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We formulate the first-order dissipative anisotropic hydrodynamical theory for a relativistic conformal
uncharged fluid, which generalizes the Bemfica-Disconzi-Noronha-Kovtun first-order viscous fluid
framework. Our approach maintains causal behavior in the nonlinear regime with or without general
relativity coupling, and we derive and analyze the constraints on transport coefficients imposed by
causality. We demonstrate the causal and stable behavior of our theory in specific cases, including the
discussion of nonlinear causality as well as stability for linearized perturbations. We apply our newly
developed first-order anisotropic theory to the Bjorken flow and show how causality and stability impose
constraints on the behavior of the early-time attractor.
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I. INTRODUCTION

Causality is one of the most important guiding principles
in physics. In the bottom-up approach to constructing
modern effective field theories, causality mandates that
effective quantum field theories meet certain requirements,
including microcausality, causal propagation limited to
the speed of light, stability of the vacuum, and possible
constraints on commutation relations [1]. As other effective
field theories, hydrodynamics is also subject to the restric-
tions imposed by causality. In this context, causality
mandates that a solution to the relativistic fluid equations
at a specific spacetime point x is entirely defined by the past
spacetime region that is causally connected to x [2,3].
While causality is an important physical requirement for
relativistic fluid dynamical equations of motion, it is not the
only one. Two additional requirements are necessary for the
equations of motion: to be locally well-posed and stable.
The latter demands that small perturbations around the
thermal state decay over time, while the former ensures that
the system follows a well-defined spacetime evolution for a
given set of initial conditions. The original first-order
dissipative hydrodynamical equations of motion, known
as the Navier-Stokes (NS) equations and derived by Landau
and Lifschitz [4] as well as Eckart [5], showed to be acausal
in the linear and nonlinear regimes [6,7]. To address the

acausality and stability concerns of the Navier-Stokes
equations, second-order hydrodynamics theories were
introduced by Israel and Stewart (IS) [8,9]. Since their
seminal work, more recent formulations of second-order
hydrodynamics have been developed [10–12].
Within the realm of relativistic hydrodynamic theory and

its phenomenological applications to different research
areas, the absence of causality leads to the emergence of
unphysical numerical solutions. The lack of causality in
relativistic fluid dynamics prevents the equations from
being well-posed, thereby making it impossible to guar-
antee the existence and uniqueness of solutions without
causality. In a given numerical hydrodynamical simulation,
while a specific reference frame may produce a numerical
solution, its uniqueness cannot be guaranteed. Moreover,
the solution may not even exist in a different reference
frame. This highlights the critical and fundamental neces-
sity to establish a causal theory for relativistic fluids.
A recent development in relativistic hydrodynamics is

the BDNK theory proposed by Bemfica, Disconzi, and
Noronha [13–17] along with Kovtun [18,19]. The BDNK
theory has offered a practical and straightforward approach
to address the long-standing issues of causality, stability,
and local well-posedness in relativistic fluids. Its develop-
ment has created new opportunities for advancing our
understanding of the fundamental principles underlying
relativistic fluid dynamics. Basically BDNK theory is a
generalization of the first-order NS relativistic theory which
is causal in the linear and nonlinear regimes1 as well asPublished by the American Physical Society under the terms of
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1The rigorous mathematical demonstrations of these state-
ments are found in Refs. [15–17].
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locally well-posed in Sobolev spaces in the presence and/or
absence of gravity. BDNK theory is also linearly stable
around global equilibrium. An interesting feature of BDNK
theory is that the definition of the hydrodynamical varia-
bles, such as the energy density, receive out-of-equilibrium
corrections. In this sense BDNK first-order theory differs
from the standard approaches based on the Landau and
Eckart frames.
It is essential to emphasize that the theoretical develop-

ments concerning causality extend far beyond merely seek-
ing compatibility between causality and a particular physical
theory. Indeed, recent independent studies conducted by two
groups, Plumberg et al. [20] and Chiu and Shen [21], have
revealed violations of causality in various sized systems,
including Pb-Pb and pþ Au collisions, within state-of-the-
art fluid dynamics simulations. Theseviolations have distinct
effects on different observables, pointing to the significant
impact causality has on the outcomes.
On the other hand, anisotropic hydrodynamics has

emerged as a very successful phenomenological model
for describing nonequilibrium fluids with large spatial
anisotropies in high-energy nuclear collisions [22–26].2
It has been used to accurately model the spacetime
evolution of the fireball in these collisions and has shown
good agreement with experimental results (see Sec. 10 of
Ref. [27] and references therein). Additionally, anisotropic
hydrodynamics has passed rigorous numerical tests against
exact kinetic theory models based on the Boltzmann
equation (see Secs. 7–8 of Ref. [27] and references therein),
providing confidence in its efficacy for studying fluids in
far-from-equilibrium situations. Despite these successes,
the foundational aspects of anisotropic hydrodynamics
remain incompletely understood, particularly with respect
to the role of causality and its constraints. Currently,
anisotropic hydrodynamic simulations have displayed
potential in handling realistic scenarios with considerable
dissipative corrections. Nonetheless, the constraints
imposed by causality, which might yield notable phenom-
enological consequences akin to those discussed in
Refs. [20,21], remain largely unexplored. Consequently,
initiating a comprehensive investigation into the limitations
imposed by causality in simulations of anisotropic hydro-
dynamics becomes a crucial and pressing task. On the other
hand, there has been a growing interest in gaining a deeper
understanding of the role of out-of-equilibrium corrections
in simulations of neutron star mergers. It has been high-
lighted that these corrections can be significant [28,29],
suggesting that standard hydrodynamical approaches may
prove inefficient, as observed in heavy ion collisions. Given
the demonstrated superior performance of anisotropic
hydrodynamics in such scenarios, it becomes natural to

explore its potential applications in the phenomenology of
neutron star mergers. Hence, it becomes crucial to inves-
tigate how an anisotropic fluid behaves when coupled with
gravity.3 Furthermore, advocates of anisotropic hydrody-
namics have proposed its application in understanding
protoquark and strange stars under the influence of strong
magnetic fields [31–33], where the direction of the mag-
netic field serves as the spatial anisotropy. Therefore, it is of
utmost importance to analyze how causality constrains
anisotropic hydrodynamics in scenarios distinct from heavy
ion collisions. By doing so, we can gain valuable insights
into the viability and limitations of this theory in diverse
astrophysical environments.
Motivated by this gap in understanding, we introduce a

novel approach in this work to investigate causality in
anisotropic hydrodynamics. We develop a novel first-order
theory for a conformal, uncharged fluid near thermal equi-
librium that exhibits a spatial anisotropy characterized by a
spacelike vector lμ. In addition, our work analyzes the role of
causality when coupling anisotropic hydrodynamics with
gravity, and thus, our findings pave the way for the inclusion
of anisotropic dissipative effects in simulations of gravita-
tional-wave signals coming from neutron star mergers.
The paper is organized as follows: in Sec. IIwe discuss the

most general form of a first-order anisotropic conformal
fluid theory. We show in Sec. III that physical requirements
of the second law of thermodynamics up to the order of
validity of the theory leads unambiguously to the anisotropic
BDNK theory of a conformal fluid. Section IVexamines the
conditions that causality imposes on the transport coeffi-
cients, both with and without gravity. Linear stability of our
novel first-order anisotropic theory is analyzed in Sec. V.
The application of our novel anisotropic first-order theory
for a fluid undergoing Bjorken flow is presented in Sec. VI.
Our conclusions are summarized in Sec. VII. Technical
details are found in the appendixes.
Notations and conventions. We use the natural units in

which ℏ ¼ c ¼ kB ¼ 1 and adopt the Lorentzian metric gμν
with signature −þþþ: The standard covariant derivative
is denoted by ∇, and the conformal covariant derivative by
D. We use the standard symmetrization and antisymmet-
rization notations, such that, for example, for a rank-2
tensor we obtain that Aμν is AðμνÞ ¼ 1

2
ðAμν þ AνμÞ and

A½μν� ¼ 1
2
ðAμν − AνμÞ, respectively. The Riemann tensor is

defined as Rσ
ρμν ¼ 2ð∂½μΓσ

ν�ρ þ Γσ
½μβΓ

β
ν�ρÞ, and the Ricci

tensor as Rμν ¼ Rρμσνgρσ.

II. FIRST-ORDER ANISOTROPIC CONFORMAL
BDNK THEORY

A common approach in hydrodynamics is to expand
physical observables in terms of gradients and truncate the

2For readers interested in delving into anisotropic hydro-
dynamics in heavy ions, we recommend the most recent review
in Ref. [27].

3Although some initial steps have been taken, it is important to
note that these studies are still in their infancy [30].
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series expansion at a given order in the derivatives. For
example, if one considers the energy-momentum tensor
Tμν, the gradient expansion takes the form Tμν ¼
Oð1Þ þOð∂Þ þ � � �, where Oð1Þ corresponds to the ideal
fluid contributions while Oð∂nÞ are the viscous corrections
of order n in derivatives (time and space derivatives written
in a covariant form) of the dynamical variables such as
energy and density. Therefore, first-order theories contain
only the first-order derivative corrections Oð∂Þ.4 Since
quantities such as temperature and number density are
only unambiguously defined in equilibrium, their out-of-
equilibrium corrections may differ due to different choices
of Oð∂Þ. In fact, different first-order theories are connected
by transformations in these out-of-equilibrium variables.5

The connection between the Landau-Lifshitz and Eckart
frames, for instance, can be understood through such
transformations [8]. Recent works have provided a com-
prehensive discussion on this subtle yet crucial aspect
[17,18,36].
We shall develop the first-order theory of a conformal

uncharged fluid which has a spatial anisotropy along an
arbitrary direction determined by a spacelike vector lμ. We
start by introducing the most general form of the energy-
momentum tensor that describes this particular fluid.

A. Anisotropic energy momentum tensor

Here, we turn to the problem of constructing a non-
linearly causal anisotropic extension of the conformal
BDNK hydrodynamics for an uncharged fluid [13]. The
most general form for the energy-momentum tensor Tμν,
decomposed in the directions parallel and orthogonal to the
timelike velocity flow uμ (uμuμ ¼ −1) and the anisotropic
spacelike vector lμ (lμlμ ¼ 1) which is invariant under the
little group SOð2Þ, reads as [25,26]

Tμν ¼ Euμuν þ Pllμlν þ P⊥Ξμν þ 2MuðμlνÞ þ 2Wðμ
⊥uu

νÞ

þ 2Wðμ
⊥ll

νÞ þ πμν⊥
¼ Euμuν þ ðPl − P⊥Þlμlν þ P⊥Δμν þ 2MuðμlνÞ

þ 2Wðμ
⊥uu

νÞ þ 2Wðμ
⊥ll

νÞ þ πμν⊥ : ð1Þ

Here, Δμν ¼ gμν þ uμuν and Ξμν ¼ Δμν − lμlν are the
projectors orthogonal to uμ and to uμ and lμ together,
respectively. In Eq. (1) we introduce the macroscopic
quantities that correspond to different projections of the
energy momentum tensor as follows:

E ¼ uμuνTμν; ð2aÞ

M ¼ −Tμνuμlν; ð2bÞ

Pl ¼ Tμνlμlν; ð2cÞ

P⊥ ¼ 1

2
TμνΞμν; ð2dÞ

Wμ
⊥u ¼ −Ξμ

αTαβuβ; ð2eÞ

Wμ
⊥l ¼ Ξμ

αTαβlβ; ð2fÞ

πμν⊥ ¼ ðΞμ
αΞν

β þ Ξμ
βΞν

α − ΞμνΞαβÞ
2

Tαβ ≡ Ξμν
αβT

αβ: ð2gÞ

Quantities E ¼ Pl þ 2P⊥;M;Wμ
⊥u;W

μ
⊥l, and πμν⊥ con-

tain four scalars, two vectors, and one tensor built out of the
leading-order hydrodynamics fields and their first-order
derivatives, with their concrete forms to be determined
subsequently. In particular, E ¼ εþ Eð1Þ, where Eð1Þ is the
first-order correction to the energy and ε is the equilibrium
energy density. Assuming T to be an effective temper-
ature, then, in the conformal case, ε ¼ εðTÞ ∝ T4 and
ε ¼ Pl þ 2P⊥, where Pl and P⊥ are the leading-order
contributions to Pl and P⊥, respectively. Due to the
conformal invariance, the derivatives of the scalar fields
are related through ∇μPl ¼ ðPl=εÞ∇με and ∇μP⊥ ¼
ðP⊥=εÞ∇με.
In Eq. (1) the vectors Wμ

⊥l, W
μ
⊥u, and the symmetric

traceless tensor πμν⊥ are orthogonal to u and l, i.e.,

VμW
μ
⊥u ¼ VμW

μ
⊥l ¼ Vμπ

μν
⊥ ¼ 0;

with V ¼ fu; lg. Note that the above expressions lead to
Ξμνπ

μν
⊥ ¼ 0. In the absence of other conserved currents, the

fluid’s evolution is governed by the energy-momentum
conservation ∇νTμν ¼ 0, which will be referred to as the
equations of motion (EOM) and due to the conformal
invariance can be equivalently expressed as DνTμν ¼ 0,
where Dμ is the conformal covariant derivative compatible
with uμ [37]. In particular,

Dμuν ¼ Δα
μ∇αuν − Δμν∇αuα=3

and

Dμε ¼ ∇μεþ 4εðuα∇αuμ − uμ∇αuα=3Þ:

The EOM may be decomposed into the directions parallel
to u and l and the directions perpendicular to both as

4The gradient expansion is equivalent to the Knudsen ex-
pansion in kinetic theory [34,35].

5For example, consider a fluid’s theory defined by a set ofN out-
of-equilibrium thermodynamic variables ψa with a ¼ 1;…; N,
and suppose we perform a transformation ψa → ψa þ δψa, where
δψa is first order in the derivative of the thermodynamic variables
ψa. This leads to the existence of two different first-order theories
that are, in fact, equivalent up to the first-order corrections.
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uαDαE ¼ −ðPl − P⊥Þlμlνσμν −MDαlα − lνDνM

−DνWν⊥u − 2Wν⊥ll
ασαν − πμν⊥ σ⊥μν; ð3aÞ

lαDαPl ¼ −ðPl − P⊥ÞDαlα −Mlμlνσμν − uαDαM

− lνWα⊥uDαuν − lνuαDαWν⊥u

− lμlνDνW
μ
⊥l −DαWα⊥l þ πνα⊥ Dαlν; ð3bÞ

ΞμαDαP⊥ ¼ −ðPl − P⊥ÞΞμ
νlαDαlν −MΞμ

νlαDαuν

−MΞμ
νuαDαlν − Ξμ

νWα⊥uDαuν

− Ξμ
νuαDαWν⊥u −Wμ

⊥lDαlα − Ξμ
νWα⊥lDαlν

− Ξμ
νlαDαWν⊥l − Ξμ

νDαπ
να⊥ ; ð3cÞ

where σμν ¼ DðμuνÞ ¼ Δαβ
μν∇μuν is the shear tensor, with

Δαβ
μν ¼ ½Δα

μΔ
β
ν þ Δβ

μΔα
ν − ð2=3ÞΔαβΔμν�=2. We have also

introduced a transverse shear tensor as

σ⊥μν ¼ Ξαβ
μνDαuβ ¼ Ξαβ

μν∇αuβ:

It is important to keep in mind that an expression that
only includes derivatives up to a certain order may be
approximated at that order when the equations of motion
are considered. As an example, one can rewrite (3a) by
separating the leading- and first-order contributions from E
and P to obtain

uαDαεþ ðPl − P⊥Þlμlνσμν
¼ −uαDαEð1Þ − ðPð1Þ

l −Pð1Þ
⊥ Þlμlνσμν −MDαlα − lαDαM

−DνWν⊥u − 2Wα⊥ll
νσμν − πμν⊥ σ⊥μν: ð4Þ

Upon comparing the left- and right-hand sides of the
equation above, it becomes evident that the terms uαDαε
and lαlνDαlν only contain first-order derivatives of the zer-
oth-order quantities. However, the combination uαDαεþ
ðPl − P⊥Þlμlνσμν is second-order on-shell, meaning that it
becomes second order when the equations of motion given
by (4) are taken into account. It can be said that the same
combination is of the first-order off-shell. Similar argu-
ments may be applied in the remaining equations of motion
in (3) above. In the next section, we make use of generic
arguments based on the second law of thermodynamics
together with the above on-shell analysis in order to
determine the remaining first-order terms M, Eð1Þ, etc.,
by assuming the physical applicability of a first-order
theory.

III. ENTROPY AND ENTROPY PRODUCTION

The second law of thermodynamics mandates that
entropy should be at a maximum in a state of equilibrium,
and the entropy production should not have a negative
value. However, for a first-order theory one must only

consider the entropy up to the first-order on-shell deriva-
tive, and hence the entropy production up to the second-
order on-shell [18]. This ensures that the theory is being
applied outside of its intended physical applicability.
The entropy current of an anisotropic conformal

uncharged fluid reads as (see Appendix A)

Sμ ¼ P⊥uμ − uνTμν

T
; ð5Þ

where P⊥ is the leading order of P⊥, i.e., P⊥ ¼ P⊥ þ Pð1Þ
⊥ .

In this case, the entropy density reads

−uμSμ ¼ sþ Eð1Þ

T
; ð6Þ

where the leading-order contribution to the entropy density
is s ¼ ðεþ P⊥Þ=T. From Eq. (5) we calculate the entropy
production

∇μSμ ¼ −
πμν⊥ σ⊥μν

T
−
2Wμ

⊥ll
νσμν

T
−
ε − 3P⊥

4T
uαDαε

ε

−
ðPl − P⊥Þlμlνσμν

T

−
Eð1Þuν þWν⊥u þMlν

4T
Dνε

ε
: ð7Þ

The choices π⊥μν ∝ −σ⊥μν and Wμ
⊥l ∝ −Ξμνlασαν give

positive contributions to the first two terms in (7). On
the other hand, the third term

−
ε − 3P⊥

4T
uαDαε

ε
ð8Þ

cannot be positive definite since Dαε has no definite sign.
Furthermore, the order of derivatives of this term, as given
by Eq. (4), depends on the leading order of pressures and
could be either first or second order. Equation (8) becomes
second-order on-shell only if P⊥ ¼ Pl. Hence, to ensure a
non-negative entropy production, this term must be elim-
inated by letting P⊥ ¼ ε=3. On the other hand, the term

ðPl − P⊥Þlμlνσμν
T

ð9Þ

is of first order in derivatives by assuming that there are
only on-shell contributions in Eq. (3) and σμν is of the first
order in derivatives. Accordingly, this term has no definite
sign and must be eliminated as well. To this end, the leading
orders of the pressures must be equal

P⊥ ¼ Pl ¼ P ¼ ε

3
; ð10Þ

which we consider to be the case hereafter. Subsequently,
and by following the prescription outlined in the previous
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section, the simplest anisotropic extension of the conformal
BDNK hydrodynamics of an uncharged fluid is formulated
by the energy-momentum tensor

Tμν ¼ ðεþ Eð1ÞÞuμuν þ ðPð1Þ
l − Pð1Þ

⊥ Þlμlν þ ðPþ Pð1Þ
⊥ ÞΔμν

þ 2MuðμlνÞ þ 2Wðμ
⊥uu

νÞ þ 2Wðμ
⊥ll

νÞ þ πμν⊥ ; ð11Þ

where its components are written as

Eð1Þ ¼ 3χ

4

uμDμε

ε
; ð12aÞ

Pð1Þ
l ¼ χl

4

uμDμε

ε
− 2ηlllαlβσαβ; ð12bÞ

Pð1Þ
⊥ ¼ χ⊥

4

uμDμε

ε
þ ηlllαlβσαβ; ð12cÞ

πμν⊥ ¼ −2η⊥σμν⊥ ; ð12dÞ

Wμ
⊥l ¼ −2ηlΞ

μ
λ lνσ

λν; ð12eÞ

Wμ
⊥u ¼

λ⊥
4
Ξμν Dνε

ε
; ð12fÞ

M ¼ λl
4

lνDνε

ε
: ð12gÞ

In the previous expression we have eight transport coef-
ficients fχ; χl; χ⊥; ηl; ηll; η⊥; λl; λ⊥g which are proportional
to ε3=4, due to the conformal invariance. The conformal
invariance also requires χl þ 2χ⊥ ¼ 3χ to ensure Tμ

μ ¼ 0.
Plugging Eq. (12) into the EOMs (3) and assuming

condition (10), the entropy density is given by −uμSμ ¼
ðεþ PÞ=T þOð∂2Þ and the on-shell entropy production is
simply

∇μSμ ¼
πμν⊥ π⊥μν

2η⊥T
þWμ

⊥lW⊥lμ

ηlT
þ ðPð1Þ

⊥ − Pð1Þ
l Þ2

3ηllT
þOð∂3Þ:

ð13Þ

We conclude that the on-shell entropy production given by
the previous expression is positive up to second order in
derivatives if

η⊥ ≥ 0; ηll ≥ 0; ηl ≥ 0: ð14Þ

A. The isotropic conformal limit of BDNK

Once the spacelike anisotropic vector l is chosen, the
isotropic limit for the conformal uncharged fluid is repro-
duced by setting

η⊥ ¼ ηl¼ ηll ¼ η; χl ¼ χ⊥ ¼ χ; λ⊥¼ λl¼ λ: ð15Þ

If we plug the above condition into (11), the energy-
momentum tensor reduces to the one derived in BDNK
theory [13], i.e.,

Tμν ¼
�
εþ 3χ

4

uμDμε

ε

�
uμuν þ

�
Pþ χ

4

uμDμε

ε

�
Δμν − 2ησμν

þ λuðμΔνÞα

2

Dαε

ε
; ð16Þ

where χ; λ; η ∝ ε3=4. The equivalence between the expres-
sions derived above and the corresponding one in BDNK
theory [13] becomes clearer when considering the limit
established by Eq. (15) while writing Δμν ¼ Ξμν þ lμlν in
Eq. (16) together with the following identity [25,26]:

σμν ¼ σ⊥μν −
1

2
Ξμνlαlβσαβ þ 2Ξα

ðμlνÞl
βσαβ

þ lμlνlαlβσαβ: ð17Þ

Note that the traceless components of the energy momen-
tum tensor (16) are σ⊥μν, Ξα

ðμlνÞl
βσαβ, and the combination

Ξμνlαlβσαβ − 2lμlνlαlβσαβ. These terms are needed and
explain why these multiply the same coefficient ηll in
Eqs. (12b) and (12c).

IV. CAUSALITY

Now, we shall show that there exist conditions for the
transport parameters defined in Eq. (12) such that the
resulting hydrodynamic theory exhibits nonlinear causality.
It is worth noting that the EOM ∇νTμν ¼ 0 give rise to a
system of quasilinear partial differential equations (PDE),
i.e., PDEs that do not contain products of their highest-
order derivative terms. The independent variables in the
energy-momentum tensor include the energy density ε and
the components of the fluid’s velocity uμ, with the
anisotropic vector lμ6 being chosen accordingly. To inves-
tigate causality in quasilinear systems, we analyze the
principal part of the system of equations. This part contains
only the terms of the highest order in each variable and
determines the order of the partial differential equations in
each variable. As an example, a quasilinear system that is of
order one in ε and two in uμ does not contain terms such as
ð∂εÞ2, ð∂2uÞ2, or ∂ε∂2u, and its principal part can contain
only terms of form ∂ε or ∂2u. As explained in [13], we
assume uμ to have four independent components, with the
constraint uμuμ ¼ −1 being imposed at an initial time and
being preserved through the fluid’s evolution. The EOM is
then decomposed in directions parallel and perpendicular to

6The components of the vector lμ are constrained by being a
unitary spacelike vector lμlμ ¼ 1 and being orthogonal to uμ. For
instance, at the earliest stages of a heavy-ion collision, it is common
to choose uμ ¼ γðvzÞð1; 0; 0; vzÞ with lμ ¼ γðvzÞðvz; 0; 0; 1Þ [26].
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uμ. This gives rise to five equations of the five independent
variables

−uμ∇νTμν ¼ 0; Δμ
α∇νTαν ¼ 0; ð18Þ

with the constraint uμuμ ¼ −1 being used when required.7

Let us now consider Eq. (18) together with the constitutive
relation (11) for the energy-momentum tensor, and the
dissipative fluxes given in (12), coupled with gravity
through Einstein’s equation

Rμν −
1

2
gμνR ¼ 8πGTμν; ð19Þ

and the gauge freedom fixed by assuming the harmonic
gauge gμνΓα

μν ¼ 0. As explained in Appendix B, the
causality of the system is determined by the vectors
ξμ ¼ ∇μΦ normal to the characteristic hypersurface
ΦðxÞ ¼ 0, which are the roots of the characteristic
equation (B5). With the roots of the characteristic equation
obtained as ξ0 ¼ ξ0ðξiÞ, the system is causal if (C1) they
are real,

ξ0 ∈R; ð20Þ

and (C2) ξα ¼ ðξ0; ξiÞ is not timelike, i.e.,

ξαξ
α ≥ 0: ð21Þ

In our case, the characteristic equation has 30 roots, of
which 20 are lightlike and thus causal, arising from pure
gravity. The remaining pieces of the characteristic equation
are spacelike roots, which we refer to as the matter sector,
and can be further decomposed into two parts. The first
part, which contains 4 roots, is

A2 ¼ ðλ⊥a2 − η⊥v2 þ δη⊥lb2Þ2 ¼ 0; ð22Þ

where

δη⊥l¼η⊥−ηl; a¼uμξμ; b¼ lμξμ; vμ¼Δμνξμ: ð23Þ

The second part which contains the 6 remaining roots
reads as

Hk
kðV; ξÞ½A2 þ AðUμ

1lμ þUμ
2ξμÞ þ Uμ

1lμU
ν
2ξν − Uμ

1ξμU
ν
2lν�

¼ 0: ð24Þ

The explicit forms of the terms Hk
kðV; ξÞ, Uμ

1, and Uμ
2 are

calculated explicitly in Appendix B, which for convenience
we listed below:

Uμ
1lμ ¼ b2δηlll⊥ þ a2δλþ δη⊥lv2 þ b2δηlll

−
a2b2δλðχ⊥ þ λ⊥ þ δλþ δχÞ

4εHk
kðV; ξÞ

; ð25aÞ

Uμ
1ξμ ¼ b3δηlll⊥ þ a2bδλþ ðδη⊥l þ δηlllÞbv2

−
a2bδλ½ðχ⊥ þ λ⊥Þv2 þ b2ðδλþ δχÞ�

4εHk
kðV; ξÞ

; ð25bÞ

Uμ
2lμ ¼ b

�
δχ

3
þ δηlll

�
þ ðχ⊥ − ηllÞb

3

−
a2bðχ þ λ⊥Þðχ⊥ þ λ⊥ þ δλþ δχÞ

4εHk
kðV; ξÞ

; ð25cÞ

Uμ
2ξμ ¼ b2

�
δχ

3
þ δηlll

�
þ ðχ⊥ − ηllÞv2

3

−
a2ðχ þ λ⊥Þ½ðχ⊥ þ λ⊥Þv2 þ b2ðδλþ δχÞ�

4εHk
kðV;ξÞ

; ð25dÞ

Hk
kðV; ξÞ ¼

3χa2 þ λ⊥v2 þ δλb2

4ε
: ð25eÞ

Here, δηlll⊥¼4ηl−3ηll−η⊥, δηlll ¼ ηll − ηl, δχ ¼ χl − χ⊥,
and δλ ¼ λl − λ⊥. Because ξμ needs to be spacelike
according to Eq. (21), no root with v ¼ 0 is allowed.
Note that v ¼ 0 yields to the following result:

ξμξ
μ ¼ ð−uμuν þ ΔμνÞξμξν ¼ −a2 þ v2 ¼ −a2 < 0;

which clearly violates causality according to Eq. (21).
Upon inspection of Eqs. (22) and (24), it is apparent that if
either λ⊥ or χ, which give rise to the leading-order power in
a, are zero, causality violating roots with b ¼ v ¼ 0 arise.
Building upon this observation and the known isotropic
conformal case [13], we can justify the following choice to
ensure causality, i.e.,

λ⊥ > 0; χ > 0; ε > 0: ð26Þ

We can rewrite A by writing b ¼ lμvμ ¼ v cos θ
(0 ≤ θ ≤ π) using the Cauchy-Schwarz inequality, as both
vectors are orthogonal to uμ. In this case, Δμν defines a real
inner product among these vectors. This results in the
rewriting of A, Eq. (22), as follows:

A ¼ λ⊥ða2 − τv2Þ; ð27Þ

where

τ ¼ η⊥ − δη⊥l cos2 θ
λ⊥

: ð28Þ7This is the equivalent of considering ∇νTμν ¼ 0 together with
the evolution equation for the constraint uβ∇β½uα∇αðuμuμÞ� ¼ 0.
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When considering the constraints (26), the roots of A ¼ 0
obey (20) and (21) if, and only if,8 0 ≤ τ < 1.9 Thus, if the
conditions (26) hold, the roots of A ¼ 0 are causal if, and
only if,

λ⊥ > maxðηl; η⊥Þ ≥ 0: ð29Þ

However, the previous inequality does not lead to a
sufficient condition for λ⊥ when comparing the isotropic
limit of this constraint, i.e., λ > η, and comparing with the
corresponding one derived in the conformal isotropic case
[13]. Therefore, it is needed to analyze the roots of (24) as
well. In general this analysis becomes cumbersome, and as
is shown in Appendix C, it requires finding the roots of the
following polynomial in ϱ≡ a2=v2:

pðϱÞ ¼
X3
i¼0

αiϱi: ð30Þ

This polynomial is found by writing Eq. (24) in the generic
form given by Eq. (C1), with the coefficients αi to be
determined from the aforementioned equality. The causal-
ity condition is then stated in the statement C. 1: Assuming
α3 to be positive, causality then requires pðϱÞ to be positive
for ϱ ≥ 1 and negative for ϱ < 0, while satisfying the
following inequality:

18α0α1α2α3 − 4α32α0 þ α22α
2
1 − 4α3α

3
1 − 27α23α

2
0 ≥ 0: ð31Þ

We have explained the application of the generic conditions
of statement C. 1. To simplify the analysis of the causality
conditions, it is more instructive to consider specific cases
that provide clearer results. From the constitutive relations
(12), we realize that the spatial anisotropy appears explic-
itly in different dissipative fluxes of the energy-momentum
tensor: in the scalar sector with δχ ≠ 0, in the vector sector
with δλ ≠ 0, or in the tensor sector through the differences
between three different transport parameters, i.e., η⊥, ηl,
and ηll. If the only source of anisotropy is the scalar sector,
then, as stated in statement C. 2, causality requires the five
inequalities given by Eq. (C5), together with Eqs. (14) and
(29), to be satisfied. The aforementioned conditions (C5)
are, for example, satisfied by the following choices:

λ ¼ χ ¼ 10η; χ⊥ ¼ δχ ¼ 15η=2; ð32Þ

with η⊥ ¼ ηl ¼ ηll, and δλ ¼ 0. Taking the isotropic limit
(15), the conditions (C5) reduce to the ones of the
conformal isotropic BDNK [13], i.e.,

χ > 4η; λ >
3χη

χ − η
: ð33aÞ

On the other hand, if the anisotropy is only in the vector
sector, and the transport parameters of the tensor sector
vanish, i.e., the system is shearless, as stated in
statement C. 3, the condition (26) is sufficient for causality,
without any further constraint on λl.
To check for causality in more general cases, one can use

statement C. 1. For instance, in the example worked out
entirely in Appendix D one finds the following conditions
that respect causality:

η⊥ ¼ η; ηl ¼
2η

3
; ηll ¼

5η

6
; λ⊥ ¼ 13η

2
;

λl ¼ 6η; χ ¼ 5η; χ⊥ ¼ 11η

2
; χl ¼

16η

3
;

with η > 0: ð34Þ

The proof of linear stability for this choice of parameters
may be found in Appendix E.

V. LINEAR STABILITY

In this section, we study the stability of the linearized
EOM for the hydrodynamic theory developed in Secs. II
and III. We adopt standard methods [14,38] and consider
small perturbations of the hydrodynamic fields ε and uμ

around a homogeneous background, which corresponds to
a global equilibrium with constant hydrodynamic fields in
flat spacetime. In particular, we assume the energy density
to be ε0 þ δεðt; xiÞ, with ε0 being constant, and the fluid’s
velocity to be uμ0 þ δuμðt; xiÞ, with uμ0δuμ ¼ Oðδ2Þ. The
fluid velocity in equilibrium is uμ0 ¼ γð1; viÞ, with vi being

the components of the 3-velocity v, and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
the

Lorentz factor. We then expand the equations of motion up
to the first order in perturbations, which are assumed to be
in the form of plane waves, i.e., δεðt; xiÞ → e−iT0xμkμδεðkμÞ
and δuðt; xiÞ → e−iT0xμkμδuðkμÞ, where kμ ¼ ðiΓ; kiÞ and
the presence of the equilibrium temperature T0 in the
exponent makes the modes kμ dimensionless. Nontrivial
solutions to the EOM may lead to imaginary solutions
Γ ¼ ΓðkiÞ, where linear stability is verified if, and only
if, ReðΓÞ ≤ 0.
The roots Γ ¼ ΓðkiÞ that come from the EOM are usually

cumbersome, so the analysis becomes very difficult.
However, new results show that causalityþ linear stability
in the local rest frame (LRF) leads to linear stability in any
boosted frame. This relation has been shown to be true for
strongly hyperbolic systems of equations, as demonstrated in
Ref. [17]. A recent study byGavassino [39] demonstrated the
validity of this relation for the general case. The author
showed that if a mode grows for an observer A, it can be
thought of as a parametrization of the time coordinate in that
frame. If the theory is causal, this growth should be preserved

8See for instance Ref. [17].
9The equality τ ¼ 1 may be used if the particles are massless.
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between frames; otherwise therewould be an inversion in the
time direction. Accordingly, and since we already have the
conditions for causality, we shall study linear stability in
the LRF and, in some specific cases, linear stability in a
homogeneous boosted frame (where ki ¼ 0 but vi ≠ 0).
We begin by studying linear stability in the LRF, i.e.,

where uμ0 ¼ ð1; 0; 0; 0Þ and, as a consequence, δu0 ¼ 0.
Furthermore, since l is orthogonal to u, it can only have
spatial components in theLRF, i.e., lμ0 ¼ ð0; liÞ, with keeping
lμlμ ¼ 1 in mind. We note that although lμ must also be
perturbed in order to preserve the aforementioned orthogon-
ality, its perturbation does not contribute to the dissipative
fluxes of (12) up to the first order in perturbations.
Let us define δε̄ ¼ δε=ðεþ PÞ and δT̄μν ¼

δTμν=ðεþ PÞ, together with the dimensionless quantities
η̄l ¼ ηl=s, η̄ll ¼ ηll=s, η̄⊥ ¼ η⊥=s, λ̄l ¼ λl=s, λ̄⊥ ¼ λ⊥=s,
χ̄ ¼ χ=s, χ̄l ¼ χl=s, and χ̄⊥ ¼ χ⊥=s, where s ¼
ðεþ PÞ=T ¼ 4ε=3T is the equilibrium entropy density.
We may also define k̄ ¼ liki, κi ¼ Ξi

jk
j ¼ ki − lik̄, and

κ ¼
ffiffiffiffiffiffiffiffi
κiκ

i
p

in order to perform the decomposition

δui ¼ liδuL þ κi

κ
δuk þ δui⊥;

where δuL¼ liδui, δuk¼κiδui=κ, and δui⊥¼Ξi
jδu

j−κiδuk.
With that in mind, we obtain the following equations for the
modes:

∂νδT̄0ν ¼ M11δε̄þM12δuL þM13δuk ¼ 0; ð35aÞ
li∂νδT̄iν ¼ M21δε̄þM22δuL þM23δuk ¼ 0; ð35bÞ
κi
κ
∂νδT̄iν ¼ M31δε̄þM32δuL þM33δuk ¼ 0; ð35cÞ

ωi
j∂νδT̄

jν ¼ ½λ̄⊥Γ2 þ Γþ η̄⊥k2 þ ðη̄l − η̄⊥Þk̄2�δui⊥ ¼ 0;

ð35dÞ
where ωij ¼ Ξij − κiκj=κ2 is the projector orthogonal to κi

and li, k2 ¼ kiki, and

M11 ¼ χ̄Γ2 þ Γ −
k2λ̄⊥
3

þ k̄2

3
ðλ̄⊥ − λ̄lÞ; ð36aÞ

M12 ¼ ik̄½ðλ̄l þ χ̄ÞΓþ 1�; ð36bÞ

M13 ¼ iκ½ðλ̄⊥ þ χ̄ÞΓþ 1�; ð36cÞ

M21 ¼
i
3
k̄½ðλ̄l þ χ̄lÞΓþ 1�; ð36dÞ

M22 ¼ λ̄lΓ2 þ Γþ κ2η̄l þ
ð4η̄ll − χ̄lÞk̄2

3
; ð36eÞ

M23 ¼
k̄κ
3
ð3η̄l − χ̄l − 2η̄llÞ; ð36fÞ

M31 ¼
iκ
3
½ðχ̄l þ λ̄⊥ÞΓþ 1�; ð36gÞ

M32 ¼
k̄κ
3
ð3η̄l − χ̄l − 2η̄llÞ; ð36hÞ

M33 ¼ Γ2λ̄⊥ þ Γþ k2

3
ð−χ̄l þ η̄ll þ 3η̄⊥Þ

þ k̄
3
ð3η̄l þ χ̄l − η̄ll − 3η̄⊥Þ: ð36iÞ

Note that the transverse modes δui⊥ decouple from the rest
and give the shear channel polynomial equation

λ̄⊥Γ2 þ Γþ η̄⊥k2 þ ðη̄l − η̄⊥Þk̄2 ¼ 0: ð37Þ

The equations for the longitudinal modes (35a)–(35c) are
nontrivial, i.e., give nonzero solutions for the perturbations,
when

detðMÞ ¼ 0; ð38Þ

where M ¼ ½Mij�3×3. The roots of Eq. (38) give the wave
modes of the sound channel. It is worth mentioning that the
mode equations in a Lorentz boosted frame are obtained by
performing a boost which yields to the following change:

k̄ → lμkμ; k2 → −γ2ðΓþ ikiviÞ2 þ Γ2 þ kiki;

κ2 → k2 − ðlμkμÞ2; Γ → γðΓþ ikiviÞ: ð39Þ

In the boosted frame, uμ ¼ γð1; viÞ and lμ ¼ ðl̃kvk; l̃iÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vll̃l

p
, with l̃i being a unitary 3-vector that coincides

with the anisotropic unitary 3-vector li in the LRF (v ¼ 0).
In the LRF case, by means of the Cauchy-Schwarz

inequality, one may set liki ¼ kx, where −1 ≤ x ≤ 1 covers
all possible directions of ki. Then, Eq. (37) can be written as

λ̄⊥Γ2 þ Γþ ½η̄⊥ð1 − x2Þ þ η̄l�k2 ¼ 0: ð40Þ

The roots of the above equation have zero or negative real
parts if, and only if, λ̄ > 0 and η̄⊥ þ x2ðη̄l − η̄⊥Þ ≥ 0. Both
conditions are guaranteed by the constraints (26) and (29)
because 1 − x2 ≥ 0, and we have that either η̄⊥ > η̄ ≥ 0 or
η̄ > η̄⊥ ≥ 0. Hence, Eqs. (26) and (29) lead to the linear
stability of the shear channel in the LRF.
Now, let us consider (40) in the boosted homogeneous

case, i.e.,with vanishingki. By employing again theCauchy-
Schwarz inequality, we can write ðlμkμÞ2 ¼ ðΔμνkμkνÞy2,
with −1 ≤ y ≤ 1, and then apply (39) to obtain

Γ½ðλ̄⊥ − ð1 − y2Þv2η̄⊥ − y2v2η̄lÞγΓþ 1� ¼ 0; ð41Þ

which has roots for all v2 ∈ ½0; 1Þ with nonpositive real parts
if λ̄⊥ ≥ η̄⊥ð1 − y2Þ þ η̄ly2 and λ̄⊥ > 0. Both inequalities are
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guaranteed by the causality condition (29) and Eq. (26),
according to which η̄⊥ð1 − y2Þ þ η̄ly2 ≤ maxðη̄l; η̄⊥Þ < λ̄⊥.
In this condition we clearly see the connection between
stability in any frame and causalityþ stability in the
LRF [39].
The polynomial for the sound channel in (38) is of power

six, with complicated coefficients that depend on all
transport parameters as well as k̄ and k2. The analysis of
this type of polynomials is extremely complex, so it is more
convenient and better to examine each set of parameters
separately. As an example, the stability of the causal set of
parameters (34) is demonstrated in Appendix E.

VI. BJORKEN FLOW

In this section, we apply the formalism developed in
this work to the case of Bjorken flow, i.e., when the
fluid’s velocity is uμ ¼ ð1; 0; 0; 0; Þ in the so-called Milne
coordinates ðτ; x; y; ξÞ, which are related to the usual
Minkowski coordinates via τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and ξ ¼

1
2
log½ðtþ zÞ=ðt − zÞ�. From a mathematical perspective,

one can choose the spacelike anisotropic vector to be in
any of the x, y, and η directions. However, the physical
picture of the heavy ion collisions suggests

lμ ¼ 1

τ
ð0; 0; 0; 1Þ; ð42Þ

to be the right choice. Alternatively, other choices may be
possible, but one should be cautious of potential nonphysi-
cal issues when making such a choice, as illustrated in
Appendix F. By equating u and l into Eq. (12) and using the
Bjorken symmetries, the dissipative fluxes reduce to

Eð1Þ ¼ χ̃3T3

�
1

τ
þ 3Ṫ

T

�
; ð43aÞ

Pð1Þ
l ¼ T3

�
χ̃l − 4η̃ll

3τ
þ 3χ̃lṪ

T

�
; ð43bÞ

Pð1Þ
⊥ ¼ T3

�
χ̃⊥ þ 2η̃ll

3τ
þ 3χ̃⊥Ṫ

T

�
; ð43cÞ

and

πμν⊥ ¼ 0; Wμ
⊥l ¼ 0; Wμ

⊥u ¼ 0; M ¼ 0: ð44Þ

Namely, anisotropy only appears in the scalar sector with
three independent relevant transport parameters, χ ¼ χ̃T3,
χ⊥ ¼ χ̃⊥T3, and ηll ¼ η̃llT3. Recall that in the isotropic
case, the relevant transport parameters for the Bjorken flow
are shear viscosity η, and χ [13,40]. Similar to the cases of
IS [41] and isotropic conformal BDNK, the fluid’s evolu-
tion is governed by only one equation,

9χ̃
τ2T̈
T

þ 18χ̃
τ2Ṫ2

T2
þ
�
3τð9χ̃ − χ̃⊥Þ

T
þ 12τ2

�
Ṫ þ 4τT

þ 3χ̃ − 2χ̃⊥ − 4η̃ll ¼ 0: ð45Þ

At late times, the solution to the previous equation can be
written as a power series,

T ¼ Λ
ðΛτÞ1=3

�
1 −

η̃ll
2ðΛτÞ2=3 −

η̃llðχ̃l þ 5χ̃⊥Þ
24ðΛτÞ2=3 þ � � �

�
; ð46Þ

where Λ is a constant with energy dimensions. We clarify
that when we refer to late times, we mean Λτ ≫ 1. One
may assume that up to the first order, the power series
solution is equal to the one of the isotropic conformal case,
to reduce the number of free parameters. Such an
assumption gives rise to ηll ¼ η.
To gain more insight into the physical implications of

(45), especially in the far from equilibrium regime, we
assume the dimensionless parameters w ¼ Tτ10 and
fðwÞ ¼ τ

w
dw
dτ [41]. The EOM (45) reduces to a first-order

nonlinear differential equation,

9χ̃

4
fðwÞ2 þ wfðwÞ

�
1þ 3

4
χ̃f0ðwÞ

�
−
6χ̃ þ χ̃⊥

2
fðwÞ

þ 3χ̃ þ χ̃⊥ − η̃ll
3

−
2w
3

¼ 0: ð47Þ

The late-time expansion (46) is written in terms of the
variable w as

fðwÞ ¼ 2

3
þ η̃ll
3w

þ η̃llðχ̃lþ5χ̃⊥Þ
18w2

þO
�

1

w3

�
; ð48Þ

which is valid when w ≫ 1. The pressure anisotropy,
A ¼ ðP⊥ − PlÞ=P, in the isotropic conformal BDNK,
and in contrast to IS theory, is purely determined by shear
viscosity and does not depend on f. In the anisotropic case,
the situation is different because A receives contribution
from fðwÞ,

A ¼ 2

3

χ̃⊥ − χ̃l
w

�
f −

2

3

�
þ 6η̃ll

w
: ð49Þ

Note that at late times fðwÞ ∼ 2=3þOðw−1Þ so both
isotropic and anisotropic first-order BDNK theories share
the same forward attractor. This is expected since asymp-
totically the system relaxes toward the thermal equilibrium.
Following Ref. [41], we assume a correction to the first-
order on-shell terms in (48),

10The variable w is proportional to the inverse Knudsen
number for the conformal case.
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fðwÞ ¼ 2

3
þ η̃ll
3w

þ δfðwÞ: ð50Þ

By equating the previous expression into Eq. (47) while
assuming δf ≪ f, and expanding in 1=w around w → ∞,
we obtain

δfðwÞ ∼ exp

�
−
2w
χ̃

�
w

η̃llþχ̃⊥
χ̃ : ð51Þ

Since χ > 0 due to causality, at late times the perturbation
(51) decays faster than the perturbative terms of the late-time
expansion. The relation between the coefficients in the above
form and the analytical structure of the Borel resummation
might be of interest, but it will not be discussed here.
Equation (47) can also be studied for the existence of

pullback attractors. Following the transasymptotic and
dynamical systems methods outlined in Refs. [42–47]
one can show that the initial value which rises to the
attractor solution is found by expanding (47) aroundw ¼ 0,

fðw ≪ 1Þ ¼ 7

9
−
χ̃ − χ̃⊥
9χ̃

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12η̃llχ̃ þ χ̃2⊥

p
9χ̃

: ð52Þ

In the following we use the slow-roll approximation [41].
Namely, we assume jf0j to be much smaller than jfj and
expand (47) in terms of f0=f to obtain an algebraic
equation. This leads to two solutions for fðwÞ that we
expand aroundw → ∞ and compare with (48), to recognize
the stable one,

fðwÞslow roll ¼
7

9
−
χ̃ − χ̃⊥
9χ̃

−
2w
9χ̃

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2w − χ̃⊥Þ2 þ 12η̃llχ̃

p
9χ̃

: ð53Þ

If at early times, f gets larger than 1, then the fluid
experiences reheating. To prevent reheating we must have

χl > 4ηll > 0; ð54Þ

which can be shown that is equivalent to the condition for
stability and causality and reduces to χ > 4η in the isotropic
limit. Therefore, causality forbids reheating for the Bjorken
model discussed in this section.
Finally, we might assume an off-shell, or nonphysical,

entropy current Sμoff , that is, a current determined from (5)
without considering the power counting discussed in
Sec. III. If causal and stable parameters are chosen for
the attractor solution (53), ∇ · Soff will be negative at early
times. However, if causality and stability are violated, the
divergence will always be positive.∇ · Soff approaches zero
rapidly and then changes sign in the stable and causal case.
This seems to be a typical characteristic of BDNK theories,

which may be related to the fact that the domain of
applicability must be explicitly considered.

VII. CONCLUSIONS

In this work, we explored the constraints imposed by
causality in anisotropic hydrodynamics. Our approach
involved deriving the simplest and most general form of
the first-order anisotropic energy-momentum tensor, based
on the invariance under the little group SOð2Þ and the
second law of thermodynamics. We demonstrated that our
theory is both causal and stable, and also well-posed
whether or not it is coupled to gravity. Furthermore, we
showed that the standard isotropic BDNK theory can be
recovered as a limit of our novel approach.
We verify the linear stability and causality of our theory

in both the boosted and local rest frames, confirming the
generality of recent results obtained by Gavassino [39].
For the specific case of Bjorken flow, we investigate the
causality conditions necessary to ensure the existence of
forward and pullback attractors. Our findings reveal that
the behavior of these attractors at early and late times is
constrained by causality conditions. Violation of these
conditions results in a reheating effect, which is the increase
of temperature from its initial value at very early times.
There are several potential avenues for future research

that can build on our work. First, it would be valuable to
investigate how our novel anisotropic theory can be derived
from a coarse-graining approach, as is typically done in
relativistic kinetic theory. Additionally, extending our
analysis to the most general nonconformal case for both
charged and uncharged fluids, with and without gravity,
could have significant implications in other fields such as
cosmology [48]. We are extremely confident that valuable
insights will emerge with these investigations. For instance,
these works will provide the theoretical basis and guidance
for a meticulous exploration of potential causality viola-
tions in numerical simulations of anisotropic hydrodynam-
ics for heavy ion collisions, and thus, complementing
recent phenomenological analysis carried out by various
research groups [20,21]. Our work may also impact the
development of a BDNK-type theory for resistive dissipa-
tive magnetohydrodynamics [49–52], where the magnetic
field serves a similar purpose to the anisotropy vector lμ.
Finally, while our approach has been successful in

analyzing the near-equilibrium regime, it would be valuable
to extend our techniques to the extreme far-from-
equilibrium dynamics. This could provide valuable insights
into how causality affects the spacetime evolution of these
systems. These fascinating research problems are important
and require further investigation in the future.
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APPENDIX A: ANISOTROPIC FREE
ENERGY DENSITY

In this appendix, we present the thermodynamic relations
of an anisotropic fluid. To this end, let us assume the leading-
order generating functional of the fluid to be [53,54]

W0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
F ðT;lÞ: ðA1Þ

Here, F is the free energy that is to be determined and
l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνlμlν
p

, which is set to unity at the end.11 The
energy-momentum tensor can then be derived from

Tμν ¼ 2ffiffiffiffiffiffi−gp δW
δgμν

¼
�
Fδ

ffiffiffiffiffiffi
−g

p þ ffiffiffiffiffiffi
−g

p �
∂F
∂T

�
l
δT þ ffiffiffiffiffiffi

−g
p �

∂F
∂l

�
T
δl

�
:

ðA2Þ

The variation of temperature and l are

δT ¼ 1

2
Tuμuνδgμν; δl ¼ 1

2
lμlνδgμν:

Plugging the above relations into (A2), we obtain

Tμν
0 ¼

�
−F þ T

�
∂F
∂T

�����
l

�
uμuν þ

�
∂F
∂l

�����
T
lμlν

þ FΔμν: ðA3Þ

The pressure and longitudinal pressure are defined as

P≡ 1

3
ΔμνTμν ¼ F þ 1

3

�
∂F
∂l

�
T
;

Pl ≡ lμlνTμν ¼ F þ
�
∂F
∂l

�
T
:

Plugging (A3) into the above, we recognize the free energy,

F ¼ 3P − Pl

2
≡ P⊥: ðA4Þ

After identifying the free energy with the transverse
pressure, one can observe the relations between thermo-
dynamic quantities,

ϵ≡ uμuνTμν ¼ −P⊥ þ T

�
∂P⊥
∂T

�
l
;

�
∂P⊥
∂l

�
T
¼ Pl − P⊥: ðA5Þ

The first equation above is Euler’s equation for the
anisotropic fluid that determines its entropy density,

s ¼ ϵþ F
T

¼
�
∂P⊥
∂T

�
l
: ðA6Þ

From the above definition of the entropy density and (A5),
we find

dϵ ¼ −ðPl − P⊥Þdlþ Tds;

dP⊥ ¼ ðPl − P⊥Þdlþ sdT:

At this point, we set l ¼ 1 to find the Gibbs-Duhem
relation and the first law of thermodynamics for the
anisotropic fluid

dϵ ¼ Tds; dP⊥ ¼ sdT: ðA7Þ
Finally, the entropy current is found from the covariant
form of (A6)

Tsμ ¼ P⊥uμ − uνTμν: ðA8Þ

APPENDIX B: DETAILS
OF CAUSALITY ANALYSIS

In this appendix we give the mathematical details of
causality analysis that are not presented in Sec. IV. The
system of equations arising from (18) and (19) can be
written as12

3χuαuβ þ λ⊥Δαβ þ δλlαlβ

4ε
∂α∂βε

þ ½ðχ þ λ⊥ÞuðαδβÞν þ δλlðαuβÞlν�∂α∂βuν

þ hk;αβa ðε; u; gÞ∂α∂βga ¼ bkð∂ε; ∂u; ∂gÞ; ðB1aÞ
ðχ⊥ þ λ⊥ÞΔμðαuβÞ þ ðδλþ δχÞlμlðαuβÞ

4ε
∂α∂βεþ Cμαβ

ν ∂α∂βuν

þ hμ;αβa ðε; u; gÞ∂α∂βga ¼ bμð∂ε; ∂u; ∂gÞ; ðB1bÞ

gαβ∂α∂βga ¼ bað∂ε; ∂u; ∂gÞ; ðB1cÞ

11l is similar to the parameter ξ for the superfluid case in [53].
Note that l varies only because of the metric variation.

12One may notice that causality is blind to the leading-order
anisotropy of pressure since it does not appear in the principal
part of the system of PDEs.
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where there is an implicit sum over repeated a; b ¼ μν,
with μ ≤ ν, over the values 00, 01, 02, 03, 11, 12, 13, 22,
23, and 33. Furthermore, δλ ¼ λl − λ⊥, δχ ¼ χl − χ⊥, and
we have defined

Cμαβ
ν ≡δηlll⊥lμlβlαlνþ

�
δχ

3
þδηlll

�
lμlðβδαÞν þδηlllΔμðβlαÞlν

þðχ⊥−ηllÞΔμðβδαÞν
3

þδλlμlνuαuβþδη⊥lΔαβlμlν

þ½λ⊥uαuβ−η⊥Δαβþδη⊥llαlβ�δμν ; ðB2Þ

wherein δηlll⊥ ¼ 4ηl − 3ηll − η⊥, δηlll ¼ ηll − ηl, and
δη⊥l ¼ η⊥ − ηl. We may rewrite (B1) in the matrix form

HI
JðV; ∂ÞVJ þ bI ¼ 0; ðB3Þ

where I, J take the values k, μ ¼ 0, 1, 2, 3, and
a ¼ 00; 01;…; 33, VI ¼ ðε; uν; gbÞ,

HðV; ∂ÞIJ ¼ hðVÞI;αβJ ∂α∂β

is a 15 × 15 matrix linear operator, and

hk;αβk ¼ 3χuαuβ þ λ⊥Δαβ þ δλlαlβ

4ε
; ðB4aÞ

hk;αβν ¼ ðχ þ λ⊥ÞuðαδβÞν þ δλlðαuβÞlν; ðB4bÞ

hμ;αβk ¼ ðχ⊥ þ λ⊥ÞΔμðαuβÞ þ ðδλþ δχÞlμlðαuβÞ
4ε

; ðB4cÞ

hμ;αβν ¼ Cμαβ
ν ; ðB4dÞ

ha;αβb ¼ δabg
αβ; where δab ¼ δμλδ

ν
σ when a ¼ μν

and b ¼ λσ; ðB4eÞ

ha;αβk ¼ ha;αβμ ¼ 0: ðB4fÞ

The remaining expressions hμ;αβb ðVÞ and bIð∂VÞ are irrel-
evant towhat follows. The principal part of each equation I is
contained in HðV; ∂ÞIJVJ. It is worth mentioning that all
terms bIð∂VÞ are functions of at most the first-order
derivative of the variables VI ¼ ðε; uν; gaÞ, with products
containing first-order derivatives such as ð∂VKÞn,
ð∂VKÞnð∂VLÞm, among others, being allowed. On the other
hand, hI;αβJ ðVÞ are functions of the variables VI only and not
their derivatives. Therefore, this is a quasilinear PDE system
and the usual tools to compute causality apply. The
characteristic surfaces fΦðxÞ ¼ 0g are determined by the
principal part of the equations by solving the character-
istic equation det½HðVk; ξÞ� ¼ 0, with ξμ ¼ ∇μΦ [55,56].
Note that the components of the matrix HðV; ξÞ are

HI
JðV; ξÞ ¼ hðVÞI;αβJ ξαξβ. The system is causal if, for any

given real ξi, (C1) the roots ξ0 ¼ ξ0ðξiÞ of the characteristic
equation are real, and (C2) ξα ¼ ðξ0ðξiÞ; ξiÞ is spacelike or
lightlike, i.e., ξμξμ ≥ 0. Condition (C2) guarantees that the
surfaces fΦðxÞ ¼ 0g are timelike or lightlike, ensuring
that there is no superluminal information.13

We may now compute the characteristic equation, for
which we must compute the determinant of the matrix
HðV; ξÞ that reads

det½HðV; ξÞ� ¼ det

2
64
Hk

kðV; ξÞ Hk
νðV; ξÞ Hk

bðV; ξÞ
Hμ

kðV; ξÞ Hμ
νðV; ξÞ Hμ

bðV; ξÞ
010×1 010×4 ξμξ

μI10

3
75

¼ ðξμξμÞ10M; ðB5Þ

where

M ¼ det

�Hk
kðV; ξÞ Hk

νðV; ξÞ
Hμ

kðV; ξÞ Hμ
νðV; ξÞ

�
; ðB6Þ

wherein I10 is the 10 × 10 identity matrix and 0m×n is the
m × n null matrix. Out of 30 roots of the characteristic
equation, 20 are the real roots ξμξμ ¼ 0 coming from the
pure gravity sector and, thus, are causal. These are expected
to be lightlike roots since pure gravity fields have no mass.
If matter instead of pure radiation, which is permitted for a
conformal fluid, is treated, the remaining roots are expected
to be spacelike. As for the matter sector, let us define
a ¼ uμξμ, b ¼ lμξμ, vμ ¼ Δμνξμ, and v¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξμξνΔμν
p

. Then,
from (B6) one obtains that

M ¼ Hk
kðV; ξÞ det

�
Hμ

νðV; ξÞ −
Hμ

kðV; ξÞHk
νðV; ξÞ

Hk
kðV; ξÞ

�

¼ Hk
kðV; ξÞ det ½Aδμν þ Uμ

1lν þ Uμ
2ξν�

¼ A2Hk
kðV; ξÞ½A2 þ AðUμ

1lμ þ Uμ
2ξμÞ þUμ

1lμU
ν
2ξν

−Uμ
1ξμU

ν
2lν�; ðB7Þ

where

A ¼ λ⊥a2 − η⊥v2 þ δη⊥lb2; ðB8aÞ

Uμ
1 ¼ b2δηlll⊥lμ þ a2δλlμ þ δη⊥lv2lμ þ bδηlllvμ

−
abδλHμ

kðV; ξÞ
Hk

kðV; ξÞ
; ðB8bÞ

13Note that the matrix HðVk; ξÞ is invertible only when ξ is
timelike, i.e., solutions are only possible over spacelike or
lightlike hypersurfaces Φ.
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Uμ
2 ¼ b

�
δχ

3
þδηlll

�
lμþðχ⊥−ηllÞvμ

3
−
aðχþ λ⊥ÞHμ

kðV;ξÞ
Hk

kðV;ξÞ
:

ðB8cÞ

In particular, let us write explicitly

Uμ
1lμ ¼ b2δηlll⊥ þ a2δλþ δη⊥lv2 þ b2δηlll

−
a2b2δλðχ⊥ þ λ⊥ þ δλþ δχÞ

4εHk
kðV; ξÞ

; ðB9aÞ

Uμ
1ξμ ¼ b3δηlll⊥ þ a2bδλþ ðδη⊥l þ δηlllÞbv2

−
a2bδλ½ðχ⊥ þ λ⊥Þv2 þ b2ðδλþ δχÞ�

4εHk
kðV; ξÞ

; ðB9bÞ

Uμ
2lμ ¼ b

�
δχ

3
þ δηlll

�
þ ðχ⊥ − ηllÞb

3

−
a2bðχ þ λ⊥Þðχ⊥ þ λ⊥ þ δλþ δχÞ

4εHk
kðV; ξÞ

; ðB9cÞ

Uμ
2ξμ ¼ b2

�
δχ

3
þδηlll

�
þðχ⊥−ηllÞv2

3

−
a2ðχþλ⊥Þ½ðχ⊥þ λ⊥Þv2þb2ðδλþδχÞ�

4εHk
kðV;ξÞ

; ðB9dÞ

Hk
kðV; ξÞ ¼

3χa2 þ λ⊥v2 þ δλb2

4ε
: ðB9eÞ

Thus, the matter sector contains 10 overall roots that must
obey (C1) and (C2), with 4 coming from

A2 ¼ ðλ⊥a2 − η⊥v2 þ δη⊥lb2Þ2 ¼ 0; ðB10Þ

and the remaining 6 from14

Hk
kðV; ξÞ½A2 þ AðUμ

1lμ þ Uμ
2ξμÞ þUμ

1lμU
ν
2ξν

−Uμ
1ξμU

ν
2lν� ¼ 0: ðB11Þ

APPENDIX C: CAUSALITY CONDITIONS
IN THE GENERAL AND SPECIFIC CASES

The polynomial in (B11) is of power 3 in a2. Since for
causality we must obtain the roots in the form of ϱ ¼ a2

v2,
then we may rewrite (B11) as

4εHk
kðV;ξÞ½A2þAðUμ

1lμþUμ
2ξμÞþUμ

1lμU
ν
2ξν−Uμ

1ξμU
ν
2lν�

¼pðϱÞv6: ðC1Þ

We have multiplied (B11) by 4ε to eliminate it from the

denominator in Hk
kðV; ξÞ. Note that pðϱÞ is a cubic

polynomial in ϱ. Since lμ ¼ Δμνlν and vμ ¼ Δμνξν are
vectors orthogonal to uμ, Δμν define an inner product
between them and, thus, we can apply the Cauchy-Schwarz
inequality to write b ¼ lμvμ ¼ κv, where κ∈ ½−1; 1�
depending on the root ξ and the vector l. Causality of
the 6 roots of (C1) follows from the statement:
Statement C. 1. (The general case). Let pðϱÞ be

defined by means of Eq. (C1) and let us write it as

pðϱÞ ¼ α3ϱ3 þ α2ϱ2 þ α1ϱþ α0: ðC2Þ

Assume that

α3 > 0: ðC3Þ

Then, causality requires that

pðϱÞ > 0; ∀ ϱ ≥ 1; ðC4aÞ

pðϱÞ < 0; ∀ ϱ < 0; ðC4bÞ

18α0α1α2α3−4α32α0þα22α
2
1−4α3α

3
1−27α23α

2
0 ≥ 0; ðC4cÞ

for all κ∈ ½−1; 1�.
Proof.—First, we must ensure that all real roots of pðϱÞ

lie on the range [0, 1) as demanded by (21). From (C3), we
must ensure that pðϱÞ is positive for all ϱ ≥ 1 [condition
(C4a)] and negative for all ϱ < 0 [condition (C4b)]. This
guarantees that the real roots can only occur in this desired
range, and thus (21) is satisfied. As for (20), the roots are
real if the discriminant of the cubic polynomial (C2) is
greater than or equal to zero, which leads to the con-
dition (C4c).
In what follows, we present causality conditions for two

more specific cases. The first case is when the anisotropy
appears only in Eð1Þ, Pð1Þ

l , and Pð1Þ:
Statement C. 2. (Anisotropy in the χ’s). Consider the

anisotropic conformal fluid theory defined by the energy-
momentum tensor in (1) and supplemented with Eq. (12)
with the choices λ⊥ ¼ λl ¼ λ, and η⊥ ¼ ηl ¼ ηll ¼ η.
Then, the corresponding EOM are causal under
assumption (26) if, and only if, condition (29) applies
together with

14Note that in the product Hk
kðV; ξÞðUμ

1lμU
ν
2ξν − Uμ

1ξμU
ν
2lνÞ,

the term with denominator Hk
kðV; ξÞ cancels as expected.
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κ2δχλþ χð4ηþ λ − χÞ þ ðλþ χÞχ⊥ ≥ 0; ðC5aÞ

κ4δχ2λ2 − 2κ2λχδχð−4ηþ λþ χÞ þ 2ðλþ χÞ
× χ⊥½κ2δχλþ χð4ηþ λ − χÞ�
þ χ½16η2χ þ 8ηð2λ2 þ λχ − χ2Þ
þ χð−3λ2 − 2λχ þ χ2Þ� þ ðλþ χÞ2χ2⊥ ≥ 0; ðC5bÞ

χ ≥ 4η − κ2δχ; ðC5cÞ

−κ2λδχ þ χð−4ηþ 5λþ χÞ − ðλþ χÞχ⊥ > 0; ðC5dÞ

−2κ2δχλ − 4ηλ − 12ηχ þ 7λχ − 3ðλþ χÞχ⊥ þ 3χ2 > 0;

ðC5eÞ

for all κ2 ∈ ½0; 1�.
Proof.—The determinant M in (B7) can be rewritten as

M ¼ 3χλ4

4ε

Y
a¼1;�

ða2 − τav2Þna ; ðC6Þ

where n1 ¼ 3, n� ¼ 1, and

τ1 ¼
η

λ
; ðC7aÞ

τ� ¼ α� ffiffiffi
β

p
6λχ

; ðC7bÞ

α ¼ κ2δχλþ χð4ηþ λ − χÞ þ ðλþ χÞχ⊥; ðC7cÞ

β¼ κ4δχ2λ2− 2κ2λχδχð−4ηþ λþ χÞ
þ 2ðλþ χÞχ⊥½κ2δχλþ χð4ηþ λ− χÞ�
þ χ½16η2χþ 8ηð2λ2þ λχ − χ2Þþ χð−3λ2− 2λχþ χ2Þ�
þ ðλþ χÞ2χ2⊥: ðC7dÞ

The matter sector has 2 roots for (C7a) with multiplicity 3
each and 4 roots for (C7b) (2 for each τ�), a total of 10
roots. Now, Eqs. (20) and (21) are observed if, and only if,
0 ≤ τa < 1. For τ1 it is guaranteed by (26) together with
(29). As for τ�, it needs to be real, i.e., β ≥ 0, what
corresponds to (C5a), τ− ≥ 0, and τþ < 1. For τ− ≥ 0, we
need that α ≥ 0 [condition (C5b)] together with α2 − β ≥ 0
[condition (C5c)]. As for τþ < 1, it corresponds to 6λχ −
α ≥ 0 [condition (C5d)] together with ð6λχ − αÞ2 − β > 0,
i.e., condition (C5e). All the above conditions must be valid
for all values of κ∈ ½−1; 1�, i.e., for all possible values of
the product b ¼ lμvμ ¼ κv. ▪
Finally, a much simpler case is given below:
Statement C. 3. (The shearless case). Consider the

shearless anisotropic fluid (η⊥ ¼ ηl ¼ ηll ¼ 0) with δχ ¼ 0

described by the energy-momentum tensor (11) and sup-
plemented by (12). The theory is causal if (26) is satisfied.
Proof.—In this particular case, the determinant in (B7)

becomes

M ¼ 3χλ4⊥a6
4ε

�
a2 −

1

3
v2
�

2

¼ 0: ðC8Þ

Note that there is 1 causal root a ¼ ξμuμ ¼ 0 because in
this case ξμξ

μ ¼ −a2 þ v2 ¼ v2 > 0, with multiplicity 6,
and 2 roots a2 ¼ v2=3, also causal since 0 < τ ¼ 1=3 < 1,
with multiplicity 2 each, completing the total 10 roots from
the matter sector. Assumption (A1) guarantees that the
determinant M is not trivially zero, which would give any
ξμ as a possible solution.

APPENDIX D: A CAUSAL EXAMPLE

In this appendix, we use statement C. 1 to show that the
set of parameters (34), which are reproduced below for
convenience, are causal

η⊥ ¼ η; ηl ¼
2η

3
; ηll ¼

5η

6
; λ⊥ ¼ 13η

2
;

λl ¼ 6η; χ ¼ 5η; χ⊥ ¼ 11η

2
; χl ¼

16η

3
:

The above parameters satisfy (26) and (29) by construction,
and we show that satisfies the conditions of statement C. 1
as well. For simplicity, we take the overall factor η3=216
out of the definition of pðϱÞ in (C1) to obtain

4εHk
kðV;ξÞ½A2þAðUμ

1lμþUμ
2ξμÞþUμ

1lμU
ν
2ξν−Uμ

1ξμU
ν
2lν�

¼ η3

216
pðϱÞv6: ðD1Þ

Then, the coefficients in pðϱÞ are given by

α0¼−364−1623κ2þ1674κ4−119κ6< 0; ∀κ2∈ ½0;1�;
ðD2aÞ

α1 ¼ 16224þ 19601κ2 − 19925κ4 > 0; ∀ κ∈ ½0; 1�;
ðD2bÞ

α2 ¼ −18ð7254 − 203κ2Þ < 0; ∀ κ∈ ½0; 1�; ðD2cÞ

α3 ¼ 126360; ðD2dÞ

where κ is defined through lμvμ ¼ κv (see Appendix C).
For ϱ < 0, we have

pðϱÞ ¼ −ðjα0j þ α1jϱj þ jα2jϱ2 þ α3jϱ3jÞ < 0; ðD3Þ
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and, thus, (C4b) is verified. On the other hand, for ϱ ≥ 1,

pðϱÞ ¼ α0 þ α1ϱþ ðα2 þ α3ϱ2Þϱ
≥ α0 þ α1 þ α2 þ α3; ðD4Þ

since α1;α3 > 0. However,

α0 þ α1 þ α2 þ α3 ¼ 11648þ 21632κ2 − 18251κ4 − 119κ6

> 0; ∀ κ2∈ ½0;1�; ðD5Þ

and, therefore, (C4a) is also verified. Finally,

18α0α1α2α3−4α32α0þα22α
2
1−4α3α

3
1−27α23α

2
0

¼ 324ð2421746461615104−6266597114164608κ2

þ24310721163158820κ4−50747526702105948κ6

þ59336411451755437κ8−40187158939087070κ10

þ12398536143066361κ12Þ> 0; ∀κ2∈ ½0;1�: ðD6Þ

Hence, (C4c) is also verified and the set of transport
parameters (34) is causal.

APPENDIX E: STABILITY OF THE
CAUSAL EXAMPLE (34)

In this appendix, we examine the stability of the sound
channel (38) for the causal set of parameters (34). In this
case, up to an overall constant and, because η̄ > 0, by
performing the changes Γ → Γ=η̄ and ki → ki=η̄ we obtain
that Eq. (38) becomes

a0Γ6þa1Γ5þa2Γ4þa3Γ3þa4Γ2þa5Γþa6¼ 0; ðE1Þ

where

a0 ¼ 21060; ðE2aÞ

a1 ¼ 10962; ðE2bÞ

a2 ¼ 6½315þ f1ðx2Þk2�; ðE2cÞ

a3 ¼ 108þ f2ðx2Þk2; ðE2dÞ

a4 ¼
k2

2
½f3ðx2Þ þ f4ðx2Þk2�; ðE2eÞ

a5 ¼ 36k2 þ f5ðx2Þk4; ðE2fÞ

a6 ¼ k4½f6ðx2Þ þ f7ðx2Þk2�: ðE2gÞ

We have defined the functions

f1ðx2Þ ¼ 3498 − 70x2; ðE3aÞ

f2ðx2Þ ¼ 7248 − 270x2; ðE3bÞ

f3ðx2Þ ¼ 1680 − 36x2; ðE3cÞ

f4ðx2Þ ¼ 5548þ 6564x2 − 6464x4; ðE3dÞ

f5ðx2Þ ¼ 485þ 556x2 − 553x4; ðE3eÞ

f6ðx2Þ ¼ 24þ 30x2 − 30x4; ðE3fÞ

f7ðx2Þ ¼ 78þ 306x2 − 310x4 þ 22x6: ðE3gÞ

One may verify that all functions in (E3) are positive for all
x2 ∈ ½0; 1�, which makes all aI’s in (E2) (I ¼ 0;…; 6) to
also be positive. Thus, pure real roots are in fact negative.
As for imaginary roots, we apply the Routh-Hurwitz
criterion (RHC) [57], which in this case requires us to
compute the following table:

a0 a2 a4 a6 0

a1 a3 a5 0 0

b1 b2 b3 0 0

c1 c2 0 0 0

d1 d2 0 0 0

e1 0 0 0 0

ðE4Þ

where bi¼ða1a2i−a0a2iþ1Þ=a1, ci¼ðb1a2iþ1−a1biþ1Þ=b1,
di ¼ ðc1biþ1 − b1ciþ1Þ=c1, and e1 ¼ ðd1c2 − c1d2Þ=d1.
Since aI > 0 for I ¼ 0;…; 6, then ReðΓÞ < 0 if, and only
if, b1 > 0, c1 > 0, d1 > 0, and e1 > 0. Since a1 > 0, then
it is enough to obtain

a1b1 ¼ 324½56925þ ð238974þ 3340x2Þk2� > 0; ðE5aÞ

b1c1 ¼
36

203
½1024650þ 18g1ðx2Þk2 þ g2ðx2Þk4�; ðE5bÞ

b1c1d1 ¼
36k2

203
½6147900g3ðx2Þ þ 27g4ðx2Þk2

þ 6g5ðx2Þk4 þ g6ðx2Þk6�; ðE5cÞ

b1c1d1e1 ¼
36k4

203
½221324400g7ðx2Þþ972g8ðx2Þk2

þ27g9ðx2Þk4þ6g10ðx2Þk6þg11ðx2Þk8�; ðE5dÞ

where
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g1ðx2Þ ¼ 1412154 − 77159x2; ðE6aÞ

g2ðx2Þ ¼ 174806118 − 143563237x2

þ 133959417x4; ðE6bÞ

g3ðx2Þ ¼ 35 − 3x2; ðE6cÞ

g4ðx2Þ ¼ 422612235 − 188238658x2

þ 129974883x4; ðE6dÞ

g5ðx2Þ ¼ 20839149333 − 15122827103x2

þ 12589851858x4 þ 623807058x6; ðE6eÞ

g6ðx2Þ ¼ 219646045656þ 96361454524x2

− 432604607986x4 þ 620066970164x6

− 290471866054x8; ðE6fÞ

g7ðx2Þ ¼ 23 − 18x2 þ 15x4; ðE6gÞ

g8ðx2Þ ¼ 362387218 − 297049991x2

þ 243855688x4 − 5179815x6; ðE6hÞ

g9ðx2Þ ¼ 216917135055 − 156807618144x2

þ 105968706122x4 þ 35462079400x6

− 13719895953x8; ðE6iÞ

g10ðx2Þ¼ 5000654914056−3108012289024x2

þ1415965400581x4þ1798665419999x6

−134955905301x8−625170319671x10; ðE6jÞ

g11ðx2Þ ¼ 20097012270600 − 82381572326488x2

þ 329458308450878x4 − 682695134979400x6

þ 795041858933812x8 − 532773739193376x10

þ 161024463542854x12: ðE6kÞ

Since all 11 functions g are greater than zero for all
x2 ∈ ½0; 1�, then all equations in (E5) are positive, the
RHC are verified and the system is stable in the LRF.
Since we proved in Appendix D that the system under these
parameters is causal, then the result in [39] ensures linear
stability in any boosted frame.
Just for the sake of illustration, let us verify stability in

the boosted homogeneous frame by taking the changes (39)
in (E1) and then taking ki ¼ 0. This will lead us to the roots
Γ ¼ 0 of multiplicity 3 and the roots of X,

β0ðγΓÞ3 þ β1ðγΓÞ2 þ β2γΓþ β3 ¼ 0; ðE7Þ

where

β0 ¼ 2ð1384þ 1698x2 − 1461x4 − 11x6Þ > 0;

∀ x2 ∈ ½0; 1�; ðE8aÞ

β1 ¼ 4199þ 826x2 − 553x4 > 0; ∀ x2 ∈ ½0; 1�; ðE8bÞ

β2 ¼ 6ð179þ 8x2 − 5x4Þ > 0; ∀ x2 ∈ ½0; 1�; ðE8cÞ

β3 ¼ 72: ðE8dÞ

Since all coefficients β0;1;2;3 are positive, then there is
only 1 negative pure real root for the polynomial, as
desired. As for the complex roots, the remaining RHC
to be computed is

β1β2 − β0β3 ¼ 6ð718405þ 140694x2 − 78310x4

− 8290x6 þ 2765x8Þ > 0; ðE9Þ

which is greater than zero for all x2 ∈ ½0; 1�. Thus, linear
stability is also verified in the homogeneous boosted frame.

APPENDIX F: THE UNPHYSICAL CHOICE
OF l IN THE BJORKEN FLOW

Here, we repeat the study of Bjorken flow from Sec. VI,
with an alternative choice of spacelike anisotropy vector,
l ¼ ∂

∂x. The fluxes of (12) in this case are

Eð1Þ ¼ χ̃3T3

�
1

τ
þ 3Ṫ

T

�
; ðF1aÞ

Pð1Þ
l ¼ T3

�
2η̃ll þ χ̃l

3τ
þ 3χ̃lṪ

T

�
; ðF1bÞ

Pð1Þ
⊥ ¼ T3

�
χ̃⊥ − η̃ll

3τ
þ 3χ̃⊥Ṫ

T

�
; ðF1cÞ

πμν⊥ ¼ −2η⊥T3diagð0; 0; 1=τ;−1=τ3Þ; ðF1dÞ

Wμ
⊥l ¼ 0; ðF1eÞ

Wμ
⊥u ¼ 0; ðF1fÞ

M ¼ 0; ðF1gÞ

which gives rise to the following EOM:

9χ̃
τ2T̈
T

þ 18χ̃
τ2Ṫ2

T2
þ
�
3τð6χ̃ þ χ̃⊥Þ

T
þ 12τ2

�
Ṫ þ 4τT

þ χ̃⊥ − 3η̃⊥ − η̃ll ¼ 0: ðF2Þ
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The above can be expressed in terms of w ¼ Tτ and
fðwÞ ¼ τ

w
dw
dτ as

9χ̃

4
fðwÞ2 þ wfðwÞ

�
1þ 3

4
χ̃f0ðwÞ

�
−
χ̃ − 15χ̃⊥

4
fðwÞ

þ 18χ̃ − 2χ̃⊥ − 3η̃⊥ − η̃ll
12

−
2w
3

¼ 0: ðF3Þ

The pressure anisotropy reads

A ¼ 2

3

χ̃⊥ − χ̃l
w

�
f −

2

3

�
−
3η̃ll
w

: ðF4Þ

As in Sec. VI, A has an “off-shell” contribution, which
cannot be found in the isotropic conformal BDNK.
However, the first-order term is negative, in contrast to
the isotropic case. The late-time expansion for T is

T ¼ Λ
ðΛτÞ1=3

�
1−

η̃ll þ 3η̃⊥
8ðΛτÞ2=3 −

ðη̃ll þ 3η̃⊥Þð5χ̃ − χ̃⊥Þ
64ðΛτÞ2=3 þ � � �

�
;

ðF5Þ

and for f is

fðwÞ ¼ 2

3
þ η̃ll þ 3η̃⊥

12w
þ ðη̃ll þ 3η̃⊥Þð5χ̃ − χ̃⊥Þ

48w2
þO

�
1

w3

�
:

ðF6Þ

We may consider the following linear perturbation at late
times:

fðwÞ ¼ 2

3
þ η̃ll þ 3η̃⊥

12w
þ δfðwÞ; ðF7Þ

which up to the first order in perturbation in late times is

δfðwÞ ∼ exp

�
−
2w
χ̃

�
w

η̃llþ3η̃⊥þ2ðχ̃⊥þχ̃lÞ
4χ̃ : ðF8Þ

The numerical attractor can be found from the following
initial condition:

fðw≪ 1Þ ¼ 7

9
þ χ̃l − χ̃⊥

36χ̃
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðη̃ll þ 3η̃⊥Þχ̃þ ðχ̃⊥ þ χ̃lÞ2

p
18χ̃

;

ðF9Þ

and the slow-roll attractor is

fðwÞslow roll ¼
7

9
þ χ̃l − χ̃⊥

36χ̃
−
2w
9χ̃

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4w − ðχ̃l þ χ̃⊥ÞÞ2 þ 12ð3η̃⊥ þ η̃llÞχ̃

p
18χ̃

:

ðF10Þ

Neglecting the power counting argument, we find∇ · Soff is
initially negative if

χ⊥ > ηll þ 3η⊥ > 0: ðF11Þ

In the isotropic limit, the above reproduces the stability
condition

χ > 4η:

The condition ∇ · S < 0 at w ¼ 0 is equivalent to

2

3
< fð0Þ < 1; ðF12Þ

which prevents early reheating for the attractor solution.
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