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We extend the framework of analyzing the 2HDM in its orbit space to study the one-loop effective
potential before and after electroweak symmetry breaking. In this framework, we present a comprehensive
analysis of global symmetries of the one-loop thermal effective potential in the Higgs family space,
demonstrating when the global symmetries in the Higgs family space of the tree-level 2HDM potential are
broken by loop contributions. By introducing light-cone coordinates and generalizing the bilinear notation
around the vacuum, we present a geometric view of the scalar mass matrix and on-shell renormalization
conditions.
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I. INTRODUCTION

The two-Higgs-doublet model (2HDM) is a simple
extension of the SM [1]. It has received much attention
for its potential to provide new sources of CP violation and
strong first-order phase transition [2–11]. The most general
tree-level 2HDM scalar potential
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is parametrized by 14 real parameters. Here, (m2
12; λ5;

λ6; λ7) are in general complex while the others are real.
The CP conserving 2HDM, also called real 2HDM,

require all the parameters in Eq. (1) to be real with respect
to a Uð2ÞΦ basis transformation Φ0

i ¼ UijΦj. Due to the
field redefinition, the CP symmetry and other global
symmetries of the potential are hard to determine from
the parameters in Eq. (1) directly, and one of the most
efficient ways to analyze these symmetries is to use the

bilinear notation [12–17] of the 2HDM. This method
involves expressing the tree-level 2HDM potential in terms
of orbits of SUð2ÞL gauge transformations, which can be
combined to form a four-vector,

�
K0; K⃗

� ¼ Kμ ¼ Φ†
i σ

μ
ijΦj; ðμ ¼ 0; 1; 2; 3Þ: ð2Þ

In this notation, the Uð2ÞΦ basis transformation of the
Higgs doublets corresponds to a SOð3ÞK rotation of the
three space-like components of this four-vector, while CP
transformations correspond to improper rotations in these
three dimensions [11].
The bilinear notation serves as a convenient tool for

examining the symmetries and vacuum conditions of
2HDM. However, its applications are usually restricted
to tree-level potential and global structures. In this work,
we establish a complete framework for discussing the
2HDM potential, by extending the bilinear notation of the
2HDM to address the properties of physical fields around
the vacuum and one-loop effective potential including re-
normalization. Recently, it is shown in Refs. [18,19] that
the bilinear notation can be extended to Yukawa couplings,
making it possible to express the 2HDM effective potential
including fermion loop contributions in the bilinear nota-
tion [18]. With this approach, we express the effective
potential entirely as a function of gauge orbits, and
systematically analyze the possible global symmetries of
the effective potential. We generalize the bilinear notation
to discuss physical fields after electroweak symmetry
breaking (EWSB), and provide a geometrical description
of scalar masses based on the light-cone coordinates in the
orbit space. We demonstrate that the scalar mass matrix
can be viewed as a Hessian matrix between two hyper-
surfaces in the orbit space. Additionally, we translate the
renormalization conditions in the field space into a set of
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geometrical conditions in the orbit space. Then numerous
redundant renormalization conditions [20] that depend on
the selection of background fields can be avoided. After the
on-shell renormalization, we give a comprehensive effec-
tive field theory description of one-loop 2HDM effective
potential for the first time.
In the rest of this paper, we first review the global

symmetries of the tree-level 2HDM potential in the bilinear
notation in Sec. II, and then examine whether these sym-
metries are preserved by one-loop corrections in Sec. III.
We explore the relationship between the orbit space and the
field space around the vacuum after EWSB in Sec. IV,
and we demonstrate how to carry out the on-shell renorm-
alization in the orbit space in Sec. V. Finally, we conclude
in Sec. VI.

II. BASIS INVARIANT DESCRIPTION
OF GLOBAL SYMMETRY

The basis and CP transformations of the Higgs doublets
and the global symmetries of 2HDM potential in the
bilinear notation are originally introduced in Refs. [12–17].
Our work is based on their framework, and we give a brief
introduction in this section. If a 2HDM potential is invariant
under some basis or CP transformations, then it possesses
the corresponding symmetries. The bilinear notation is
convenient to discuss these global transformations, because
the basis or CP transformations simply corresponds to
proper or improper rotations in the 3-dimensional space-
like part of the orbit space [10,11,13,14], and we refer this
3-dimensional subspace as K⃗ space in the following.

A. Global transformations and symmetries
in the bilinear notation

We first consider the Uð2ÞΦ basis transformations
Φi → UijΦj. It is straightforward to see from Eq. (2) that
an SUð2ÞΦ basis transformation corresponds to a rotation in
the K⃗-space,

K0 → K0; Ka → RabðUÞKb;

RabðUÞ ¼ 1

2
tr½U†σaUσb�; a; b ¼ 1; 2; 3: ð3Þ

Then we consider the CP transformation Φiðt; x⃗Þ →
Φ�

i ðt;−x⃗Þ. Because the definition of the standard CP
transformation Φi → Φ�

i will be changed if we choose
another set of basis to describe the scalar fields, e.g.,
Φ0

i ¼ UijΦj, the CP transformations in the 2HDM are
extended as [2,4,21,22]

GCP∶ Φi → XijΦ�
j : ð4Þ

Here, Xij is an arbitrary unitary matrix, and such CP
transformations are called generalized CP (GCP) trans-
formations. By plugging the GCP transformation into

Eq. (2), we find that K⃗ transforms in an improper
Oð3ÞK rotation R̄ðXÞ.

K0 → K0; Ka → R̄abðXÞKb;

R̄ðXÞ≡ RðXÞdiagð1;−1; 1Þ: ð5Þ

Here, the RðXÞ is defined in Eq. (3). Besides, for any GCP
transformation, one can always find a basisΦi so that Xij is
a real rotation matrix [21]. Therefore GCP transformations
are often classified into three cases [23,24]:

CP1∶ Φ1 → Φ�
1; Φ2 → Φ�

2; ð6Þ

CP2∶ Φ1 → Φ�
2; Φ2 → −Φ�

1; ð7Þ

CP3∶
�Φ1 → Φ�

1 cos θ þΦ�
2 sin θ

Φ2 → −Φ�
1 sin θ þΦ�

2 cos θ
; 0 < θ < π=2;

ð8Þ

where CP3 is the most general CP transformation while
CP1 and CP2 are some special case with CP12 ¼ CP22 ¼ 1
up to a global sign.
After showing that the basis and GCP transformations

correspond to Oð3ÞK rotations in the K⃗-space, we examine
the symmetries conserving conditions on the 2HDM
potential. The 2HDM potential in Eq. (1) can be written
as a function of gauge orbits [12–15],

V ¼ ξμKμ þ ημνKμKν

¼ ξ0K0 þ η00K2
0 þ ξ⃗ · K⃗ þ 2K0η⃗ · K⃗ þ K⃗TEK⃗: ð9Þ

Here, ξ⃗ parametrizes the scalar quadratic couplings while E
and η⃗ parametrize the scalar quartic couplings. As dis-
cussed above, a GCP or basis transformation corresponds
to some (improper) rotation R in the K⃗-space. If a tree-level
potential is invariant under a rotation R, i.e., VðK0; K⃗Þ ¼
VðK0; RK⃗Þ, its parameters should be invariant under the
rotation R,

ξ⃗ ¼ Rξ⃗; η⃗ ¼ Rη⃗; E ¼ RERT: ð10Þ

A complete analysis of the symmetries of the 2HDM
Lagrangian must include the Yukawa interaction, which
reads as

−LYuk ¼ Q̄Lyu;iΦ̃iuR þ Q̄Lyd;iΦidR þ H:c:; i ¼ 1; 2;

ð11Þ

for one generation of u-quark and d-quark. In this work we
concentrate on the Higgs family transformation and assume
that the quark fields do not transform under the Higgs
family transformation. Under this assumption, we can
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simplify our discussion to one generation of quarks. In
addition, yd;i and y�u;i transform like Φi under the SUð2ÞΦ
basis redefinition. Although the Yukawa coupling terms in
the Lagrangian cannot be expressed in bilinear notation
directly, it is shown that the bilinear notation can still be
extended to discuss whether the Yukawa couplings break
the global symmetries of the scalar potential [18]. This is
done by projecting the Yukawa couplings into orbit space,
and defining covariant vectors in the dual space of Kμ in
terms of the Yukawa couplings as

Yμ
u ¼ y�u;iσ

μ
ijyu;j; Yμ

d ¼ yd;iσ
μ
ijy

�
d;j: ð12Þ

In order to make sure that LYuk is invariant under the basis
transformationΦi → UijΦj or the CP transformation in the

scalar sector Φi → XijΦ�
j , the vector Y⃗ projected by the

Yukawa couplings should satisfy

Y⃗ ¼ RðUÞY⃗ or Y⃗ ¼ R̄ðXÞY⃗: ð13Þ

B. Examples of global symmetries

Next we show how to discuss some special symmetries
that is widely considered in the orbit space. We start with
two characteristic examples, the CP1 symmetry and the Z2

symmetry. The CP symmetry is often introduced to the
potential because large CP violations are prohibited by
experiments. From Eq. (5), the CP1 transformation Φi →
Φ�

i corresponds to a mirror reflection in the K⃗-space. The
Z2 symmetry is introduced to prevent the flavor changing
neutral interactions,1 and a softly broken Z2 symmetry is
often considered. From Eq. (3), the Z2 transformation
Φ1 → −Φ1 corresponds to a 2-dimensional rotation of π
in the K⃗ space.
Whether a 2HDM is invariant under the CP1 or Z2

transformation can be understood from the geometrical
profile of parameter tensor and vectors, as shown in
Eqs. (10) and (13). Without loss of generality, we use an
ellipsoid to visualize the 3 × 3 real symmetric tensor E
which possesses at least three C2 axis (principal axis) and
three symmetry planes, and we illustrate these two exam-
ples in Fig. 1. The CP1 symmetric 2HDM potential satisfies
a mirror reflection symmetry in the K⃗ space, requiring all
the parameter vectors to lie on the same reflection plane of
E. The Z2 symmetric potential is invariant under a rotation
of π in the K⃗ space. Hence the parameter vectors should
point to the same principal axis of E. As for the softly
broken Z2 symmetry, the quadratic term ξ⃗ is allowed to
break the Z2 symmetry as in Fig. 1.

Following Refs. [23,24], we list other global symmetries
in scalar family space by different geometric profile of the
scalar potential in Table I. The Uð1Þa transformation Φ1 →
eiθΦ1 corresponds to a rotation along a certain axis, the
CP2 transformation corresponds to a point reflection, and
the CP3 transformation corresponds to a point reflection
followed by an additional rotation of 0 ∼ π. The geometric
profiles show the hierarchy chain of those global sym-
metries clearly,

CP1 < Z2 <

�
CP2

Uð1Þa

�
< CP3 < Uð2Þ; ð14Þ

i.e., a Z2 symmetric tree-level 2HDM scalar potential
must satisfy CP1 symmetry and likewise. For GCP proper-
ties of tree-level 2HDM scalar potential, CP2 and CP3
symmetric conditions are more strict than CP1.2 Besides,
neither CP2 nor CP3 symmetry can be still preserved after
the Higgs field developed a nonvanishing vacuum expect-
ation value. Therefore, we will only discuss CP1 conserv-
ing (CPC) conditions and denote CP1 as CP in the
following.
At the end of this section, we would like to mention that

additional symmetry-related opportunities will appear
when we include three generations and allow the quark
fields to transform together with the scalar fields. In that
case, yd;i and y�u;i do not simply transform like Φi, and their
transformation rule is determined by how the quark fields
transform together with the scalar fields. For example, one
can construct CP2 symmetric model with nontrivial
Yukawa sector [30]. Under the CP2 transformation, instead
of transforming as a point reflection Y⃗ → −Y⃗, the vector Y⃗
transform between different families such as Y⃗m ↔ −Y⃗n,

FIG. 1. Illustration figure of parameter vectors and tensor of the
2HDM potential that obeys CP1 symmetry (left) or softly broken
Z2 symmetry (right). The ellipsoid denotes the tensor E and black
dashed lines denote its three principal axes. Red and blue arrows
denote the directions of η⃗ and ξ⃗ respectively.

1For different types of Z2 charge assignments in the orbit
space, see Table II in Appendix A 2.

2This situation is different in N-Higgs doublet model for
N > 2. A potential that does not conserve CP1 symmetry may
satisfy some higher order GCP symmetries [25,26]. For detailed
discussion of high order GCP symmetries, see Refs. [26–29]
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where m and n are family indexes. In addition, the
symmetries in Table I is a summary of the symmetries
in the Higgs family transformation only. The 2HDM
Lagrangian can have many more symmetries after consid-
ering nontrivial transformations in the fermion family. For
example, in the Z3 symmetric 2HDM [31,32], the scalar
potential is invariant under the Uð1Þ symmetry, but the
Yukawa couplings are only invariant under Z3 symmetry,
breaking the symmetry of the potential to a finite subgroup
of Uð1Þ. Instead of exploring all symmetry-related aspects
of the 2HDM Lagrangian, in this work we focus on the
transformation and symmetries in the Higgs family space.
Unless otherwise stated, the word “symmetry” in this paper
only refers to the symmetry in the Higgs family
transformation.

III. EFFECTIVE POTENTIAL AND THERMAL
CORRECTION

The global symmetries of thermal effective potential are
important in the study of the vacuum structure and CP
violation in the early universe. The use of bilinear notation
simplifies, from a geometrical perspective, the analysis of
the global symmetries of the effective potential [33,34]. In
this section, we employ the bilinear notation to evaluate the
complete one-loop effective potential, and discuss its global
symmetries.
The thermal effective potential of the 2HDM is

written as

VeffðTÞ ¼ V tree þ VCW þ VT þ Vdaisy; ð15Þ

where V tree is the tree-level potential, VCW is the one-loop
Coleman-Weinberg potential at zero temperature [35], and
VT þ Vdaisy are the thermal corrections at finite temper-
ature. Using the background field method, the one-loop
Coleman-Weinberg potential calculated in Landau gauge
under the MS scheme is

VCWðϕcÞ ¼
1

2
Tr

Z
d4pE

2π4
ln ½p2

E þM2ðϕcÞ�

¼ 1

64π2
X
i

nim4
i ðϕcÞ

�
ln
m2

i ðϕcÞ
μ2

− ci

	
: ð16Þ

Here, pE ¼ ð−ip0; p⃗Þ, M2 is the mass matrix of scalar or
fermion in the loop and Tr traces over the dimension of
mass matrix, m2

i is the eigenvalue of the M
2 for the field i,

and ni is the degree of freedom of the field i. The constant
ci equals to 5=6 for gauge bosons and 3=2 for others.
The effective potential of the 2HDM has been exten-

sively studied in the literature [6–9,36]. Typically, only the
neutral or CP-even components of the Higgs boson
doublets are treated as background fields, which breaks
the SUð2ÞL invariance explicitly. Consequently, the bilinear
notation cannot be applied to study VeffðϕcÞ directly. In
order to analyze the global symmetries of the effective
potential using bilinear notation, a global SUð2ÞL invari-
ance must be preserved in the calculation [18], which
means that the masses in Eq. (16) need to be evaluated in a
SUð2ÞL invariant way. To achieve this, we treat all the
components of the Higgs boson doublets Φi’s,

Φi ¼
�
ϕi↑

ϕi↓

�
; i ¼ 1; 2; ð17Þ

as background fields, and Kμ should be understood as
bilinear forms of background fields in this section.

A. Symmetries of Coleman-Weinberg potential

We first consider the zero temperature effective potential
by calculating the contributions from gauge boson loop,
fermion loop and scalar loop to the Coleman-Weinberg
potential respectively.

1. Contributions from gauge boson loop

The masses of gauge bosons arise from the kinetic term
jDμΦij2 with DμΦi ¼ ð∂μ þ i g

2
σaW

μ
a þ i g

0
2
BμÞΦi, where

i ¼ 1, 2. Expanding the covariant derivative term directly
yields the gauge boson mass term

1

4
Φ†

i ðgσaWa þ g0BÞ2Φi

¼ 1

4
Φ†

i

�
g02B2 þ 2gg0BWaσa þ g2σaσbWaWb

�
Φi

¼ 1

4
Φ†

i

�
g02B2 þ 2gg0BWaσa þ g2σfaσbgWaWb

�
Φi

¼ Φ†
iΦi

4

�
g02B2 þ g2WaWa

�þΦ†
i σaΦi

2
gg0BWa: ð18Þ

Then the gauge boson mass matrix in basis G⃗ ¼
ðW1;W2;W3; BÞ is

TABLE I. Global symmetry and their geometric profile of
parameter vectors and tensor E. e⃗i are direction of three eigen-
vectors of E, and ei denotes the three corresponding eigenvalues.
Note that the vector Y⃗ should satisfy the same constrain with η⃗

and ξ⃗ if we assume that the quark fields do not transform under
Higgs family transformation.

Symmetry Transformation Vector η⃗ and ξ⃗ Tensor

U(2) Φi → UijΦj 0 Spherical
CP3 Eq. (8) 0 e1 ¼ e2
CP2 Eq. (7) 0 � � �
Uð1Þa Φ1 → eiθΦ1 Collinear with e⃗3 e1 ¼ e2
Z2 Φ1;2 → �Φ1;2 Collinear with an axes e⃗i � � �
CP1 Φi → Φ�

i Orthogonal to an axes e⃗i � � �
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M2
GðΦiÞ ¼

∂
2L

∂G⃗∂G⃗
¼ g2

4

0
BBBB@

Φ†
iΦi 0 0 tWΦ†

i σ1Φi

0 Φ†
iΦi 0 tWΦ

†
i σ2Φi

0 0 Φ†
iΦi tWΦ

†
i σ3Φi

tWΦ†
i σ1Φi tWΦ†

i σ2Φi tWΦ†
i σ3Φi t2WΦ

†
iΦi

1
CCCCA ð19Þ

where tW ¼ tan θW ¼ g0=g. For a matrix with the shape of Eq. (19), its eigenvalues are

Eigenvalues

0
BBB@

e a

e b

e c

a b c d

1
CCCA ¼

�
e; e;

dþ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ða2 þ b2 þ c2Þ þ ðd − eÞ2

p
2

�
: ð20Þ

With the help of the Fierz identities,

ðΦ†
i σaΦiÞðΦ†

jσaΦjÞ
¼ ðΦ†

1Φ1 −Φ†
2Φ2Þ2 þ 4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ ¼ jK⃗j2; ð21Þ

we present four eigenvalues of the gauge boson mass
matrix,

m2
W� ¼ g2

4
K0;

m2
Z ¼ g2

8

�
ð1þ t2WÞK0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2W jK⃗j2 þ ðt2W − 1Þ2K2

0

q �
;

m2
γ ¼

g2

8

�
ð1þ t2WÞK0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2W jK⃗j2 þ ðt2W − 1Þ2K2

0

q �
:

ð22Þ

Notice that there is a massless photon when the vacuum is
neutral, i.e., K0 ¼ jK⃗j. By plugging Eq. (22) into Eq. (16),
we find that the gauge boson loop contributions to the

Coleman-Weinberg potential, VðGÞ
CW ¼ VðGÞ

CWðK0; jK⃗jÞ, is
spherically symmetric and preserve any rotational sym-
metry in the K⃗ space, i.e.,

VðGÞ
CWðK0; K⃗Þ ¼ VðGÞ

CWðK0; RK⃗Þ; R∈Oð3Þ:

2. Contributions from the quark loop

Typically, only the contribution from the heaviest quark
needs to be included in the effective potential. However, we
include both the top and bottom quarks in our calculation to
ensure an explicit SUð2ÞL invariance. The top and bottom
quark masses mix due to the presence of charged back-
ground fields, and the fermion mass matrix given by
−∂2L=∂ψ̄ i

L∂ψ
j
R is

ðt̄L; b̄LÞMF

�
tR
bR

�
; MF ¼

� yitϕ�
i↓ yibϕi↑

−yitϕ�
i↑ yibϕi↓

�
: ð23Þ

We obtain the fermion masses after singular decomposition,

L−1MFR ¼
�
mt

mb

�
; m2

t=b ¼
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C

p

2
;

ð24Þ

where, with the help of vector Y⃗ defined in Eq. (12), B andC
can be written as SOð3ÞK basis invariant forms as follows:

B ¼ 1

2
ðYt0 þ Yb0ÞK0 þ

1

2
ðY⃗t þ Y⃗bÞ · K⃗;

C ¼ −
1

2
ðYt · YbÞK2

0 − K0ðYt0Y⃗b þ Yb0Y⃗tÞ · K⃗

þ 1

2
K⃗ · ðY⃗t · Y⃗b − Yt0Yb0 − Y⃗t ⊗ Y⃗b − Y⃗b ⊗ Y⃗tÞ · K⃗:

ð25Þ

The masses can be simplified in the case that the Yukawa
couplings exhibit a large hierarchy; for example, when
yt ≫ yb, only the top quark mass m2

t ðKÞ ¼ ðYt0K0 þ Y⃗t ·
K⃗Þ=4 needs to be considered. Equations (24) and (25) show

that the symmetry of VðFÞ
CW is completely determined by the

direction of vector Y⃗. When the vector Y⃗ is invariant under
the rotation, i.e., Y⃗t=b ¼ RY⃗t=b for R∈Oð3Þ,

VðFÞ
CWðK0; K⃗Þ ¼ VðFÞ

CWðK0; RK⃗Þ:

When Y⃗t=b ≠ RY⃗t=b,

VðFÞ
CWðK0; K⃗Þ ≠ VðFÞ

CWðK0; RK⃗Þ:
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Therefore, whether the fermion loop contribution to VCW
breaks the global symmetry of the tree-level potential
depends on the pattern of Yukawa couplings.

3. Contributions from the scalar loop

The calculation of VðSÞ
CWðK0; K⃗Þ can be performed

straightforwardly from Eq. (16), in which the mass matrix
of scalars is given by

M2
SðφÞab ¼

δ2V
δφaδφb

; ð26Þ

where φa are real vectors in the 8-dimensional field space.
Though M2

S cannot be diagonalized analytically, we still

find a way to investigate the global symmetries of VðGÞ
CW. We

firstly employ the notations in Ref. [37], where the
components of φa are ordered as

φT
a ¼ �

Reϕ1↑; Imϕ1↑;Reϕ2↑; Imϕ2↑;Reϕ1↓; Imϕ1↓;

Reϕ2↓; Imϕ2↓

�
; ð27Þ

and φa is related to the bilinear form by Kμ ¼ φaΣ
μ
abφb.

The 8 × 8 matrices Σμ are defined as

Σμ ¼ Σμ
4 ⊕ Σμ

4; Σ0
4 ¼ 14; Σ1

4 ¼
�

0 12
12 0

�
;

Σ2
4 ¼

�
0 i2
−i2 0

�
; Σ3

4 ¼
�
12 0

0 −12

�
; ð28Þ

where 1d is the d × d identity matrix and i2 ≡ ð 0
−1

1
0
Þ.

The VðSÞ
CW can be expanded in the powers of MS [38],

VðSÞ
CW ¼ 1

2
Tr

Z
d4pE

2π4
ln ½p2

E þM2
S�

¼ 1

2

Z
d4pE

2π4

�
Tr

X∞
n¼1

1

n

�
−
M2

S

p2
E

�
n

þ lnp2
E

	
; ð29Þ

where Tr stands for taking a trace over the 8-dimensional
field space. For example, the leading power is

TrðM2
SÞ ¼ ð20η00 þ 4trðEÞÞK0 þ 24K⃗ · η⃗þ 8ξ0; ð30Þ

which is consistent with Ref. [37]. We show that all the
traces TrðM2n

S Þ in Eq. (29) are functions of gauge orbits
Kμ, and the complete calculations are deferred to
Appendix B. Here, we present the final calculation result
expressed in the bilinear notation as

VðSÞ
CW ¼ F ðSμνp ; ημνÞ: ð31Þ

The function F only depends on the trace of the inner
products of Sμνp and ημν, and Sμνp is defined as

Sμνp ¼ FðpÞμKν þ FðpÞνKμ − gμνðFðpÞKÞ: ð32Þ

Here, FðpÞμ is a function of Kμ that depends on the
integer p,

FðpÞ0 ≡
Xp=2
k¼0

C2k
p ðA0Þp−2kjA⃗j2k; ð33Þ

F⃗ðpÞ≡
�
−
Pðp−1Þ=2

k¼0 C2kþ1
p ðA0Þp−2k−1jA⃗j2kA⃗ ðp ≠ 0Þ;

0 ðp ¼ 0Þ;
ð34Þ

where ðA0; A⃗Þ ¼ Aμ ¼ 2ημνKν þ ξμ and Ck
p is the binomial

coefficient. Notice that the global symmetries are deter-
mined only by the 3-dimension vector A⃗.

Upon expressing VðSÞ
CW as a function in the orbit space, we

find that the tensor structures in VðSÞ
CW are constructed

entirely by tree level parameter tensors ημν and ξμ, i.e.,
no new tensor structure appears, therefore, the rotation

symmetries of VðSÞ
CW in the K⃗-space are determined by the

tree-level parameter tensors. If the tree-level potential is
invariant under a rotation R∈Oð3Þ in the K⃗-space, i.e.,
V treeðK0; K⃗Þ ¼ V treeðK0; RK⃗Þ, the scalar loop contribution

VðSÞ
CW also preserves the rotation invariance,

VðSÞ
CWðK0; K⃗Þ ¼ VðSÞ

CWðK0; RK⃗Þ:

B. Symmetries of thermal potential

As for the finite temperature corrections in Eq. (15), VT
stands for the contribution from one-loop diagrams, and
Vdaisy denotes the correction from higher loop Daisy
diagrams [38]. The one-loop correction VT is given by

VT ¼
X
i

ni
T4

2π2
JB=Fðm2

i =T
2Þ; ð35Þ

where the thermal bosonic function JB and fermionic
function JF are

JBðm2=T2Þ ¼ −
π4

45
þ π2

12

m2

T2
−
π

6

�
m2

T2

�
3=2

−
1

32

m4

T4
log

m2

abT2

− 2π7=2
X∞
l¼1

ð−1Þl ζð2lþ 1Þ
ðlþ 1Þ! Γ

�
lþ 1

2

�

×

�
m2

4π2T2

�
lþ2

; ð36Þ
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JFðm2=T2Þ ¼ 7π4

360
−
π2

24

m2

T2
−

1

32

m4

T4
log

m2

afT2

−
π7=2

4

X∞
l¼1

ð−1Þl ζð2lþ 1Þ
ðlþ 1Þ! ð1 − 2−2l−1Þ

× Γ
�
lþ 1

2

��
m2

π2T2

�
lþ2

: ð37Þ

Here, ab ¼ 16af ¼ 16π2e3=2−2γE , and ζ is the Riemann-ζ
function. The leading T-dependent terms of JB=F are given
by the mass-square terms,

JB ¼ π2

12

m2

T2
þOðT−4Þ; JF ¼ −

π2

24

m2

T2
þOðT−4Þ;

ð38Þ
where the background-field-independent terms are dropped.
By collecting the results in Eqs. (22), (24), and (30), we
obtain the leading contributions from gauge boson loops,
fermion loops, and scalar loops to VT as follows:

VðGÞ
T ≈

g2T2

32
ð3þ t2WÞK0; ð39Þ

VðFÞ
T ≈ −

T2

8

�ðYt0 þ Yb0ÞK0 þ ðY⃗t þ Y⃗bÞ · K⃗Þ
�
; ð40Þ

VðSÞ
T ≈

T2

6

�ð5η00 þ trðEÞÞK0 þ 6K⃗ · η⃗þ 2ξ0
�
: ð41Þ

We find that the corrections from Eqs. (39)–(41) to the tree-
level potential is equivalent to shifting the quadratic cou-
plings ξμ in the orbit space, i.e.,

ξ0 → ξ0 þ T2cT0;

ξ⃗ → ξ⃗þ T2c⃗T ; ð42Þ

where

cT0 ¼
g2

32
ð3þ t2WÞ −

Yt0 þ Yb0

8
þ 5η00 þ trðEÞ

6
;

c⃗T ¼ 1

8
½8η⃗ − Y⃗t − Y⃗b�: ð43Þ

The direction of ξ⃗ is shifted by the quartic couplings η⃗

and Yukawa interactions Y⃗ from thermal corrections. At a
sufficient high temperature with T2 ≫ jξ⃗j=jc⃗T j, the direction
of shifted ξ⃗ is aligned along the direction of c⃗T . As a result,
the symmetries of thermal effective potential under the basis
transformation and CP transformation are determined by c⃗T.
At high temperatures, the contribution from higher loop

Daisy diagrams Vdaisy is comparable with VT , and it is
given by [38]

Vdaisy ¼ −
T
12π

X
i¼bosons

ni½M3
i ðϕc; TÞ −m3

i ðϕcÞ�: ð44Þ

Here, the Miðϕc; TÞ are thermal corrected masses calcu-
lated from V tree þ VT , which is obtained from the tree level
potential by parameter shifting ξμ → ξμ þ T2cμT . Therefore,
the T-dependent terms in Miðϕc; TÞ are in the form of
T2cμT . As c0T plays no role in global transformations, the
behavior of Vdaisy under the Oð3ÞK transformation depends
only on c⃗T .
After understanding the behavior of VCW, VT , and Vdaisy

under the Oð3ÞK transformation, we are ready to discuss
whether a global symmetry preserved by the tree-level
potential will be violated by the loop corrections. Consider
a tree-level potential that processes the symmetry of a basis
or CP transformation, then the potential is invariant under a
rotation R in the K⃗-space, V treeðK0; K⃗Þ ¼ V treeðK0; RK⃗Þ,
and its parameters satisfy

ξ⃗ ¼ Rξ⃗; η⃗ ¼ Rη⃗; E ¼ RERT: ð45Þ

The only quantum correction that may violate the sym-
metry is the contribution from fermion loops. The global
symmetry is maintained in effective potential if and
only if all the Yukawa couplings are invariant under R,
i.e., Y⃗ ¼ RY⃗.
If the symmetry is softly broken at tree level, i.e., only

the scalar quadratic coupling ξ⃗ ≠ Rξ⃗ violates the symmetry
while other conditions in Eq. (45) are preserved, then the
symmetry violation effect from soft terms tend to be
suppressed at high temperature. This is because the leading
thermal corrections shift the scalar quadratic couplings ξ⃗

with Yukawa coupling Y⃗ and scalar quartic couplings η⃗, and
both Y⃗ and η⃗ preserve the symmetry.
Another noteworthy example is the custodial symmetry.

In the orbit space, the custodial symmetry of the 2HDM
does not correspond to a rotation symmetry but a shift
symmetry [39]. As the effective potential is not invariant
under any shift symmetry in the orbit space, the custodial
symmetry of 2HDM is bound to be broken by the effective
potential.

IV. BILINEAR NOTATION AFTER EWSB

In this section, we extend the bilinear notation to discuss
EWSB and physical fields. There are two reasons to discuss
the EWSB in the bilinear notation.
Firstly, a global symmetry exhibited by the potential, as

shown in Table I, can be broken spontaneously after the
potential develops a vacuum. For example, consider the CP
symmetry. Even if the potential is explicitlyCP conserving,
VðΦ1;Φ2ÞjΦi→Φ�

i
¼ VðΦ1;Φ2Þ, the physical fields, which

are fluctuations around the vacuum, may still break CP
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symmetry after EWSB if the vacuum has an additional CP
phase as follows:

hΦ1i ¼
�

0

v1

�
; hΦ2i ¼

�
0

v2eiδ

�
: ð46Þ

This is called spontaneous CP violation (SCPV). In the
bilinear notation, the SCPV happens when the potential
but not the vacuum is invariant under a mirror reflection. In
this case, there are two degenerate vacua related by a CP
transformation as in Fig. 2. After analyzing the vacuum
conditions in the orbit space, we can easily determine
whether the CP symmetry or other global symmetry is
spontaneously broken.
Secondly, exploring the physical fields after the EWSB

is necessary for performing on-shell renormalization.
The renormalized effective potential can be expressed fully
in the bilinear notation if we can perform the on-shell
renormalization in the orbit space. For that, we examine the
vacuum structures in the orbit space and investigate the
relations between the field space and orbit space. Further-
more, we demonstrate that the mass matrix of the physical
neutral scalars corresponds to a geometric structure in the
orbit space, making it convenient to handle the mass
spectrum and on-shell renormalization.

A. Vacuum condition

We start with the vacuum conditions of VðKμÞ, where
VðKμÞ represents the tree-level or effective potential in the
orbit space. Figure 3 displays the light cone in the orbit
space, and the light cone is a hyper-surface defined by
K0 ¼ jK⃗j. The orbit space inside the forward light cone
LCþ is the physical region, satisfying K0 ≥ jK⃗j [12–15]. A
neutral vacuum expectation value requires the minimum of
the potential, denoted as Kμ

v, to lie on the LCþ, i.e., Kv;0 ¼
jK⃗vj [12–15]. Therefore, Kμ

v is a conditional minimum of
VðKμÞ on the LCþ.

The vacuum of the potential VðKμÞ is solved by
minimizing the function VuðKμÞ ¼ VðKμÞ − uLðKμÞ,
where u is a Lagrange multiplier and LðKμÞ ¼ 0 is the
light-cone condition with LðKμÞ defined as

LðK0; K⃗Þ ¼ K2
0 − jK⃗j2 ¼ 4KþK− − jK⃗T j2: ð47Þ

Instead of solving the vacuum conditions in the original
coordinates chosen in Refs. [12–15], we introduce the
light-cone coordinates

K� ≡ ðK0 � K3Þ
2

; K⃗T ≡ ðK1; K2Þ; ð48Þ

which are defined after rotating the vacuum along the K3

direction, i.e., Kμ
v ¼ v2

2
ð1; 0; 0; 1ÞT . We will soon see that

the geometrical structures of 2HDM vacuum are exposed
straightforwardly in the light-cone coordinates. The sol-
ution of the conditional minimum satisfies

∂V
∂K−






Kv

¼ 2v2u > 0;
∂V
∂Kþ






Kv

¼ 0;
∂V

∂K⃗T






Kv

¼ 0:

ð49Þ

Note that we require ∂V
∂K−

> 0 to ensure no global minimum
inside the light cone to avoid a charged vacuum.
In addition to the conditions in Eq. (49), we need to make

sure that Kv is a minimal point rather than a saddle point.
In the 4-dimensional orbit space, Kv is the tangent point
of LCþ and an equipotential surface Mvev defined by
VðKμÞ ¼ VðKμ

vÞ [14], and the normal direction of their
tangent space is K−, as shown in Fig. 3. Therefore, the
requirement that Kv is not a saddle point indicates that
Mvev must be outside of the LCþ. Equivalently, if we
expand the infinitely small deviation δh between LCþ and
Mvev at their tangent point, (as shown in Fig. 3)

FIG. 2. Illustration figures of tree-level parameters for an SCPV
potential. Here K⃗v and K⃗v0 are a pair of degenerated vacuum
expectation values that are related by a mirror reflection, and the
reflection plane spanned by ξ⃗ and η⃗.

FIG. 3. Vacuum expectation value and light-cone coordinates in
the orbit space. The yellow surface denotes LCþ and the green
denotes the equipotential surfaceMvev. Kv is the tangent point of
these 3-dimensional hyper-surfaces.
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δh ¼ ðδKþ; δK⃗TÞM2
dev

�
δKþ
δK⃗T

�
;

M2
dev ¼

1

∂V=∂K−

0
B@

∂
2Vu
∂K2

þ
∂
2Vu

∂Kþ∂K⃗T

∂
2Vu

∂Kþ∂K⃗T

∂
2Vu

∂K⃗2
T

1
CA ¼ 1

∂V=∂K−
HVu

;

ð50Þ

the Hessian matrix M2
dev must be positive definite. Note

that the Hessian matrix of the deviation between the two
surfaces is simply proportional to the Hessian matrix
of Vu, HVu

. As to be shown later, the Hessian matrix of
the deviation between the two hypersurfaces directly yields
the neutral scalar mass matrix.
Now we have introduced the vacuum conditions fully in

the orbit space. These conditions apply to both the tree-
level and the effective potentials. Specifically, the tree-level
potential in Eq. (9) can be written in terms of the light-cone
coordinates as follows,

V tree ¼ ξþKþ þ ξ−K− þ ξ⃗T · K⃗T þ
�
Kþ; K−; K⃗T

�

×

0
B@

ηþþ ηþ− η⃗Tþ
ηþ− η−− η⃗T−

η⃗Tþ η⃗T− ηTT

1
CA
0
B@

Kþ
K−

K⃗T

1
CA: ð51Þ

Then the minimal conditions for the tree-level potential
from Eq. (49) are

∂V tree

∂K−






Kv

¼ ξ− þ v2ηþ− ¼ 2v2u > 0;

∂V tree

∂Kþ






Kv

¼ ξþ þ v2ηþþ ¼ 0;

∂V tree

∂K⃗T






Kv

¼ ξ⃗T þ v2η⃗Tþ ¼ 0; ð52Þ

which are equivalent to the minimal conditions given
in Ref. [12].

B. A geometrical view of the scalar mass matrix

After the potential develops a vacuum expectation value,
the scalar fields become massive. The field components
after the EWSB are fluctuations around the vacuum.
Without loss of generality, we use the Higgs basis in
which the vacuum v is rotated to the first doublet, and the
field components are

H1 ¼
� Gþ

vþϕþiG0ffiffi
2

p

�
; H2 ¼

� Hþ

RþiIffiffi
2

p

�
; ð53Þ

where ϕ; R; I and H� are physical fields while G0 and G�
are Goldstone fields. By substituting the field components

of Hi into Eq. (2), and rewriting them in terms of the light-
cone coordinates, we have

0
BBB@

Kþ
K1

K2

K−

1
CCCA ¼ v2

2

0
BBB@

1

0

0

0

1
CCCAþ v

0
BBB@

ϕ

R

I

0

1
CCCA

þ

0
BBB@

ϕ2

2
þ G2

0

2
þ GþG−

ϕRþ IG0 þ GþH− þG−Hþ

ϕI − RG0 þ iðGþH− −G−HþÞ
I2
2
þ R2

2
þH−Hþ

1
CCCA: ð54Þ

The charged Higgs boson mass is given by

m2
H� ¼ ∂V

∂H−Hþ






vev

¼ ∂V
∂K−






Kv

∂K−

∂H−Hþ






vev

¼ ∂V
∂K−






Kv

: ð55Þ

As for the neutral physical scalars ϕ; R and I, their mass
matrix is calculated by expanding the potential in the field
space as follows,

δV ¼ ðδϕ; δR; δIÞM2
neutral

0
B@

δϕ

δR

δI

1
CA; ð56Þ

where δϕ; δR and δI are small expansions of the fields
around the vacuum. Equation (54) shows that the three
directions ðKþ; K⃗TÞ, which span the tangent space of LCþ
andMvev, are linearly related to the three neutral scalar fields
ðϕ; R; IÞ around the vacuum. The linear relationship between
field space and orbit space directly links the scalar mass
matrix and the Hessian matrix between LCþ and Mvev. By
combining Eq. (56) with Eqs. (50) and (54), we obtain

M2
neutral ¼ v2

0
B@

∂
2Vu
∂K2

þ
∂
2Vu

∂Kþ∂K⃗T

∂
2Vu

∂Kþ∂K⃗T

∂
2Vu

∂K⃗2
T

1
CA ¼ v2HVu

: ð57Þ

Therefore, the neutral mass matrix is simply proportional to
the Hessian matrix between the two hyper-surfaces LCþ and
Mvev. This geometric picture moves beyond the results in
Refs. [12–15]. Treating mass matrix as geometrical structure
helps us to simplify the discussion of 2HDM scalar mass
spectrum. Below are some examples.
The experimentally preferred Higgs alignment limit

can be read out from Eq. (57) directly. In the alignment
limit, the neutral scalar ϕ in Eq. (53) corresponds to the
SM-like Higgs boson, and all of its properties are very close
to the SM Higgs boson, including mass, gauge couplings,
Yukawa couplings, and CP property. Technically, the
alignment limit is reached when the neutral scalar ϕ in
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Eq. (53) is approximately the 125 GeV mass eigenstate and
does not mix with other neutral scalars, therefore, we obtain
the following relations from Eq. (57),

∂
2Vu

∂Kþ∂K⃗T






Kv

¼ ∂
2V

∂Kþ∂K⃗T






Kv

≈ 0; ð58Þ

where Kþ and K⃗T are light-cone coordinates in orbit
space. At tree-level, this condition yields η⃗Tþ ≈ 0 straight-
forwardly.
Another demonstration is to discuss the ultralight

CP-odd particle, which is also known as the axionlike
particle (ALP). The ALP is of widespread interest for its
rich phenomenology, and the 2HDM is a simple model that
can provide the ALP. From the geometric relations in the
orbit space, a massless scalar appears when the two hyper-
surfaces LCþ and Mvev osculate at Kv along a certain
direction. There are two possibilities in the 2HDM to
produce an ALP naturally, due to symmetries rather than
accidental parameter choice. One possibility is the 2HDM
potential with an approximately Uð1Þa symmetry. An exact
Uð1Þa symmetry in the 2HDM potential results in an
additional Goldstone boson, and the Goldstone boson will
develop a small mass if the Uð1Þa symmetry is slightly
broken as shown in Fig. 4(a). In this case, the ALP is a
pseudo-Goldston boson as in the Dine–Fischler–Srednicki–
Zhitnitsky axion model [40,41]. Another possibility is the
2HDM potential with a CP symmetry that is spontaneously
broken. When the SCPV phase δ is very small, the two
degenerate vacuums turn to merge, and the two hyper-
surfaces LCþ and Mvev turn to osculate with each other at
Kv, as shown in Fig. 4(b), therefore, a massless boson
appears when the SCPV phase δ goes to zero [42]. In this
case, the ALP is not a pseudo-Goldston boson.

V. ON-SHELL RENORMALIZATION IN THE
ORBIT SPACE

The masses and mixing angles of physical states derived
from the one-loop CW potential in the MS renormalization

scheme differ from their tree-level values. To directly use
the loop-corrected masses and mixing angles as inputs, the
on-shell renormalization scheme is often preferred. This is
achieved by adding the counterterm potential VCT to the
zero temperature effective potential

Veff ¼ V tree þ VCW þ VCT; ð59Þ

and then enforcing the loop-corrected vacuum and masses
to be the same as the tree-level values. Consequently, the
renormalization conditions in the field space are given by

∂φa
ðVCT þ VCWÞjφa¼hφaitree ¼ 0; ð60Þ

∂φa
∂φb

ðVCT þ VCWÞjφa¼hφaitree ¼ 0; ð61Þ

where φaða ¼ 1…8Þ denote the eight scalar field compo-
nents in the two Higgs doublets.
However, most of the renormalization conditions are

redundant due to unphysical fields and quite a few
identities, and it is convenient to deal with the renormal-
ization condition in orbit space.3 To achieve this, we
express the counterterm potential in the bilinear notation
as VCT ¼ δξμKμ þ δημνKμKν. Based on the vacuum con-
ditions in Eq. (49) and the scalar masses given in Eqs. (55)
and (57), we obtain ten independent renormalization
conditions that are related to the physical fields as follows:

0 ¼ ∂KþðVCT þ VCWÞjKv
; ð62Þ

0 ¼ ∂K⃗T
ðVCT þ VCWÞjKv

; ð63Þ

0 ¼ ∂K−
ðVCT þ VCWÞjKv

; ð64Þ

0 ¼ ∂
2
KþðVCT þ VCWÞjKv

; ð65Þ

0 ¼ ∂
2

K⃗T
ðVCT þ VCWÞjKv

; ð66Þ

0 ¼ ∂Kþ∂K⃗T
ðVCT þ VCWÞjKv

: ð67Þ

Here the light-cone coordinates are defined still by the tree-
level vacuum Kv, and the derivatives are evaluated around
Kv. Note that only part of the first and second derivatives
∂KμðVCT þ VCWÞjKv

and ∂KμKνðVCT þ VCWÞjKv
are related

to the vacuum conditions and scalar masses and should be
included in the renormalization conditions, while the others
are irrelevant to physical quantities. Specifically, four
conditions from the first derivative in Eqs. (62)–(64) ensure
that the loop-corrected vacuum expectation value is the
same as the tree-level case, and Eq. (64) also ensures that

FIG. 4. A two dimensional slice of Fig. 3 with K0 ¼ Kv;0,
viewed from the K0 direction. The symbol⊙ denotes the K0 axis.
The yellow line denotes LCþ and the green denotesMvev. There
are two scenarios with an ultralight scalar: (a) potential with a
slightly broken Uð1Þa symmetry; (b) the SCPV potential with a
small CP phase δ.

3A detailed analysis of the number of renormalization con-
ditions in the field space and their equivalence with the conditions
in the orbit space is presented in Appendix C.
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the charged scalar mass is the same as the tree-level value.
The other six conditions involving the second derivatives
in Eqs. (65)–(67) ensure that the neutral scalar masses
and mixing angles are the same as those of the tree-level
potential.
The counterterms δξμ and δημν can be determined from

the renormalization conditions in Eqs. (62)–(67). For a
general 2HDM without any constrains on the parameters,
there are fourteen free parameters, four in δξμ and ten in
δημν, to be determined by the renormalization conditions.
After expressing δξμ and δημν in terms of the light-cone
coordinates, the renormalization conditions are

δηþþ ¼ −∂2KþVCWjKv
; ð68Þ

δη⃗Tþ ¼ −∂K⃗T
∂K⃗þ

VCWjKv
; ð69Þ

δηTT ¼ −∂2
K⃗T
VCWjKv

; ð70Þ

δξþ ¼ −∂KþVCWjKv
− v2δηþþ; ð71Þ

δξ⃗T ¼ −∂K⃗T
VCWjKv

− v2δη⃗Tþ; ð72Þ

δξ− ¼ −∂K−
VCWjKv

− v2δηþ−: ð73Þ

Note that neither the vacuum condition nor the scalar mass
matrix depends on the counterterms δη−−, δηþ− and δη⃗T−,
therefore, these four parameters are up to free choices.
In addition, our convention is to set the tadpole terms to

zero whenever possible. Generally, one can allow the
development of vacuum in the field space and introduce
the tadpole terms in VCT as done in Refs. [20,43]. However,
for the most general 2HDM potential, there will be more
parameters than renormalization conditions and we can
always set the tadpole terms to zero. Tadpole terms may be
necessary if we require the counterterms to satisfy some
specific constraints such that the remaining parameters
cannot satisfy the renormalization conditions.
For the 2HDM with some specific parameter constraints

required by symmetries or alignment, it is a common
practice to demand the counterterms δξμ and δημν satisfying
the same constraints as the tree-level parameters ξμ and ημν.
Then the number of parameters in δξμ and δημν is less than
fourteen as in the general 2HDM, and the renormalization
conditions need to be dealt with case-by-case. For illus-
tration, we discuss the renormalization conditions used in
three 2HDMs below.

A. Softly broken Z2 symmetric potential

Imposing a softly broken Z2 symmetry on the 2HDM
Lagrangian is the most popular way to prevent flavor-
changing neutral interactions. For a complex 2HDM with
softly broken Z2 symmetry, the Z2 symmetry gives four

additional constraints on δημν, and the remaining six
counterterms can be fixed by the six conditions in
Eqs. (68)–(70). The soft quadratic couplings are not con-
strained, and four parameters in δξμ can be fixed by the four
conditions in Eqs. (71)–(73).

B. Real 2HDM with softly broken Z2 symmetry

In addition to the softly broken Z2 symmetry, a CP
symmetry is often imposed on the potential. The tree-level
potential is invariant under a mirror reflection R̄ in the orbit
space, V treeðK0; K⃗Þ ¼ V treeðK0; R̄ K⃗Þ. Note that the CP
symmetry does not impose any additional constraint on
the quartic counterterms δημν, as the Z2 symmetry provides
stronger constraints than the CP symmetry. On the other
hand, the softly broken terms are constrained by the CP
symmetry. Say that the mirror reflection is along the second
direction R̄∶K2 → −K2, then δξ2 should be set to zero,
leaving three free parameters in δξμ.
Usually, the three parameters in δξμ are not enough to

satisfy the four equations in Eqs. (71)–(73). But when
the vacuum is invariant under the CP transformation, e.g.,
Kμ

v ¼ v2
2
ð1; 0; 0; 1Þ and K⃗v ¼ R̄K⃗v, there are only three

independent conditions in Eqs. (71)–(73), because the
CW potential satisfies the CP symmetry, VCWðK0; K⃗Þ ¼
VCWðK0; R̄ K⃗Þ, and we have

∂K2
VCWjKv

¼ 0; ∂K2
∂KμVCWjKv

¼ 0: ð74Þ

Then one renormalization condition δξ2 ¼ −∂K2
VCW −

v2δη⃗2þ ¼ 0 automatically holds from Eq. (72), and we
end up with three parameters and three conditions.
However, if the vacuum develops an SCPV phase δ, the

CP symmetry is broken spontaneously. The vacuum K⃗v is
no longer invariant under theCP transformation, e.g.,Kμ

v ¼
v2
2
ð1; 0; sin δ; cos δÞ and K⃗v ≠ R̄K⃗v. As a result, Eqs. (74)

no longer hold. The rest three parameters in δξμ are
not enough to satisfy the renormalization conditions if
we still require the counterterm δξ2 ¼ 0. The remaining
renormalization condition, which is equivalent to
∂δðVCW þ VCTÞ ¼ 0, cannot be fulfilled, and this corre-
sponds to a change of the SCPV phase δ. It could be fixed
with a tadpole counterterm of the CP-violating vacuum.

C. 2HDM with the exact alignment

In the 2HDM, the exact alignment condition requires that
the neutral scalar ϕ in Eq. (53) is the 125 GeV mass
eigenstate, then the tree-level parameters satisfy η⃗Tþ ¼ 0 as
shown in Eq. (58). However, the alignment condition is not
protected by any symmetry, and there is no guarantee that
the counterterms δη⃗Tþ ¼ −∂K⃗T

∂K⃗þ
VCW vanish. Therefore,

the alignment condition is usually broken by quantum
corrections.
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VI. CONCLUSION AND DISCUSSION

We performed a complete analysis of the CP and basis
transformation symmetries of the 2HDM in the orbit space.
We extended the study of the global symmetries in orbit
space to one-loop thermal effective potential. We demon-
strated that the global symmetries of the tree-level potential
are preserved by quantum corrections from boson loop
contributions, but may be broken by fermion loop con-
tributions, depending on the Yukawa interactions.
In order to study the vacuum conditions and physical

masses in the orbit space, we introduced the light-cone
coordinates and generalized the bilinear notation to study
the physical scalar fields around the vacuum. It provides a
geometric view of the scalar mass matrix and on-shell
renormalization conditions. By translating the on-shell
renormalization conditions of the vacuum and scalar mass
into geometric conditions in the orbit space, we calculated
the renormalized one-loop effective potential completely.
We extend our study to the case after the EWSB. The

geometrical view of scalar masses can provide insight into
special limits of the 2HDM mass spectrum, such as
alignment limit and ultra-light scalars, thereby simplifying
the analysis. The renormalization conditions are much
simpler to be dealt with in the orbit space, and there are
at most 10 independent on-shell renormalization conditions
for a general 2HDM potential. Our work provides a
foundation for future study of the 2HDM effective potential
and its implications in orbit space.
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Note added.—During the completion of this paper, some
new symmetries of the tree-level 2HDM potential were
purposed [44], which are based on the transformation
K0 → −K0. Our formalism can also be used to analysis
these new symmetries. For example, the gauge loops
contribute terms like g2K0 to the effective potential, break-
ing the symmetry K0 → −K0.

APPENDIX A: BASIS INVARIANT NOTATIONS
OF 2HDM POTENTIAL

1. Explicit expression of bilinear notation

The explicit expression for each component of Kμ is

Kμ ¼ Φ†
i σ

μ
ijΦj ¼

0
BBBB@

Φ†
1Φ1 þΦ†

2Φ2

Φ†
1Φ2 þΦ†

2Φ1

iðΦ†
2Φ1 −Φ†

1Φ2Þ
Φ†

1Φ1 −Φ†
2Φ2

1
CCCCA: ðA1Þ

By comparing the potential in the blinear notation [Eq. (9)]
with the traditional notation [Eq. (1)], we can explicitly
relate these two sets of parameters,

ξ0 ≡ 1

2
ðm2

11 þm2
22Þ; η00 ¼ ðλ1 þ λ2 þ 2λ3Þ=8;

ξ⃗ ¼
�
−ℜðm2

12Þ;ℑðm2
12Þ;

1

2
ðm2

11 −m2
22Þ

�
T
;

η⃗ ¼ ðRðλ6 þ λ7Þ=4;−Iðλ6 þ λ7Þ=4; ðλ1 − λ2Þ=8ÞT;

E ¼ 1

4

0
B@

λ4 þRðλ5Þ −Iðλ5Þ Rðλ6 − λ7Þ
−Iðλ5Þ λ4 −Rðλ5Þ Iðλ7 − λ6Þ

Rðλ6 − λ7Þ Iðλ7 − λ6Þ ðλ1 þ λ2 − 2λ3Þ=2

1
CA:

ðA2Þ

In the 4-dimensional orbit space, the physical region
is confined to the interior of the forward light cone,
i.e., K0 ≥ jK⃗j. Because Kμ can be decomposed from
Kij ¼ Φ†

iΦj, by definition:

K ≡
�Φ†

1Φ1 Φ†
2Φ1

Φ†
1Φ2 Φ†

2Φ2

�
≡ 1

2

�
K0 þ K3 K1 − iK2

K1 þ iK2 K0 − K3

�
;

ðA3Þ

and the matrix K is actually a semipositive matrix when
Φi ¼ ðϕi↑;ϕi↓ÞT are SUð2ÞL doublets,

K ¼ ϕϕ†; ϕ ¼
�
ϕ1↑ ϕ1↓

ϕ2↓ ϕ2↓

�
; ðA4Þ

which directly leads to

� trK ¼ K0 ≥ 0;

detK ¼ ðK2
0 − jK⃗j2Þ=4 ≥ 0:

ðA5Þ

Therefore in the bilinear notation, the tree-level 2HDM
scalar potential is a real quadratic function of ðK0; K⃗Þ, and
the physical region is defined inside the forward light cone.

2. Z2 symmetry in the bilinear notation

The Z2 symmetry is imposed on the 2HDM by assigning
Z2 charges to scalar and fermion fields. In Eq. (1), the
two Higgs doublets Φ1 and Φ2 carry the Z2 charges of −1
and þ1 respectively, forbidding the ðΦ†

1Φ1ÞðΦ†
1Φ2Þ and

ðΦ†
2Φ2ÞðΦ†

1Φ2Þ terms in the potential.
As for the Yukawa interactions, fermions are also

assigned with negative or positive Z2 charges, then forced
to interact with only Φ1 or Φ2. Usually, the patterns of Z2

charges assignments are divided into four types [45–50]:
type I, type II, type X, and type Y, as listed in Table II.
For fermions with different Z2 charges, the vectors Y⃗’s
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projected by their Yukawa couplings are opposite to each
other. For example, in the orbit space of Z2 eigenbasis
ðΦ1;Φ2Þ, the Yukawa coupling of fermion with positive Z2

charge yield Yμ ∝ ð1; 0; 0;−1Þ and the Yukawa coupling of
fermion with negative Z2 charge yield Yμ ∝ ð1; 0; 0; 1Þ.

3. Tensor notation

For the completeness of this paper, here we reviewed
another basis invariant notation to analyze the 2HDM
potential, the tensor notation [2–4]. It is straightforward
to express the 2HDM scalar potential in an Uð2ÞΦ basis
invariant form,

V ¼ μijΦ
†
iΦj þ λij;klðΦ†

iΦjÞðΦ†
kΦlÞ: ðA6Þ

As a result μij and λij;kl transform covariantly withΦi under
the Uð2ÞΦ basis transformation,

μ0ij ¼UikμklU�
jl; λ0ij;kl ¼UipUkrλpq;rsU�

jqU
�
ls: ðA7Þ

By definition, λij;kl ¼ λkl;ij, and Hermiticity requires that
μij ¼ μ�ji; λkl;ij ¼ λ�lk;ji. Under the basis of Eq. (1), we have
the following relations explicitly,

μ11 ¼ m2
11; μ22 ¼ m2

22;

μ12 ¼ −m2
12; μ21 ¼ −m2

12
�

λ11;11 ¼ λ1; λ22;22 ¼ λ2;

λ11;22 ¼ λ22;11 ¼ λ3; λ12;21 ¼ λ21;12 ¼ λ4;

λ12;12 ¼ λ5; λ21;21 ¼ λ�5;

λ11;12 ¼ λ12;11 ¼ λ6; λ11;21 ¼ λ21;11 ¼ λ�6;

λ22;12 ¼ λ12;22 ¼ λ7; λ22;21 ¼ λ21;22 ¼ λ�7: ðA8Þ

The potential is invariant under the GCP symmetry
Eq. (4) when μij and λij;kl satisfy

μij ¼ Xikμ
�
klX

�
lj; λij;kl ¼ XimXknλ

�
mp;nqX�

jpX
�
lq: ðA9Þ

One can construct several CP invariants to determine
whether a potential is GCP invariant [2]. Similar to the
Jarlskog invariant [51], a SUð3ÞL=R invariant in quark
family space, the CP invariants of 2HDM scalar potential
are constructed from tensor products of μij and λij;kl as
Uð2ÞΦ invariants in scalar family space. And tensor
notation can also be used to construct CP invariants for
scalar fermion interaction after extending tensor structures
to fermion family space [2]. In addition, a recent develop-
ment in tensor notation is using the Hilbert series to
systematically construct all possible CP invariants [5],
and similar procedures can also be used to construct CP
invariant in the lepton sector with Majorana terms [52].

APPENDIX B: EFFECTIVE POTENTIAL FROM
SCALAR LOOP CONTRIBUTION

Here we show the calculation of the effective potential
from scalar loop contribution in detail. We employ the
notations in Ref. [37] to link the eight scalar fields φi with
the bilinear forms Kμ,

L ¼ Ωμð∂αΦiÞ†σμijð∂αΦjÞ − V; Ω2 ¼ 1;

V tree ¼ ξμKμ þ ημνKμKν;

φa ¼ ðReϕ1;↑; Imϕ1;↑;Reϕ2;↑; Imϕ2;↑;Reϕ1;↓; Imϕ1;↓;Reϕ2;↓; Imϕ2;↓Þ;
Kμ ¼ φaΣ

μ
abφb;

ðΩρΣρÞ−1 ¼ ΩρΣ̄ρ: ðB1Þ

Note that Ωμ ¼ ð1; 0; 0; 0Þ for the canonical kinetic term The matrix Σ̄μ ¼ ðΣ0;−ΣiÞ and the 8 × 8 symmetric matrices Σμ

defined in Eq. (28) are

Σμ ¼ Σμ
4 ⊕ Σμ

4; Σ0
4 ¼ 14; Σ1

4 ¼
�

0 12
12 0

�
; Σ2

4 ¼
�

0 i2
−i2 0

�
; Σ3

4 ¼
�
12 0

0 −12

�
; ðB2Þ

TABLE II. Z2 charge assignment for different types.

uR dR lR Φ1 Φ2 Directions of Ŷf

Type I þ þ þ − þ Ŷu ¼ Ŷd ¼ Ŷl
Type II þ − − − þ −Ŷu ¼ Ŷd ¼ Ŷl
Type X þ þ − − þ Ŷu ¼ Ŷd ¼ −Ŷl
Type Y þ − þ − þ Ŷu ¼ −Ŷd ¼ Ŷl

GLOBAL SYMMETRIES AND EFFECTIVE POTENTIAL OF 2HDM … PHYS. REV. D 108, 055036 (2023)

055036-13



where 1d is the d × d identity matrix and i2 ≡ ð 0
−1

1
0
Þ.

Because ði2Þ2 ¼ −12, the matrix Σμ share the same algebra
with the Pauli matrix σμ, e.g.,

½Σi;Σj� ¼ 2i8ϵijkΣk; ðw⃗ · Σ⃗Þ2 ¼ jw⃗j218; ðB3Þ

1

2
ðΣ̄μΣν þ Σ̄νΣμÞ ¼ gμν18; ðB4Þ

ΣμΣ̄ρΣν ¼ gμρΣν þ gρνΣμ − gμνΣρ þ i8ϵμρνλΣλ; ðB5Þ

Σ̄μΣρΣ̄ν ¼ gμρΣ̄ν þ gρνΣ̄μ − gμνΣ̄ρ − i8ϵμρνλΣ̄λ: ðB6Þ

Here i8 ≡ 14 ⊗ i2 is an anti-symmetric matrix who com-
mutes with Σμ and satisfies ði8Þ2 ¼ −18, and w⃗ is an
arbitrary vector. These identities help to translate some
expressions of φa to bilinear forms. For example,

φi8Σμφ ¼ 0; φΣμΣ̄ρΣνφ ¼ gμρKν þ gρνKμ − gμνKρ:

ðB7Þ

Then we evaluate the second derivative of L

−
δ2L

δφaδφb
¼ ΩρΣ

ρ
ab∂

2 þ ξμΣ
μ
ab þ 2ημνðφcΣ

μ
cdφdÞΣν

ab

þ 4ημνΣ
μ
acðφcφdÞΣν

db: ðB8Þ

In the following, we work in the frame with the canonical
kinetic term with Ωμ ¼ ð1; 0; 0; 0Þ, and the scalar mass
matrix is

M2
SðφÞab ¼ Aab þ Bab;

Aab ¼ AμΣ
μ
ab; Aμ ¼ 2ημνKν þ ξμ;

Bab ¼ 4ημνΣ
μ
acφcφdΣν

db: ðB9Þ

To deal with TrðM2n
S Þ in Eq. (29), we expand the binomial

Tr½ðAab þ BabÞn� ¼
Xn
l¼0

XP
pi¼n−l

fpig
NsðfpigÞ

× TrðAp1BAp2B � � �AplBÞ: ðB10Þ

And we need to evaluate ðAμΣμÞp. Using the identities in
Eq. (B3),

ðAμΣμÞp ¼ ðA018 þ A⃗ · Σ⃗Þp;

¼
Xp
k¼0

Ck
pðA0Þp−kðA⃗ · Σ⃗Þk;

¼
Xp=2
k¼0

C2k
p ðA0Þp−2kjA⃗j2k18

þ
Xðp−1Þ=2
k¼0

C2kþ1
p ðA0Þp−2k−1jA⃗j2kðA⃗ · Σ⃗Þ; ðB11Þ

where Ck
p is the binomial coefficient and

A0 ¼ 2η00K0 þ 2η⃗ · K⃗ þ ξ0; ðB12Þ

A⃗ ¼ 2K0η⃗þ 2EK⃗ þ ξ⃗: ðB13Þ

For simplicity, we define a new four-vector FðpÞμ from

ðA0; A⃗Þ

FðpÞ0 ≡
Xp=2
k¼0

C2k
p ðA0Þp−2kjA⃗j2k; ðB14Þ

F⃗ðpÞ≡
�
−
Pðp−1Þ=2

k¼0 C2kþ1
p ðA0Þp−2k−1jA⃗j2kA⃗ ðp ≠ 0Þ;

0 ðp ¼ 0Þ;
ðB15Þ

and we have

ðAμΣμÞp ¼ FðpÞμΣ̄μ: ðB16Þ

The series in Eq. (B10) are then calculated as

TrðAp1BAp2B � � �AplBÞ

¼ 4lημ1ν1 � � � ημlνl
Yl
i¼1

AðpiÞρiφΣνi Σ̄ρiΣμiþ1φ

¼ 4lημ1ν1 � � � ημlνl
Yl
i¼1

Sνiμiþ1
pi

¼ 4ltrðη · Sp1
� � � η · Spl

Þ;

where μlþ1 ≡ μ1 and the trace tr is taken in the orbit
space. The symmetric tensor Sμνp ¼ FðpÞρφΣμΣ̄ρΣνφ ¼
FðpÞμKν þ FðpÞνKμ − gμνðFðpÞKÞ. And the effective po-
tential can be expressed as4

4For simplicity, the lnpE is dropped here.
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VðSÞ
CW ¼ 1

2

Z
d4pE

2π4

�
Tr

X∞
n¼1

1

n

�
−
M2

S

p2
E

�
n
	

¼ 1

2

Z
d4pE

2π4
X
n

ð−Þn 1

nðp2
EÞn

Xn
l¼0

XP
pi¼n−l

fpig
NsðfpigÞ

× TrðAp1BAp2B � � �AplBÞ

¼ 1

2

Z
d4pE

2π4
X
n

ð−Þn 1

nðp2
EÞn

Xn
l¼0

XP
pi¼n−l

fpig
NsðfpigÞ

× trðη · Sp1
� � � η · Spl

Þ ðB17Þ

In the end, the VðSÞ
CW is expressed as a series defined in the

orbit space. It is worth mentioning that the discussion of
CP property is independent of regularization. When the
potential is CP-even, as we discussed, we can apply the
CP transformation before and after the regularization and
nothing will change. Finally, we can conclude that the CP
property of the (CP conserving) potential tree-level poten-
tial is not violated by the Coleman-Weinberg potential from
scalar loop contribution.

APPENDIX C: RENORMALIZATION
CONDITIONS

To compare with the renormalization conditions in
Ref. [20], we follow their notations and the field expanded
around the vacuum v1, v2 are

Φ1 ¼
1ffiffiffi
2

p
�

ρ1 þ iη1
v1 þ ζ1 þ iψ1

�
;

Φ2 ¼
1ffiffiffi
2

p
�

ρ2 þ iη2
v2 þ ζ2 þ iψ2

�
: ðC1Þ

The renormalization conditions are

∂φa
ðVCT þ VCWÞjφa¼hφaitree ¼ 0; ðC2Þ

∂φa
∂φb

ðVCT þ VCWÞjφa¼hφaitree ¼ 0:

φa ≡ fρ1; η1; ζ1;ψ1; ρ2; η2; ζ2;ψ2g;
hφaitree ¼ f0; 0; v1; 0; 0; 0; v2; 0g: ðC3Þ

Naively, there are 8þ 36 renormalization conditions from
Eqs. (C2) and (C3). However, for any function of the form
fðΦ†

iΦjÞ, its first and second derivative satisfy some
identities so that most of the renormalization conditions
are redundant.
We have the following five identities for the first

derivatives,

∂ρ1 ¼ 0; ðC4Þ

∂ρ2 ¼ 0; ðC5Þ

∂η1 ¼ 0; ðC6Þ

∂η2 ¼ 0; ðC7Þ

cβ∂ψ1
þ sβ∂ψ2

¼ 0; ðC8Þ

where ∂ϕi
¼ 0 denotes ∂ϕi

fjϕ¼hϕitree ¼ 0 for any function

fðΦ†
iΦjÞ and tan β ¼ v2=v1. Therefore, we are left with

three independent renormalization conditions from Eq. (C2),

∂ζ1ðVCT þ VCWÞ ¼ 0; ðC9Þ

∂ζ2ðVCT þ VCWÞ ¼ 0; ðC10Þ

ðcβ∂ψ2
− sβ∂ψ1

ÞðVCT þ VCWÞ ¼ 0: ðC11Þ

We have the following 26 identities for the second
derivatives,

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂η1 þ sβ∂η2Þ ¼ 0; ðC12Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ζ1 þ sβ∂ζ2Þ ¼ 0; ðC13Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ψ1
þ sβ∂ψ2

Þ ¼ 0; ðC14Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ζ2 − sβ∂ζ1Þ ¼ 0; ðC15Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ψ2
− sβ∂ψ1

Þ ¼ 0; ðC16Þ

ðcβ∂η1 þ sβ∂η2Þðcβ∂ζ1 þ sβ∂ζ2Þ ¼ 0; ðC17Þ

ðcβ∂η1 þ sβ∂η2Þðcβ∂ψ1
þ sβ∂ψ2

Þ ¼ 0; ðC18Þ

ðcβ∂η1 þ sβ∂η2Þðcβ∂ζ2 − sβ∂ζ1Þ ¼ 0; ðC19Þ

ðcβ∂η1 þ sβ∂η2Þðcβ∂ψ2
− sβ∂ψ1

Þ ¼ 0; ðC20Þ

ðcβ∂ζ1 þ sβ∂ζ2Þðcβ∂ψ1
þ sβ∂ψ2

Þ ¼ 0; ðC21Þ

ðcβ∂ζ1 þ sβ∂ζ2Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ 0; ðC22Þ

ðcβ∂ζ1 þ sβ∂ζ2Þðcβ∂η2 − sβ∂η1Þ ¼ 0; ðC23Þ

ðcβ∂ψ1
þ sβ∂ψ2

Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ 0; ðC24Þ

ðcβ∂ψ1
þ sβ∂ψ2

Þðcβ∂η2 − sβ∂η1Þ ¼ 0; ðC25Þ

ðcβ∂ρ2 − sβ∂ρ1Þðcβ∂η2 − sβ∂η1Þ ¼ 0; ðC26Þ

ðcβ∂ρ2 − sβ∂ρ1Þðcβ∂ζ2 − sβ∂ζ1Þ ¼ 0; ðC27Þ
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ðcβ∂ρ2 − sβ∂ρ1Þðcβ∂ψ2
− sβ∂ψ1

Þ ¼ 0; ðC28Þ

ðcβ∂η2 − sβ∂η1Þðcβ∂ζ2 − sβ∂ζ1Þ ¼ 0; ðC29Þ

ðcβ∂η2 − sβ∂η1Þðcβ∂ψ2
− sβ∂ψ1

Þ ¼ 0; ðC30Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ρ1 þ sβ∂ρ2Þ ¼ ðcβ∂η1 þ sβ∂η2Þðcβ∂η1 þ sβ∂η2Þ; ðC31Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ρ1 þ sβ∂ρ2Þ ¼ ðcβ∂ψ1
þ sβ∂ψ2

Þðcβ∂ψ1
þ sβ∂ψ2

Þ; ðC32Þ

ðcβ∂ρ2 − sβ∂ρ1Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ ðcβ∂η2 − sβ∂η1Þðcβ∂η2 − sβ∂η1Þ; ðC33Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ ðcβ∂η1 þ sβ∂η2Þðcβ∂η2 − sβ∂η1Þ; ðC34Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ ðcβ∂ψ1
þ sβ∂ψ2

Þðcβ∂ψ2
− sβ∂ψ1

Þ; ðC35Þ

ðcβ∂η1 þ sβ∂η2Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ −ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂η2 − sβ∂η1Þ; ðC36Þ

ðcβ∂η1 þ sβ∂η2Þðcβ∂ρ2 − sβ∂ρ1Þ ¼ ðcβ∂ψ1
þ sβ∂ψ2

Þðcβ∂ζ2 − sβ∂ζ1Þ: ðC37Þ

Then, there are 10 independent renormalization conditions
from the second derivatives. However, three of them are
satisfied automatically when the renormalization condi-
tions from the first derivatives are satisfied, because of the
following identities,

ðcβ∂ρ1 þ sβ∂ρ2Þ2 ¼
1

2v
ðcβ∂ζ1 þ sβ∂ζ2Þ; ðC38Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂ρ2 − sβ∂ρ1Þ ¼
1

2v
ðcβ∂ζ2 − sβ∂ζ1Þ;

ðC39Þ

ðcβ∂ρ1 þ sβ∂ρ2Þðcβ∂η2 − sβ∂η1Þ ¼
1

2v
ðcβ∂ψ2

− sβ∂ψ1
Þ:
ðC40Þ

Finally, we are left with only 7 independent renormaliza-
tion conditions from Eq. (C3),

ðcβ∂ρ2 − sβ∂ρ1Þ2ðVCT þ VCWÞ ¼ 0; ðC41Þ

ðcβ∂ζ1 þ sβ∂ζ2Þ2ðVCT þ VCWÞ ¼ 0; ðC42Þ

ðcβ∂ζ2 − sβ∂ζ1Þ2ðVCT þ VCWÞ ¼ 0; ðC43Þ

ðcβ∂ψ2
− sβ∂ψ1

Þ2ðVCT þ VCWÞ ¼ 0; ðC44Þ

ðcβ∂ζ1 þ sβ∂ζ2Þðcβ∂ζ2 − sβ∂ζ1ÞðVCT þ VCWÞ ¼ 0; ðC45Þ

ðcβ∂ζ1 þ sβ∂ζ2Þðcβ∂ψ2
− sβ∂ψ1

ÞðVCT þ VCWÞ ¼ 0; ðC46Þ

ðcβ∂ζ2 − sβ∂ζ1Þðcβ∂ψ2
− sβ∂ψ1

ÞðVCT þ VCWÞ ¼ 0: ðC47Þ

And we have 10 independent renormalization conditions
from Eqs. (C9)–(C11) and Eqs. (C41)–(C47) in total.
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