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The freeze-in mechanism has been shown to allow the simultaneous generation of cosmic dark matter
and a viable matter-antimatter asymmetry in the Universe. When the underlying interactions are described
by higher-dimensional, nonrenormalizable operators, the relevant freeze-in processes take place close
to the highest considered cosmic temperatures. In this paper we study how the presence of a fluid that
temporarily dominates the energy content of the early Universe affects the predictions of this “ultraviolet
freeze-in baryogenesis” scenario. We find that this additional cosmic component has a significant impact on
the predictions of concrete microscopic models, allowing for reheating temperatures which are much lower
than those required in the simplest cosmological scenario. Moreover, we show that inflationary observables
can constrain the parameter space of such models, once the latter are examined in conjunction with concrete
models of inflation.
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I. INTRODUCTION

The nature of dark matter (DM) and the origin of the
baryon asymmetry of the Universe are two of the most
important questions at the interface between particle
physics and cosmology. In [1] it was suggested that a
common framework for the simultaneous explanation of
both could be found within the context of freeze-in
DM [2,3]: in freeze-in scenarios, DM interacts so weakly
(“feebly”) with the Standard Model (SM) and its thermal
bath that the relevant interactions never reach thermal
equilibrium, an element which is in line with the third
Sakharov condition [4] required for successful baryogen-
esis. This idea was exploited in [1] in the context of
asymmetric frozen-in DM and, later, in [5,6] in the context
of symmetric DM candidates which can oscillate in a

mechanism reminiscent of (albeit not identical with)
Akhmedov, Rubakov, Smirnov leptogenesis [7].
In [8,9] an alternative approach was proposed in which

the out-of-equilibrium CP-violating decays or scatterings
of heavy, exotic bath particles are responsible for the
generation both of the observed DM abundance and of
an asymmetry in the SM lepton sector. The latter can
afterwards be translated into a baryon asymmetry through
the electroweak sphaleron transitions [10–12] (for a recent
study questioning the sphaleron induced baryogenesis see
e.g. [13]). In the case of decays the underlying interactions
were taken to be renormalizable [8], leading to the freeze-in
of both DM and the asymmetry at low temperatures. In [9],
on the other hand, the possibility of nonrenormalizable
interactions was studied, which brings the entire setup in
the realm of “ultraviolet (UV) freeze-in” (in the context of
DM see e.g. [14] and on the baryogenesis side [15–17]), i.e.
freeze-in which occurs at the highest considered cosmic
temperature—typically identified with the reheating tem-
perature of the Universe. In both cases, the scenario tends to
predict light DM, with a mass of the order of a few keV.
Moreover, in the case of [9], the values of the reheating
temperature that were required in order to achieve suc-
cessful DM and baryon asymmetry production were strik-
ingly high, especially if the underlying dynamics are
described by a dimension-5 operator.
The reason for this appears to be the fact that a viable

baryon asymmetry tends to be generated alongside an
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overproduced DM. Indeed, while the asymmetry is gen-
erated through the interference of tree-level and one-loop
contributions in perturbation theory, the DM is predomi-
nantly produced at tree level. One is then lead to the choice
of increasing the reheating temperature in order to achieve
successful baryogenesis while drastically decreasing the
DM mass to avoid overclosure of the Universe.
The previous findingswere obtainedwithin the context of

the standard thermal history for the Universe, i.e. assuming
that after the complete decay of the inflaton field(s) radiation
domination settled in and continued uninterrupted until
matter domination. It is, however, known that the early
Universe thermal history is rather unknown and there might
be departures from this simple picture. Awell-motivated and
studied scenario, that changes the underlying thermody-
namics drastically in the pre-BBN (bing bang nucleosyn-
thesis) era, is that of a transient nonthermal period where a
pressureless and short-lived fluid dominates the energy
density of the Universe [18]. Indeed, assuming that a
fluid-dominant period is interjected during radiation domi-
nation, the decay of the fluid will dilute both the DM and a
potential baryon asymmetry.
In this work we will place ourselves in such a scenario:

we will assume that, during some period after the end of
inflation, the energy density of the Universe was dominated
by a fluid which subsequently decayed bringing along a
dilution of all preexisting abundances in the plasma. We
will see that indeed, in this situation the predictions of
the “ultraviolet freeze-in baryogenesis” scenario presented
in [9] can be modified substantially and that the mechanism
can be efficient for a quite heavier dark matter mass and
assuming a much lower reheating temperature. This is
possible because the DM abundance and the size of baryon
asymmetry scale differently with temperature.
At the same time, late entropy production induced by the

decay of the fluid can have a non-negligible impact on
inflationary observables. The observed number of e-folds of
inflationN� is sensitive both to inflationary dynamics as well
to postinflationary evolution. Indeed, the power spectrum of
primordial density perturbations is not strictly scale invariant,
and any modification of the expansion rate affects the rate at
which each mode k reenters the horizon and, thus, the
cosmological microwave background (CMB)-measured
nsðkÞ value. In this paper we will explicitly express how
the e-folds number N� can be related with the underlying
parameters of two simple microscopic models. In the
framework of specific inflationary models this correlation
can be translated into expected values of inflationary
observables. In particular, the predicted values for the
spectral index of the two-point correlation function of the
primordial scalar perturbations, ns, and the tensor-to-scalar
ratio, r, are shifted by a particular amount if late entropy
injection takes place [19–23].
The advantage of this scenario is that the values of the

reheating temperature and the dilution size are automatically

correlated due to microphysical requirements. Wewill show
that for the allowed range of reheating temperatures and
dilution sizes that lead to a viableDMabundance and baryon
asymmetry, the predictions of some typical inflationary
models are confined in a smaller range of values on the
ðns; rÞ contour plane. We will also show that dimension-5
and dimension-6 operators lead to different predictions, and
therefore interesting conclusions can be inferred concerning
the compatibility between concrete microscopic and cos-
mological models. In order to be quantitatively specific we
will make use of some minimal and general models of
inflation, namely large field models, small field models and
general models with a R2-like plateau, so as to illustrate the
interplay between particle physics models and cosmology.
We mention that our line of arguments and analysis are
general and can be also applied to othermodels that predict a
baryon asymmetry and DM production.
The paper is organized as follows: In Sec. II we review

the main features of symmetric DM freeze-in baryogenesis
in its UV-dominated version and briefly introduce the
models that will be studied in the following. In Sec. III
we show how the predicted abundance is modified in the
presence of a decaying fluid. In Sec. IV we describe how
the inflationary observables are modified by the entropy
that is injected upon the fluid’s decay, focusing on some
representative models of inflation. Lastly, in Sec. V we
summarize our main findings and conclude.

II. ULTRAVIOLET-DOMINATED
FREEZE-IN BARYOGENESIS

Let us start by briefly reviewing the main features of the
UV-dominated freeze-in baryogenesis mechanism, as pre-
sented in [9]. The starting point assumption is that the DM
particle species only interacts feebly with the bath particles
through an effective operator ÔðnÞ ofmass dimension (nþ 4)

L ⊃
1

Λn ÔðnÞ; ð2:1Þ
where n ¼ 1; 2;… and Λ is the energy scale of the effective
field theory (EFT). This operator is responsible for the
simultaneous generation of the freeze-in DM abundance
and of the baryon asymmetry of the Universe. Due to the
non-renormalizable nature of the underlying interactions,
both are mostly produced in the ultraviolet regime, i.e.
close to the reheating temperature TRH.
In the models that we will study, the DM is produced via

pair annihilations of bath particles. In the limit that Λ is
much larger than the masses involved, the DM yield
obtained by solving the corresponding Boltzmann equation
can be written in a fairly compact form [14]

YDMðTÞ ≈ 2A
4nþ1n!ðnþ 1Þ!

2n − 1

45

1024 × 1.66π7g�s
ffiffiffiffiffiffig�ρ

p

×
mPlðT2n−1

RH − T2n−1Þ
Λ2n ; ð2:2Þ
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where A is a model-dependent constant, mPl ≈ 1.22 ×
1019 GeV is the Planck mass and g�s; g�ρ are the relativistic
degrees of freedom of the plasma associated with the
entropy and energy densities, respectively.
As pointed out in the Introduction, the driving factor for

studying the simultaneous generation of freeze-in DM and
baryon asymmetry is that the relevant interactions are
always out of equilibrium, so that the third Sakharov is
inherently satisfied. Additionally, the CP symmetry is
explicitly broken through the complex couplings appearing
in the effective operators. The most nontrivial part of the
proposed baryogenesis mechanism is the violation of the
baryon number. In our case the effective interactions are
total lepton (and baryon) number-conserving resulting to
sector-wise lepton asymmetries generated in the SM, LSM,
and an exotic sector, Lex, while the total lepton asymmetry
remains zero, L ¼ LSM þ Lex ¼ 0. However, if the exotic
particles are taken to be SUð2ÞL singlets the electroweak
sphalerons, which violate Bþ L but conserve B − L, only
affect the nonzero lepton asymmetry stored in the SM
sector. Hence, they “see” a nonvanishing lepton asymmetry
and convert it into a baryon one, which is proportional to
YB ∝ YB−LSM

. Once they depart from equilibrium at T ¼
Tsph the baryon and lepton asymmetries are separately
conserved and the baryon asymmetry remains frozen at the
value YB ∝ YB−LSM

jTsph
, which, in principle, is nonzero.

In order to present the corresponding predictions for the
baryon asymmetry we will introduce two specific models:
one based on a scalar DM candidate produced through a
dimension-5 operator, and that of a fermionic candidate
produced through a dimension-6 one.

A. Dimension-5 operator

The first case study that we consider is an extension of
the SM by a complex gauge-singlet scalar field φ, which is
our DM candidate, along with two heavy vectorlike Dirac
fermions F1;2, which are singlets under SUð3Þc × SUð2ÞL
but carry hypercharge. The interaction Lagrangian reads

Lint ¼ Lgauge þ
λ1
2Λ

ðēPLF1Þφ�φ� þ λ2
2Λ

ðēPLF2Þφ�φ�

þ κ

Λ2
ðēPLF1ÞðF̄2PReÞ þ H:c:; ð2:3Þ

where e can be any of the Standard Model charged leptons
and Lgauge contains the gauge interactions of the heavy
fermions Fi. The latter keep the Fi in equilibrium with the
SM bath particles. Besides, the heavy fermions carry the
same lepton number as the SM leptons, and so total lepton
number is conserved. Additionally, a Z3 symmetry is
imposed, under which both the Fi’s and φ are charged,
to ensure DM stability.
In this setup DM is produced at tree level, mainly

through scattering processes of the type Fiē → φφ. The
same process (along with, to a lesser extent, Fiē ↔ Fjē)
also generates sector-wise lepton asymmetries in the SM
and Fi sectors through the interference between tree-level
and one-loop diagrams depicted in Fig. 1(a). The absolute
values of the DM and asymmetric yields are presented in
Fig. 1(b) as a function of the dimensionless parameter
x≡ TRH=T. Once the electroweak sphalerons become
active the SM sector asymmetry is partially converted into
a baryonic one, which freezes at sphaleron decoupling.
The predicted DM abundance is given by Eq. (2.2) upon

substituting n ¼ 1. The asymmetries generated in the F and
Standard Model sectors, on the other hand, are described by
a set of three differential equations

− sHT
dYΔFi

dT
¼ −½Fiē ↔ φφ� − ½Fiē ↔ Fjē�
þ ð−1Þi½FiF̄j ↔ eē�; ð2:4aÞ

−sHT
dYB−LSM

dT
¼ −

X
i

½Fiē ↔ φφ�; ð2:4bÞ

where YΔFi
≡ YFi

− YF̄i
and we have introduced the short-

hand notations

(b)(a)

FIG. 1. (a) Tree-level and 1-loop Feynman diagrams of the dominant scattering processes that contribute to the generation of the DM
abundance and the baryon asymmetry. (b) The yields YB−LSM

and YDM as functions of the dimensionless parameter x≡ TRH=T for a
benchmark set of parameter values that reproduce the DM relic density abundance and matter-antimatter asymmetry of the Universe.
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½ab ↔ cd�≡ ðab ↔ cdÞ − ðāb̄ ↔ c̄d̄Þ; ð2:5aÞ

ðab ↔ cdÞ≡ 1

SinSout

Z
dΠadΠbdΠcdΠdð2πÞ4δð4Þ

× ½jMj2ab→cdfafbð1� fcÞð1� fdÞ
− jMj2cd→abfcfdð1� faÞð1� fbÞ�; ð2:5bÞ

where δð4Þ is an abbreviation for δð4Þðpa þ pb − pc − pdÞ
and Sin, Sout are the symmetry factors for the incoming and
outgoing states respectively, which are equal to N! in case
of identical particles and 1 otherwise. The solution of these
equations allows us to compute the predicted baryon
asymmetry.
As shown in [9], Eq. (2.4) results in YB−LSM

∼ T4
RH=Λ6.

From Eq. (2.2), on the other hand, setting n ¼ 1 one finds
that the DM yield scales as YDM ∼ TRH=Λ2. This difference
in the scaling behavior between YB−LSM

and YDM is of
critical importance for the analysis that follows.
All in all, the requirement for φ to be a viable DM

candidate can be satisfied simultaneously with that of
achieving successful baryogenesis for TRH > 1015 GeV
and Λ > 7 × 1015 GeV. The DM mass is then predicted
to lie between 4 < mφ < 15.5 keV, with the lower bound
coming from Lyman-α forest constraints.

B. Dimension-6 operator

The dimension-6 case works in full analogy with the
dimension-5 one. In this case, the SM is extended by a pair
of vectorlike fermions Fi which are charged under Uð1ÞY,
along with a Dirac fermion χ which acts as a DM candidate
pair created through a dimension-6 operator. The inter-
action Lagrangian that we consider is

L ⊃
λ1
2Λ2

ðēPLF1Þðχ̄PRχcÞ þ
λ2
2Λ2

ðēPLF2Þðχ̄PRχcÞ

þ κ

Λ2
ðēPLF1ÞðF̄2PReÞ þ H:c:; ð2:6Þ

where for simplicity we omitted the Fi gauge interac-
tion terms.
The DM abundance can, again, be computed through

Eq. (2.2) by substituting n ¼ 2, whereas the evolution of the
sector-wise lepton asymmetries is described by a system of
equations which is identical with the one governing the
dimension-5 case, with the substitution φ ↔ χ.
In [9] itwas found that theyields ofB − LSM andDMscale

as YB−LSM
∼ T8

RH=Λ10 and YDM ∼ T3
RH=Λ4, respectively.

The viable parameter ranges are found to be TRH>
3×1013GeV, Λ>3×1014GeV and 4.6<mχ<18.1keV,
i.e. it is possible to satisfy all DM and baryogenesis
constraints with relatively lower values of the reheating
temperature compared to the dimension-5 case.

III. ULTRAVIOLET FREEZE-IN BARYOGENESIS
IN THE PRESENCE OF A DECAYING FLUID

From the previous discussion it becomes clear that the
mechanism of UV freeze-in baryogenesis is viable if the
DM mass is small and the reheating temperature extremely
large. In the inflationary framework, thermalization occurs
approximately when Γinf ∼ 3H, where Γinf is the decay rate
of the inflaton, and the corresponding reheating temper-
ature of the Universe is

TRH ¼
�
π2

10
g�RH

�−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓinfMPl

p
; ð3:1Þ

where MPl is the reduced Planck mass. Let us call Tmax
the maximum possible reheating temperature of the
Universe after the decay of the inflaton field. We can write
TRH ¼ Tmax exp½− 3

4
ð1þ w̄RHÞÑRH�, where w̄RH and ÑRH

are the mean equation of state and the e-folds during the
reheating stage, respectively. The maximum temperature
can be written in terms of the energy density at the end of
inflation as Tmax ¼ ρ1=4endð30=π2g�RHÞ1=4 and is achieved in
the instant reheating scenario, i.e. when ÑRH ¼ 0. From the
hierarchy of the energy densities ρend ≲ V� ≃ 3H2�M2

Pl ¼
ð3π2=2Þr�PRðk�ÞM4

Pl we can obtain an upper bound on the
reheating temperatures after inflation,

TRH ≲ 5 × 1015 GeV

�
106.75
g�ρðTRHÞ

�
1=4

�
r�

0.036

�
1=4

×

�
PRðk�Þ
2 × 10−9

�
1=4

; ð3:2Þ

where g�ρðTRHÞ is the effective number of relativistic
species upon thermalization, r� the tensor-to-scalar ratio
andPRðk�Þ the curvature power spectrum CMB scales, and
we considered the BICEP2 bound r� < 0.036 [24]. This
upper bound on the temperature restricts considerably the
viable parameter space of our particle physics models of
DM and baryon asymmetry generation.
However, it is possible that after the inflaton decay the

evolution of the Universe could have been episodic with
additional reheating events. In particular, if a late injection
of entropy takes place during the pre-BBN cosmic evolu-
tion, the results obtained in the previous sections can be
essentially modified as we demonstrate below.

A. The fluid system of radiation
and a scalar condensate

In many theories beyond the SM there generically exist
scalar fields with rather flat potentials and very weak or
gravitationally suppressed interactions. These fields might
never be in thermal contact with the plasma and decay
slowly. Well-known examples are given by the moduli
fields, predicted by stringy setups, which may have
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important cosmological implications [25–29]. An early
matter domination era has been studied in many different
contexts, see e.g. [22,23,30–34]. Let us call X a scalar
field of this sort. If the X-scalar potential is approxi-
mately quadratic about its minimum, it begins to oscillate
when mX ∼H, which corresponds to temperatures
T ∼ ðmXMPlÞ1=2, and acts effectively as a pressureless
scalar condensate. For MPl-suppressed interactions the X
field decays at late times Γ−1

X ∼ ðM2
Pl=m

3
XÞ and for suffi-

ciently large mX there is no conflict with the BBN
predictions. For typical initial displacements of the X field
an early matter domination era (EMD) can be realized.
In particular, the energy density of a coherently oscillat-

ing scalar about the minimum of an effectively quadratic
potential scales in the same way as pressureless matter,
ρX ∝ a−3, and redshifts slower than the background radi-
ation plasma. We suppose that at the cosmic time tdom;X ≳
m−1

X this scalar temporarily dominates the energy density of
the early Universe until it decays, at tdec;X, reheating the
Universe for a second time at the temperature Tdec;X. This
transient EMD era dilutes any preexisting abundances of
the relativistic degrees of freedom by the amount

ΔEMD ≡ Sfinal
Sinitial

≈
Tdom;X

Tdec;X
; ð3:3Þ

where Sinitial and Sfinal denote the comoving entropy of
the Universe at times well before (t ≪ tdec;X) and after
(t ≫ tdec;X) the decay of the X field. Note that ΔEMD ≈
ðρdom;X=ρdec;XÞÞ1=4.
In order to incorporate this interfering process in our

analysis, we assume a universe initially dominated by
radiation where freeze-in DM and baryon asymmetry are
produced. We also assume the presence of the aforemen-
tioned scalar field X. The X decay enriches the radiation
fluid and the evolution of the cosmological background is
described by the system of equations,

dρX
dÑ

¼ −3ρX −
ΓX

H
ρX ð3:4aÞ

dρrad
dÑ

¼ −4ρrad þ ð1 − BDMÞ
ΓX

H
ρX ð3:4bÞ

dρDM
dÑ

¼ −4ρDM þ BDM
ΓX

H
ρX ð3:4cÞ

dH

dÑ
¼ −

1

2HM2
Pl

�
ρX þ 4

3
ρDM þ 4

3
ρrad

�
; ð3:4dÞ

where dÑ ¼ dðln aÞ ¼ Hdt is the differential of the e-folds
number. We assume that X decays symmetrically into SM
particles and that the branching ratio of X into DM
particles, BDM ≡ BrðX → DMÞ, is vanishing. For BDM ¼
0 the above system can be effectively reduced to a system

of two interacting fluids, the scalar field X and the
radiation. Our DM particle is relativistic, albeit not in
thermal equilibrium, and its energy density only redshifts
with time and is not sourced by the X decay,
BDMΓXρX=H ¼ 0. The result of the interchange in the
energy density among the different components is that the
early produced freeze-in DM abundance and lepton asym-
metry are diluted by an amount ΔEMD at later cosmic
times t > Γ−1

X .
Figure 2 depicts the evolution of this two-fluid system

for an illustrative scenario where the scalar X dominates the
energy density of the Universe for about ÑEMD ∼ 12 e-folds
after choosing the value ΓX=H ¼ 10−8 for the scalar
condensate fluid at the moment of early matter-radiation
equality that results in a dilution of size ΔEMD ∼ 104. The
X-condensate fluid is responsible for an early matter
domination phase after the freeze-in processes of the
DM and lepton asymmetry production ceased and when
it decays away it reheats the Universe for a second time.

B. The viable parameter space in the scenario
with late entropy production

The viable parameter space of our microscopic models
is, first of all, constrained by the inferred present-day
baryon asymmetry YB ¼ ð8.71� 0.06Þ × 10−11 and the
DM cosmic abundance ΩDMh2 ¼ 0.1200� 0.0012 [35].
Furthermore, there are cosmological constraints on the DM
mass value arising either from the possibility of DM
thermalization or from large-scale structure formation
considerations. Concretely, throughout our analysis we
assume that the DM particles never reach thermal

FIG. 2. The evolution of the energy densities of two interacting
fluids, radiation (red) and a scalar field X (blue), with respect to
the e-folds number Ñ, normalized by the energy density at the
moment of X domination (Ñ ¼ 0). With a dashed line we depict
the evolution of the radiation energy density in the absence of X
decays and with a dot-dashed the radiation component produced
from the out of equilibrium X decay. The figure illustrates a
scenario where the scalar condensate domination lasts ÑEMD ∼ 12

e-folds and realizes a dilution of size ΔEMD ∼ 104.
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equilibrium with the SM thermal bath, whereas they are
found to decouple from the plasma while they are still
relativistic.
Given these remarks, the nonthermalization requirement

is satisfied if the number density of DM lies below its
would-be equilibrium value during the period in which its
interactions were sizeable. That is, for the period close to
the reheating temperature we impose the constraint

YDM < Yeq
DM; ð3:5Þ

otherwise the freeze-in assumption breaks down. Assuming
that the DM particles saturate the entire DM content of the
Universe, i.e., Ωh2 ≈ 2.8 × 108YDMðmDM=GeVÞ, Eq. (3.5)
yields

mDM > 0.17ΔEMD keV: ð3:6Þ

Structure formation bounds are related to the fact that the
DM particles have a mass at the keV range and decouple
when relativistic. Observations favor DM candidates that
assist the formation of structures in the Universe, which
would be hampered if the free-streaming length of the DM
particles is too large. The strongest constraints come from
Lyman-α forest observations, which impose restrictions
on the momentum of the particles created and on their
redshift at relevant time scales. Assuming a pure radiation-
dominated universe, this imposes a lower bound on the
freeze-in DM mass mDM ≳mLy−α, where mLy−α ≈
4ð4.6Þ keV in the d ¼ 5ð6Þ case [36]. If, however, entropy
is injected in the plasma, the momentum of the DMparticles
redshifts faster than the temperature of the plasma by a factor
Δ1=3

EMD.We therefore expect the mass constraint to be relaxed
by a similar factor.1 That is, the constraint becomes

mDM ≳mLy−αΔ
−1=3
EMD: ð3:7Þ

Note that by increasing the dilution sizeΔEMD the Lyman-α
lower bound (3.7) on the DM mass becomes weaker,
whereas the thermalization bound (3.6) becomes stronger.
ForΔEMD ≳ 10ðmLy−α=4 keVÞ3=4 the thermalization bound
is the one that becomes the most restrictive one, both for the
d ¼ 5 and for the d ¼ 6 case.
Lastly, let us briefly comment on the fact that the decays

of the surviving (post-freeze-out) Fi particles should not
disrupt the formation of light elements in the Universe.
Such BBN constraints, which essentially impose restric-
tions on the allowed combinations of ðmF;ΛÞ, were
discussed in some detail in [9]. Given the fact that, as
we will see in what follows, an early matter domination
phase allows for lower values of Λ, i.e. faster Fi decay

rates, this constraint is easily satisfied within the context
discussed in the present paper.

1. Dimension-5 operator and late entropy production

In [9] it was shown that the viable parameter space found
after a full numerical solution of Eq. (2.4) could be
determined to a very good approximation by a few fairly
simple analytical formulas. In the scenario that we consider
here, in which entropy is injected in the plasma after the
generation of the DM and lepton asymmetry, these expres-
sions are reformulated as

Λ ≈ 2 × 1016 GeV
ðjλ1j2 þ jλ2j2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjκjjλ1jjλ2j2ðjλ1j2 − jλ2j2Þ sinðΔϕÞj
p

×

�
mφ

10 keV

�
2

Δ−3=2
EMD ð3:8aÞ

TRH ≈ 3 × 1015 GeV
ðjλ1j2 þ jλ2j2Þ3

jjκjjλ1jjλ2j2ðjλ1j2 − jλ2j2Þ sinðΔϕÞj

×

�
mφ

10 keV

�
3

Δ−2
EMD; ð3:8bÞ

where Δϕ≡ ϕ1 − ϕ2 − ϕ3 and ϕ1;ϕ2;ϕ3 are the phases of
the couplings λ1, λ2 and κ, respectively. Since the parameter
ΔEMD can take values within a range that spans many orders
of magnitude, we expect a significant modification of the
viable parameter space compared to the case of pure
radiation domination. Alternatively, we can treat TRH as
free and constrain mDM, using mφ ¼ ΩDMρc=ðYφðT0Þs0Þ
and Eq. (2.2) with n ¼ 1, as

mφ ≈ 10 keV

�
Λ

2 × 1016 GeV

�
2
�
3 × 1015 GeV

TRH

�

×
ΔEMD

ðjλ1j2 þ jλ2j2Þ
: ð3:9Þ

Our results are presented in Fig. 3. In the left-hand side
panel, we show the viable parameter space in the ðΛ; TRHÞ
plane for the benchmark choice of parameters jλ2j ¼ 1,
jκj ¼ 1 and jΔϕj ¼ π=2, with all other model parameters
being varied freely. The different color regions correspond
to different values for the dilution factor ΔEMD, whereas the
solid line depicts the limit TRH < Λ, above which the use of
effective field theory becomes unjustified and knowledge
of the full UV completion of our theory would be required.
In the right-hand side panel, our results are projected on the
ðΛ; mφÞ plane.
We see that the available parameter space turns out to

behave fairly nontrivially for increasing values of the
dilution parameter ΔEMD. As expected, assuming no
entropy is injected in the plasma (ΔEMD ¼ 1, blue region),
our results match the ones presented in [9]. As ΔEMD

increases to values 5, 500 and 104 (gray, magenta and red
1This estimate is corroborated by the findings of [37], in which

a different method was employed.
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regions, respectively), lower values of Λ (or alternatively,
higher values of the DM mass) and TRH become possible,
since DM can be largely overproduced initially and
subsequently diluted. Interestingly, however, this does
not happen in a monotonous manner (i.e. each subsequent
region is not just broader than the former one). This is due
to the interplay of two factors: first, and focusing on the
left-hand side panel of Fig. 3, it is important to keep in mind
that the asymmetry generated in the SM lepton sector also
undergoes dilution and, hence, for a fixed value of TRH,
lower values of Λ are required for successful baryogenesis.
As this trend continues for increasing ΔEMD, Λ starts
approaching the limit of TRH, which is a limiting value
for our EFT-based analysis. In other words, the allowed
parameter space in the ðΛ; TRHÞ plane gets squeezed
towards line TRH ¼ Λ.
The allowed values of the DM mass, on the other hand,

behave much more as expected: keeping all other param-
eters constant, larger dilution factors can be compensated
by larger values of the DM mass in order to saturate the
Planck data bounds. A large part of the available parameter
space corresponds to rather small values for the dilution
factor, which is an outcome of the DM nonthermalization
condition. Note that the green hatched area in Fig. 3(b)
indicates the full available parameter space once ΔEMD is
allowed to vary continuously between 1 and ∼104.
In summary, for moderate Oð1 − 102Þ values of ΔEMD

the allowed parameter space increases whereas for
much higher values ≳Oð104Þ one starts approaching the

limitations of an EFT-based analysis. The DM mass is
always allowed, or even required, to take larger values with
respect to the case of a standard thermal history.

2. Dimension-6 operator and late entropy production

In the case of a dimension-6 operator, when a late
entropy production takes place, the corresponding expres-
sions that constrain the energy scale of the EFT and the
reheating temperature are reformulated as follows:

Λ≈7.8×1014 GeV
ðjλ1j2þjλ2j2Þ4

ðjjκjjλ1jjλ2j2ðjλ1j2− jλ2j2ÞsinðΔϕÞjÞ3=2

×

�
mχ

10 keV

�
4

Δ−5=2
EMD ð3:10aÞ

TRH ≈ 7 × 1013 GeV
ðjλ1j2 þ jλ2j2Þ5

jjκjjλ1jjλ2jðjλ1j2 − jλ2j2Þ sinðΔϕÞj2

×

�
mχ

10 keV

�
5

Δ−3
EMD: ð3:10bÞ

Similarly to the d ¼ 5 case, the value of the DM mass,
mχ , can be expressed in terms of ΔEMD as

(a) (b)

FIG. 3. (a) The allowed parameter space for the d ¼ 5 model in the ðΛ; TRHÞ plane. The parameter space is saturated for ΔEMD ≈
3.7ðmLy−α=keVÞ3=4 due to the thermalization of DM; i.e., as more entropy is injected in the plasma, the parameter space starts to be
pushed towards the limiting line TRH ¼ Λ and becomes smaller. This results in an absolute upper bound ΔEMD ≲ 4 × 104 (for jλ2j ¼ 1).
(b) The allowed parameter space in the ðΛ; mφÞ plane. Here, larger values of ΔEMD lead to a decrease of the allowed area, but for
increased values of the DM mass. The green hatched area indicates the full parameter space allowed for all values of ΔEMD.
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mχ ≈ 10 keV

�
Λ

7.8 × 1014 GeV

�
4
�
7 × 1013 GeV

TRH

�
3

×
ΔEMD

ðjλ1j2 þ jλ2j2Þ
: ð3:11Þ

Our results are presented in Fig. 4. Once again, in the
left-hand side panel we show the viable parameter space in
the ðΛ; TRHÞ plane for the benchmark choice of parameters
jλ2j ¼ 1, jκj ¼ 1 and jΔϕj ¼ π=2. Again, the different
color regions correspond to different values for the dilution
factor ΔEMD, whereas the solid line depicts the limit
TRH < Λ. In the right-hand side panel our results are
projected on the ðΛ; mχÞ plane.
The general qualitative trend is identical to the dimen-

sion-5 case, with the allowed ðΛ; TRHÞ parameter space
increasing for moderate values of the dilution factor and,
eventually, getting squeezed towards the limit Λ ¼ TRH.
Higher values of the DM mass become available, or even
necessary, depending on the exact value of ΔEMD.

IV. THE PARAMETER SPACE OF OUR EFTs
AND THE INFLATIONARY OBSERVABLES

As we saw, our two models for the simultaneous
generation of the baryon asymmetry and dark matter are
sensitive to the cosmic thermal history. They require rather
large initial temperatures for the thermal plasma,
TRH ≳ 1013 GeV, in the case of pure radiation domination,
albeit smaller temperatures, TRH ≳ 108 GeV, become pos-
sible in the case of dilution through late entropy injection.
The precise range of the allowed temperatures changes with
the dimension of the effective operator. This observation is

extremely important because, as we will show in what
follows, once supplemented with a specific inflationary
hypothesis the two cases can yield distinct predictions in
terms of inflationary observables.

A. Inflationary e-folds and the dilution size

Inflation is the leading paradigm for the explanation of
the origin of the primordial density perturbations that grew
into the CMB anisotropies. The Planck mission has con-
strained the spectral index of the two-point correlation
function of the primordial scalar perturbation to be ns ¼
0.9649� 0.0042 (68% CL) and the tensor-to-scalar ratio to
r < 0.1 [38]. More recently BICEP2 presented the bound
r < 0.036 (95% CL) at k ¼ 0.05 Mpc−1 [24] and, future
CMB-Stage 4 experiments [39] will have the sensitivity to
detect a r > 0.003 signal. Additionally, experiments such
as EUCLID [40] and cosmic 21-cm surveys [41,42] will
have the capacity to achieve a precision of 10−3 in the
value of ns and further constrict the existing observational
bounds.
In this era of precision cosmology, the dependence of the

inflationary predictions on the number of e-folds becomes
increasingly important. The fact that the e-folds number is
associated with the details of the reheating stage implies
that the value of reheating temperature of the Universe can,
potentially, be tested [20–23,43–46]. The reheating temper-
ature is a crucial parameter for UV-sensitive freeze-in DM
and baryogenesis scenarios such as the ones we examine
here. For these reasons, a study of DM production and
baryogenesis in conjunction with the inflationary dynamics
can be a powerful strategy to explore the physics of the
early Universe [47].

(a) (b)

FIG. 4. The viable parameter space for the d ¼ 6 case, projected on the (a) ðΛ; TRHÞ and (b) ðΛ; χÞ planes. All color codes are identical
to the ones in Fig. 3.
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By specifying the reheating stage the uncertainty in the
number of e-folds is raised and the inflationary predictions
are localized around a spot on the (ns; r) contour.
Therefore, benchmark TRH values required for our models
to be viable can be tested together with specific inflationary
models. Let us recall the basic expressions that relate
the inflationary observables with the reheating stage. The
observable number of e-folds N� is defined as

N� ≡
Z

tend

t�
dtH ¼ lnðaend=a�Þ; ð4:1Þ

where t� denotes the moment that the observable (pivot)
scale exits the Hubble radius and tend the moment that
inflation ends. Inflation theory predicts a relation between
N� and the postinflationary number of e-folds. Assuming a
single reheating stage, one finds the expression [19,38]

N� ≈ 67 − ln

�
k�

a0H0

�
þ 1

4
ln

�
V2�

M4
Plρend

�
−
1 − 3w̄RH

4
ÑRH

−
1

12
lnðg�RHÞ; ð4:2Þ

where ÑRH ¼ lnðaRH=aendÞ ¼ lnðρend=ρRHÞ=ð3þ 3w̄RHÞ
stands for the e-folds number of the postinflationary
reheating period and w̄RH ¼ hpi=hρi is the averaged
effective equation of state for a coherently oscillating
inflaton field, given by the ratio of the average pressure
over the average energy density [48].
The transient scalar domination era introduced in Sec. III

alters the standard cosmological scenario of a smooth and
continuous radiation domination era that follows inflation.
In particular, it modifies the relation between the observ-
able CMB pivot scale k� and the comoving curvature scale
of our present Universe as

k�
a0H0

¼ a�
aend

aend
aRH

aRH

�
1

adom;X

adom;X

adec;X

adec;X
1

�
1

aeq

aeqHeq

a0H0

H�
Heq

;

ð4:3Þ

where the subscripts refer to the epoch of the radiation-
matter equality (eq), the present time (0), the time that the
CMB pivot scale (*) exits the horizon and the end of
inflation (end). The parenthesis in the relation (4.3) is the
modification introduced by the transient scalar domination
phase and changes the N� relation (4.2) as follows:

1 − 3w̄RH

4
ÑRH →

1 − 3w̄RH

4
ÑRH þ 1

4
ÑEMD; ð4:4Þ

where ÑEMD ≡ lnðadec;X=adom;XÞ. We assume w̄X ≈ 0 for
the scalar field domination phase, i.e. a scalar condensate,
and so ÑEMD ≈ 1

3
ln ðρdom;X=ρdec;XÞ ≈ 4

3
lnðTdom;X=Tdec;XÞ

modulo a possible change in the thermalized degrees of

freedom. Therefore, the dilution size (3.3) has an expo-
nential dependence on the duration of the transient scalar
domination

ΔEMD ≈ exp

�
3

4
ÑEMD

�
: ð4:5Þ

What is of particular interest is that the transient scalar
domination induces a shift of the N� value by the amount
δN� ≈ −ÑEMD=4,

N� ¼ NðthÞ þ δN� ≈ NðthÞ −
1

3
lnðΔEMDÞ: ð4:6Þ

This shift is understood as a deflection from a reference
value that we call thermal reference value NðthÞ, that is the
e-folds number value if there were no late entropy
production after the inflaton decay. Taking, now, into
account the effect of the dilution the inflationary e-folds
are given by the expression

N� ≈ 67 − ln

�
k�

a0H0

�
þ 1

4
ln

�
V2�

M4
Plρ

1þγRH
end

�

þ γRH ln

�
TRH

Δ1=ð3γRHÞ
EMD

�
; ð4:7Þ

where γRH ≡ ð1 − 3w̄RHÞ=ð3þ 3w̄RHÞ and we have omitted
the minute γRH lnðπ2=30Þ=4 and ð3γRH − 1Þ lnðg�RHÞ=12
terms. A common assumption for the equation of state
during reheating is w̄RH ¼ 0, that corresponds to γRH ¼ 1=3.
For the two models presented in Sec. III, the reheating

temperature can be expressed as a function of the
parameters of each model and the dilution size. We get
respectively,

(i) Dimension-5 operator:

N� ¼ N123 þ γRH ln

�
F5ðλ1; λ2; κ;ΔϕÞ

Δ2þ1=ð3γRHÞ
EMD

�

þ 3γRH ln

�
mφ

10 keV

�
; ð4:8Þ

(ii) Dimension-6 operator:

N� ¼ N123 þ γRH ln

�
F6ðλ1; λ2; κ;ΔϕÞ

Δ3þ1=ð3γRHÞ
EMD

�

þ 5γRH ln

�
mχ

10 keV

�
; ð4:9Þ

where N123 stands for the sum of the first three terms in the
rhs of Eq. (4.7) and its numerical value can be found after
substituting k� ¼ 0.002 Mpc−1, H0 ≈ 1.4 × 10−33 eV and
lnð1010AsÞ ¼ 3.089. The function F5 can be read off from
Eq. (3.8) and F6 from Eq. (3.10), respectively, and gives the
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TRH value in GeV for mφðχÞ ¼ 10 keV and ΔEMD ¼ 1. The
above equations express the inflationary e-folds numbers as
a function of the underlying inflation dynamics and the
dilution size ΔEMD. Also, there is an implicit dependence
on the parameters of each microscopic model. In the simple
case where the parameters λ1, λ2 and κ had fixed values, N�
would depend only on the dilution size and for a specific
inflationary model an analytic result could be obtained.
In Fig. 5 we show the available parameter space in the

ðΛ; N�Þ plane, for the dimension-5 and 6 operators respec-
tively, after performing a scan of the viable parameter space
for benchmark λ2, κ and Δϕ values and allowing λ1 to vary.
We have also assumed fiducial values for the relevant
parameters of the underlying inflationary dynamics,
r� ¼ 10−3, V�=ρend ¼ 10 and w̄RH ¼ 0. A ballpark relation
for the Λ − N� scaling is N� ∼ logΛþ 44 with N� > 57
for the case of a dimension-5 operator and N� > 54 for
dimension-6 case. Remarkably, we see that an inflationary
observable can in principle constrain the dimensionality of
the underlying EFT operator responsible for generation of
DM and the baryon asymmetry of the Universe, at least for
the minimal cases considered here.
A more specific Λ − N� parameter space can be obtained

if a particular inflationary model is chosen. By doing so we
can test in more detail which inflationary model matches
best with our microscopic EFT constructions. In the
following, and trying to be as concise as possible, we
proceed with a generic illustrative analysis to examine
the implications of our EFT models to the predictions of
some commonly discussed inflationary potentials. With
this combined analysis a connection with CMB observables
is made possible.

B. The shift in ns and r due to late
entropy production

The N� by itself is an observable quantity only through a
particular ns ¼ nsðNÞ relation. Quite generally, at leading
and next-to-leading order the scale dependence of the
spectral index can be written as (see e.g. [49,50])

nsðkÞ ≈ 1 −
αðNÞ
N

þ βðNÞ
N2

; ð4:10Þ

where the e-folds N and the scale k are related through
the horizon crossing condition k ¼ aH as lnðkend=kÞ ¼
N þ lnðHend=HÞ. However, there is no common expression
for the functions αðNÞ and βðNÞ and the possible shift of
the spectral index can be tested only within specific
models of inflation. The exact expression for the spectral
index value is given by the Hubble-flow parameters,
ϵnþ1 ¼ d ln jϵnj=dN, and at leading order it is

ns ¼ 1 − 2ϵ1� − ϵ2� þOðϵ2Þ: ð4:11Þ

The spectral index shift is δns ≈ −αsδN, where αs ≡
dns=d ln k is the running of the spectral index, and in
terms of the dilution size it reads

δns ≈
αs
3
lnðΔEMDÞ: ð4:12Þ

This expression depends on the Hubble-flow parameters
and differs from one model to another. Generically, though,
the minimal inflationary models typically predict αs < 0
[or αðNÞ > 0 in Eq. (4.10)], which means that the spectrum
tilt becomes more red when dilution of the radiation plasma

(a) (b)

FIG. 5. The Λ − N� relation for the case of a dimension-5 (a) and dimension-6 (b) EFT operator assuming fiducial values for the
underlying inflationary parameters. The green hatched region indicates, again, the full available parameter space.
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takes place. Let us also point out that there is also a shift in
the tensor-to-scalar ratio, albeit the tensor spectrum has not
been detected yet.
Next, we consider specific models of inflation in order to

quantify and demonstrate the impact of our simple micro-
physical scenarios on the inflationary observables. We
choose four minimal and effectively single field models
of inflation which are representative enough for our
purposes and at the same time capture the main character-
istics of several concrete models.

1. Specific models of inflation

Each inflation model yields a particular nsðNÞ expres-
sion. Here we will express in an informative way the shift in
the spectral index, δns, due to a pre-BBN dilution of the
thermal plasma, for four broad classes of models. We will
use Eq. (4.12) that gives the difference from the spectral

index thermal value, nðthÞs ¼ nsðNðthÞÞ, where NðthÞ depends
on the reheating temperature and on the intrinsic infla-
tionary dynamics. The δns value is a measure of the EMD
duration and enables us to select the parameter space of our
EFT and vice versa. For a favorable reheating temperature

and inflationary model the nðthÞs value can be calculated and
the difference from the observable value δns implies a
ΔEMD which in turn, according to the information that can
be read off from Figs. 3(a) and 4(a), selects a value Λ for
our EFT operators. Of course this argument can also be
used the other way round and, assuming specific under-
lying particle dynamics, concrete inflationary models can
be favored or disfavored. In the rest of this subsection we
will set MPl ¼ 1.
Large field models. They are characterized by a single

monomial potential VðϕÞ ¼ M4−pϕp where p is a pos-
itive number [51–53]. The Planck data disfavor this sort
of inflationary model unless p≲ 1. The first and
second Hubble-flow parameters read ϵ1� ¼ p=ð4N� þ pÞ,
ϵ2� ¼ 1=ðN� þ p=4Þ and from Eq. (4.12) the nsðNÞ rela-
tion is obtained with αs ≈ −ð2þ pÞ=ð2N2Þ. According to
Eq. (3.3) it is ÑEMD ≈ 4

3
lnðΔEMDÞ and δN� ≈ −ÑEMD=4

hence, for this class of models, we find the spectral index
shift

δns ≈ −
4

3
10−4

�
1þ p

2

��
50

NðthÞðTRHÞ

�
2

lnðΔEMDÞ ð4:13Þ

from the thermal value nðthÞs ¼ ð4NðthÞ − p − 4Þ=
ð4NðthÞ þ pÞ. From Eqs. (4.2) and (4.12), and for concrete

values of p, w̄RH and TRH, the values of NðthÞ and nðthÞs can
be computed.
Small field models. This is the class of potentials in

which inflation starts from small field values φ ≪ MPl. The
most characteristic example, called also hilltop, is when
the inflaton is rolling away from an unstable maximum of

the potential [54,55]. The typical potential is VðϕÞ ¼
M4½1 − ðϕμÞp�. The first and second Hubble-flow para-

meters are ϵ�1 ¼ p2

2μ2
ðN�pðp − 2Þ=μ2Þ−2ðp−1Þ=ðp−2Þ and

ϵ�2 ¼ 2ðp − 1Þ=ððp − 2ÞN�Þ. We consider values for the
parameters μ ≲MPl and p > 2. It holds that ϵ�1 ≪ ϵ�2, that
is, the tensor modes are much more suppressed compared
to large field models. The running of the spectral index is
αs ≈ −2N−2� ðp − 1Þ=ðp − 2Þ, hence, for these models the
spectral index shift from the thermal value is

δns ≈ −
8

3
10−4

�
1þ 1

p − 2

��
50

NðthÞðTRHÞ

�
2

lnðΔEMDÞ;

ð4:14Þ

where nðthÞs ≈ 1–2ðp − 1Þ=ððp − 2ÞNðthÞÞ.
Besides, negative p values also amount to phenomeno-

logically and theoretically well-motivated inflationary
potentials; see Refs. [56,57] and references therein.
Contrary to hilltop models here the field rolls down from
large to small ϕ values and such setups are frequently
referred to as inverse hilltop models. The first and second
Hubble-flow parameters, the running and the shift of the
spectral index can be read off the previous formulas, with
the replacement p → −p. Accordingly, the thermal value

for the spectral index is nðthÞs ≈ 1–2ðpþ 1Þ=ððpþ 2ÞNðthÞÞ
which is larger than the nðthÞs predicted by hilltop models for
the same NðthÞ number.
R2-type=α-attractors plateau potentials. A potential

fully consistent with the Planck data constraints has a
plateau with a mild slope given by the general expression

VðϕÞ ¼ M4ð1 − e−
ffiffiffiffiffiffiffiffiffiffi
2=ð3αE

p
ÞϕÞ2nE . This potential is the

α-attractors E model in the Einstein frame [58,59]. For
nE ¼ 1 and αE ¼ −1=9 in the inflaton potential we get the
Linde-Goncharov model [60]. The case nE ¼ 1 and αE ¼ 1

is known as the Starobinsky or R2 potential [61], where ϕ is
a gravitational scalar. It can be also derived in the
framework of different theories, as for example α attractors
[58,62] and Higgs inflation [63] in which ϕ has unsup-
pressed interactions and decay rate. At leading order
the first Hubble-flow parameter is ϵ1� ¼ ð3=4Þ=N2� and
the running of the spectral index is αs ¼ −2=N2þ
ð0.11þ 3 lnðNÞÞ=N3. Hence for the Starobinsky-type pla-
teau of models the spectral index shift is at leading order

δns ≈ −
8

3
10−4

�
50

NðthÞðTRHÞ

�
2

lnðΔEMDÞ ð4:15Þ

from the thermal value nðthÞs ≈ 1–2=NðthÞ þ ð0.81þ
1.5 lnðNðthÞÞÞ=ðNðthÞÞ2. The logarithmic correction to δns
is 1 order of magnitude smaller and, thus, neglected here.
The above expressions help us to demonstrate at a

quantitative level that the combined examination of
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inflation together with a given microscopic model for DM
and baryon asymmetry generation (in our case, through
minimal dynamics described by d ¼ 5 and d ¼ 6 oper-
ators), potentially supplemented by an early matter
domination epoch, provides a promising strategy for model
selection.

2. Observational implications

The observational uncertainty of the early state of the
Universe for temperatures T ≳ 5 MeV ∼ TBBN [18] implies
a significant uncertainty on the inflationary e-folds of size
jδN�j≲ 15. This uncertainty is partitioned between ÑRH

and ÑEMD, see Eq. (4.4). In our models, the former is quite
small because of the large reheating temperatures required.
It is TRH ≳ 1012 GeV for a dimension-5 operator and
TRH ≳ 108 GeV for a dimension-6 operator, thus the
uncertainty in ÑRH is constrained to be ð1 − 3w̄RHÞÑRH=
4≲ 2–4. The latter uncertainty is associated with the
dilution size. Typically, our models require a dilution size
of order ΔEMD ≲ 104 and we expect a distinct negative shift
in the e-folds number jδN�j≲ 4.
In principle, for a complete and predictable inflationary

model the mean equation of state during reheating and the
inflaton decay rate can be estimated and, thus, the uncer-
tainty in ÑRH is lifted. The most notable example is that of
the Starobinsky inflation model, where the inflaton is a
homogeneous condensate of scalar gravitons after the end
of the inflationary expansion. It decays with Planck-
suppressed interactions and the e-folds number is estimated
without uncertainty to be N� ¼ NðthÞ ¼ 54. Hence, the

thermal index value is nðthÞs ¼ 0.965. The predictability of
the Starobinsky model makes it ideal for combined studies
with DM/baryogenesis production scenarios. This has been

done in Ref. [23] in the framework of the supergravity
Starobinsky model.
Note that the inflationary models that we presented in

Sec. (IV B 1) are incomplete in terms of reheating: the large
field monomial modes (4.13) for p≲ 1 do not feature a
smooth potential minimum, while the hilltop and inverse
hilltop models also require a low-energy completion of their
potential in order to end inflation.Weassumehere that during
reheating the inflaton experiences a quadratic potential
which is the lowest order term in a Taylor expansion about
the origin, hence w̄RH ≈ 0. Reheating lasts for a period
roughly Γ−1

inf where Γinf is the inflaton decay rate.
In Fig. 6(a) the ns value for four types of inflationary

models and for the d ¼ 5 case is depicted when a dilution
of size ΔEMD ≤ 104 takes place. For ΔEMD ¼ 1 we recover

the nðthÞs value, while for ΔEMD > 1 there is a δns shift
according to Eqs. (4.13), (4.14), and (4.15). The size of
each band is determined by the range of the reheating
temperatures, 1012 GeV≲ TRH ≲ 5 × 1015 GeV. Note that
not all the area of the band is permitted and Fig. 5(a) must
be read alongside Fig. 6(a). For a benchmark reheating

temperature value TRH the nðthÞs can be calculated, while for
a benchmark Λ value a ΔEMD value is selected and,
together, from the information contained in Fig. 6(a) the
ns value can be inferred. Hence, when the results depicted
in Fig. 5(a) are combined with those of Fig. 6(a), the energy
scale of our EFT can be interrelated with the ns observable.
A similar analysis is performed for the d ¼ 6 case as well.
A concrete observational implication of our analysis is

that, according to the findings presented in Fig. 5, the d ¼ 5
and d ¼ 6 cases can give rise to distinct predictions, at least
for some part of the available parameter space, since the
d ¼ 5 case is not compatible with a fiducial inflationary
model that yields N� below a certain value whereas for

(a) (b)

FIG. 6. (a) The ns value for four types of inflationary models and a dilutionΔEMD ≤ 104. The reheating temperature range is that of the
d ¼ 5 case, 1012 < TRH < 5 × 1015 (solid and dashed lines respectively). (b) The range of the allowed ðns; rÞ values for five types of
inflationary models when combined with our d ¼ 5 and d ¼ 6 EFT models. The blue part segment is compatible only with the d ¼ 6
case corresponding to a fermionic DM candidate, while the orange segment with both the d ¼ 5 and d ¼ 6 scenarios. The pink colored
contours are the marginalized joint 68% and 95% CL regions from Planck results [38].
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the d ¼ 6 case lower values are possible. Therefore, the
CMB data can indeed inform microscopic realizations of
UV-dominated freeze-in baryogenesis once these are sup-
plemented by a concrete inflationary hypothesis.
In Fig. 6(b) we depict the corresponding range of the

possible ns and r values (colored segments) implied by our
microscopic models against the contours from Planck data
in combination with BICEP2/Keck Array BK14 data [38].
The orange part of the segments is compatible with both the
d ¼ 5 and d ¼ 6 EFT models, whereas the blue part is
compatible only with the d ¼ 6 case. In particular, for a
large field model with p ¼ 3=4 the d ¼ 5 case requires
approximately N� ≳ 55 whereas the one d ¼ 6 requires
N� ≳ 52. Accordingly, for the Starobinsky-type plateau we
get N� ≳ 56 (d ¼ 5) and N� ≳ 54 (d ¼ 6), for the inverse
hilltop model with μ ¼ 0.1MPl and p ¼ 4 N� ≳ 55 (d ¼ 5)
and N� ≳ 53 (d ¼ 6), for the hilltop model with μ ¼
0.1MPl and p ¼ 16 N� ≳ 54 (d ¼ 5) and N� ≳ 52

(d ¼ 6), and for an α-attractor model with r ¼ 10−5 we
obtain N� ≳ 56 (d ¼ 5) and N� ≳ 54 (d ¼ 6).
Our findings show that models described by large field

inflation are in better agreement with CMB constraints
when combined with our d ¼ 6 EFT scenario, whereas
models such as the hilltop match better with the d ¼ 5 case.
With future observations reaching a higher level of accu-
racy, it might be possible to discriminate further between
different inflationary models and probe the details of the
pre-BBN era.

V. SUMMARY AND CONCLUSION

In this paper we studied the implications of an early
matter-dominated cosmological era for a mechanism that
allows for the simultaneous generation of dark matter
and a viable matter-antimatter asymmetry in the Universe
through the same microscopic out-of-equilibrium (freeze-
in) processes. We considered two examples, in which these
processes are described by simple non-renormalizable
operators: in the first case the DM is a scalar produced
through a dimension-5 operator, while in the second case it
is a fermion produced through a dimension-6 one. In both
scenarios the freeze-in processes occur in the ultraviolet,
i.e. at very high temperatures, well above the BBN energy
scale. Assuming a standard cosmic thermal history, accord-
ing to which inflation was followed by an uninterrupted
radiation-dominated era, both scenarios require a very high
reheating temperature and light dark matter, close to the
Lyman-α structure formation bounds.
However, it is uncertain whether the Universe was

continuously dominated by radiation since the end of
inflation and until the BBN epoch. For example, in the
presence of exotic massive non-relativistic particles that
decay slowly, it is possible that a period of nonstandard
cosmology was realized. A typical example is that of an
EMD era that can alter the cosmological abundances of
particle species and asymmetries, once entropy is injected

in the plasma upon the decay of the exotic species. In our
freeze-in scenario the relic DM abundance and the size of
baryon asymmetry have a different scaling with temper-
ature, therefore an EMD era has a nontrivial impact on the
values of the favored reheating temperature and on the
allowed DM particle mass. In this spirit, in this work we
revisited and generalized the viable parameter space of
the two simple EFT models studied in [9] considering the
cosmological scenario of a transient EMD era.
Such a transient nonthermal era can also have a visible

imprint on CMB observables because it modifies the
cosmic expansion rate and, consequently, the rate at which
modes k reenter the horizon and the CMB-measured nsðkÞ
value. The spectral index ns and tensor-to-scalar ratio
values can be predicted in the framework of explicit
inflationary models. Although the dependence of infla-
tionary observables on the number of e-foldsN� is certainly
well known, it is not very common to study explicit particle
physics models in conjunction with inflation in such a
context.
Within our scenarios of simultaneous DM and baryon

asymmetry production, the allowed values for the reheating
temperature and the dilution size are correlated, given a
specific microphysical framework. In light of this obser-
vation, we examined the implications of these scenarios for
typical inflationary models. We computed the allowed
values for the reheating temperature and the duration of
the EMD era for the two cases of specific EFT models and
showed that, once embedded within concrete inflationary
scenarios, the CMB data can constrain these models and,
therefore, provide a phenomenological handle on construc-
tions which are, otherwise, extremely hard to test. Our
analysis demonstrates at a quantitative level that such a
unified description provides a promising, though challeng-
ing, strategy for model selection within complete scenarios
of cosmic evolution.
As a final remark let us note that such a unified

description can be further tested by a variety of remarkably
different experimental probes: from gravitational wave
experiments that could detect gravitational radiation and
probe a potential EMD era [64–66], CMB-stage 4 experi-
ments [39] that will have the sensitivity to detect a
r > 0.003, signal, and experiments such as EUCLID [40]
and cosmic 21-cm surveys [41,42] that can achieve a
precision of 10−3 in the value of ns, to particle physics
experiments that search for BSM physics and DM particles,
see e.g. [67,68].
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