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The Dyson-Schwinger (DS) equations for a quantum field theory in D-dimensional space-time are an
infinite sequence of coupled integro-differential equations that are satisfied exactly by the Green’s
functions of the field theory. This sequence of equations is underdetermined because if the infinite
sequence of DS equations is truncated to a finite sequence, there are always more Green’s functions than
equations. An approach to this problem is to close the finite system by setting the highest Green’s
function(s) to zero. One can examine the accuracy of this procedure in D ¼ 0 because in this special case
the DS equations are just a sequence of coupled polynomial equations whose roots are the Green’s
functions. For the closed system one can calculate the roots and compare them with the exact values of the
Green’s functions. This procedure raises a general mathematical question: When do the roots of a
sequence of polynomial approximants to a function converge to the exact roots of that function?
Some roots of the polynomial approximants may (i) converge to the exact roots of the function, or
(ii) approach the exact roots at first and then veer away, or (iii) converge to limiting values that are unequal
to the exact roots. In this study five field-theory models in D ¼ 0 are examined, Hermitian ϕ4 and ϕ6

theories and non-Hermitian iϕ3, −ϕ4, and −iϕ5 theories. In all cases the sequences of roots converge to
limits that differ by a few percent from the exact answers. Sophisticated asymptotic techniques are devised
that increase the accuracy to one part in 107. Part of this work appears in abbreviated form in Phys. Rev.
Lett. 130, 101602 (2023).
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I. INTRODUCTION

In a recent Letter [1] we examined the effectiveness
of the Dyson-Schwinger (DS) equations to calculate
the Green’s functions for both Hermitian and PT -
symmetric quantum field theories. This paper presents in
compact form our studies of five zero-dimensional models:
Hermitian ϕ4 and ϕ6 and non-Hermitian iϕ3, −ϕ4, and
−iϕ5 theories. Field theories in D ¼ 0 are useful because
the Green’s functions are already known exactly and the DS
equations are polynomial equations in the Green’s func-
tions, so one can evaluate the accuracy of the truncation
scheme used to close the infinite system of coupled DS
equations. The current paper presents the detailed results of
this study [2].
The advantage of studying zero-dimensional field theory

is that we can reduce a very difficult problem—that of
solving the DS equations for the Green’s functions of a field
theory—to the generic problem of finding the roots of a
polynomial equation. The polynomial depends on the

choice of field theory and also on the scheme that is used
to solve the infinite tower of DS equations. To construct this
polynomial we first truncate the infinite sequence of DS
equations to a finite set consisting of the first N coupled
polynomial equations. This finite system is underdeter-
mined because there are always more Green’s functions
than equations. Next, we set all but the first N Green’s
functions to zero and solve the resulting determined
coupled polynomial system. This polynomial system is
triangular so it is easy to eliminate successively all but the
lowest Green’s function, which then satisfies the Nth
degree polynomial equation PNðxÞ ¼ 0.
This kind of iterative approach in whichwe takemore and

more DS equations is common in field theory: One begins
with a leading approximation and then constructs a
sequence of approximations that one hopes will approach
the exact answer. If we knew the underlying function that the
sequence of polynomial approximantsPNðxÞ represents, we
could use standard techniques such as Newton’s method to
determine the roots. However, for difficult problems in
physics, as is the case here, the polynomial PNðxÞ is only an
approximate consequence of the DS equations.
We are led to ask, Do the roots of the polynomial

approximation at each order lead to the correct solution,
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and what is the nature of the convergence (if it exists)?
There are several possibilities: (i) The accuracy of the
roots of the polynomial approximation PNðxÞ improve as
N → ∞ (that is, as one includes more DS equations), and
some or all of the roots converge to the correct answer.
(ii) The roots of PNðxÞ at first approach the correct answer,
but then diverge away from it. The former behavior is
characteristic of Taylor expansions, where, if the sequence
of approximants converges, it converges to the right
answer. The latter behavior is characteristic of asymptotic
series. Both (i) and (ii) reflect the usual behavior of series
approximations.
There is also a third possibility: (iii) The roots of PNðxÞ

converge as N → ∞, but they converge to the wrong
answer, that is, to a number that may be close to the exact
answer but is not the correct answer. This means that the
procedure may be used to gain an approximate under-
standing of the physics but that the accuracy of the result is
limited. It is rather unusual for a sequence of approximants
to behave in this way.
Our expectation in solving the D ¼ 0 field-theoretic

models for the Green’s functions was that increasing the
number of DS equations would lead to increasing accuracy
in our results if we use the unbiased procedure of truncating
the DS equations by setting higher Green’s functions to
zero rather than guessing the behavior of the higher Green’s
functions. However, this is not the case: The unbiased
truncation procedure does not lead to convergence to the
correct value for the Green’s function as we go to higher
orders. Rather, we observe the third possibility (iii). This
discovery holds for both Hermitian and non-Hermitian
theories. The only truncation strategy that appears to work
(for both kinds of theories) is to find the asymptotic
behavior of the Green’s function in the limit of large order
of truncation; that is, to find the asymptotic behavior of the
nth Green’s function for large n. Finding this asymptotic
behavior is nontrivial. However, if this is done, we find that
order-by-order in the asymptotic approximation, the roots
of the polynomials rapidly get closer to the exact values of
the Green’s functions.
One objective of our study was to search for differences

in the convergence behavior of the DS equations for
Hermitian and non-Hermitian field theories. There are subtle
differences in the convergence behavior: Hermitian theories
display a monotone behavior while non-Hermitian theories
have an oscillatory behavior.
This paper is organized as follows. In Sec. II we use a

parabolic cylinder function to illustrate the difficulties with
calculating the zeros of a function from polynomial
approximations to that function. The question is whether
the sequence of polynomials obtained from a Taylor series
or from an asymptotic series can approximate the zeros of
the parabolic cylinder function. This problem is interesting
because, like the DS equations, the polynomial sequences
have infinitely many roots while the function being

approximated only has a finite number of roots. In
Sec. III we show how to derive the DS equations for a
general quantum field theory. From the lowest-order
calculations of the Hermitian ϕ4 and non-Hermitian −ϕ4

theories in D ¼ 1, we quantify the errors that arise and
motivate the need for examining higher-order truncations of
the DS equations.
We then study the Hermitian ϕ4 and ϕ6 and the non-

Hermitian iϕ3, −ϕ4, and iϕ5 quantum field theories in
D ¼ 0 dimensions. We begin with the Hermitian quartic
theory ϕ4 in Sec. IV and progress to the non-Hermitian
cubic theory iϕ3 in Sec. V, the non-Hermitian quartic
theory −ϕ4 in Sec. VI, a quintic theory in Sec. VII, and a
sextic theory ϕ6 in Sec. VIII. Conclusions are presented
in Sec. IX.

II. EXAMPLE: ZEROS OF A PARABOLIC
CYLINDER FUNCTION

To illustrate the nature of polynomial approximations,
we attempt to calculate the zeros of the parabolic
cylinder function D7=2ðxÞ. This function satisfies the
time-independent Schrödinger equation for the quantum
harmonic oscillator,

−f00ðxÞ þ
�
1

4
x2 − 4

�
fðxÞ ¼ 0; ð1Þ

and is uniquely determined by the standard initial conditions

D7=2ð0Þ¼ π
1
22

7
4=Γ

�
−
5

4

�
and D0

7=2ð0Þ¼−π1
22

9
4=Γ

�
−
7

4

�
:

In the plot of Fig. 1 we have omitted the overall multipli-
cative factor of π1=227=4 ¼ 5.9618…. Note that fðxÞ ¼
D7=2ðxÞ is not an eigenfunction (and 4 is not an eigenvalue)
because, as Fig. 1 shows, while fðxÞ vanishes as x → ∞,
fðxÞ blows up as x → −∞.

FIG. 1. Plot of the parabolic cylinder function fðxÞ ¼ D7=2ðxÞ
scaled down by a factor of π1=227=4 ¼ 5.9618… for −4 < x < 4;
fðxÞ is not a harmonic-oscillator eigenfunction because it blows
up when x is large and negative. Note that fðxÞ has four
real zeros.
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The four real zeros of fðxÞ, as shown in Fig. 1, are
located at

−3.04735…; −1.19090…; 0.39183…; 2.04542…: ð2Þ

There are no other zeros in the complex-x plane.
One way to find these zeros in (2) is to (i) expand fðxÞ

in a Taylor series, (ii) truncate this series to obtain a
polynomial, and (iii) find the roots of the polynomial. The
2N-term Taylor series for D7=2ðxÞ has the form

D7=2ðxÞ ¼ D7=2ð0Þ
XN−1

n¼0

x2n
an

ð2nÞ!

þ D0
7=2ð0Þ

XN−1

n¼0

x2nþ1
bn

ð2nþ 1Þ! : ð3Þ

For even powers of x, a0¼ 1, a1¼−4, and an ¼ −4an−1þ
1
2
ðn − 1Þð2n − 3Þan−2; for odd powers of x, b0 ¼ 1,

b1 ¼ −4, and bn ¼ −4bn−1 þ 1
2
ðn − 1Þð2n − 1Þbn−2.

The Taylor series (3) has an infinite radius of conver-
gence but many terms are required to obtain accurate
approximations to the zeros of D7=2ðxÞ. In Fig. 2 we plot
the zeros of the 9th-degree Taylor polynomial. A 17th-
degree Taylor polynomial gives slightly better approxima-
tions to the zeros, as we see in Fig. 3. Figures 4 and 5
display the roots of 25th-degree and 33rd-degree Taylor
polynomials. As expected, the real zeros continue to
approach the exact zeros of the parabolic cylinder function
and the spurious zeros continue to move slowly outward as
the degree of the Taylor polynomial increases.
Why is such a high-degree Taylor polynomial required to

provide accurate approximations to the four zeros of the
parabolic cylinder function? The answer is that, as shown in
Fig. 1, the parabolic cylinder function behaves differently

on the positive-real and the negative-real axes; it decays
exponentially like expð− 1

4
x2Þ on the positive-real axis but

grows exponentially like expð1
4
x2Þ on the negative-real

axis. However, as the Taylor series converges everywhere

FIG. 2. Roots of the 9th-degree Taylor-polynomial approxima-
tion to D7=2ðxÞ plotted in the complex-x plane. Four real roots
(red squares) are located at x ¼ −2.09226…, −1.19286…,
0.39183…, 1.94724…, which are moderately close to the exact
roots of fðxÞ given in (2). The remaining roots (black dots) are
spurious zeros that gradually move outward to complex∞ as the
degree of the Taylor polynomial increases. FIG. 3. Roots of the 17th-degree Taylor polynomial approxi-

mation to D7=2ðxÞ plotted in the complex-x plane. The real roots
(red squares) lie at x ¼ −2.84103…, −1.19090…, 0.39183...,
2.04519... and are fairly close to their exact values in (2).
Spurious roots (black dots) lie along parenthesis-shaped curves
along with an isolated spurious root on the positive-real axis.

FIG. 4. Roots of the 25th-degree Taylor polynomial approxi-
mation to D7=2ðxÞ plotted in the complex-x plane. Real roots (red
squares) at x ¼ −3.04510…, −1.19090…, 0.39183..., 2.04545...
are closer to their exact values in (2). All but one of the spurious
roots (black dots) lie on parenthesis-shaped curves that expand
outward slowly as the degree of the Taylor polynomial increases.
The isolated spurious root on the positive-real axis also moves
outward.
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in the complex plane, it is difficult for the Taylor poly-
nomials to provide accurate approximations on both the
positive and the negative axes.
Asymptotic series do not suffer from this problem

because such series are not valid in all directions in the
complex plane. Their validity is limited to wedge-shaped
regions called Stokes sectors. The asymptotic series rep-
resentation for D7=2ðxÞ is

D7=2ðxÞ ∼ e−x
2=4x7=2

X∞
n¼0

x−2n
cn
2nn!

×

�
jxj → ∞;−

3

4
π < arg x <

3

4
π

�
; ð4Þ

where cn ¼ ð−1ÞnΓð2n − 7
2
Þ=Γð− 7

2
Þ. This asymptotic series

is valid in a Stokes sector of angular opening 270° that
includes the positive-real axis but not the negative-real axis.
Thus, if we factor off the leading asymptotic behavior to
obtain a polynomial, this polynomial will not give useful
information about the negative zeros.
Although the asymptotic series is valid as jxj → ∞, early

terms provide good approximations to the positive zeros.
The positive-real roots (x ¼ 0.59521 and x ¼ 2.04530) of
the five-term polynomial (1þ αx2 þ βx4 þ γx6 þ δx8) are
already quite accurate (see Fig. 6); the second root is
accurate to one part in 20,000.

As the degree of the polynomial obtained from the
asymptotic series increases, the ring of spurious zeros
expands. For the ten-term polynomial this ring expands
past the smaller of the two positive zeros, but there is still a
very good approximation to the larger positive root (see
Fig. 7). For the fifteen-term polynomial, this ring expands
past the second positive zero and is no longer directly
useful (see Fig. 8). Summation techniques such as Padé
approximation give even better accuracy but we do not
discuss this here.
Without using summation techniques, the accuracy of an

asymptotic-series approximation typically increases as we
include more terms until it reaches an optimal level and
then it decreases. This is illustrated in Fig. 9, which shows
the value of the root of the asymptotic-series polynomial
near 2 as a function of the number of terms in the

FIG. 5. Roots of the 33rd-degree Taylor polynomial approxi-
mation to D7=2ðxÞ plotted in the complex-x plane. Real roots (red
squares) at x ¼ −3.04735…, −1.19090…, 0.39183..., 2.04542...
are now are quite close to their exact values in (2). Spurious roots
(black dots) lie on parenthesis-shaped curves and the isolated
spurious root on the positive-real axis continue to move slowly
outward.

FIG. 6. All eight roots of the five-term polynomial obtained
from the truncated asymptotic expansion (4) plotted in the
complex-x plane. The two roots on the positive axis are numeri-
cally quite accurate. The other six roots are spurious. Dashed
lines indicate the edges of the Stokes sector in which the
asymptotic series is valid.

FIG. 7. All eighteen roots of the ten-term polynomial obtained
from the truncated asymptotic expansion (4). The roots are shown
as dots in the complex-x plane. Compared with Fig. 6, the ring of
spurious roots has moved outward past the smaller positive zero
of the parabolic cylinder function D7=2ðxÞ at x ¼ 0.39183 but the
second positive zero is given accurately.
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polynomial. Note that the root oscillates about the exact
zero of the parabolic cylinder function. Optimal accuracy is
attained for the 6-term polynomial after which the accuracy
decreases rapidly.
To summarize these findings, if we use a Taylor

expansion to determine the roots of the parabolic cylinder
function, we find more roots than the function actually has,
and their number increases with the order of the expansion.
Most of these spurious roots are imaginary but there is at
least one real spurious root. To distinguish between actual
and spurious roots one can use the criterion of stability; that
is, one can argue that the spurious roots move outward in

the complex plane while the positions of the actual roots
stabilize as the order of the expansion increases. Finally,
the order of approximation that is required to obtain an
accurate result is high, which is unfortunate. We emphasize
that the coefficients of the Taylor expansion remain
unchanged as we go to higher order. This is not the case
for the polynomials associated with the DS equations.
The asymptotic series approach also has advantages and

disadvantages. Its region of validity is limited to the interior
of a Stokes sector and not the entire complex plane. Thus,
the number of roots that it can possibly find is also limited.
However, in its region of validity, the convergence is fast
and requires only very few terms. Like the Taylor expan-
sion, the asymptotic series also has many other roots in the
complex plane that are spurious.
Evidently, without prior knowledge of a function, it may

be difficult to determine from a polynomial expansion of
that function which roots are close to the actual roots and
which roots are spurious. In the following sections, we
restrict our analysis to quantum field theories in D ¼ 0
because we can find analytic solutions. This allows us to
investigate the systematics of finding the correct roots from
the polynomial DS equations.

III. DERIVATION OF DS EQUATIONS

The objective in quantum field theory is to calculate the
Green’s functions γnðx1; x2;…; xnÞ, which are defined as
vacuum-expectation values of time-ordered products of the
field ϕðxÞ:

γnðx1; x2;…xnÞ≡ h0jTfϕðx1Þϕðx2Þ…ϕðxnÞgj0i:

These Green’s functions are then combined into structures
called cumulants that give the connected Green’s functions
Gnðx1; x2;…xnÞ. The connected Green’s functions are
correlation functions that contain the physical content
(energy spectrum, scattering amplitudes) of the quantum
field theory. In principle, the program is first to solve the
field equations (which are partial differential equations like
the classical equations of fluid mechanics) for the quantum
field ϕðxÞ and then to calculate the vacuum expectation
values of products of the fields directly.
It is advantageous to calculate the connected Green’s

functions Gn, rather than the nonconnected Green’s func-
tions γn because this eliminates the problem of vacuum
divergences. As a consequence of translation invariance,
each disconnected contribution to γn introduces an addi-
tional factor of the spacetime volume V, which is an infinite
quantity when D > 0.
The difficulty in quantum field theory is that the field

ϕðxÞ is an operator-valued distribution rather than a
function. Free fields obey linear differential equations
but interacting fields obey nonlinear differential equations.
(The field equation for a gϕ4 quantum field theory contains

FIG. 8. All 28 roots of the fifteen-term polynomial obtained
from the truncated asymptotic expansion (4). The ring of spurious
roots in the complex-x plane has now expanded past the actual
zeros of the parabolic cylinder function. Thus, without summa-
tion techniques the asymptotic series in (4) is no longer useful.

FIG. 9. The root near x ¼ 2 of the polynomial obtained from
the truncated asymptotic series approximation to the parabolic
cylinder function plotted as a function of the degree of the
polynomial. The six-term polynomial gives optimal accuracy
after which the accuracy rapidly decreases.
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a cubic term.) Unfortunately, products of fields are singular
and require great care to define them properly.
An early approach to this difficulty was to calculate

Green’s functions in terms of Feynman diagrams. This
perturbative procedure (in powers of the coupling
constant g) avoids high-level mathematical analysis and
reduces the problem to the evaluation of integrals. Indeed,
in the early days of quantum field theory one view was
that one could simply define a field theory as nothing but a
set of Feynman rules and thereby avoid technical math-
ematical problems [3].
However, Feynman perturbation theory has its own

mathematical difficulties: First, individual terms in the
graphical expansion may be infinite and must be renor-
malized to remove the infinities. Second, the resulting
renormalized perturbation series is divergent and may not
be easily summable. Third, nonperturbative effects are
difficult or even impossible to obtain by using perturbative
graphical methods alone.
Dyson and Schwinger developed another technique

for calculating the Green’s functions that requires only
c-number functional analysis (differential and integral
equations), so one need not be concerned about operators,
Hilbert spaces, and other mathematical issues [4–6]. In
principle, one can use this technique to obtain the non-
perturbative as well as the perturbative behavior of Green’s
functions. The procedure is to (i) construct an infinite
system of coupled equations called Dyson-Schwinger (DS)
equations that is satisfied exactly by the connected Green’s
functions, and then (ii) truncate the infinite set of equations
to a finite closed system of coupled equations that can be
solved to provide approximations to the first few connected
Green’s functions.
To be precise, the DS equations are an infinite triangular

system of coupled equations obeyed by the connected
Green’s functions Gn. Each new equation introduces addi-
tional Green’s functions so a truncation of the system
always contains more Green’s functions than equations and
the truncated system is underdetermined. An unbiased
solution strategy is to close the truncated system by setting
the highest Green’s function (or Green’s functions) to zero.
The system can then be solved by successive elimination.
The question investigated here is whether this procedure
gives increasingly accurate approximations to the Green’s
functions as the size of the truncated system increases. We
also examine the differences between Hermitian and non-
Hermitian theories. We will see below that the accuracy of a
first-order calculation of G2 is significantly higher for a
one-dimensional Hermitian ϕ4 theory than for a non-
Hermitian PT -symmetric −ϕ4 theory.
The DS equations for a quantum field theory can be

derived directly from the Euclidean functional integral

Z½J� ¼
Z

Dϕ exp

�Z
dxf−L½ϕðxÞ� þ JðxÞϕðxÞg

�
; ð5Þ

where L is the Lagrangian and J is a c-number external
source. Here, Z½0� is the Euclidean partition function and
h0þj0−iJ ≡ Z½J� represents the vacuum-persistence ampli-
tude; that is, the probability amplitude for the ground state
in the far past to remain in the ground state in the far future
despite the action of the external source J.
The vacuum-persistence functional is a generating func-

tion for the Green’s functions. If we take n functional
derivatives of Z½J� with respect to J and then set J ≡ 0, we
obtain the n-point Green’s function γn:

γnðx1;…xnÞ ¼
δ

δJðx1Þ
…

δ

δJðxnÞ
Z½J�jJ≡0:

And, if we take n functional derivatives of logðZ½J�Þ with
respect to J and set J ≡ 0, we obtain the connected n-point
Green’s function:

Gnðx1;…xnÞ ¼
δ

δJðx1Þ
…

δ

δJðxnÞ
logðZ½J�ÞjJ≡0: ð6Þ

A. Example: Hermitian quartic theory in D= 1

For a Hermitian massless ϕ4 theory in one-dimensional
spacetime, we begin with the Euclidean functional integral

Z½J� ¼ R
Dϕe−

R
dtL, where

L ¼ 1

2
ϕ̇2 þ 1

4
gϕ4 − Jϕ ðg > 0Þ: ð7Þ

The field equation for this theory is −ϕ̈ðtÞ þ gϕ3ðtÞ−
JðtÞ ¼ 0. We take the vacuum expectation value of the
field equation and divide by Z½J�:

−G̈1ðtÞ þ gγ3ðt; t; tÞ=Z½J� ¼ JðtÞ; ð8Þ

where G1ðtÞ and γ3ðt; t; tÞ are functionals of J.
To obtain the DS equations for the connected Green’s

functions we eliminate the nonconnected Green’s function
γ3 in (8) in favor of connected Green’s functions. We
functionally differentiate the equation γ1ðtÞ ¼ h0jϕðtÞj0i ¼
Z½J�G1ðtÞ repeatedly with respect to JðtÞ:

γ2ðt; tÞ ¼ h0jϕ2ðtÞj0i ¼ Z½J�G2ðt; tÞ þ Z½J�G2
1ðtÞ;

γ3ðt; t; tÞ ¼ h0jϕ3ðtÞj0i
¼ Z½J�G3ðt; t; tÞ þ 3Z½J�G1ðtÞG2ðt; tÞ

þ Z½J�G3
1ðtÞ:

We then divide this equation by Z½J� and use the result to
eliminate γ3 in (8):
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−G̈1ðtÞ þ g½G3ðt; t; tÞ þ 3G1ðtÞG2ðt; tÞ
þ G3

1ðtÞ� ¼ JðtÞ: ð9Þ

This is the key equation; the entire set of DS equations is
obtained from (9) by repeated differentiation with respect to
J and setting J ≡ 0. To get the first DS equation we set
J ≡ 0 in (9). This restores translation invariance, so G1 is a
constant and G̈1 ¼ 0. Parity invariance implies that all odd-
numbered Green’s functions vanish. Thus, the first DS
equation becomes trivial: 0 ¼ 0.
To get the second DS equation we functionally differ-

entiate (9) once with respect to JðsÞ, set J ≡ 0, and drop all
odd-numbered Green’s functions:

−G̈2ðs− tÞþM2G2ðs− tÞþgG4ðs;t; t; tÞ¼ δðs− tÞ; ð10Þ

where the renormalized mass is

M2 ¼ 3gG2ð0Þ: ð11Þ

We cannot solve (10) because it is one equation
in two unknowns, G2 and G4. As stated above, each
new DS equation introduces one new unknown
Green’s function: The third DS equation is trivial but
the fourth contains G6, the fifth is trivial but the
sixth contains G8, and so on. To proceed, we simply
set G4 ¼ 0 in (10).
To solve the resulting equation we take a Fourier

transform to get ðp2 þM2ÞG̃2ðpÞ ¼ 1. Thus, the two-point
connected Green’s function in momentum space is

G̃2ðpÞ ¼ 1=ðp2 þM2Þ:

Taking the inverse transform, we get G2ðtÞ ¼ e−Mjtj=ð2MÞ,
so G2ð0Þ ¼ 1=ð2MÞ. Inserting G2ð0Þ into (11) gives a
cubic equation for the renormalized mass whose solution
for g ¼ 1 is M ¼ ð3=2Þ1=3 ¼ 1.145….
To check the accuracy of this result we note that the

renormalized mass is the energy of the lowest excitation
above the ground state. For this model (massless quantum
anharmonic oscillator) the exact answer isM ¼ E1 − E0 ¼
1.088…. Thus, the DS result is 5.2% high, which is not bad
for a leading-order truncation.

B. Example: PT -symmetric quartic
theory in D= 1

We obtain a non-Hermitian PT -symmetric massless ϕ4

theory in D ¼ 1 if g in (7) is negative. In this case the
Green’s functions are not parity symmetric, so the odd-n
Green’s functions do not vanish. The first DS equation is
not trivial, 3G2ð0Þ þ G2

1 ¼ 0, where we have divided by
the common factor G1. Following the procedure in the
example above, the second DS equation leads to two more
equations

M2 ¼ 3g½G2
1 þ G2ð0Þ�; G2ð0Þ ¼ 1=ð2MÞ:

We set g ¼ −1 and solve the three equations above for the
renormalized mass:

M ¼ 31=3 ¼ 1.442…: ð12Þ

The exact value ofM obtained by solving the Schrödinger
equation for the PT -symmetric quantum-mechanical
Hamiltonian H ¼ 1

2
p2 − 1

4
x4 is M ¼ E1 − E0 ¼ 1.796….

Thus, the result in (12) is 19.7% low.
The two examples above raise the following question:

Does the accuracy improve if we perform higher-level
truncations of the DS equations? In general, this is not an
easy question to answer because higher-order truncations of
the DS equations lead to nonlinear integral equations,
which require detailed numerical analysis. However, we
can solve the DS equations in very high order to study the
convergence in zero spacetime dimensions. In the next
sections we examine this question in detail for the D ¼ 0

Hermitian gϕ4 (g > 0) theory, the D ¼ 0 non-Hermitian
iϕ3 theory, the D ¼ 0 non-Hermitian gϕ4 (g < 0) theory,
the D ¼ 0 non-Hermitian −iϕ5 theory, and the D ¼ 0

Hermitian ϕ6 theory.

IV. D = 0 HERMITIAN QUARTIC THEORY

In zero-dimensional spacetime the functional integral (5)
becomes the ordinary integral

Z½J� ¼
Z

∞

−∞
dϕ e−LðϕÞ; ð13Þ

where LðϕÞ ¼ 1
4
ϕ4 − Jϕ and we have set g ¼ 1. The

connected two-point Green’s function is an ordinary
integral, which we evaluate exactly:

G2 ¼
Z

∞

−∞
dϕϕ2e−ϕ

4=4=
Z

∞

−∞
dϕ e−ϕ

4=4

¼ 2Γ
�
3

4

�
=Γ

�
1

4

�
¼ 0.675 978…: ð14Þ

The theory defined in (13) has parity invariance
when J ¼ 0, so all odd Green’s functions vanish,
G1 ¼ G3 ¼ G5 ¼ … ¼ 0 and the first nontrivial DS equa-
tion is G4 ¼ −3G2

2 þ 1. If we truncate this equation
by setting G4 ¼ 0 and solve the resulting equation
3G2

2 ¼ 1, we get the approximate numerical result
G2 ¼ 1=

ffiffiffi
3

p ¼ 0.577 350…. In comparison with (14) this
result is 14.6% low.
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Let us include more DS equations: The first four are

G4 ¼ −3G2
2 þ 1;

G6 ¼ −12G2G4 − 6G3
2;

G8 ¼ −18G2G6 − 30G2
4 − 60G2

2G4;

G10 ¼ −24G2G8 − 168G4G6 − 126G2
2G6 − 420G2G2

4;

and the next six are

G12 ¼ −30G2G10 − 360G4G8 − 216G2
2G8 − 378G2

6

− 3024G2G4G6;

G14 ¼ −36G2G12 − 660G4G10 − 330G2
2G10

− 2376G6G8 − 7920G2G4G8 − 8316G2G2
6

− 41580G3G5G6 − 27720G2
4G6;

G16 ¼ −42G2G14 − 1092G4G12 − 468G2
2G12

− 6006G6G10 − 17160G2G4G10 − 5148G2
8

− 61776G2G6G8 − 102960G2
4G8 − 216216G4G2

6;

G18 ¼ −48G2G16 − 1680G4G14 − 630G2
2G14

− 13104G6G12 − 32760G2G4G12 − 34320G8G10

− 180180G2G6G10 − 300300G2
4G10

− 154440G2G2
8 − 2162160G4G6G8 − 756756G3

6;

G20 ¼ −54G2G18 − 2448G4G16 − 816G2
2G16

− 25704G6G14 − 57120G2G4G14 − 95472G8G12

− 445536G2G6G12 − 742560G2
4G12 − 72930G2

10

− 7001280G4G2
8 − 1166880G2G8G10

− 8168160G4G6G10 − 14702688G2
6G8

− 17153136G6G2
7;

G22 ¼ −60G2G20 − 3420G4G18 − 1026G2
2G18

− 46512G6G16 − 93024G2G4G16

− 232560G8G14 − 976752G2G6G14

− 1627920G2
4G14 − 503880G10G12

− 3627936G2G8G12 − 25395552G4G6G12

− 2771340G2G2
10 − 66512160G4G8G10

− 69837768G2
6G10 − 119721888G6G2

8: ð15Þ

Because the DS equations (15) are exact, we can find the
precise values of all G2n sequentially by substituting the
exact value of G2 from (14) into (15). The results are given
in Table I. Observe that the G2n alternate in sign as n
increases, a feature that is not immediately evident from the
structure of the equations in (15). Close examination of the

terms contributing to a given G2n reveals that all terms are
of similar size, so it is not easy to identify a dominant
contribution.
The oscillation in sign of G2n as n increases differs from

the behavior of the disconnected Green’s functions,

γ2n ¼
Z

∞

−∞
dϕϕ2ne−ϕ

4=4 ¼ 2n−1=2Γ
�
2nþ 1

4

�
; ð16Þ

all of which from (16) are positive. The first eleven
numerical values are also given in Table I.
It is possible to check the expressions for the connected

Green’s functions in (15) using an alternative, independent
method. We calculate the G2n directly from a generating
functionwðxÞ, which in this case is possible, since we know
γ2n explicitly: we can write down the generating function
for G2n in terms of it,

wðxÞ ¼ ln

�
1þ 1

2!

γ2
γ0

x2 þ 1

4!

γ4
γ0

x4 þ 1

6!

γ6
γ0

x6 þ…

�
; ð17Þ

expand this in a Taylor series, and identify the G2n as
ð2n!Þ× the coefficient of x2n. One easily finds that the

TABLE I. Exact values of the first 11 nonzero connected
Green’s functions (left) and the first 11 nonzero disconnected
Green’s functions (right) for the Hermitian quartic theory (13).

Gexact
2 0.675978 24

Gexact
4 −0.370 839 74

Gexact
6 1.154 839 49

Gexact
8 −8.010 060 86

Gexact
10 96.364 571 49

Gexact
12 −1; 775.987 088 64

Gexact
14 46,449.956 507 74

Gexact
16 −1; 635; 683.38491206

Gexact
18 74,607, 360.536 889 26

Gexact
20 −4; 278; 841; 318.741 397 69

Gexact
22 301,366,607,264.871 591 99

γexact2 1.733
γexact4 2.56369
γexact6 5.199

γexact8 12.8185
γexact10 36.393
γexact12 115.366
γexact14 400.323
γexact16 1499.76

γexact18 6004.85
γexact20 25495.9
γexact22 114092.
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coefficient of x2 is Γð3
4
Þ=Γð1

4
Þ, so that one recovers the value

of G2 given in (14). The next five Green’s functions
calculated in this way are

G4 ¼ 1 − 12
Γð3

4
Þ2

Γð1
4
Þ2 ;

G6 ¼ −24
Γð3

4
Þ

Γð1
4
Þ þ 240

Γð3
4
Þ3

Γð1
4
Þ3 ;

G8 ¼ −30þ 1344
Γð3

4
Þ2

Γð1
4
Þ2 − 10 080

Γð3
4
Þ4

Γð1
4
Þ4 ;

G10 ¼ 4 632
Γð3

4
Þ

Γð1
4
Þ − 120 960

Γð3
4
Þ3

Γð1
4
Þ3 þ 725 760

Γð3
4
Þ5

Γð1
4
Þ5 :

G12 ¼ 9 120 − 877 536
Γð3

4
Þ2

Γð1
4
Þ2 þ 15 966 720

Γð3
4
Þ4

Γð1
4
Þ4

− 79 833 600
Γð3

4
Þ6

Γð1
4
Þ6 ; ð18Þ

with the expansion of the logarithm leading to alternating
signs of the terms contributing to each G2n.
A numerical evaluation of (18) confirms the

exact values given in Table I. The analytic relationships
among the G2n, as derived from the DS equations (15),
can be easily confirmed. This calculation confirms the
DS equations, but (18) does not lend itself to an
asymptotic analysis because the sign of G2n as evaluated
from these expressions is determined by a delicate
cancellation of terms having different signs. The alter-
nation in signs of the G2n occurs because these functions
are cumulants, reflecting only connected terms and
therefore requiring subtractions. From the DS equa-
tions (15) it is not at all obvious that the signs are
oscillating.

A. Approximate solutions

As a rule, we do not know the exact solutions to the
DS equations, and must therefore employ approximate
methods of solution. The system of DS equations (15) is
not closed. Rather it is triangular, and the number of
unknowns is always one more than the number of equa-
tions. A standard unbiased procedure is to define a
truncation scheme in which as a first approximation
G4 ¼ G6 ¼ G8 ¼ … ¼ 0; the next level of approximation
is reached by setting G6 ¼ G8 ¼ G10 ¼ … ¼ 0, the next
by setting G8 ¼ G10 ¼ G12 ¼ G14 ¼ … ¼ 0, and so on.
To do this efficiently, we reorganize (15). We eliminate

G4 by substituting the first equation into the second, we
eliminate G6 by substituting the first two equations into the
third, and so on. Continuing this way, we obtain an
expression for G2n as an nth degree polynomial in G2

only. We denote the monic form of these polynomials

(where the highest power of x is 1) as PnðG2Þ. The first ten
such polynomials are

P2ðxÞ¼ x2−
1

3
;

P3ðxÞ¼ x3−
2

5
x;

P4ðxÞ¼ x4−
8

15
x2þ 1

21
;

P5ðxÞ¼ x5−
2

3
x3þ 193

1890
x

P6ðxÞ¼ x6−
4

5
x4þ 277

1575
x2−

76

10395
;

P7ðxÞ¼ x7−
14

15
x5þ 361

1350
x3−

85

3861
x;

P8ðxÞ¼ x8−
16

15
x6þ356

945
x4−

475792

10135125
x2þ 1229

1091475
;

P9ðxÞ¼ x9−
6

5
x7þ 529

1050
x5−

13583

160875
x3þ 8413529

1929727800
x;

P10ðxÞ¼ x10−
4

3
x8þ613

945
x6−

92464

675675
x4

þ 3658792

328930875
x2−

32372

186642225
;

P11ðxÞ¼ x11−
22

15
x9þ7667

9450
x7−

190319

921375
x5

þ 130461193

5638815000
x3−

61559809

74996239500
x: ð19Þ

Truncating the DS equations (15) is equivalent to
finding the zeros of these polynomials. We list the non-
negative zeros below (negative zeros are excluded because
G2 ¼ M−2, where M is the renormalized mass). The first
seven sets of zeros are

zero of P2∶ 0.577350;

zeros of P3∶ 0.0; 0.632456;

zeros of P4∶ 0.336742; 0.648026;

zeros of P5∶ 0.0; 0.488357; 0.654350;

zeros of P6∶ 0.232147; 0.560220; 0.657466;

zeros of P7∶ 0.0; 0.376821; 0.597310; 0.659212;

zeros of P8∶ 0.176270; 0.466447; 0.618098;

0.660287;

and the next three sets of zeros are
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zeros of P9∶ 0.0; 0.302770; 0.523189; 0.630624;

0.660997;

zeros of P10∶ 0.141830; 0.392352; 0.560204;

0.638652; 0.661493;

zeros of P11∶ 0.0; 0.251866; 0.456057; 0.585125;

0.644070; 0.661853: ð20Þ

The roots up to n ¼ 80 are plotted in Fig. 10. Note
that all roots are real and nondegenerate, and range
from 0 up to just below the exact value of G2 in (14).
If we did not already know the exact value G2, we
could not guess which root gives the best approximation
to G2. However, with increasing truncation order, the
roots become more dense at the upper end of the
range, so we would conjecture that the largest root gives
the best approximation. Unfortunately, while the accu-
racy improves monotonically with the order of the
truncation, it improves slowly; the largest root of PðxÞ
is still 1.85% below the exact value. Using Richardson
extrapolation, we can determine the value to which the
largest root converges [7]: G2 ¼ 0.663488…. Thus,
the limiting value of the sequence of roots does not
converge to the true value G2 ¼ 0.675978… [1]. To
understand this discrepancy, we examine the large-n
asymptotic behavior of the G2n in detail in the following
subsection.
Figure 10 also shows that the zeros of successive

polynomials PnðxÞ interlace. This interlacing behavior
might suggest that the polynomials PnðxÞ form an orthogo-
nal set with respect to some weight function, but this
conjecture is false. Nevertheless, these polynomials do
have interesting properties. In particular, there are relatively
simple formulas for the polynomial coefficients: The
coefficient of xn, the highest power of x in PnðxÞ, is 1
(these are monic polynomials) and the formula for the

coefficient of xn−2, the second highest power of x, is − 2
15
n

ðn > 2Þ. The coefficient of xn−4 is

1

2!

�
2

15

�
2
�
n2 −

227

84
n

�
ðn > 4Þ;

the coefficient of xn−6 is

−
1

3!

�
2

15

�
3
�
n3 −

227

28
n2 þ 31453

2002
n

�
ðn > 6Þ;

and the coefficient of xn−8 is

1

4!

�
2

15

�
4
�
n4 −

227

14
n3 þ 28505063

336336
n2

−
404875283

2858856
n

�
ðn > 8Þ:

B. Large-n behavior of the Green’s functions G2n

The question is whether it is valid to truncate
the DS equations (15) by replacing G2n with zero.
To answer this question we look at the asymptotic
behavior of G2n for large n. We have shown both
numerically and analytically [1] that the asymptotic
behavior of G2n is

G2n ∼ 2r2nð−1Þnþ1ð2n − 1Þ! ðn → ∞Þ; ð21Þ

where r ¼ 0.409 505 7….
To obtain this result analytically we substitute

G2n ¼ ð−1Þnþ1ð2n − 1Þ!g2n;

which is suggested by the numerical result in (21), and we
define a generating function uðxÞ for the numbers g2n:

uðxÞ≡ xg2 þ x3g4 þ x5g6 þ � � � : ð22Þ

This generating function obeys the second-order nonlinear
differential equation

u00ðxÞ ¼ 3u0ðxÞuðxÞ − u3ðxÞ − x;

subject to the initial conditions uð0Þ ¼ 0 and

FIG. 10. Zeros of PnðxÞ in (19) plotted as a function of n. The
zeros are nondegenerate and range from 0 up to just below
0.675978..., the exact value of G2 in (14) (heavy horizontal line)
and they become more dense at the upper end of this range. The
zeros of successive polynomials interlace.
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u0ð0Þ ¼ G2 ¼ 2Γ
�
3

4

�
=Γ

�
1

4

�
¼ 0.675 978 240 067 285…:

The substitution uðxÞ ¼ −y0ðxÞ=yðxÞ then gives the
third-order linear differential equation

y000ðxÞ ¼ xyðxÞ;

which is a higher-order generalization of the Airy equation
y00ðxÞ ¼ xyðxÞ. The function yðxÞ satisfies the initial con-
ditions yð0Þ ¼ 1, y0ð0Þ ¼ 0, and

y00ð0Þ ¼ −G2 ¼ −0.675 978 240 067 285…:

The exact solution yðxÞ satisfying these boundary con-
ditions is found by taking a cosine transform:

yðxÞ ¼ 2
ffiffiffi
2

p

Γð1=4Þ
Z

∞

0

dt cosðxtÞ e−t4=4: ð23Þ

When yðxÞ passes through 0, uðxÞ becomes infinite, so
the value of x at which yðxÞ ¼ 0 determines the radius of
convergence of the series (22) for the generating function.
We find that uðxÞ passes through 0 at x ¼ �2.441 968….
Therefore, r ¼ 1=x ¼ 0.409 506…, which confirms the
numerical results in (21).
The asymptotic behavior in (21) is surprising; it shows

that the connected Green’s functions G2n grow much
faster with increasing n than the nonconnected Green’s
functions γ2n which are given exactly for all n in (16). One
might not expect G2n to grow faster than γ2n because we
obtain the connected Green’s function by subtracting the
disconnected parts from γ2n. Surprisingly, subtracting
disconnected parts makes the absolute values of the
connected Green’s functions larger and not smaller with
increasing n.
Even more remarkable is that neglecting the huge

quantity G2n on the left side of the truncated DS
equations (15) still leads to a reasonably accurate
result for G2, as Fig. 10 shows. This accuracy improves
with increasing n. We can begin to understand
this heuristically by observing that while the term on
the left side is very big, the terms on the right side are of
roughly comparable size because the coefficients are
also big.
The numerical technique of Legendre interpolation

provides a helpful analogy. Given a set of n data points
x1;…; xn at which we measure a function fðxÞ,

fðx1Þ ¼ f1;…; fðxnÞ ¼ fn;

Legendre interpolation fits this data by constructing a
polynomial Pn−1ðxÞ of degree n − 1 that passes exactly

through the value fðxkÞ at x ¼ xk for all 1 ≤ k ≤ n. There
is a simple formula for this polynomial. However, this
construction has a serious problem; while the constructed
polynomial passes exactly through the data points,
between data points the polynomial exhibits wild oscil-
lations where it becomes alternately large and positive
and large and negative. This reveals a fundamental
instability associated with high-degree polynomials.
This instability is associated with the inherent stiffness
of polynomials [8]. If there are many data points, it is
much better to use a least-squares polynomial approxi-
mation, which passes close to, but not exactly through
the input data points. (This explains why cubic splines
are used to approximate functions rather than, say, octic
splines.)
It is precisely the instability associated with the stiffness

of high-degree polynomials that allows the DS approach to
give reasonably accurate results! If we use the exact values
of the Green’s functions on the right side of the DS
equations (15), we obtain the exact value of the Green’s
function on the left side, which is a huge number. However,
changing the Green’s functions on the right side of (15)
very slightly by replacing the exact values by the approxi-
mate values of the lower Green’s functions now gives 0,
instead of G2n.
Padé approximation does not improve the calculation of

G2 from the DS polynomials in (19). One might anticipate
that Padé techniques would be useful because the coef-
ficients of successive powers of x alternate in sign. The
approach would be to divide all odd-numbered polyno-
mials by x and then to replace x2 in each polynomial by y.
If one does this for P11, for example, one can then
calculate the [1, 4], [2, 3], [3, 2], and [4, 1] approximants.
Unfortunately, the zeros of these approximants are not
near the exact value of G2

2, and such an attempt to improve
the accuracy of the DS equations fails. Why does this
approach fail? Padé approximation accelerates the

FIG. 11. Results for G2 plotted as a function of n (1 ≤ n ≤ 30)
calculated using the asymptotic approximation for G2n in (21).
We observe a dramatic improvement over Fig. 10; there is no
longer a dense concentration of roots below the exact answer but
rather an isolated root that is six orders of magnitude closer to the
exact answer.
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convergence of a truncated series even if the series
diverges. However, unlike the infinite Taylor series
expansion of the parabolic cylinder function in (3) where
the coefficients of powers of x remain the same as the
order is increased, the coefficients in the DS equations
change from order to order. Other approaches, such as
assuming a value of G2n estimated from G2n−2 converge to
a limit that is very slightly closer to the correct one, but
which is still not correct, and thus also fail.
One approach does give excellent numerical results: If

the left side of the DS equations is approximated by the
asymptotic approximation (21), G2 reaches an accuracy of
seven decimal places in only six steps. (See Fig. 11.) At
n ¼ 7, we have G2 ¼ 0.675 978 218… in comparison with
the exact result G2;exact ¼ 0.675 978 240….
While we have gained six orders of magnitude in

precision, the result in Fig. 11 is not exact. This is because
(21) is only a leading-order asymptotic approximation.
Higher-order asymptotic approximations for G2n will
improve this impressive numerical result even further.
This suggests that the DS equations can be used to provide
extremely accurate solutions for the Green’s functions,
even when D > 0, but these equations must be supple-
mented by including the large-n asymptotic behavior of the
Green’s function G2n. This asymptotic behavior cannot be
determined from the DS equations; it must be obtained
from a large-n asymptotic approximation to the integral
representing the Green’s function.

V. D = 0 NON-HERMITIAN CUBIC THEORY

This section considers the cubic massless non-Hermitian
PT -symmetric Lagrangian

L ¼ 1

3
igϕ3: ð24Þ

For (24) the connected one-point Green’s function is

G1 ¼
Z

dx x expð−ix3=3Þ=
Z

dx expð−ix3=3Þ; ð25Þ

where we take g ¼ 1. The path of integration lies inside a
PT -symmetric pair of Stokes sectors. These integrals can
be evaluated exactly:

G1 ¼ −i31=3Γ
�
2

3

�
=Γ

�
1

3

�
¼ −0.729 011 13…i: ð26Þ

The DS equations for the Lagrangian (24) are simpler
than those in (15) for the Hermitian quartic theory. The first
19 DS equations are given by

G2 ¼ −G2
1;

G3 ¼ −2G1G2 − i;

G4 ¼ −2G2
2 − 2G1G3;

G5 ¼ −6G2G3 − 2G1G4;

G6 ¼ −6G2
3 − 8G2G4 − 2G1G5;

G7 ¼ −20G3G4 − 10G2G5 − 2G1G6;

G8 ¼ −20G2
4 − 30G3G5 − 12G2G6 − 2G1G7;

G9 ¼ −70G4G5 − 42G3G6 − 14G2G7 − 2G1G8;

G10 ¼ −70G2
5 − 112G4G6 − 56G3G7 − 16G2G8

− 2G1G9;

G11 ¼ −252G5G6 − 168G4G7 − 72G3G8

− 18G2G9 − 2G1G10;

G12 ¼ −252G2
6 − 420G5G7 − 240G4G8

− 90G3G9 − 20G2G10 − 2G1G11;

G13 ¼ −924G6G7 − 660G5G8 − 330G4G9 − 110G3G10

− 22G2G11 − 2G1G12;

G14 ¼ −924G2
7 − 1584G6G8 − 990G5G9 − 440G4G10

− 132G3G11 − 24G2G12 − 2G1G13;

G15 ¼ −3432G7G8 − 2574G6G9 − 1430G5G10

− 572G4G11 − 156G3G12 − 26G2G13 − 2G1G14;

G16 ¼ −3432G2
8 − 6006G7G9 − 4004G6G10

− 2002G5G11 − 728G4G12 − 182G3G13

− 28G2G14 − 2G1G15;

G17 ¼ −12870G8G9 − 10010G7G10 − 6006G6G11

− 2730G5G12 − 910G4G13

− 210G3G14 − 30G2G15 − 2G1G16;

G18 ¼ −12870G2
9 − 22880G8G10 − 16016G7G11

− 8736G6G12 − 3640G5G13 − 1120G4G14

− 240G3G15 − 32G2G16 − 2G1G17;

G19 ¼ −48620G9G10 − 38896G8G11 − 24752G7G12

− 12376G6G13 − 4760G5G14 − 1360G4G15

− 272G3G16 − 34G2G17 − 2G1G18;

G20 ¼ −48620G2
10 − 87516G9G11 − 63648G8G12

− 37128G7G13 − 17136G6G14 − 6120G5G15

− 1632G4G16 − 306G3G17 − 36G2G18 − 2G1G19:

ð27Þ

The coefficients in these equations can be checked easily;
the sum of the coefficients on the right side of each equation

BENDER, KARAPOULITIDIS, and KLEVANSKY PHYS. REV. D 108, 056002 (2023)

056002-12



is an increasing power of 2. For example, for G8 the sum of
the coefficients is 20þ 30þ 12þ 2 ¼ 26, and for G9 the
sum is 70þ 42þ 14þ 2 ¼ 27.
As in Sec. IV, we again use the unbiased truncation

scheme of setting higher-order Green’s functions
to zero. We obtain the leading approximation to
G1 by substituting the first of these equations into the
second and truncating by setting G3 ¼ G4 ¼ … ¼ 0. The
resulting cubic equation G3

1 ¼ 1
2
i has three solutions, and

we choose the solution that is consistent with PT
symmetry:

G1 ¼ −2−1=3i ¼ −0.793 700 53…i: ð28Þ

This result differs by 8.9% from the exact value of G1

in (26). However, the accuracy improves if we include
more DS equations: We close the system by using the
first equation to eliminate G2, the second to eliminate
G3, and so on. The result is that the right side of the
Gn equation becomes a polynomial of degree n in the
variable G1, and we truncate the system by setting
the left side to zero and finding the roots of this
polynomial.
At first, the roots consistent with PT symmetry that are

obtained with this procedure seem to approach the exact
value of G1 in (26) but unlike the roots for the Hermitian
quartic theory, where the approach is monotone (see
Fig. 10), the approach here is oscillatory at first: For the
n ¼ 4 truncation the closest root is −0.693 361 27…i,
which is smaller in magnitude than the exact value of
G1, and for n ¼ 5 the closest root is −0.746 900 79…i,
which is larger in magnitude than the exact value. This
pattern seems to persist: For n ¼ 6 the closest root is
−0.712 564 55…i and for n ¼ 7 the closest root is
−0.739 871 08…i. However, for n ¼ 8 this pattern breaks:
The closest root is −0.712 368 70…i, which is smaller in
magnitude than the exact value, but is a slightly worse
approximation than the n ¼ 6 root.
The departure from the oscillatory convergence pattern at

n ¼ 8 signals a new behavior. The closest root for n ¼ 9 is
G1 ¼ −0.738 595 46…i, which is slightly better than the
n ¼ 7 root, but for n ¼ 10 we observe a qualitative change
in the character of the approximants. The polynomial
associated with G10 is

G10 ¼ 40ð9072G10
1 − 7560iG7

1 − 1881G4
1 þ 119iG1Þ:

If we truncate by setting the right side to zero and
ignore the trivial root at 0, we see that all nontrivial roots
come in triplets located at the vertices of equilateral
triangles. The roots that are closest to the exact value
of G1, which lies on the negative-imaginary axis, are not
pure imaginary. Rather, there is a pair of roots close
to and on either side of the negative-imaginary axis
at −0.717 367 67…i� 0.016 050 677….

For higher truncations we find an accumulation of
roots near the exact negative-imaginary value in (26), but
arranged in a ring around this exact value. We have
solved the DS equations up to the 200th truncation and
we plot the solutions as dots in the complex plane
in Fig. 12.
We seek solutions that are near the negative-imaginary

axis for two reasons: First, PT symmetry requires that G1

be negative imaginary. Second, the first equation in (27),
G2 ¼ −G2

1, shows that otherwise G2 will not be positive;
the second Green’s function must be positive because
G2 ¼ M−2, where M is the renormalized mass. A closeup
of the ring structure on the negative-imaginary axis is
shown in Fig. 13 for the solution to the n ¼ 200 poly-
nomial only. This emphasizes that the roots on the ring
are not approaching the exact value of G1 shown in
Fig. 12 as n increases, but rather are just becoming dense
on the ring.
The three-fold symmetry of the roots in Fig. 12

arises because the monic polynomial equations that
come from solving successively truncated DS equations
contain only powers of x3 (after we exclude the trivial
roots at 0):

P3nðxÞ ¼ x3n þ C1x3n−3 þ C2x3n−6 þ � � � þ Cn: ð29Þ

Five such polynomials (with factors of i excluded) are

FIG. 12. All solutions G1 to the DS equations from the third to
the 200th truncation plotted in the complex plane. The exact
value of G1 is −0.72901113…i. The full set of solutions has
threefold symmetry; solutions lie on a three-bladed propeller with
each blade having a small dense loop of solutions at the end. The
inset shows that the exact solution (red square) lies on the
negative-imaginary axis inside this loop.
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P3¼ x3þ1

2
;

P6¼ x6þ1

2
x3þ 1

20
;

P9¼ x9þ3

4
x6þ 87

560
x3þ 1

160
;

P12¼ x12þx9þ 93

280
x6þ 13

336
x3þ 7

8800
;

P15¼ x15þ5

4
x12þ4

7
x9þ 19

168
x6þ 56909

6726720
x3þ 1

9856
:

ð30Þ

Like the coefficients of the polynomials in (19), the
coefficients Ck in (29) have a fairly simple structure:

C1ðnÞ¼
1

1!

�
1

4

�
1

n ðn> 1Þ;

C2ðnÞ¼
1

2!

�
1

4

�
2
�
n2−

47

35
n

�
ðn> 2Þ;

C3ðnÞ¼
1

3!

�
1

4

�
3
�
n3−

47 ·3
35

n2þ134

35
n

�
ðn> 3Þ;

C4ðnÞ¼
1

4!

�
1

4

�
4
�
n4−

47 ·6
35

n3þ25387

1225
n2−

1471121

175175
n

�

ðn> 4Þ: ð31Þ

A. Asymptotic behavior of Gn for large n

In Sec. IV we investigated the large-n asymptotic behav-
ior of the Green’s functions in order to study the validity of
the truncation procedure for the quartic Hermitian theory.
We repeat this analysis for the non-Hermitian cubic theory.
The DS equations (26) and (27) determine the exact values
of the Gn. These are listed in Table II.
Applying Richardson extrapolation to the entries in

Table II, we find that the asymptotic behavior of Gn for
large n (including the overall multiplicative constant) is

Gn ∼ −ðn − 1Þ!rnð−iÞn ðn → ∞Þ; ð32Þ
where r ¼ 0.427696 347 707….
This asymptotic behavior is confirmed analytically in

Ref. [1]. The derivation goes as follows. We define

gp ≡ −inGp=ðp − 1Þ!
and express the DS equations for the Green’s functions Gn
in compact form as a recursion relation:

gp ¼ 1

p − 1

Xp−1
k¼1

gkgp−k þ
1

2
δp;3 ðp ≥ 2Þ:

We then multiply by ðp − 1Þxp to get xpðp − 1Þgp ¼Pp−1
k¼1 gkx

kgp−kxp−k þ x3δp;3, and rewrite the left side as
x d
dx x

pgp − xpgp. Next, we sum in p from 2 to∞ and define
the generating function fðxÞ:

fðxÞ≡X∞
p¼1

xpgp:

This generating function satisfies the Riccati equation

xf0ðxÞ − fðxÞ ¼ f2ðxÞ þ x3:

We linearize this equation by substituting fðxÞ ¼
−xu0ðxÞ=uðxÞ and

f0ðxÞ ¼ x
½u0ðxÞ�2
½uðxÞ�2 −

u0ðxÞ
uðxÞ − x

u00ðxÞ
uðxÞ

FIG. 13. Closeup of the negative imaginary axis for the solution
n ¼ 200 showing the loop-shaped concentration of solutions for
G1 around the exact value of G1, which lies in the interior of the
loop as shown in Fig. 12.

TABLE II. Exact values of the first 14 nonzero connected
Green’s functions for the PT -symmetric cubic theory.

Gexact
2 ¼ 0.531 457 23 Gexact

3 ¼ −0.225 123 53 i
Gexact

4 ¼ −0.236 658 45 Gexact
5 ¼ 0.372 807 88 i

Gexact
6 ¼ 0.766 712 18 Gexact

7 ¼ −1.928 978 72 i
Gexact

8 ¼ −5.715 182 10 Gexact
9 ¼ 19.444 890 40 i

Gexact
10 ¼ 74.616 669 21 Gexact

11 ¼ −318.58 2603 45 i
Gexact

12 ¼ −1; 497.372 869 48 Gexact
13 ¼ 7; 680.861 833 65 i

Gexact
14 ¼ 42; 692.806 116 42 Gexact

15 ¼ −255; 589.034 701 83 i
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into the Riccati equation. Four terms cancel and we get

u00ðxÞ ¼ −xuðxÞ:

This is an Airy equation of negative argument whose
general solution is uðxÞ ¼ aAið−xÞ þ bBið−xÞ, where a
and b are arbitrary constants. Thus,

fðxÞ ¼ x
aAi0ð−xÞ þ bBi0ð−xÞ
aAið−xÞ þ bBið−xÞ : ð33Þ

To determine the constants a and b, we note that

f0ð0Þ¼ g1¼−31=3Γ
�
2

3

�
=Γ

�
1

3

�
¼−0.729011132947…:

Hence,

−31=3Γ
�
2

3

�
=Γ

�
1

3

�
¼ aAi0ð0Þ þ bBi0ð0Þ

aAið0Þ þ bBið0Þ :

We then substitute

Aið0Þ ¼ 3−2=3=Γ
�
2

3

�
; Ai0ð0Þ ¼ −3−1=3=Γ

�
1

3

�
;

Bið0Þ ¼ 3−1=6=Γ
�
2

3

�
; Bi0ð0Þ ¼ 31=6=Γ

�
1

3

�
;

cancel the Gamma functions, and obtain −1 ¼ ð−aþ
b

ffiffiffi
3

p Þ=ðaþ b
ffiffiffi
3

p Þ. Thus, a is arbitrary and b ¼ 0, so

fðxÞ ¼ xAi0ð−xÞ=Aið−xÞ:

The generating function fðxÞ is a power series, and it
blows up when the denominator in this equation is zero.
This happens first when x ¼ 2.338 107 410 459…, which is
the radius of convergence of the series. The inverse of this
number is precisely the value of r in (32).
Once again, we are faced with justifying the truncation

needed to solve the system of DS equations and we repeat
the argument in Sec. IV. As before, the unbiased truncation
gives a slowly converging sequence of approximants that
does not converge to the exact value of G1. The novelty
here is that, if we use the asymptotic expression (32) as the
basis of the truncation, an entirely new root, which is
extremely close to the exact value of G1, appears inside the
tight loop of roots in the complex plane, as shown in
Fig. 14. This figure gives a comparison of the n ¼ 200
evaluation using this asymptotic approximation (red) and
the unbiased truncation (blue). The blue and red loops are
almost the same size, but the new root agrees with the exact
value of G1 to seven decimal places. However, correspond-
ing new roots also appear in the loops at the ends of the
other two propellers. The condition of global PT sym-
metry does not exclude these roots because the entire

constellation of zeros is PT symmetric. To exclude these
spurious zeros we can impose the condition that the G2 be
positive (spectral positivity). We do so by using the first DS
equation in (27).
To see more clearly the effect of including the asymptotic

behavior of Gn in the truncation scheme, we plot the
absolute values of the solutions along the negative axis for
n ranging from 1 to 200 in Fig. 15. As we see in Fig. 14,
there are solutions which are both larger and smaller (in
absolute value) than the exact solution. Thus, we do not
observe a monotonic behavior of the roots for increasing n.
However, the isolated root inside the loop in Fig. 14 is
indistinguishable from the exact solution (red line).

FIG. 14. Closeup of the negative imaginary axis for the n ¼
200 truncation showing solutions for G1, obtained from (i) the
unbiased (blue) and (ii) the asymptotic approximations (red) for
Gn. The blue and red loops are almost the same size, but there is a
new red dot that is almost exactly equal to G1. These dots also
appear in the two other loops at the ends of the three-bladed
propeller.

FIG. 15. Absolute values of the solutions for G1 on the
imaginary axis, obtained using the asymptotic approximation
to Gn for n ranging from 1 up to 200. The heavy red line shows
the exact value of jG1j.
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VI. D= 0 NON-HERMITIAN QUARTIC THEORY

To understand more broadly the behavior of our trunca-
tion schemes, we consider next the quartic Lagrangian

L ¼ −
1

4
gϕ4; ð34Þ

which defines a non-Hermitian massless PT -symmetric
theory in zero-dimensional spacetime. The connected one-
point Green’s function is for this Lagrangian

G1 ¼
Z

dx x expðgx4=4Þ=
Z

dx expðgx4=4Þ; ð35Þ

where the paths of integration lie inside a PT -symmetric
pair of Stokes sectors of angular opening π

4
centered about

− π
4
and − 3π

4
in the lower-half complex-x plane. Without

loss of generality, we set g ¼ 1 and evaluate these integrals
exactly:

G1 ¼ −2i
ffiffiffi
π

p
=Γ

�
1

4

�
¼ −0.977741 07…i: ð36Þ

The first eight DS equations for this theory are

G3 ¼ −G3
1 − 3G1G2;

G4 ¼ −3G1G3 − 3G2
2 − 3G2

1G2 − 1;

G5 ¼ −3G1G4 − 9G2G3 − 3G2
1G3 − 6G1G2

2;

G6 ¼ −3G1G5 − 12G2G4 − 3G2
1G4 − 9G2

3

− 18G1G2G3 − 6G3
2;

G7 ¼ −3G1G6 − 15G2G5 − 3G2
1G5 − 30G3G4

− 24G1G2G4 − 18G1G2
3 − 36G2

2G3;

G8 ¼ −3G1G7 − 18G2G6 − 3G2
1G6 − 45G3G5

− 30G1G2G5 − 30G2
4 − 60G1G3G4

− 60G2
2G4 − 90G2G2

3;

G9 ¼ −3G1G8 − 21G2G7 − 3G2
1G7 − 63G3G6

− 36G1G2G6 − 105G4G5 − 90G1G3G5

− 90G2
2G5 − 60G1G2

4 − 360G2G3G4 − 90G3
3;

G10 ¼ −3G1G9 − 24G2G8 − 3G2
1G8 − 84G3G7

− 42G1G2G7 − 168G4G6 − 126G1G3G6

− 126G2
2G6 − 105G2

5 − 210G1G4G5

− 630G2G3G5 − 420G2G2
4 − 630G2

3G4: ð37Þ

The unbiased approach to solving these equations con-
sists of fixing n and then using successive linear elimina-
tion to obtain polynomial equations to be solved
numerically for the lowest Green’s functions. However,

the procedure is more difficult than for the Hermitian
quartic theory in (13) or the non-Hermitian cubic theory in
(24) because this elimination process concludes with two
polynomials containing not one but two Green’s functions
G1 andG2. That is, we obtain a coupled pair of polynomial
equations to solve for G1 and G2 rather than one poly-
nomial equation in one Green’s function.
For example, the leading truncation (n ¼ 4) consists of

eliminating G3 in the second DS equation by substituting
the first DS equation into it. We then truncate by setting
G3 ¼ G4 ¼ G5 ¼ … ¼ 0 and solve the resulting pair of
simultaneous equations. This leads to G4

1 ¼ 3=2, and the
PT -symmetric solution in the negative-half plane is

G1 ¼ −i
�
3

2

�
1=4

¼ −1.106 681 92…i: ð38Þ

This result has an error of 13.2% in comparison with the
exact value of G1 in (36).
For larger values of n the procedure for solving the pair

of polynomial equations is tedious: We multiply each
equation by an expression that makes the coefficient of
highest power of G1 (or G2) the same and then subtract the
two equations to eliminate this highest-power term. We
repeat this process until one of the equations becomes
linear in G2. We solve this equation for G2 and eliminate it
algebraically from the other equation. This gives a high-
degree polynomial equation forG1 that we can finally solve
numerically.
The problem with this procedure is that each multipli-

cation introduces spurious roots. However, we find that the
final polynomial in powers of G1 factors into two poly-
nomials; the roots of one factor are all spurious while the
roots of the other factor, which is a polynomial in powers of
G4

1, solve the original pair of equations. The number of
roots increases rapidly with n and all roots come in quartets
that lie at the vertices of squares in the complex plane. All
(nonspurious) roots up to n ¼ 40 are displayed in Fig. 16.
The PT symmetry of the Lagrangian (34) requires that G1

be a negative-imaginary number.
Since we must solve coupled equations for G1 and G2,

we require the exact value of G2 in order to calculate the
exact values of all of the Green’s functions from (37). The
exact value of G2 is

G2 ¼ 4π=Γ2

�
1

4

�
− 2Γ

�
3

4

�
=Γ

�
1

4

�
¼ 0.279 999 35…:

ð39Þ

Then, using G1 in (36) and G2 in (39) we obtain the results
given in Table III.
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A. Asymptotic behavior of Gn for large n

Inspection of Table III shows that the exact values of the
odd (even) Green’s functions oscillate in sign as n
increases, and that the odd Green’s functions are imaginary,
while the even ones are real. Applying Richardson extrapo-
lation to the entries in Table III, we find that the asymptotic
behavior of Gn for large n is

Gn ∼ −ðn − 1Þ!ð−iÞnrn ðn → ∞Þ; ð40Þ
where r ¼ 0.34640…. (The overall multiplicative constant
in the asymptotic behavior is exactly 1.) This result is
similar to the behavior in (32) for the Green’s functions of
the non-Hermitian cubic theory.

VII. D= 0 NON-HERMITIAN QUINTIC THEORY

Next, we analyze the quintic PT -symmetric Lagrangian

L ¼ −
1

5
igϕ5: ð41Þ

The one-point Green’s function is given by

G1 ¼
Z

dx x expðgx5=5Þ=
Z

dx expðgx5=5Þ: ð42Þ

Choosing PT -symmetric Stokes wedges in the negative
half-plane and setting g ¼ 1, we get the exact value

G1 ¼ −1.078 653…: ð43Þ

The first three DS equations that one obtains are

G4 ¼ −G4
1 − 6G2G2

1 − 4G3G1 − 3G2
2;

G5 ¼ −4G3
2G2 − 12G1G2

2 − 6G3
1G3 − 10G2G3

− 4G1G4 þ i;

G6 ¼ −12G2
1G

2
2 − 4G2

1G3 − 12G3
2 − 36G1G2G3

− 6G2
1G4 − 10G2

3 − 14G2G4 − 4G1G5: ð44Þ

The first equation for G4 contains three unknowns, G1, G2,
and G3, so setting G4 ¼ G5 ¼ … ¼ 0 as a first unbiased
truncation means that we must solve three coupled equa-
tions. At the next truncation G4 ≠ 0, but all higher Gn ¼ 0.
We therefore eliminate G4 in terms of G1, G2, and G3, and
must solve the next set of three equations. Thus, the
solution is complicated. Figure 17 gives a plot of the roots

TABLE III. Exact values of 20 Green’s functions for the non-
Hermitian quartic theory.

Gexact
3 ¼ −0.113 397 i Gexact

4 ¼ −0.099 559
Gexact

5 ¼ 0.128 446 i Gexact
6 ¼ 0.215 052

Gexact
7 ¼ −0.439 386 i Gexact

8 ¼ −1.055 947
Gexact

9 ¼ 2.912 307 i Gexact
10 ¼ 9.055 948

Gexact
11 ¼ −31.325 429 i Gexact

12 ¼ −119.269 436
Gexact

13 ¼ 495.565 822 i Gexact
14 ¼ 2; 231.100 879

Gexact
15 ¼ −10; 818.525 260 i Gexact

16 ¼ −56; 209.003 831
Gexact

17 ¼ 311; 520.607 892 i Gexact
18 ¼ 1; 834; 444.674 851

Gexact
19 ¼ −11; 438; 011.031 i Gexact

20 ¼ −75, 280, 067.556
Gexact

21 ¼ 521; 539; 592.082i Gexact
22 ¼ 3; 793; 889; 240.849

FIG. 16. All solutions for G1 in the complex plane up to
n ¼ 40. The roots exhibit fourfold symmetry. However, PT
symmetry requires that G1 be negative imaginary, so only the
roots on or near the negative-imaginary axis are physically
acceptable. The exact value of G1, given in (36), lies inside
the concentration of roots near −i.

FIG. 17. All solutions forG1 in the complex plane, up to n ¼ 11.
The roots exhibit fivefold symmetry but PT symmetry requires
that G1 be negative imaginary, so only the roots on or near the
negative-imaginary axis are physically acceptable. The exact value
of G1, given in (43), lies inside the concentration of roots near −i.
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in the complex plane up to n ¼ 11. These roots exhibit
fivefold symmetry.
We observe ten concentrations of roots. One can under-

stand this as follows: Associated with the Lagrangian (41)
are five Stokes sectors that define the regions of convergence
of the integral (42) in the complex plane (Stokes sectors).
Thus, there are ten possible distinct paths of integration in
the complex plane, each of which lead to different values of
G1. Aside from the imaginary value in (43), there is another
imaginary PT -symmetric solution from PT -symmetric
(left-right symmetric) integration in the upper-half plane
that gives G1 ¼ 0.4120…i. The other possible complex
values of the integral for G1 are �0.392…þ 0.127…i,
�0.242… − 0.333…i, �0.634… þ 0.872…i, and
�1.025… − 0.333…i. These ten values for G1 are plotted
as red squares on Fig. 17, and correspond to the dense
regions of solutions.
This feature is a general one: for the quartic and cubic

systems discussed in the previous sections, an analysis of
all possible paths of integration in each case results in all
possible solutions of the Green’s functions being repre-
sented in the complex plane.

VIII. D= 0 HERMITIAN SEXTIC THEORY

Here we consider the zero-dimensional model described
by the massless Lagrangian

L ¼ 1

6
gϕ6: ð45Þ

The first two Green’s functions are given by

G1 ¼
Z

dϕϕe−ϕ
6=6=

Z
dϕe−ϕ

6=6;

G2 ¼
Z

dϕϕ2e−ϕ
6=6=

Z
dϕe−ϕ

6=6; ð46Þ

where g ¼ 1. The paths of integration must be specified,
and there are six distinct regions of convergence bounded
by the Stokes lines at π

12
þ n π

6
, so there are 15 possible

combinations of integration paths. Thus, there are 15
different theories associated with the Lagrangian (45).
The first DS equation is complicated and contains five

unknowns:

G5 ¼ −G5
1 − 10G3

1G2 − 10G2
1G3 − 15G1G2

2;

− 5G1G4 − 10G2G3; ð47Þ

and, in general, a complete solution of the DS equations
would require that we solve four coupled polynomial
equations at each truncation level.
To reduce the calculational complexity, we restrict the

system to be parity symmetric, so that all odd Green’s
functions vanish. The Hermitian sextic theory has an

integration path along the real axis. The exact value of
G2, obtained by integrating (46) along this path gives

G2 ¼ 0.578 616 519…: ð48Þ

However, there are two other choices for the integration
path that also respect parity symmetry and give rise to the
values

G2 ¼ −0.2893…� 0.5010…i: ð49Þ

Imposing parity symmetry on the first DS equation (47)
gives the trivial equation 0 ¼ 0. The first five (nontrivial)
DS equations link the even-n Green’s functions to others of
higher order:

G6 ¼ −15G3
2 − 15G2G4 þ 1;

G8 ¼ −60G4
2 − 165G2

2G4 − 35G2
4 − 25G2G6;

G10 ¼ −120G5
2 − 1200G3

2G4 − 1150G2G2
4 − 365G2

2G6

− 205G4G6;

G12 ¼ −4200G4
2G4 − 16800G2

2G
2
4 − 4550G3

4

− 3360G3
2G6 − 8470G2G4G6 − 455G2

6

− 645G2
2G8 − 460G4G8 − 45G2G10;

G14 ¼ −100800G3
2G

2
4 − 168000G2G3

4 − 15120G4
2G6

− 151200G2
2G4G6 − 76020G2

4G6 − 23310G2G2
6

− 7200G3
2G8 − 22680G2G4G8 − 2910G6G8

− 1005G2
2G10 − 875G4G10 − 55G2G12:

As before, we truncate the DS equations by taking at
each step a pair of successive equations and setting the

FIG. 18. Roots of the DS equations for the Hermitian sextic
case obtained by means of the unbiased truncation scheme. There
are three concentrations of solutions for G2 that differ from the
exact values in (48) and (49) (red squares) by a few percent.

BENDER, KARAPOULITIDIS, and KLEVANSKY PHYS. REV. D 108, 056002 (2023)

056002-18



highest-order connected Green’s functions to zero. This
constitutes a truncation of order n. The results for G2 up to
n ¼ 30 (where we solve the equations G64 ¼ G66 ¼ 0) are
shown in Fig. 18.
Like the quartic case, the roots converge monotonically

to points near the three exact values of G2 in (48) and (49).
Richardson extrapolation gives the limiting values of the
truncated sequences and these limiting values differ from
the exact values by a relative error of 6% (see Fig. 19).

IX. CONCLUSIONS

In this paper we have studied the effectiveness of the DS
equations as a way to calculate the Green’s functions of a
quantum field theory. We have examined the DS equations
for zero-dimensional field theories only because in this case
we can evaluate the integral representations of the Green’s
functions exactly and then compare these exact results with
the approximants provided by the DS equations. We find
that while the Green’s functions exactly satisfy the infinite
system of coupled DS equations, the DS equations alone
cannot be used to obtain accurate results for the Green’s
functions.
The reason for this is that Green’s functions are

expressed in terms of moments of the functional integral
that specifies the partition function Z of the quantum field
theory. However, the DS equations are derived by func-
tional differentiation of the partition function. While differ-
entiation preserves local information, the global
information in the functional integral, which is required
to specify the Green’s functions uniquely, is lost.
As a trivial example, consider the function

fðxÞ ¼ 1

4
x3 þ 2

x
ð1 ≤ x ≤ 2Þ: ð50Þ

We may differentiate fðxÞ once to obtain a differential
equation satisfied by fðxÞ:

f0ðxÞ þ fðxÞ
x

¼ x2: ð51Þ

However, while this equation describes the local behavior
of fðxÞ at each point x, we have lost the global boundary
data needed to recover the original function fðxÞ: The
general solution to this differential equation,

fðxÞ ¼ 1

4
x3 þ C

x
; ð52Þ

contains an arbitrary constant. However, if we specify the
boundary data fð2Þ ¼ 3, this determines that C ¼ 2 and we
have recovered fðxÞ in (50).
As explained in Sec. III, deriving the DS equations

involves a somewhat more complicated differentiation
process. However, the resulting coupled infinite system of
DS equations is so complicated that it obscures the simple
fact that in the differentiation process some information
has been lost. For example, the functional-integral repre-
sentation of the partition function exists because the path
of functional integration terminates as jϕj → ∞ inside a
pair of Stokes sectors in complex-ϕ space (ϕ is the
integration variable). Because there are many possible
pairs of sectors that give a convergent functional integral,
when we solve the DS equations we find all possible
solutions to the DS equations corresponding to all
possible pairs of Stokes sectors, some corresponding to
Hermitian theories and others corresponding to non-
Hermitian theories (both PT -symmetric and non-
PT -symmetric). For instance, in Fig. 17 there are 10
concentrations of roots corresponding to the ten possible
paths of integration for a quintic field theory. The DS
equations weight each of these theories equally.
There is even more loss of information than this. As we

have shown, solving the DS equations is a two-step
process. First, we truncate the infinite triangular system
of DS equations, but when we do so, the resulting finite
system always has more Green’s functions than equations
and is therefore indeterminate. Next, to obtain a closed
system of coupled equations we perform a further trunca-
tion in which we set the highest Green’s functions to 0. (In
this paper we call this truncation procedure unbiased.)
There are other truncation possibilities as well, but in all
cases we find that as we include more and more DS
equations, the solutions do not converge to the already
known exact values of the Green’s functions.
Nevertheless, a remarkable feature of the unbiased

approach is that for all five theories studied in this paper,
as we include more DS equations, the approximate Green’s
functions actually converge to limiting values, and these
limiting values are fairly accurate—several percent off
from the exact values for all of the Green’s functions for all
of the theories corresponding to the possible pairs of Stokes
sectors, as discussed above.

FIG. 19. Positive values of the roots of the SD equations for the
Hermitian sextic case (dots). The exact value of G2 ¼
0.578 616… is indicated by the red line and the DS results
converge to a number that differs from the exact value by
about 20%.
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Finally, we have found a successful way to insert the
missing information back into the DS equations. Instead of
using the unbiased ansatz of setting the higher unknown
Green’s functions to zero, we replace Gn by its asymptotic
behavior for large n. This procedure gives new and
extremely accurate numerical results for the Green’s func-
tions (many decimal places). However, it does not eliminate
all of the spurious theories associated with different pairs of
Stokes sectors; this can only be done by imposing external
additional conditions on the DS equations such as spectral
positivity. The use of the asymptotic behavior of Gn for
large n suggests a new and interesting general mathematical
problem that has not been studied previously in this
context, namely, finding the asymptotic behavior of
many-legged Green’s functions in higher-dimensional field
theories.
One last remark: A simple way to force the DS equations

to give sequences of approximants that converge to the
exact values of the Green’s functions is to require that the
Green’s functions all have formal weak-coupling expan-
sions in powers of a coupling constant. This approach has
been known for a long time [9]. To illustrate this idea we

return to the trivial differential-equation example above.
We can demand that the solution to the differential
equation (51) be entire; that is, that the solution fðxÞ
has a convergent Taylor-series representation. This con-
dition uniquely determines the unknown constantC in (52):
C ¼ 0. Unfortunately, it does not recover the original
function fðxÞ in (50), which is singular at the origin.
Similarly, if we require that all Green’s functions have
weak-coupling expansions, we immediately exclude the
possibility of using the DS equations to calculate Green’s
functions having nonperturbative behavior. Indeed, if we
ignore the possibility of nonperturbative behavior, there is
no reason to consider the DS equations at all because
Feynman diagrams give the perturbative representations of
Green’s functions.
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