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In this work, we investigate the parameter space of the Georgi-Machacek (GM) model, where we
consider many theoretical and experimental constraints such as the perturbativity, vacuum stability,
unitarity, electroweak precision tests, the Higgs diphoton decay, the Higgs total decay width, and the LHC
measurements of the signal strengths of the SM-like Higgs boson h in addition to the constraints from
doubly charged Higgs bosons and Drell-Yan di-photon production and the indirect constraint from the
b → s transition processes. We investigate also the possibility that the electroweak vacuum could be
destabilized by unwanted wrong minima that may violate the CP and/or the electric charge symmetries. We
found that about 40% of the parameter space that fulfills the above mentioned constraints are excluded by
these unwanted minima. In addition, we found that the negative searches for a heavy resonance could
exclude a significant part of the viable parameter space, and future searches could exclude more regions in
the parameter space.
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I. INTRODUCTION

Since the discovery of a Standard Model (SM)-like
125 GeV Higgs boson at the Large Hadron Collider
(LHC) [1], many questions are still open, where the SM
provides no answers. For instance, theHiggsmass is found to
be at the electroweak (EW) scale, while it may acquire very
large radiative corrections that can reach the Planck or GUT
scales within the SM. This hierarchy problem requires an
unwanted fine-tuning. In addition, there are unanswered
questions such as the fermions masses of difference, the
origin of CP violation in the quark sector, the dark matter
nature [2] and the neutrino oscillation data [3].
The discovered 125 GeV scalar has the properties of a

SM-like Higgs; however, it is not known yet whether the
electroweak symmetry breaking (EWSB) is triggered by

one single scalar field or more. In many SM extensions, the
EWSB is achieved via more than one scalar where many
scalar fields acquire nonvanishing vacuum expectation
values (VEVs), and the SM-like is a composite. Among
these SM extensions, the so-called Georgi-Machacek (GM)
model [4], where the ESWB is realized by three scalar
fields. In addition to the SM doublet, the GM model
includes one complex and one real scalar triplets, where a
global custodial SUð2ÞV symmetry is preserved in the
scalar potential after the EWSB. The scalar vacuum in the
GM model is defined in a way that the ρ-parameter should
be within the experimentally allowed range [5],

ρ ¼ gSMhWW

gSMhZZ cos
2 θw

¼ 1.00039� 0.00019; ð1Þ

with gSMhWW ¼ 2m2
W=υ and gSMhZZ ¼ 2m2

Z=υ, where υ ¼
246.22 GeV. This leads to a scalar spectrum with different
multiplets under the global SUð2ÞV custodial symmetry,
whose mass eigenstates give a quintet (H5), a triplet (H3)
and two CP-even singlets (η and h). In our work, we
consider the parameter space that corresponds to h ¼ h125,
with mη > mh. One has to mention that an interesting
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viable parameter space exists for the case mη <mh, where
interesting collider signatures are possible [6].
Due to the feature that the SM-like Higgs couplings to

bothW and Z gauge bosons could be significantly different
than the SM values [7], the GM model could be phenom-
enologically interesting. In addition to the existence of
additional CP-odd, singly and doubly charged scalars, the
GM model could be a good benchmark for searches of
beyond SM scalars; which has been extensively investi-
gated in the literature [8]. In the decoupling limit [9], all
additional beyond SM particles that are present in the GM
model become heavy and the fermion and gauge bosons
couplings to the SM-like Higgs boson approach the SM
values. In addition to the rich phenomenology, other issues
were addressed within the GM model such as the neutrino
mass [10], dark matter [11], and the electroweak phase
transition strength [12].
Recent measurements and negative searches at the

LHC [5], such as those of the total decay width, Higgs
strength modifiers and the cross section upper bounds from
negative searches of new scalar resonance, could imply
significant constraints on the GM model parameter space.
Although the GMmodel includes a custodial scalar fiveplet,
it has been shown that the LHC searches for the doubly
charged Higgs bosons in the VBF channel Hþþ

5 → WþWþ

and theDrell-Yan production of a neutral Higgs bosonpp →
H0

5ðγγÞHþ impose interesting boundson theparameter space
[13], as well as the indirect constraints from the b → s
transition processes that exclude all the benchmark points
(BPs) with large υξ [14]. In addition, the GM scalar potential
structure may admit many minima beside the electroweak
(EW) vacuum that could break the electric charge and/or the
CP symmetry spontaneously. In case where such minima
exist, they should not be deeper than the EW vacuum, which
may affect the parameter space that is in agreement with the
previously mentioned constraints. In [15], the authors
performed a global fit analysis for the GM model free
parameter and obtained some limits on the mixing angles
and the heavynew scalarmasses anddecaywidths.However,
since the constraints from the b → s transition processes
were considered in [15] and the LHC measurements used to
constrain the GMmodel have been significantly updated, an
analysis for the full model parameter space is required. Here,
we aim to investigate the impact of all the relevant constraints
on the model by performing a full numerical scan over the
whole parameter space.

In this work, we give a brief introduction of theGMmodel
in Sec. II, where the scalar potential and the mass spectrum
are described. In Sec. III, we discuss the possible existence of
newminima that couldbe deeper than theEWvacuum.Then,
after categorizing these unwanted minima according to the
preserved/broken (CP and electric charge) symmetries, one
considers the EW vacuum to be the deepest one as an novel
constraint on the GMmodel. In Sec. IV, we discuss different
theoretical and experimental constraints on themodel such as
the unitarity, vacuum stability, the total Higgs decay width
and signal strengthmodifiers, the electroweakprecision tests,
and the diphoton Higgs decay. In addition, we consider the
recent ATLAS and CMS constraints on the heavy CP-even
scalar η and from the negative searches for the doubly
charged Higgs bosons in the VBF channelHþþ

5 → WþWþ,
and the Drell-Yan production of a neutral Higgs boson
pp → H0

5ðγγÞHþ. We show our numerical results and
discussion in Sec. V and our conclusion in Sec. VI.

II. THE MODEL: PARAMETERS AND MASS
SPECTRUM

In the GM model, the scalar sector consists of a scalar
doublet ðϕþ;ϕ0ÞT with hypercharge Y ¼ 1, and two triplet
representations ðχþþ; χþ; χ0ÞT and ðξþ; ξ0;−ξ−ÞT with
hypercharge Y ¼ 2, 0, respectively. These representations
can be written as

Φ¼
�

ϕ0� ϕþ

−ϕþ� ϕ0

�
; Δ¼

0
B@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CA; ð2Þ

where ϕ− ¼ ϕþ�; ξ− ¼ ξþ�; χ−− ¼ χþþ�; χ− ¼ χþ�. The
neutral components in (2) can be expressed by

ϕ0 ¼ 1ffiffiffi
2

p ðυϕ þ hϕ þ iaϕÞ; χ0 ¼ 1ffiffiffi
2

p ðυχ þ hχ þ iaχÞ;

ξ0 ¼ υξ þ hξ; ð3Þ
where υϕ; υχ and υξ are the VEVs for ϕ0; χ0 and ξ0,
respectively. Here, we have three CP-even scalar degrees
of freedom (d.o.f.) fhϕ; hχ ; hξg, two CP-odd d.o.f. faϕ; aχg,
six singly charged d.o.f. fϕ�; χ�; ξ�g and two doubly
chargedd.o.f. χ��. Themost general scalar potential invariant
under the global symmetry SUð2ÞL × SUð2ÞR ×Uð1ÞY is
given by

VðΦ;ΔÞ ¼ m2
1

2
Tr½Φ†Φ� þm2

2

2
Tr½Δ†Δ� þ λ1ðTr½Φ†Φ�Þ2 þ λ2Tr½Φ†Φ�Tr½Δ†Δ�

þ λ3Tr½ðΔ†ΔÞ2� þ λ4ðTr½Δ†Δ�Þ2 − λ5Tr

�
Φ† σ

a

2
Φ
σb

2

�
Tr½Δ†TaΔTb�

− μ1Tr

�
Φ† σ

a

2
Φ
σb

2

�
ðUΔU†Þab − μ2Tr½Δ†TaΔTb�ðUΔU†Þab; ð4Þ
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with σ1;2;3 are the Pauli matrices and T1;2;3 correspond to
the generators of the SUð2Þ triplet representation, that are
given by

T1 ¼ 1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; T2 ¼ 1ffiffiffi

2
p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA;

T3 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ð5Þ

and the matrix U is defined as

U ¼ 1ffiffiffi
2

p

0
B@

−1 0 1

−i 0 −i
0

ffiffiffi
2

p
0

1
CA: ð6Þ

The custodial symmetry condition at tree-level m2
W ¼

m2
Z cos

2 θW implies υχ ¼
ffiffiffi
2

p
υξ and υ2ϕ þ 8υ2ξ ≡ υ2 ¼

ð246.22 GeVÞ2, where mW , mZ and θW are the gauge
bosons masses and the Weinberg mixing angle. It would be
useful to introduce the parameter tβ ≡ tan β ¼ 2

ffiffiffi
2

p
υξ=υϕ

to describe the relations between the VEV’s. By using
the tadpole conditions, one can eliminate the parameters
m2

1;2 as

m2
1 ¼ −4λ1c2βυ2 þ

3

8
ð−2λ2 þ λ5Þs2βυ2 þ

3

4
ffiffiffi
2

p μ1sβυ;

m2
2 ¼ ð−2λ2 þ λ5Þc2βυ2 −

1

2
ðλ3 þ 3λ4Þs2βυ2

þ μ1ffiffiffi
2

p c2βυ

sβ
þ 3ffiffiffi

2
p μ2sβυ: ð7Þ

After the EWSB, the Goldstone bosons are eaten by the
massive Wand Z bosons, and we are left with the following
mass eigenstates: threeCP-even eigenstates fh; η; H0

5g, one
CP-odd eigenstate H0

3, two singly charged scalars
fH�

3 ; H
�
5 g, and one doubly charged scalar H��

5 ,

h ¼ cαhϕ −
sαffiffiffi
3

p ð
ffiffiffi
2

p
hχ þ hξÞ; η ¼ sαhϕ þ

cαffiffiffi
3

p ð
ffiffiffi
2

p
hχ þ hξÞ; H0

5 ¼
ffiffiffi
2

3

r
hξ −

ffiffiffi
1

3

r
hχ ;

H0
3 ¼ −sβaϕ þ cβaχ ; H�

3 ¼ −sβϕ� þ cβ
1ffiffiffi
2

p ðχ� þ ξ�Þ; H�
5 ¼ 1ffiffiffi

2
p ðχ� − ξ�Þ; H��

5 ¼ χ��: ð8Þ

The mixing angle α of the CP-even sector can defined by
tan 2α ¼ 2M2

12=ðM2
22 −M2

11Þ, where M2 is the mass

squared matrix in the basis fhϕ;
ffiffi
2
3

q
hχ þ 1ffiffi

3
p hξg, whose

elements are given by

M2
11 ¼ 8λ1c2βυ

2;

M2
12 ¼

ffiffiffi
3

p

2
cβυ½−μ1 þ

ffiffiffi
2

p
ð2λ2 − λ5Þsβυ�;

M2
22 ¼

μ1ffiffiffi
2

p c2βυ

sβ
−

3ffiffiffi
2

p μ2sβυþ ðλ3 þ 3λ4Þs2βυ2: ð9Þ

This allows us to write the SM-like Higgs bosons
and the heavy scalar (η) eigenmasses as m2

h;η ¼ 1
2
½M2

11þ

M2
22 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
p

�. The other eigen-
masses are

m2
H0

3

¼ m2
H�

3

¼ m2
3 ¼

�
μ1ffiffiffi
2

p
sβυ

þ λ5
2

�
υ2;

m2
H0

5

¼ m2
H�

5

¼ m2
H��

5

¼ m2
5 ¼

μ1ffiffiffi
2

p c2βυ

sβ
þ 6ffiffiffi

2
p μ2sβυ

þ 3

2
λ5c2βυ

2 þ λ3s2βυ
2: ð10Þ

Since, we will take the masses as input parameters, the
quartic couplings λ’s can be expressed as

λ1 ¼
ϱ1c2α þ ϱ2s2α

8υ2c2β
; λ2 ¼ −

cαsαðϱ1 − ϱ2Þffiffiffi
6

p
υ2cβsβ

þm2
3

υ2
−

μ1
2
ffiffiffi
2

p
υsβ

;

λ3 ¼ −
3c2βm

2
3

s2βυ
2

þ m2
5

s2βυ
2
þ

ffiffiffi
2

p ðμ1c2β − 3μ2s2βÞ
s3βυ

; λ5 ¼
2m2

3

υ2
−

ffiffiffi
2

p
μ1

υsβ
;

λ4 ¼
ϱ1s2α þ ϱ2c2α

3s2βυ
2

þ c2βm
2
3

s2βυ
2
−

m2
5

3s2βυ
2
−
μ1c2β − 3μ2s2βffiffiffi

2
p

s3βυ
; ð11Þ
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with ϱ1 ¼ minðm2
h; m

2
ηÞ and ϱ2 ¼ maxðm2

h; m
2
ηÞ. The for-

mulas of λ1;2;4 here are valid for both cases of mh < mη and
mh > mη.

III. AVOIDING WRONG MINIMA

Since the scalar potential is a function of different
fields, three CP-even, two CP-odd and eight charged

scalars, the possibility of other existing minima that are
different and deeper than ðℜðϕ0Þ;ℜðχ0Þ;ℜðξ0ÞÞ ¼
ðυϕ;

ffiffiffi
2

p
υξ; υξÞ would destabilize the EW vacuum. In

[9,16], the authors adopted a simplified field parametri-
zation to investigate the vacuum stability and the bound-
ness from below conditions, where the scalar potential (4)
can be written as

V ¼ 1

2

r2

ð1þ tan2γÞ ½m
2
1 þm2

2tan
2γ� þ r3

ð1þ tan2γÞ3=2 tan γ½−σμ1 − ρμ2tan2γ�

þ r4

ð1þ tan2γÞ2 ½λ1 þ ðλ2 − ωλ5Þtan2γ þ ðζλ3 þ λ4Þtan4γ�; ð12Þ

with

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðΦ†ΦÞþTrðΔ†ΔÞ

q
; TrðΦ†ΦÞ¼ r2cos2γ; TrðΔ†ΔÞ¼ r2sin2γ;

TrðΔ†ΔΔ†ΔÞ¼ ζr4sin4γ; TrðΦ†σaΦσbÞTrðΔ†TaΔTbÞ¼ωr4cos2γ; sin2γ;

TrðΦ†σaΦσbÞðUΔU†Þab¼σr3 sinγcos2γ; TrðΔ†TaΔTbÞðUΔU†Þab¼ρr3sin3γ;

r∈ ½1;∞½;γ∈
�
0;
π

2

�
; ζ∈

�
1

3
;1

�
; ω∈

�
−
1

4
;
1

2

�
; σ∈

�
−

ffiffiffi
3

p

4
;

ffiffiffi
3

p

4

�
; ρ∈

�
−

2ffiffiffi
3

p ;
2ffiffiffi
3

p
�
: ð13Þ

For instance, the conditions for the boundness from
below of the scalar potential can be ensured by imposing
the coefficients of the quartic term [i.e., the second line
in (12)] to be positive, which leads to

λ1 > 0; ζλ3 þ λ4 > 0;

λ2 − ωλ5 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðζλ3 þ λ4Þ

p
> 0: ð14Þ

The parametrization (12) reduces the searches for the
potential minima into looking for specific sets of the
parameters values in the ranges (13) that make (12)
minimal. Here, we will not adopt this approach due to
many reasons, among them the fact that the parameters
in (13) are not fully independent. In other words, any field
configuration in the field space can be defined by a single
set of the parameters in (13), while any parameters set
in (13) does not necessarily correspond to a well-defined
field configuration. In addition, when a field configuration
corresponds to a minimum, it does not show whether it
preserves or violates the CP symmetry and/or the electric
charge.
The scalar potential includes 13 scalar d.o.f.: three

CP-even, two CP-odd, six singly charged and two
doubly charged. The scalar potential must respect the
electric charge conservation by demanding (1) either
the VEVs of all charged scalars to be vanishing, i.e.,
hϕ�i ¼ hχ�i ¼ hξ�i ¼ hχþþi ¼ 0, or (2) any existing
electric charge breaking minimum should not be deeper

than the EW one. The CP symmetry could be sponta-
neously violated when some of the CP-odd fields acquire
a VEV, i.e., hℑðϕ0Þi; hℑðχ0Þi ≠ 0, where this case is
experimentally allowed within the data from ACME
Collaboration on the electron and neutron electric dipole
moment (EDM) [17]. In the case where both CP symmetry
and the electric charge are conserved, other minima beside
the EW vacuum ðℜðϕ0Þ;ℜðχ0Þ;ℜðξ0ÞÞ ¼ ðυϕ;

ffiffiffi
2

p
υξ; υξÞ

could exist. In order to ensure the EW vacuum stability,
we need to check that the scalar potential at
ðℜðϕ0Þ;ℜðχ0Þ;ℜðξ0ÞÞ ¼ ðυϕ;

ffiffiffi
2

p
υξ; υξÞ is the true global

minimum. Then, in our work we consider only the
parameter space where the EW vacuum is deeper than
an any other existing minimum whether it preserves or
violates the CP and/or electric charge symmetries.
Then, finding these wrong minima requires the mini-

mization of the potential (4) along all the CP-even, CP-odd
and the charged fields directions is mandatory. As the
minimization along the CP-odd 2D space fℑðϕ0Þ;ℑðχ0Þg
is straightforward, it requires along the charged directions a
useful parametrization for the charged fields. This can be
done either by writing both singly and doubly charged
fields as X� ¼ 1ffiffi

2
p ðx1 � ix2Þ [18] or adopting the para-

metrization X� ¼ jXje�iϱ. In [18], the authors studied the
vacuum stability of a Z2 symmetric version of the GM
model, where the cubic terms of the scalar potential are
absent. They used the parametrization X� ¼ 1ffiffi

2
p ðx1 � ix2Þ

to investigate special cases in which CP and/or electric
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charge symmetries could be violated. However, this study
is not applicable to our research due to the global Z2

symmetry (i.e., μ1 ¼ μ2 ¼ 0), which renders the possible
vacua drastically different from the standard case where μ1
and μ2 are nonzero.
In our work, we consider the polar parametrization

where the minimization conditions are ∂V=∂X ¼ ∂V=∂ϱ ¼
0 at the charge breaking vacuum. Although in the CP-even
directions, there may exist other minima beside the EWone
that could be deeper. Therefore, one has to search for all
minima along all directions (CP-even, CP-odd and
charged) and check that they are not deeper than the
EW vacuum ðυϕ;

ffiffiffi
2

p
υξ; υξÞ.

After a careful analysis, we found eight minima in the
CP-even directions fhϕ; hχ ; hξg, three minima along the
CP-odd directions faϕ; aχg, eight minima along the singlet
charged fields directions fϕ�; χ�; ξ�g, and a minimum
along the doubly charged direction χ��. We denote the
potential values at these wrong minima by V0þ

i¼1;8, V
0−
i¼1;3,

V�
i¼1;8 and V�, respectively, and we give their coordinates

in Appendix C. Getting the analytical formula for the CP-
conserving and electric charge violating minima given in
(C1), (C2) and (C3) was an easy task since they were
special cases of one or two-dimensional problem. Indeed,
there could be other minima defined in 3D, which will be
defined numerically.
Then, the EW vacuum should be deeper than all these

local minima, i.e.,

Vðℜðϕ0Þ ¼ υϕ;ℜðχ0Þ ¼
ffiffiffi
2

p
υξ;ℜðξ0Þ ¼ υξÞ

<minfV0þ
i ; V0−

i ; V�
i ; V

��; 0g; ð15Þ

where the zero in the last position represents the obviously
wrong vacuum Vð0; 0; 0Þ. As we will see later, the con-
dition (15) could exclude more than 40% of the para-
meter space.

IV. THEORETICAL AND EXPERIMENTAL
CONSTRAINTS

In what follows, we discuss different theoretical and
experimental constraints on the GM model that are related
to many aspects such as the vacuum stability, unitarity, the
Higgs decays, the electroweak precision tests, in addition to
the constraints from negative searches for heavy scalar
resonances at the LHC.

A. Tree-level unitarity

The bound from perturbative unitarity is obtained by
requiring the zeroth partial wave amplitude for any elastic
2 → 2 bosonic scatterings does not become too large to
violate S matrix unitarity. In the high center of mass energy
regime, the gauge fields can be replaced by their corre-
sponding Goldstone scalars. This means that the amplitude,

a0, satisfy ja0j ≤ 1 or jRea0j ≤ 1=2. Then, the perturbative
unitarity bounds in the GM model reads [9]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6λ1 − 7λ3 − 11λ4Þ2 þ 36λ22

q
þ j6λ1 þ 7λ3 þ 11λ4j< 4π;

j2λ3 þ λ4j< π;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λ1 þ λ3 − 2λ4Þ2 þ λ25

q
þ j2λ1 − λ3 þ 2λ4j< 4π;

jλ2 − λ5j< 2π: ð16Þ

B. Boundness from below

To ensure the scalar potential boundness from below
condition, the coefficients of the quartic term along any
direction in the fields space must be positive. This leads to
the conditions [19],

λ1 > 0; λ4 >

�
− 1

3
λ3 for λ3 ≥ 0;

−λ3 for λ3 < 0;
;

λ2 >

8>><
>>:

1
2
λ5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ð13 λ3 þ λ4Þ

q
for λ5 ≥ 0 andλ3 ≥ 0;

ωþðζÞλ5 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðζλ3 þ λ4Þ

p
for λ5 ≥ 0 andλ3 < 0;

ω−ðζÞλ5 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðζλ3 þ λ4Þ

p
for λ5 < 0;

ð17Þ
where

ω� ðζÞ ¼ 1

6
ð1 − BÞ �

ffiffiffi
2

p

3

�
ð1 − BÞ

�
1

2
þ B

��
1=2

;

B≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
ζ −

1

3

�s
∈ ½0; 1�: ð18Þ

The last two conditions for λ2 must be satisfied for all
values of ζ∈ ½1

3
; 1�. Numerically, we consider 1000 steps in

the interval of ζ.

C. The Higgs boson decays

In this setup, the SM-like Higgs boson h (the scalar with
the mass mh ¼ 125.25 GeV) decays mainly into the
fermions pairs τþτ−; cc̄; bb̄ and the gauge bosons WW�
and ZZ�. The partial decay width of the channel h → XX
can be parametrized as Γðh → XXÞ ¼ κ2XΓSMðh → XXÞ,
where the coefficients,

κF ¼ gGMhff
gSMhff

¼ cα
cβ

; κV ¼ gGMhVV
gSMhVV

¼ cαcβ −
ffiffiffi
8

3

r
sαsβ; ð19Þ

represent the Higgs couplings modifiers with respect to the
SM. This allows us to write the total Higgs decay width as

Γtot
h ¼ ΓSM

h

X
X¼SM

κ2XB
SMðh → XXÞ; ð20Þ
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where ΓSM
h ¼ 4.08 MeV [5] and BSMðh → XXÞ are the SM

values for total decay width and the branching ratios for the
Higgs boson, respectively. Here, other decay channels like
h → H3H3=H5H5 could not be open due to the constraints
on the charged scalar massesm2

H�
3

; m2
H�

5

andm2
H��

5

. The GM

value for the Higgs boson (20) should lie in the range [20],

2.1 MeV< Γtot
h < 7.2 MeV: ð21Þ

The signal strengths of the SM-like Higgs boson h have
been measured in the LHC in various channels, where
significant constraints are established [5]. Here, one can
translate these constraints on the partial signal strength
modifiers into bounds on the GM Higgs couplings modi-
fiers κX. In our analysis, we consider only the gluon-gluon
fusion ðggFÞ Higgs production channel, where the partial
Higgs signal strength modifier of the channel h → XX can
be simplified as

μXX ¼ σðpp→ hÞ×Bðh→XXÞ
σSMðpp→ hÞ×BSMðh→XXÞ ¼ κ2Fκ

2
X
ΓSM
h

Γtot
h

; ð22Þ

with σðgg → hÞ½σSMðgg → hÞ� is the ggF production cross
section in the GM [SM] model. The constraints on the
invisible and undetermined channel are irrelevant here since
they are closed due to the scalar masses m3;5 > 78 GeV,
so Bðh → H�

3 H
∓
3 ; H

�
5 H

∓
5 Þ ¼ 0. This means that the

experimental measurements of (22) will constraint signifi-
cantly the coefficients (19). Here, we consider the allowed
values from all partial Higgs strength modifiers within a 3σ
range. The very recent 1σ values are given in PDG by [5]

μWW ¼ 1.19� 0.12; μZZ ¼ 1.01� 0.07;

μbb̄ ¼ 0.98� 0.12;

μμþμ− ¼ 1.19� 0.34; μτþτ− ¼ 1.15þ0.16
−0.15 : ð23Þ

It is expected that (23) put severe bounds on the Higgs
coupling modifiers κF;V , and consequently the mixing
angles α and β.

D. The electroweak precision tests

The structure of the scalar-gauge interactions in the GM
model makes the constraints from the EWPTs very impor-
tant. In the GM model, the T parameter estimation is
problematic since it is divergent, but the S and U para-
meters are calculable. Since the absolute value of the U
parameter is found to be very small<0.01, we will consider
the constraint from the S parameter by fixing the U ¼ 0.
The experimental values for the oblique parameter S is
extracted for the SMHiggs massmh ¼ 125.25 GeV, where
we consider the 2σ range in our numerical scan S ¼ 0.05�
0.11 [21]. The new contributions to the S parameter [14] in
the GM model are given by

ΔS ¼ SGM − SSM ¼ s2Wc
2
W

e2π

�
−

e2

12s2Wc
2
W
ðlogm2

3 þ 5 logm2
5Þ þ 2jgZhH0

3
j2f1ðmh;m3Þ

þ 2jgZηH0
3
j2f1ðmη; m3Þ þ 2ðjgZH0

5
H0

3
j2 þ 2jgZHþ

5
H−

3
j2Þf1ðm5; m3Þ þ jgZZhj2

�
f1ðmZ;mhÞ

2m2
Z

− f3ðmZ;mhÞ
�

− jgSMZZhj2
�
f1ðmZ;mSM

h Þ
2m2

Z
− f3ðmZ;mSM

h Þ
�
þ jgZZηj2

�
f1ðmZ;mηÞ

2m2
Z

− f3ðmZ;mηÞ
�

þ jgZZH0
5
j2
�
f1ðmZ;m5Þ

2m2
Z

− f3ðmZ;m5Þ
�
þ 2jgZWþH−

5
j2
�
f1ðmW;m5Þ

2m2
W

− f3ðmW;m5Þ
��

; ð24Þ

with the functions f1;3 and the couplings gZXY are given in
Appendixes A and B, respectively.

E. The Higgs decays h → γγ;γZ

The Higgs decay into two photons or a photon and a Z
gauge boson are induced through a loop of charged particles.
To estimate any new physics effect on these Higgs
decays, the ratios Rγγ;γZ¼Bðh→ γγ;γZÞ=BSMðh→ γγ;γZÞ

are estimated and used to constrain the charged scalar
masses and their couplings to the Higgs boson.
According to the latest data, we have Rγγ ¼ 1.10� 0.07
[5]. According to the Feynman diagrams in Fig. 1, the
deviation of Rγγ from unity, may come from many vertices
such as g̃ g̃ h, tt̄h and WþW−h as well due to new vertices
involving new charged scalars.
From the diagrams in Fig. 1, one finds the ratios,

Rγγ ¼ κ2F

				
υ
2

P
X
ghXX
m2

X
Q2

XA
γγ
0 ðτXÞ þ κVA

γγ
1 ðτWÞ þ κF

4
3
Aγγ
1=2ðτtÞ

Aγγ
1 ðτWÞ þ 4

3
Aγγ
1=2ðτtÞ

				
2

; ð25Þ
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RγZ ¼ κ2F

				 υ
P

X
ghXXCZXX

m2
X

QXA
γZ
0 ðτX; λXÞ þ κVA

γZ
1 ðτW; λWÞ þ κF

−6þ16s2w
3swcw

AγZ
1=2ðτt; λtÞ

AγZ
1 ðτW; λWÞ þ −6þ16s2w

3swcw
AγZ
1=2ðτt; λtÞ

				
2

; ð26Þ

where X ¼ Hþ
3 ; H

þ
5 ; H

þþ
5 stands for all charged scalars

inside the loop diagrams, QX is the electric charge of the
field X in units of jej, τX ¼ 4m2

X=m
2
h; λX ¼ 4m2

X=m
2
Z, and

the functions Aγγ;γZ
i and coefficients ghXX and CZXX are

given in Appendixes A and B, respectively.

F. Constraints from the production/decay
of the heavy scalar η

After the discovery of the Higgs boson with
mh ¼ 125.25 GeV, efforts have been devoted to search
for heavy neutral scalar boson through different channels
over a wide mass range. Such results can also be used to
impose constraints on models with many neutral scalars
such as the GM model.
The twoCP-even eigenstates h and η are defined through

a mixing angle α and ðmh < mηÞ, where the light eigenstate
h is identified to be the SM-like Higgs boson with the
measured mass mh ¼ 125.25 GeV. Here, the heavy scalar
η has similar couplings as the SM Higgs boson, but
modified with the factors,

ζV ¼ gGMηVV
gSMhVV

¼ sαcβ þ
ffiffiffi
8

3

r
cαsβ; ζF ¼ gGMηFF

gSMhFF
¼ sα

cβ
: ð27Þ

The partial decay width of the heavy scalar η into
SM final states can be written as Γðη → XX̄Þ ¼
ζ2XΓSMðη → XX̄Þ, where ΓSMðη → XX̄Þ is the Higgs partial
decay width estimated at mh → mη [22]. In addition, there
exist other BSM decay channels like η → hh;H3H3; H5H5

when kinematically allowed. The partial decay width for
these channels is given by

Γðη → YȲÞ ¼ rY
jgηYȲ j2
32πmη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
Y

m2
η
;

s
ð28Þ

with Y ¼ h;H0
3; H

�
3 ; H

0
5; H

�
5 ; H

��
5 , rh;H0

3
;H0

5
¼ 1 and

rH�
3
;H�

5
;H��

5
¼ 2. Then, the heavy scalar η total decay width

can be written as

Γtot
η ¼

X
Y≠SM

Γðη→YȲÞþΓSM
η

X
X¼SM

ζ2YB
SMðη→XX̄Þ; ð29Þ

where ΓSM
η and BSMðη → XX̄Þ are the Higgs total decay

width and branching ratios estimated at mh → mη [22].
Since the heavy scalar η decays into all SM final states, it
can be searched at the LHC via the processes:
(1) pp → η → ll; ||;VV and pp → η → hh. For the first
type, we include the recent ATLAS analysis at 13 TeV with
139 fb−1 pp → η → ττ [23] and pp → S → ZZ via the
channels llll and llνν [24]. In the other side, when
checking the bounds from the decay pp → η → WW,
one finds that the recent CMS analyses [25] are not
convenient to use here, due to the considered large mass
range ðmη > 1 TeVÞ in the analysis. For the second type,
we use the recent ATLAS combination [26] that includes
the analyses at 13 TeV with 139 fb−1 via the channels
hh → bb̄ττ [27], hh → bb̄bb̄ [28] and hh → bb̄γγ [29].
Here, we can take all the above mentioned analyses to

constrain the GM model parameters that are relevant
to the heavy scalar η. We define the cross section of the
Heavy scalar η in function of the branching ratios and decay
width as

FIG. 1. Feynman diagrams relevant to the Higgs decay h → γV (V ¼ γ, Z) at the LHC. The red and blue points refer to the vertices that
could be modified with respect to the SM by the factors κF and κV , respectively.
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σðpp → ηÞ × Bðη → XX̄Þ

¼ ζ2Fζ
2
X
Γtot
SMðηÞ
ΓtotðηÞ σ

SMðpp → ηÞ × BSMðη → XX̄Þ; ð30Þ

where BSMðη → XX̄Þ are the branching ratios of the heavy
scalar η decaying into a pair of gauge bosons or fermions
via the ggF production mode of η, σðpp → ηÞ and
σSMðpp → ηÞ are the proton-proton collision production
cross section.

G. LHC Constraints on the triplet and fiveplet Scalars

Here, we implement some of the most stringent con-
straints, especially the vector boson fusion (VBF) produc-
tion of Hþþ

5 and the Drell-Yan production of a neutral
Higgs boson.

1. VBF H+ +
5 → W+W + → like sign dileptons

The experimental bound on sH as a function of m5 is
constrained by a CMS result of 35.9 fb−1 of LHC run 2
(13 TeV) data [30] for m5 > 200 GeV, we assume that the
signal production cross section is proportional to s2H where

ðslimit
H Þ2 × BðHþþ

5 → WþWþÞ ¼ ðsCMS
H Þ2; ð31Þ

with ðsCMS
H Þ2 is the bound presented at [30] that corre-

sponds to BðHþþ
5 → WþWþÞ ¼ 1.

2. Drell-Yan H0
5H

�
5 with H0

5 → γγ

Concerning the Drell-Yan production of H0
5H

�
5 with H0

5,
there exist two ATLAS searches for diphoton resonances in
the mass range 65<m5 < 600 GeV using 20.3 fb−1 of
LHC run 1 (8 TeV) data [31] and of the 36.7 fb−1

luminosity of LHC run 2 (13 TeV) data in the mass range
200<m5 < 2700 GeV [32]. The total cross sections at
8 TeVand 13 TeV for H0

5H
þ
5 and H0

5H
−
5 are shown in [13].

The fiducial cross section is constrained by the following
expression:

σfiducial¼ðσH0
5
Hþ

5
×ϵþþσH0

5
H−

5
×ϵ−Þ×BðH0

5→ γγÞ; ð32Þ

where the efficiencies ϵ� forH0
5H

�
5 respectively, are shown

in [13]. As we will see later, only the 8 TeV constraints are
relevant to (32) since the 13 TeV cross section values are 3
orders of magnitude suppressed with respect to the experi-
mental bounds.

H. The b → s transition bounds

Since the charged tripletH�
3 is partially coming from the

SM doublet as shown in (8), then it couples to the up and
down quarks similar to the way the W gauge boson does.
These interactions lead to flavor violating processes such as
the b → s transition ones, which depend only on the
charged triplet mass m3 and the mixing angle β. The

current experimental value of the b → sγ branching ratio,
for a photon energy Eγ > 1.6 GeV is BðB̄ → XsγÞexp ¼
ð3.55� 0.24� 0.09Þ × 10−4, while the two SM predic-
tions are BðB̄ → XsγÞSM ¼ ð3.15� 0.23Þ × 10−4 [33] and
BðB̄ → XsγÞSM ¼ ð2.98� 0.26Þ × 10−4 [34]. In our
numerical scan, we consider the bounds on the m3 − υχ
plan shown in [14].

V. NUMERICAL ANALYSIS AND DISCUSSION

We perform a numerical scan over the parameter space of
the GM model and probe the effect of different theoretical
and experimental constraints on the parameter space. We
require the light CP-even scalar to be the 125 GeV SM-like
Higgs boson and impose the constraints from perturbativ-
ity, unitarity, boundness from below, the diphoton Higgs
decay, the Higgs total decay width, the Higgs signal
strength modifiers, the electroweak precision tests, the
constraints from the doubly charged Higgs bosons and
Drell-Yan diphoton production, and the indirect constraint
from the b → sγ transition processes.
We choose the model free parameters to be λ2; λ4;

mη; m3; m5; sα and sβ ≡ sin β ¼ 2
ffiffiffi
2

p
υξ=υ, which lie in

the ranges,

78 GeV<m3 < 1 TeV; 78 GeV<m5 < 1.8 TeV;

mh < mη < 1 TeV; jλ2;4j ≤ 10; jsβj ≤ 1; ð33Þ

where the triplet and fiveplet charged scalars are subject to
a mass lower bound from LEP [35]. Here, the negative
values of sβ should be considered due to the following
reason. In the GM model, we have VðΦ;Δ; μ1;2Þ ¼
VðΦ;−Δ;−μ1;2Þ, and therefore all the mass matrix ele-
ments are also invariant under this transformation.
However, since the scalar eigenstates are mixtures
of the components of Φ and Δ, the physical vertices that
involves scalars are not invariant under ðΦ;Δ; μ1;2Þ →
ðΦ;−Δ;−μ1;2Þ. This means that any two BPs with the
same input parameters but with opposite signs of
ð�sβ;�μ1;2Þ are physically different. This makes the
negative sβ values in (33) independent parameter space
that should not be ignored.
In order to check whether there exist wrong vacua that

are deeper than the EW one ðυϕ;
ffiffiffi
2

p
υξ; υξÞ, we show in

Fig. 2 the scalar mass ranges with (left) and without (right)
the condition (15).
From the 58.5k BPs, 35k BPs fulfill the condition (15).

This means that almost 40% of the parameter space
considered in the literature are excluded by the fact that
the EW vacuum ðυϕ;

ffiffiffi
2

p
υξ; υξÞ is not the deepest one.

Clearly, when considering all the theoretical and exper-
imental constraints except the condition (15), the five-
plet and the singlet η masses can reach the values
m5 ¼ 1.25 TeV and mη ¼ 1 TeV, respectively for the
triplet maximal mass value m3 ¼ 1 TeV. However, when
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considering the constraint (15), the fiveplet mass ranges get
shrunk as m5 < 1.1 TeV. This requires a full reanalysis of
different phenomenological aspects of this model. The
viable parameter space in Fig. 2-right is a consequence
of a combination of the theoretical and experimental
constraints mentioned above.
In what follows, we will consider only the 35k viable

BPs in our analysis, as shown in Fig. 3.
From Fig. 3, one has to mention that the parameter space

is well constrained and split into three isolated islands in
the plans of fsβ; sαg, fsα; mηg and fζF; ζVg; and into two
islands in the plans of fκF; κVg. For instance, the three
islands correspond to the ranges f−0.92<sβ<−0.83;
−0.92<sα<−0.81g, f−0.54<sβ<−0.05;0.01<sα<0.64g

and f0.04< sβ < 0.54;−0.64< sα < 0.03g, respectively.
According to the bottom-right panel in Fig. 3, the κ’s
values for the two islands are f−1.21 < κV <
−0.85; 0.86 < κF < 1.12g and f0.9< κV < 1.23; 0.88<
κF < 1.13g, respectively. While, the corresponding ζ’s
ranges are f−1.22< ζV < −0.97;−2.15< ζF < −1.59g,
f−0.09< ζV < 0.66;−0.75< ζF < −0.02g and f−0.65<
ζV < 0.14; 0.04< ζF < 0.75g, for the three islands, respec-
tively. Here, the shape of all islands is dictated by the
combination of all the above mentioned constraints; how-
ever, some of the constraints could have the dominant
impact on such a region. For instance, the shape of the
isolated islands is mainly dictated by the bounds
from b → s.

FIG. 2. The masses for triplet, fiveplet and singlet η estimated in the GM model by considering the basic theoretical and experimental
constraints with (left) and without (right) the condition of the EW vacuum to be the deepest (15).

FIG. 3. Different physical observables estimated in the GMmodel by considering the theoretical and experimental constraints, i.e., the
BPs used to produce Fig. 2-left.
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The Higgs coupling modifier κV is very constrained and
could have both signs, while the κF deviation with respect
to the SM can reach 13%. These deviations of κF;V form the
SM are possible due to the strength of the bounds from
some experimental constraints, such as the diphoton Higgs
decay, the bounds on the total Higgs decay width and the
Higgs signal strength modifiers. Unlike most of the SM
extensions that involve a heavy scalar whose couplings to
the fermions and gauge bosons are similar to those of the
SM-like Higgs bosons, the scaling factor could have values
larger than unity jζFj > 1. The reason of the significant
deviation of the factors ζV , κV from unity, could be the
factor

ffiffiffiffiffiffiffiffi
8=3

p
, in addition to the sine and cosine in the

denominator in (27) and (19). These values are very similar
to the results obtained in [13] for the region of positive κV
due to the stringent constraints from the b → s transition
bounds. However, we got another region with negative κV
values that is not mentioned in [13], as it is allowed all
the constraints considered in our scan of the full free
parameters ranges (33).
In the majority of SM scalar extensions where the heavy

scalar η couplings to the fermions and gauge bosons are
much smaller than the SM values (jζF;V j ≪ 1). This makes
these models in agreement with all the negative searches of

a heavy resonance. But in the GM model, the situation is
different, i.e., ζF;V are not suppressed, and these negative
searches could play a key role to exclude most of the
parameter space as will be seen next.
In Fig. 4, we show the ratios Rγγ and RγZ for the SM-like

Higgs boson (left) and the Higgs total decay width versus
its branching ratios (right).
From Fig. 4-left, while the values of Rγγ are constrained

by the current LHC data [5], the ratio RγZ is modified
drastically with respect to the SM, it could be reduced by
∼ − 45% as it could be ∼18% enhanced with respect to the
SM. There are few BPs where RγZ is almost null, which
correspond to some specific values of κF;V , where a
possible cancellation could occur between different terms
in (26). From the right panel, one learns that the Higgs
decays into gauge bosons and fermions can be reduced/
enhanced by −70%–150% and −90%–110%, respectively.
Therefore, more precise Higgs measurements will tighten
these ranges and constraint more the parameter space. For
the considered parameter space, the oblique parameter
given in (24) takes the values −0.17< ΔS < 0.25.
In Fig. 5, we present some observables relevant to the

heavy scalar η versus its mass. In the left panel we show its
total decay width and its invisible and undetermined

FIG. 4. Left: the ratio RγZ in function of Rγγ , where the palette shows the sine of the mixing angle α. Right: the SM-like Higgs total
decay width versus Higgs branching ratio to gauge bosons scaled by its SM value. The palette shows the Higgs branching ratio to
fermions scaled by its SM value; and the dashed line at Γh ¼ 4.08 MeV corresponds to the SM value, while the experimentally allowed
values are shown by the dashed lines at 2.1 MeV and 7.2 MeV [20].

FIG. 5. Left: the total decay width of the scalar η in function of its mass mη, where the palette shows its di-Higgs branching ratio. The
red curve represents the total decay Γη estimated in the SM [22], i.e., with sα ¼ 1 and BBSM ¼ 0. Middle: the BSM branching ratio
BSM ¼ h;H3; H5 versus mη, where the palette shows the di-Higgs branching ratio. Right: the branching ratios Bðη → XXÞ versus mη.
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branching fractions in the middle panel, while the SM
branching ratios are shown in the right panel.
One has to mention that the singlet scalar η total decay

width could be either 2 orders ofmagnitude smaller or larger
than SM estimated value as shown in Fig. 5-left. This
can be understood due the possible significant deviation
of the factors ζF;V from unity, in addition to possible large
values for the possible partial decay widths for
η → hh;H3H3; H5H5. According to Fig. 5-middle, one
notices that the BSM channels could be dominant for
mη > 160 GeV. Here, one notes that the BSM branching
ratios are dominant by η → H3H3 and η → H5H5 in the
region of mass 145 GeV<mη < 250 GeV but when mη >
250 GeV the BSM branching ratio is dominant by η → hh.
Clearly from Fig. 5-right, one remarks that the branching
ratios Bðη → WW;ZZ; bb̄; ττ; ttÞ are comparable to their
SM corresponding values [22] for a large portion of the BPs.
In Fig. 6, we show the resonant production cross section

of the heavy scalar η compared to the experimental bounds
in the channels ττ (left) and ZZ (right).
From Fig. 6, the experimental bounds from the negative

searches for a heavy resonance in the channels ττ and ZZ
exclude significant part of the parameter space. However,

more regions in the parameter space will be excluded if the
future searches for a heavy resonance would consider the
mass range 125–200 GeV. For the η → ZZ constraint, if
one extrapolates the bound into small mη values, one learns
that all the BPs with ζ2F > 0.6 are excluded.
Concerning the resonant production η → hh, the pro-

duction cross section can not be directly compared to the
experimental bounds in the channels hh → bb̄ττ [27],
hh → bb̄bb̄ [28] and hh → bb̄γγ [29], since these analyses
have been performed by taking into account the SM Higgs
branching ratio. Therefore, the modified cross section,

σmodðpp→ η→ hhÞ ¼ σGMðpp→ η→ hhÞ

×
Bðh→ X1X̄1ÞBðh→ X2X̄2Þ

BSMðh→ X1X̄1ÞBSMðh→ X2X̄2Þ
;

ð34Þ
is the relevant quantity to be compared with the experi-
mental bounds [27–29] in the channel hh → X1X̄1X2X̄2. In
Fig. 7, we show the modified cross section (34) as a
function of the heavy scalar mass from the combination
of hh → bb̄ττ and hh → bb̄γγ for the BPs with

FIG. 6. The resonant production cross section pp → η → ττ (left) and pp → η → ZZ (right) as a function of the heavy scalar massmη,
where the palette shows the square of the scaling factor ζF. The red curves represent the corresponding experimental bounds from
ATLAS [23,24].

FIG. 7. The hh production cross section (34) as a function of mη from the combination of hh → bb̄ττ [27], (left) and via hh → bb̄γγ
[29] (right).
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mη > 250 GeV, where the palette shows the branching
ratio of η → hh.
From Fig. 7, one learns that the majority of the BPs

with mη > 250 GeV are excluded by the experimental
bounds [23–29]. One has to mention that the di-Higgs
negative searches are used to set some limits on the triple
Higgs couplings and to constrain the scalar sector in many
multiscalar SM extensions, but here in the GM model, the
resonant η → hh experimental bounds are very efficient in
excluding large part of the parameter space. This point will
be investigated in details in a future work [36].
Here, in Fig. 8 we show the effect of the constraints from

the doubly charged Higgs bosons and Drell-Yan diphoton

production on different observables like s2β × BðHþþ
5 →

WþWþÞ and the cross section of the diphoton production at
8 TeV which are plotted in function of m5 and the
corresponding branching ratio in the palette. One has to
mention that it is worthless to show the cross section pp →
H0

5 → γγ at 13 TeV since the existing experimental bounds
are given for the m5 range [32], that it is already excluded
by previous constraints.
One notices from Fig. 8-left that the branching ratio

BðHþþ
5 → WþWþÞ value does not play an important role in

excluding the BPs by the experimental bounds [30]; how-
ever, the mixing value sβ does. From Fig. 8-right,
one remarks that most of the diphoton scalar negative

FIG. 8. Left: the quantity s2β × BðHþþ
5 → WþWþÞ in function ofm5, where the palette shows the branching ratio BðHþþ

5 → WþWþÞ.
The blue curve represents the experimental bounds from CMS [30]. Right: the cross section of the diphoton production at 8 TeV,
where the palette shows the corresponding branching ratio. The blue curve shows the experimental bound [31]. Here, the BPs with
m5 > 600 GeV are not considered since by the experimental bound [31] were established only for m5 < 600 GeV.

FIG. 9. The physical observables that are presented in Fig. 3 reproduced using only BPs that are in agreement with the recent ATLAS
and CMS experimental bounds [23–29], in addition to the constraints from the doubly charged Higgs bosons and Drell-Yan di-photon
production [30–32] as well as the indirect constraints from b → sγ and the LHC measurements on the Higgs strengths modifiers.
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searches exclude most of the BPs withBðH0
5 → γγÞ > 0.09,

which is in good agreement with the experimental
bound [31].
In Fig. 9, we reproduce the physical observables shown

in Fig. 3 by considering only the BPs that are in agreement
with all the above mentioned experimental bounds [23–29]
fulfill the constraints from doubly charged Higgs boson and
Drell-Yan diphoton production, the indirect constraints
from the b → s transition processes and the LHC mea-
surements on the Higgs strengths modifiers.
From the 35k BPs considered in our analysis, 74.5% are

excluded by the above combined constraints, where the
majority of BPs correspond to mη < 2mh. However, most
of them are not excluded due the absence of the exper-
imental bounds for m5 < 200 GeV. By comparing Fig. 9
with Fig. 3, one has to mention that these constraint do not
change the shape of the islands described previously.
Before concluding this debate, it is essential to discuss the

impact of futuremeasurements at theHL-LHCon thismodel.
The primary objectives of the HL-LHC include enhancing
measurements related to the 125 GeV Higgs boson’s
couplings, decays, and the search for heavy Higgs particles.
Additionally, it offers an important opportunity to test some
BSM theories. In a study by Li [37], the possibility of
observing the type-II seesaw doubly charged scalar was
investigated. They obtained a mass upper bound of 655GeV,
which is irrelevant to the doubly charged scalar in the current
model. According to the projections for Higgs property
measurements [38], it is expected that the various Higgs
scaling factors and, consequently, the signal strength modi-
fiers in (22) will be measured with significantly improved
precision. This will result in narrower experimentally
allowed ranges for the scaling factors κF;V as shown in
(23), leading to the exclusion of a significant portion of the
parameter space.

VI. CONCLUSION

In this work, we have studied the scalar potential of the
GM model that preserves custodial SU(2) symmetry. We
have considered the theoretical and experimental con-
straints on the parameter space such as the tree-level
unitarity, the potential boundness from below, avoiding
possibly deeper wrong minima, the electroweak precision
tests, the Higgs total decay width and diphoton decay, and
the Higgs strength modifiers, the negative searches on the
doubly charged Higgs bosons and the Drell-Yan diphoton
production, as well as the indirect constraints from the
b → s transition processes; in addition to the direct
searches for additional heavy Higgs resonances.
We performed a numerical scan based on all the above-

mentioned theoretical and experimental constraints, and we
found that the possible unwanted minima that could be
deeper than the EW vacuum excludes about 40% of the
parameter space that fulfills the above mentioned con-
straints. On top of that, we noticed that the above

constraints dictate a clear shape on the model parameter
of three separated islands in the plans of fsβ; sαg, fsα; mηg
and fζF; ζVg, and two islands in the plans of fκF; κVg. The
couplings of the Higgs boson to the gauge bosons and
fermions lie in the ranges f−1.21< κV < −0.85; 0.86<
κF < 1.12g and f0.9< κV < 1.23; 0.88< κF < 1.13g,
respectively. However, the scaling factors of the heavy
scalar η in the GM ζF;V lie in the ranges f−1.22<
ζV < −0.97;−2.15< ζF < −1.59g, f−0.09< ζV < 0.66;
−0.75< ζF < −0.02g and f−0.65< ζV < 0.14; 0.04<
ζF < 0.75g, respectively. Here, an isolated islands in the
plans of that was supposed to exist was excluded by the
b → s bound. The shape of the isolated islands as shown in
the plans of fsβ; sαg, fsα; mηg, fζF; ζVg, and fκF; κVg is
dictated by the combination of the bounds of the Higgs
signal strength modifiers and the Higgs total decay width;
in addition to the Higgs diphoton decay.
We have also imposed the constraints from the negative

searches of both doubly charged Higgs bosons in the VBF
channel and Drell-Yan diphoton production, where we
found that a significant part of the parameter space is
excluded by the CMS bound on s2β × BðHþþ

5 → WþWþÞ
[30]. Here, it has been found that the branching ratio of
Hþþ

5 → WþWþ does not play an important role in allowing/
excluding anyBP, but themixing sβ does. Unfortunately, the
recent bounds fromCMS [30] andATLAS [32] do not cover
the mass rangem5 < 200 GeV, which makes a large part of
the parameter space unconstrained by this severe bound. It
will be interesting if future analyses would consider this
mass range.
The indirect constraints from the b → s transition proc-

esses are also applied and put constraints on the two
parameters m3 and υξ only. We found also that the recent
LHCmeasurements on theHiggs strengthsmodifiers impose
strong constraints on the parameter space, especially the
Higgs coupling modifiers κF;V . In fact, the direct searches
generally provide more strict constraints on the GM model
parameter space and open the possibility of a discovery as
these searches would be improved within the current/future
LHC data. We have imposed also the recent ATLAS and
CMS negative searches for the heavy scalar η in different
channels.We found that the channel η → hh is very useful to
exclude most of the parameter space, while other channels
are less efficient since the mass range 125 GeV<mη <
200 GeV is not covered by most of the searches. Clearly,
future searches and more precise measurements will tighten
the parameter space of the GM model.
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APPENDIX A: FUNCTIONS

The loop functions used in (24) are given by

f1ðx; yÞ ¼
5ðy6 − x6Þ þ 27ðx4y2 − x2y4Þ þ 12ðx6 − 3x4y2Þ log xþ 12ð3x2y4 − y6Þ log y

36ðy2 − x2Þ3 ;

f3ðx; yÞ ¼
x4 − y4 þ 2x2y2ðlog y2 − log x2Þ

2ðx2 − y2Þ3 ; ðA1Þ

while those used in (25) and (26) are given by [39]

Aγγ
1 ðτÞ ¼ 2þ 3τ þ 3τð2 − τÞfðτÞ; Aγγ

1=2ðτÞ ¼ −2τ½1þ ð1 − τÞfðτÞ�; Aγγ
0 ðτÞ ¼ τ½1 − τfðτÞ�;

AγZ
1 ðτ; λÞ ¼ − cot θW

�
4ð3 − tan2θWÞI2ðτ; λÞ þ

��
1þ 2

τ

�
tan2θW −

�
5þ 2

τ

��
I1ðτ; λÞ

�
;

AγZ
1=2ðτ; λÞ ¼ I1ðτ; λÞ − I2ðτ; λÞ; AγZ

0 ðτ; λÞ ¼ I1ðτ; λÞ

I1ða; bÞ ¼
ab

2ða − bÞ þ
a2b2

2ða − bÞ2 ½fðaÞ − fðbÞ� þ a2b
ða − bÞ2 ½gðaÞ − gðbÞ�;

I2ða; bÞ ¼ −
ab

2ða − bÞ ½fðaÞ − fðbÞ�; ðA2Þ

with

fðτÞ ¼

8>><
>>:
h
arcsin


 ffiffi
1
τ

q �i
2

if τ ≥ 1;

− 1
4

h
log


1þ ffiffiffiffiffiffi

1−τ
p

1−
ffiffiffiffiffiffi
1−τ

p
�
− iπ

i
2

if τ < 1

; gðτÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffi
τ − 1

p h
sin−1


 ffiffi
1
τ

q �i
if τ ≥ 1;

1
2

ffiffiffiffiffiffiffiffiffiffi
τ − 1

p h
log


ηþ
η−

�
− iπ

i
if τ < 1:

ðA3Þ

APPENDIX B: COUPLINGS

Here, we give the couplings used in different observables definitions. The couplings that are used in (24) are

gZhH0
3
¼ −i

ffiffiffi
2

3

r
e

sWcW

�
sαcβ þ

ffiffiffi
3

8

r
cαsβ

�
; gZηH0

3
¼ i

ffiffiffi
2

3

r
e

sWcW

�
cαcβ −

ffiffiffi
3

8

r
sαsβ

�
; gZH0

5
H0

3
¼ −i

ffiffiffi
1

3

r
e

sWcW
cβ;

gZZη ¼
e2

2s2Wc
2
W

�
sαcβ þ

ffiffiffi
8

3

r
cαsβ

�
; gZZh ¼

e2

2s2Wc
2
W

�
cαcβ −

ffiffiffi
8

3

r
sαsβ

�
; gZHþ

5
H−

3
¼ e

2sWcW
cβ;

gZZH0
5
¼ −

1ffiffiffi
3

p e2

s2Wc
2
W
sβυ; gZWþH−

5
¼ −

e2

2s2WcW
sβυ; gSMZZh ¼

e2

2s2Wc
2
W
υ: ðB1Þ

Here, gSMZZh is the SM coupling. The couplings ghXX;ηXX used in (25), (26) and (28) are

ghHþþ
5

H−−
5

¼ ghHþ
5
H−

5
¼ −8

ffiffiffi
3

p
ðλ3 þ λ4Þυξsα þ ð4λ2 þ λ5Þυϕcα − 2

ffiffiffi
3

p
μ2sα;

ghHþ
3
H−

3
¼ −

8ffiffiffi
3

p
� ffiffiffi

2
p

4
λ5sβcβυϕ þ



ðλ3 þ 3λ4Þυξ −

3μ2
4

�
c2β þ

3

2




λ2 þ

λ5
6

�
υξ þ

μ1
24

�
s2β

�
sα

þ 2
ffiffiffi
2

p
cαcβsβ

�
λ5υξ þ

μ1
2

�
þ 4cα

��

λ2 −

λ5
4

�
c2β þ 2λ1s2β

�
υϕ

�
;
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gηhh ¼ −2
ffiffiffi
3

p
cα




ðλ5 − 2λ2Þυξ þ
μ1
4

�
c2α − 4s2α




λ3 þ 3λ4 þ

λ5
2
− λ2

�
υξ þ

μ1
8
−
μ2
2

��

þ 4sβ

�
ðλ5 þ 6λ1 − 2λ2Þc2α −

s2α
2
ðλ5 − 2λ2Þ

�
υϕ;

gηHþþ
5

H−−
5

¼ gηHþ
5
H−

5
¼ gηH0

5
H0

5
¼ 8

ffiffiffi
3

p
ðλ3 þ λ4Þυξsα þ ð4λ2 þ λ5Þυϕcα þ 2

ffiffiffi
3

p
μ2sα;
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3
H−

3
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3
H0

3
¼ 8ffiffiffi

3
p
� ffiffiffi

2
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λ5cβsβυϕ þ
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3μ2
4

�
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3

2
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λ5
6

�
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μ1
24

�
s2β

�
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þ 2
ffiffiffi
2

p
sαcβsβ



λ5υξ þ

μ1
2

�
þ 4sα





λ2 −

λ5
4

�
c2β þ 2λ1s2

�
υϕ
�
: ðB2Þ

The coefficients CZXX used in (26) are given by

CZHþþ
5

H−−
5

¼ 1 − 2s2W
sWcW

; CZHþ
3
H−

3
¼ CZHþ

5
H−

5
¼ 1 − 2s2W

2sWcW
: ðB3Þ

APPENDIX C: WRONG MINIMA

The GM scalar potential may have other minima than the EW one. It is possible to get analytic formula for some these
wrong minima, like the ones below, but others require numerical efforts. The following minima are possible only if the
quantities inside the square-root are positive.
In the CP-even subspace: we have eight possible minima that corresponds to V0þ

i ,

fhϕ; hχ ; hξg ¼
 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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2λ1
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;
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In the CP-odd subspace: we got three possible minima that corresponds to V0−
i ,

faϕ; aχg ¼
�
�
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; 0
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In the singly charged subspace: in this direction, we parametrized the charged fields as X� ¼ jXje�iϱ, and then we found
that the minima that correspond to V�

i do not depend on the phases, i.e.,
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In the doubly charged subspace: in the doubly charged directions we have only one possible minimum, which is given by

jχ��j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2
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p
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: ðC4Þ
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