðūkðy2Þvpðy2Þ

�i���
x2→0;y2→a

¼ l2N2
kN

2
p

�
ðk0 − k1Þ− ðp0 − p1Þ

� sinðak2Þ
k2

sinðap2Þ
p2

×
h
ðk0 − k1Þððp2Þ2 þm2Þ− ðp0 −p1Þ

�
ðk2Þ2 þm2

�i
:

ð57Þ

From this result, we see that, depending on the values of
k and p, ρLR’s contribution to the overall pair-production
probability can be either positive or negative. This is
particularly noticeable in the massless case (m ¼ 0). In
this scenario, the spectrum is set as k2 ¼ ðkþ 1

2
Þ πa, where

k ¼ 0; 1;…, which implies that sinðak2Þ ¼ ð−1Þk.
Consequently, the preceding equation takes the form

fðk;pÞ ¼ ð−1Þkþp l2

ð2πaÞ2
k2p2

k0p0

�
ðk0 − k1Þ − ðp0 − p1Þ

�

×

� ðp2Þ2
p0 − p1

−
ðk2Þ2
k0 − k1

�
: ð58Þ

IV. CONCLUSIONS

In this paper, we studied the effect of fermion pair
creation due to the motion of the boundaries for a system
consisting of Dirac fermions in 2þ 1 dimensions.
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The boundary conditions were imposed through a Dirac
δ potential which, depending on the value of a dimensional
parameter, produces different conditions on the normal
component of the fermionic current. We have shown that
the pair creation phenomenon was maximized for a specific
value of the parameter, which corresponds to bag boundary
conditions.
The study was conducted by the computation of the

effective action of the system. We have shown that the
effective action of the system can be written in terms of a
vacuum polarization tensor and a gauge field associated
with the deformation of the moving walls. Furthermore, the
polarization tensor itself can be written in terms of the
correlation function of two fermion currents evaluated at
the moving boundaries, and computable using the system’s
propagators in the presence of static walls.

This work also generalizes the previous findings for the
1þ 1 dimensional case, which were obtained just for
cases where there was no current flow through the
boundaries, i.e., when the parameter in the potential took
the value g ¼ 2. Besides, we have also considered the
situation of having either one or two walls in motion,
showing that a physically consistent picture emerges in
the case of a cavity where one of the walls moves and
the position of one of the other is assumed to be very
far away.

ACKNOWLEDGMENTS

The authors thank ANPCyT, CONICET, and UNCuyo
for financial support.

[1] H. B. G. Casimir, Indagat. Math 10, 261 (1948); Kon. Ned.
Akad. Wetensch. Proc. 51, 793 (1948); Front. Phys. 65, 342
(1987); Kon. Ned. Akad. Wetensch. Proc. 100, 61 (1997).

[2] For a review, see, for example, M. Bordag, U. Mohideen,
and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).

[3] E. Fradkin, Field Theories of Condensed Matter Systems
(Cambridge University Press, New York, 2013).

[4] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[5] K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist,

New J. Phys. 11, 095016 (2009).
[6] C. G. Beneventano and E. M. Santángelo, International

Journal of Modern Physics: Conference Series (World
Scientific, Singapore, 2012), Vol. 14.

[7] T. Ishikawa, K. Nakayama, and K. Suzuki, Phys. Rev. Res.
3, 023201 (2021).

[8] Y. V. Mandlecha and R. V. Gavai, Phys. Lett. B 835, 137558
(2022).

[9] M. B. Cruz, E. R. Bezerra de Mello, and A. Y. Petrov, Phys.
Rev. D 99, 085012 (2019).

[10] C. D. Fosco and G. Hansen, Phys. Rev. D 105, 016004
(2022).

[11] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys.
Rev. D 76, 085007 (2007).

[12] C. D. Fosco and E. Losada, Phys. Rev. D 78, 025017
(2008).

[13] C. C. Ttira, C. D. Fosco, and E. Losada, Phys. Rev. D 82,
085008 (2010).

[14] C. D. Fosco, G. Torroba, and H. Neuberger, Phys. Lett. B
650, 428 (2007).

[15] A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Phys.
Rev. D 10, 2599 (1974).

[16] J. Schwinger, Phys. Rev. 82, 664 (1951).
[17] S. G. Mamaev and N. N. Trunov, Sov. Phys. J. 23, 551

(1980).
[18] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.

Mostepanenko, Advances in the Casimir Effect (Oxford
University Press, New York, 2009).

C. D. FOSCO and G. HANSEN PHYS. REV. D 108, 056005 (2023)

056005-8

https://doi.org/10.1016/S0370-1573(01)00015-1
https://doi.org/10.1038/nmat1849
https://doi.org/10.1088/1367-2630/11/9/095016
https://doi.org/10.1103/PhysRevResearch.3.023201
https://doi.org/10.1103/PhysRevResearch.3.023201
https://doi.org/10.1016/j.physletb.2022.137558
https://doi.org/10.1016/j.physletb.2022.137558
https://doi.org/10.1103/PhysRevD.99.085012
https://doi.org/10.1103/PhysRevD.99.085012
https://doi.org/10.1103/PhysRevD.105.016004
https://doi.org/10.1103/PhysRevD.105.016004
https://doi.org/10.1103/PhysRevD.76.085007
https://doi.org/10.1103/PhysRevD.76.085007
https://doi.org/10.1103/PhysRevD.78.025017
https://doi.org/10.1103/PhysRevD.78.025017
https://doi.org/10.1103/PhysRevD.82.085008
https://doi.org/10.1103/PhysRevD.82.085008
https://doi.org/10.1016/j.physletb.2007.05.045
https://doi.org/10.1016/j.physletb.2007.05.045
https://doi.org/10.1103/PhysRevD.10.2599
https://doi.org/10.1103/PhysRevD.10.2599
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/BF00891938
https://doi.org/10.1007/BF00891938

