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In this article, we examine the Standard Model extended with a Y ¼ 0 Higgs triplet and a real singlet.
We consider the Higgs triplet to be odd under the Z2 symmetry, and hence the lightest stable particle
from the inert triplet becomes the dark matter candidate, whereas the real singlet is considered to be even
under the Z2 symmetry. A dimension-5 effective term is introduced with the help of a real singlet, which
breaks the CP symmetry and gives an additional source of CP-violation in the fermion sector. The phase
transition proceeds in two steps, with the symmetry breaking in the singlet direction occurring first and
later leading to the usual electroweak symmetry breaking minima, while electroweak baryogenesis is
associated with the second step. The parameters chosen for the electroweak phase transition are found to
be consistent with the Planck-scale stability and the perturbativity using two-loop β-functions. The DM
mass bound for inert triplet, i.e., 1.2 TeV (below which it is under abundance), also comes out to be
consistent with the strongly first-order phase transition, which was not possible solely with inert triplet.
The upper bound on the triplet mass comes out to be ≤ 3.8 TeV, which satisfies the strongly first-order
phase transition. This particular benchmark point also satisfies the correct baryon asymmetry of the
Universe ð6.13 × 10−11Þ, and the gravitational wave spectrum also lies within the detectable frequency
range of LISA ð6.978 × 10−4 − 1.690 × 10−2Þ Hz and BBO ð2.80 × 10−3 − 1.096Þ Hz experiments.

DOI: 10.1103/PhysRevD.108.055025

I. INTRODUCTION

With the discovery of the Higgs boson, the Standard
Model is considered to be the most successful theory so far.
This was the last missing piece of the Standard Model (SM)
discovered with a mass of 125.5 GeV by the ATLAS [1] and
the CMS [2] Collaborations at the Large Hadron Collider
(LHC). Still, there is an obvious shortcoming of the SM in
explaining the baryon asymmetry of the Universe. The
correct baryon asymmetry, defined as the baryon to entropy
ratio nb

s ≃ ð0.7–0.9Þ × 10−10 [3,4], cannot be explained in
the context of SM. Though the SM accommodate all
possible ingredients needed to explain the baryon asymme-
try of the Universe [5] i.e., (1) violation of the net baryon
number; (2) violation of C-and CP-asymmetry; and
(3) departure from the thermal equilibrium. The departure
from the thermal equilibrium is achieved by a strongly

first-order electroweak phase transition, which proceeds via
bubble nucleation [6–8]. But, in the case of the SM, the
phase transition is not strongly first order [9], it is indeed a
smooth crossover for the Higgs boson mass of more than
80 GeV [10–12], which is not consistent with the measured
Higgs boson mass of 125.5 GeV [13]. The second thing is
that the CP violation in the SM provided by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is too small to produce
the correct baryon number [7,8,14]. Furthermore, the
observed dark matter (DM) abundance, i.e., the prediction
that the DM constitutes 26% of our Universe by Planck [3]
and WMAP [15,16], could not be addressed in the SM,
despite the proofs of the existence of the DM from the
galaxy rotation curves and from the cosmic microwave
background (CMB), etc. These shortcomings indicate the
exploration of CP violation beyond the SM [17].
The baryon asymmetry is generated by electroweak

baryogenesis (EWBG) during the strongly first-order phase
transition [18–22] satisfying the Sakarov conditions [5].
EWBG and the phase transition are already studied in the
context of various SUSY [23–42] and non-SUSYextensions
of the SM, i.e., extension with a singlet field [43–52], two-
Higgs doublets [53–64], a Higgs triplet [65,66], and many
more [67–71]. The electroweak phase transition is also
studied with one-step and two-step phase transitions [66].
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The two-step phase transition in the context of singlet
has been studied, where the symmetry first breaks in
the singlet direction and later, the usual electroweak
symmetry breaking is achieved at an even lower temper-
ature [34,35,43,45,72,73]. Also, the multistep transition is
studied with the exotic doublets [74] in the context of
EWBG, where the sphalerons are strongly suppressed in
the first transition and this does not work [63].
In this article, we consider the extension of the SM with

a real singlet and a Y ¼ 0 inert triplet with a two-step phase
transition. The symmetry first breaks into the singlet
direction and then, later, to the usual electroweak broken
phase. The singlet field is considered to be even under the
Z2 symmetry, and an additional dimensional-5 term
involving s

Λ is added to generate the baryon number during
the course of electroweak phase transition (EWPT) by the
additional CP asymmetry. And, the inert triplet, which is
odd under the Z2 symmetry provides the much needed DM
candidate. The DM candidate from the inert triplet is very
heavy in order to satisfy the DM constraints form the relic
density, which is not consistent with the strongly first-
order phase transition along with the Planck scale pertur-
bativity. There is no possibility for the DM mass from a
triplet to satisfy the strongly first-order phase transition in
the case of the SM extension solely with the inert triplet.
Hence, in this case, it is interesting to see that the
possibility of two-step transition using a singlet field will
help to achieve the correct DM mass, consistent with the
strongly first-order phase transition and the Planck scale
perturbativity, and will also provide the correct baryon to
entropy ratio.
The outline of this work is as follows. The electroweak

symmetry breaking (EWSB) in the extension of the SM
with the real singlet and the Y ¼ 0 Higgs triplet along with
the possibility of a dimension-5 operator are given in Sec. II.
The benchmark points (BPs) that give the measured Higgs
boson mass are tested with the bounds from the Planck scale
vacuum stability and the perturbativity using two-loop β-
functions in Sec. III. In Sec. IV, the effective potential at
finite temperature is discussed along with the thermal
masses. The two-loop contributions to the thermal masses
using the dimensional-reduction method are also discussed.
The two-step EWPT is discussed in Sec. V. The gravita-
tional wave signatures (GW) arising from the strongly first-
order phase transition are explored in Sec. VI. The phase
transition proceeds via developing a vacuum expectation
value (VEV) along the singlet direction first and then to the
usual electroweak mimina, and the EWBG is to be achieved
during the second step, which is discussed in Sec. VII. The
DM constraints and the electron EDM (eEDM) are dis-
cussed in Secs. VIII and IX, respectively. Eventually, the
conclusions are given in Sec. X. The expressions for the
two-loop β-functions, the dimensional reduction calcula-
tion, and the transport equations for the baryogenesis are
given in Appendixes A–C, respectively.

II. INERT TRIPLETMODEL PLUS REAL SINGLET

The minimal SM is extended with a Y ¼ 0 Higgs triplet
and a real singlet. The Higgs triplet is considered odd under
the discrete Z2 symmetry and does not take part in the
EWSB, termed the inert triplet model (ITM). The real
singlet, being even under the Z2 symmetry, acquires VEV
and provides an additional source ofCP violation through a
higher-dimension operator. The Z2 symmetry assignment
for all the fields is as follows:

Z2∶ Φ → Φ;Δ → −Δ; S → S; ð2:1Þ

where,

Φ ¼
 

Gþ

1ffiffi
2

p ðvþ ρ1 þ iG0Þ

!
;

Δ ¼ 1

2

 
Δ0

ffiffiffi
2

p
Δþffiffiffi

2
p

Δ− −Δ0

!
; S ¼ 1ffiffiffi

2
p ðxþ ρ2Þ:

Since S is even under the Z2 symmetry, mixing is allowed
only with the neutral component of Φ and the singlet VEV
x is related to the SM VEV as tan β ¼ x

v. The full scalar
sector of this model is described as

V0 ¼ VITM þ VS þ VHTS; ð2:2Þ

where, the scalar potential for the inert triplet model is
given as

VITM ¼m2
hΦ†Φþm2

ΔTrðΔ†ΔÞþλhjΦ†Φj2þλΔðTrjΔ†ΔjÞ2

þλhΔΦ†ΦTrðΔ†ΔÞþλ0hΔ
X3
i¼1

Φ†σiΦTrðΔ†σiΔÞ;

ð2:3Þ

where σiði ¼ 1–3Þ are Pauli matrices and λ0hΔ does not
affect the renormalization group equation; thus we neglect
this term hereafter. The scalar potential for the singlet is
written as

VS ¼ m2
SS

2 þ λSS4 þ α1Sþ κS3; ð2:4Þ

where the linear term can be eliminated by a translation of
S, i.e., α1, and the corresponding interaction terms between
the doublet-singlet and the triplet-singlet are as follows:

VHTS ¼ λhsðΦ†ΦÞS2 þ λΔsTrðΔ†ΔÞS2 þ α2ðΦ†ΦÞS
þ α3TrðΔ†ΔÞS: ð2:5Þ

If we choose singlet field to be also odd under the Z2

symmetry, all the odd terms in field S will be eliminated.
But the tree-level barrier generated with the singlet cubic
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term is crucial for first-order phase transition and hence, we
are not forcing the singlet to be the odd under the Z2

symmetry. Hence, we consider only the terms that are cubic
in the singlet field κ, neglecting the remaining ones α2;3.
The lightest stable particle from the inert triplet becomes
the DM candidate, and Φ is the portal for the DM
interactions with the visible sector. Therefore, we assume
that there is no direct coupling of S to the triplet field and
only possibility of S to interact with the DM particles is via
the mixing with the neutral component of Φ [75]. As a
result, the direct-coupling terms between the singlet and the
triplet, which are Z2 symmetric ðλΔsÞ are still assumed to be
zero. After all these assumptions, the full scalar potential in
Eq. (2.2) is rewritten as:

V0 ¼ m2
hΦ†Φþm2

ΔTrðΔ†ΔÞ þ λhjΦ†Φj2
þ λΔðTrjΔ†ΔjÞ2 þ λhΔΦ†ΦTrðΔ†ΔÞ
þm2

SS
2 þ λSS4 þ κS3 þ λhsðΦ†ΦÞS2: ð2:6Þ

Since the singlet has no direct coupling to the gauge bosons
and fermions in the SM, the Gþ and G0 in the Higgs
doublet (Φ) are the massless Goldstone bosons, which
provide mass to the W� and Z bosons. The minimization
conditions after the EWSB are computed as follows:

m2
h ¼ −λhv2 −

1

2
λhsx2;

m2
S ¼ −

3

2
ffiffiffi
2

p κx −
1

2
λhsv2 − λsx2: ð2:7Þ

The neutral component of singlet mixes with the SM
doublet, and the gauge eigenstates ðρ1; ρ2Þ are rotated to
the mass eigenstates with the rotation matrix as

 
h

H

!
¼
 

cos θ − sin θ

sin θ cos θ

! 
ρ1

ρ2

!
;

and the squared mass mixing matrix for neutral Higgs is
given as

M2 ¼
0
@ 2λhv2 λhsvx

λhsvx 2
�

3κx
4
ffiffi
2

p þ λsx2
�
1
A ¼

 
A B

B C

!
:

After diagonalization, we obtain the corresponding mass
eigenstates for neutral scalars as follows:

M2
h ¼ ðAþ CÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − CÞ2 þ B2

q
;

M2
H ¼ ðAþ CÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − CÞ2 þ B2

q
; ð2:8Þ

where, h is identified as the SM Higgs boson with mass of
125.5 GeV. The constraint on the mixing angle − π

2
≤ θ ≤ π

2

is defined as

sin 2θ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − CÞ2 þ B2

p ;

cos 2θ ¼ C − Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − CÞ2 þ B2

p : ð2:9Þ

The value of the mixing angle sin θ, is bounded by
both theoretical and experimental constraints as j sin θj <
0.33 [43]. The mass eigenstates for the will be the same as
the gauge eigenstates as it does not take part in the EWSB,
and the mass expressions are as follows:

M2
Δ0 ¼ m2

Δ þ λhΔ
2

v2; ð2:10Þ

M2
Δ� ¼ m2

Δ þ λhΔ
2

v2: ð2:11Þ

Note that both neutral mass eigenstates ðh;HÞ areCP-even,
and there is no possibility of introducing the CP violation,
neither explicitly by introducing complex parameters into
the potential nor spontaneous CP violation by the complex
VEV of the singlet. The relevant Yukawa interactions for
the leptons, the up-type quarks, and the down-type quarks
are given as follows:

LYukawa ¼ −QLΦYddR −−QL Φ̃YuuR −LLΦYllR þH:c:;

ð2:12Þ

where Φ̃ ¼ iσ2Φ�, QL, and LL are the left-handed quark
and lepton doublets under SUð2Þ and dR, uR, and eR are the
right-handed singlets under SUð2Þ, respectively. The only
source of CP violation is in the fermionic sector, which is
introduced by introducing a higher-dimension operator.
The corresponding dimension-5 effective operator in the
absence of Z2 symmetry is written as

O5 ¼
α

Λ
SQ̄3LΦ̃tR þ H:c:; ð2:13Þ

where, α is the complex CP-violating parameter. Here, Q̄3L
and tR denote only the third generation for the left-handed
quark doublet and the right-handed quark singlet fields, and
Λ is the cutoff scale parametrizing the amplitude of the
effective operator.
In the next section we discuss the constraints imposed by

the vacuum stability and the Planck scale perturbativity on
the parameter space of the model.
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III. VACUUMSTABILITY AND PERTURBATIVITY
CONSTRAINTS

In this section we discuss the stability of the vacuum and
the perturbative unitarity constraints up to Planck scale. In
order to achieve the stability of the electroweak vacuum,
the scalar potential must be bounded from below. The tree-
level conditions ensuring the scalar potential to be stable
are as follows [76]:

λh ≥ 0; λΔ ≥ 0; λs ≥ 0; λhΔ ≥ −
ffiffiffiffiffiffiffiffiffi
λhλΔ

p
;

λhs ≥ −
ffiffiffiffiffiffiffiffiffi
λhλs

p
; 0ð¼ λΔsÞ ≥ −

ffiffiffiffiffiffiffiffiffi
λΔλs

p
: ð3:1Þ

The dimensionless couplings are constrained to certain
values to ensure the perturbative bounds reach a particular
energy scale μ. The constraints on the dimensionless
couplings from perturbative unitarity are as follows [77,78]:

jλij ≤ 4π; jgjj ≤ 4π; jYkj ≤
ffiffiffiffiffiffi
4π

p
: ð3:2Þ

Here, gj with j ¼ 1, 2, 3 and Yk with k ¼ u; d;l are the
electroweak (EW) gauge couplings and the Yukawa
couplings for up-type quarks, down-type quarks, and
leptons, respectively. The quartic couplings λi correspond
to λh; λs; λhs; λΔ; λhΔ. The allowed BPs for EWSB, vacuum
stability, and Planck-scale perturbativity are given in
Table I.
The running of the dimensionless couplings is computed

using SARAH [79,80], and the full two-loop β-functions for
the scalar quartic couplings and the gauge couplings are
given in Appendix A. The variation of the Higgs quartic
coupling λh and other quartic couplings λi ∈ λhΔ; λhs; λs; λΔ
with the energy scale μ are given in Fig. 1 using BP2. The
Higgs quartic coupling becomes negative around 109 GeV
in case of the SM [81–83], as manifested by the green curve
in Fig. 1(a), and this stability scale increases for SMþ
Singletþ IT till Planck scale with the addition of extra
scalar degrees of freedom as delineated by the orange curve
in Fig. 1(a) for λhΔ ¼ 0.30 and λΔ ¼ 0.04 at the EW scale.
Additionally, for the chosen BPs, the dimensionless cou-
plings for the theory also satisfy perturbative unitarity up to
Planck scale. The λhΔ coupling is chosen to be the
maximum allowed value at the electroweak scale for which
Planck scale perturbativity can be achieved, i.e., 1.25 and
λΔ ¼ 0.04 in Fig. 1(b).
After discussing the stability of the vacuum and the

perturbative unitarity, we are going to discuss the EWPT
from the symmetric phase at high temperature to the broken
phase. The expression for the finite temperature effective
potential at one-loop and the corresponding thermal cor-
rections to the zero-temperature masses are also discussed
in detail in the next section.

TABLE I. The chosen BPs at the EW scale allowed from
symmetry breaking, vacuum stability, and Planck-scale pertur-
bativity. The bounds on the quartic couplings from Planck scale
perturbativity for the triplet, i.e., λhΔ and λΔ, are fixed to 1.25 and
0.04, respectively.

MH (GeV) tan β λs λhs κ[GeV] λh

BP1 177.26 1.62 0.098 0.01 −0.069 0.13
BP2 177.26 1.62 0.098 0.01 −0.019 0.13

FIG. 1. (a) Running of Higgs quartic coupling with the energy scale in GeV for stability using two-loop β-functions with green and
orangle curve for SM and SMþ Singletþ IT scenario, respectively for λhΔ ¼ 0.30 and λΔ ¼ 0.04 at the EW scale; (b) the variation of
other dimensionless quartic couplings with the energy scale in GeV for perturbative unitarity till Planck scale for BP2 and the maximum
values allowed for λΔ and λhΔ at the EW scale are 0.04 and 1.25, respectively.
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IV. EFFECTIVE POTENTIAL
AT FINITE TEMPERATURE

In the case of the SM and its extensions, a cubic term is
generated in the Higgs scalar potential by the thermal
effects of the bosons coupled to the Higgs, and this cubic
term actually triggers the first-order EWPT. This can be
achieved in several ways; sizable couplings of these bosons
to the Higgs are needed and the effect can then be screened
by thermal masses, considering Daisy resummation into
account. Here, we consider the EWPT, where the barrier
between the symmetric and the broken phase is enhanced
by the tree-level effects along with the thermal cubic
correction. For tree-level effects, the Higgs VEV at critical
temperature vc is independent of the temperature and is
proportional to some dimensionful parameters in the
potential, which leads to strong EWPT, i.e., vc

Tc
becomes

potentially very large even for lower TC. Therefore, when
there exists a large barrier between the electroweak break-
ing vacuum hΦi ¼ vffiffi

2
p and hSi ¼ xffiffi

2
p and a nearly degen-

erate symmetric one with hΦi ¼ 0, hSi ¼ x0ffiffi
2

p , the phase

transition can be achieved easily by weak thermal correc-
tions, i.e., at a significantly lower temperature compared to
the Higgs VEVat the critical temperature vc, which can be
very close to the VEVat zero temperature v. The tree-level
potential in Eq. (2.6) can be expressed in terms of the
background fields h1, h2, and h3 as follows:

Veff
0 ¼ κh23

2
ffiffiffi
2

p þ 1

2
m2

hh
2
1 þ

1

2
m2

Sh
2
3 þ

1

2
m2

Δh
2
2 þ

1

4
λhh41

þ 1

4
λhsh21h

2
3 þ

1

4
λhΔh21h

2
2 þ

1

4
λsh43 þ

1

4
λΔh42; ð4:1Þ

with the following convention;

Φ ¼
 

0
h1ffiffi
2

p

!
; Δ ¼ 1

2

 
h2 0

0 −h2

!
; S ¼ h3ffiffiffi

2
p :

In order to make sure that the tree-level scalar potential
has the stationary point at the physical minimum, m2

h and
m2

S are replaced by equations given in Eq. (2.7). The
one-loop effective potential contribution at zero temper-
ature is given by the Coleman-Weinberg potential and is
given as [84]

VCW
1−loop¼

1

ð64πÞ2
X
i¼B;F

ð−1ÞFinim̂i
4

�
log

�
m̂2

i

μ2

�
−ki

�
; ð4:2Þ

where, Fi ¼ 0 and 1 for the boson and the fermions,
respectively. The constant ki comes out to be 3=2 for
scalars, longitudinally polarized vector bosons, and the
fermions, while ki ¼ 1=2 for transverse vector bosons
and m̂2

i is the field-dependent mass, i.e., m̂2
i ðh1; h2; h3Þ

computed from Veff
0 in Eq. (4.1). Including the one-loop

Coleman-Weinberg contributions, the effective scalar poten-
tial at zero temperature now becomes

V1ðT ¼ 0Þ ¼ Veff
0 þ VCW

1−loop: ð4:3Þ

After discussing the effective scalar potential at zero
temperature, the finite-temperature corrections to this poten-
tial have to be taken into account. The one-loop potential at
a finite temperature is computed as follows:

VT≠0
1−loop ¼

T4

ð2πÞ2
X
i¼B;F

ð−1ÞFiniJB=F

�
m̃2

i

T2

�
; ð4:4Þ

where, ni accounts for the degrees of freedom of species i,
and m̃2

i is the thermally corrected mass, which includes
contributions from the Daisy corrections resuming hard
thermal loops,

m̃2
i ¼ m̃2

i ðh1; h2; h3;TÞ ¼ m̂2
i ðh1; h2; h3Þ þ ΠiT2; ð4:5Þ

where, Π0
is are the Daisy coefficients, which are nonzero

only for the bosonic fields. Furthermore, out of the vector
bosons, only longitudinal polarization states acquire non-
zero Daisy corrections, while the gauge symmetry protects
the transverse states from any corrections. In general, the
expressions for the spline functions JB;F are defined as

JB;Fðx2Þ ¼
Z

∞

0

dyy2 log

�
1 ∓ e−

ffiffiffiffiffiffiffiffiffi
y2þx2

p �
: ð4:6Þ

The full one-loop finite temperature effective potential can
now be given as

V1ðTÞ ¼ Veff
0 þ VCW

1−loopðm̃2
i Þ þ VT≠0

1−loopðm̃2
i Þ: ð4:7Þ

In pursuance of studying the vacuum structure at very high
temperatures, i.e., T2 ≫ m̂2

i , the finite temperature potential
after neglecting the Daisy coefficients can be rewritten
as follows:

VT≠0
1−loop → T4½…� þ T2

48

 
2
X
i¼B

nim̂2
i þ

X
i¼F

nim̂2
i

!

þ T4 ×O

 				 m̂2
i

T2

				3=2
!
: ð4:8Þ

The ellipsis […] in the above equation indicates those
terms that are independent of field values. The Daisy
coefficients Πi can be computed from the one-loop thermal
potential in the high-temperature limit as given below,

Πij ¼
1

T2

∂
2VT≠0

1−loopðm̂2Þ
∂ϕi∂ϕj

				
T≫m̂2

: ð4:9Þ
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It is important to note that the Daisy coefficients are computed using field-dependent masses, i.e., m̂2
i , which are temperature

independent, and later, Daisy-resummed thermal masses m̃2
i are inserted back in VT≠0

1−loop as well as in the zero temperature
Coleman-Weinberg potential while computing the full temperature-dependent effective potential. The field dependent
masses which contribute to the zero-temperature effective potential are given as

m̂h2 ¼
 
3λhh21 þm2

h þ 1
2
λhsh23 λhsh1h3

λhsh1h3 3ffiffi
2

p κh3 þ 1
2
λhsh21 þm2

S þ 3λsh23

!
; ð4:10Þ

m̂2
G0 ¼ λhh21 −m2

h; m̂2
W ¼ g22

4
h21;

m̂2
Z ¼ g22 þ g21

4
h21; m̂2

t ¼
y2t
2
h21;

where, m̂G0
; m̂2

W; m̂
2
Z, and m̂2

t are the masses for the
Goldstone bosons, the gauge bosons, and the top quark,
respectively. Since the triplet field does not acquire any
VEV, the corresponding field-dependent masses for the
triplet will be in terms of the background field of the SM
doublet only, i.e., h1 and the corresponding mass expres-
sions for the neutral and the charged component of the
triplet field are given as

m̂2
Δ0 ¼ m2

Δ þ λhΔ
2

h21;

m̂2
Δ� ¼ m2

Δ þ λhΔ
2

h21: ð4:11Þ

The degrees of freedom ni used in Eq. (4.4) for the SM
fields, singlet fields and the triplet fields are given as

nh ¼ 1; nH ¼ 1; nG ¼ 3; nΔ ¼ 3; nt ¼ 12;

nWL
¼ nZL

¼ nγL ¼ 1; nWT
¼ nZT

¼ nγT ¼ 2; ð4:12Þ

and the corresponding Daisy coeffiecients for the bosonic
degrees of freedom are computed as

Πh ¼
�
g21 þ 3g22

16
þ λh

2
þ y2t

4
þ λhΔ

8
þ λhs

24

�
T2;

ΠG ¼
�
g21 þ 3g22

16
þ λh

2
þ y2t

4
þ λhΔ

8
þ λhs

24

�
T2;

ΠH ¼
�
λhs
24

þ λs
4

�
T2;

ΠΔ ¼
�
λhΔ
24

þ 3λΔ
4

�
T2;

ΠWL
¼ 11

6
g22T

2;

ΠWT
¼ ΠZT

¼ ΠγT ¼ 0: ð4:13Þ

As mentioned previously, only longitudinal components of
the gauge bosons, i.e., WL, ZL, and γL receive self energy
contributions, while the Daisy corrections are zero for the
transverse components of the gauge bosons. The thermally
corrected mass expressions for the longitudinal compo-
nents of the ZL boson and the photon, γL, are given as [85]

m̃2
ZL

¼ 1

2

�
m̂2

Z þ 11

16

g22
cos2θW

T2 þ δ

�
;

m̃2
γL ¼ 1

2

�
m̂2

Z þ 11

16

g22
cos2θW

T2 − δ

�
; ð4:14Þ

where, δ is given as

δ2 ¼ m̂4
Z þ 11

3

g22cos
2θW

cos2θW

�
m̂2

Z þ 11

12

g22
cos2θW

T2

�
T2: ð4:15Þ

This section completes the derivation of one-loop effec-
tive potential at finite temperature. But, as we are using
two-loop β-functions for the running of the couplings with
the energy scale, the inclusion of two-loop corrections
specifically at finite temperature is very important. The
details for the two-loop corrections are given in the next
section.

A. Dimensional reduction

The finite temperature effective potential has residual
scale dependence at Oðg4Þ. In order to cancel this renorm-
alization scale dependence, the explicit logarithms of the
renormalization scale are needed, which are achieved at the
two-loop level. The two-loop corrections to the thermal
masses actually depend on the explicit logarithms of the
renormalization scale and cancel out this scale dependence
at Oðg4Þ. These two-loop corrections are computed using
the high-temperature dimensional reduction from 4d to a
three-dimensional effective theory (3d EFT), and in this
reduced 3dEFT, all the parameters in the theory becomes
renormalization scale dependent [86–89]. The expressions
for the parameters of the theory are given in detail
in Appendix B.
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V. ELECTROWEAK PHASE TRANSITION

After computing the two-loop thermal corrections to the
thermal masses and including the bounds from Planck-
scale perturbative unitarity using two-loop β-functions, we
can proceed with the EWPT from the symmetric phase to
the broken phase. Since the triplet field is odd under the Z2

symmetry, there is no symmetry breaking along this
direction. Hence, the triplet masses are in terms of the
Higgs field itself. In order to study the phase structure at
different temperatures, we need to compute the one-loop
effective potential in Eq. (4.7) in different phases as given
below [65],

Vsymm
1 ðTÞ ¼ V1ð0; 0Þ; VΦ

1 ðTÞ ¼ V1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh

q
; 0Þ;

VS
1ðTÞ ¼ V1ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

S=λS

q
Þ; ð5:1Þ

and then varying the temperature, we need to check for
the phases which exist simultaneously. The condition for
the critical temperature Tc in this case will be the
temperature where the value of one-loop effective poten-
tial in any two phases or minima is degenerate. For
example, VΦ

1 ðTcÞ ¼ VS
1ðTcÞ for Φ → S transitions.

Figure 2 describes the variation of the order of phase

transition ζ ¼ hc
Tc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðTcÞþh2

2
ðTcÞþðh3ðTcÞ−hh3ðTcÞÞ2

p
Tc

(in case of

multiplets [69,73], when the false vacuum is ð0.0; 0.0; hh3Þ
instead of (0.0, 0.0, 0.0) in the singlet direction) with the
Higgs boson mass in GeV. The VEV for the triplet field is

considered as zero at all possible temperatures, hence,
we are left with the minima along the Higgs direction (h1)
and the singlet field direction (h3). The occurance of a
treel-level saddle point between the Φ and S minima
provides a first-order phase transition for ðS → ΦÞ tran-
sition. The red star corresponds to the point that satisfies
the measured Higgs boson mass and the criteria for a
strongly first-order phase transition. The blue and the
green colors correspond to the bare mass parameter for the
Higgs triplet, i.e., mΔ ¼ 700 GeV and 1200 GeV, respec-
tively, keeping the other parameters fixed from BP2 in
Table I. The different transitions are as follows: Case 1:
Vsymm
1 ð0;0Þ¼V1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh
p

;0Þ, Case 2: Vsymm
1 ð0;0Þ¼

V1ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

S=λS
p Þ, and Case 3: V1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh
p

;0Þ¼
V1ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

S=λS
p

Þ for computing the order of phase tran-
sition and are depicted by different plotmarkers, i.e.,
circle, triangle, and square, respectively. For Case 1,
Vsymm
1 ð0; 0Þ ¼ V1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh
p

; 0Þ, the phase transition
occurs directly from the symmetric to the broken phase
with the varying Higgs field. The amalgamation of
Case 2 and Case 3 gives two-step phase transition driven
by the expectation value of the singlet field first, i.e.,
ðVsymm

1 ð0; 0Þ → V1ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

S=λS
p

Þ → V1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh
p

; 0ÞÞ.
Later, second transition occurs in the usual electroweak
minimum which is dominated by the changing Higgs field
and the EWBG occurs in the second transition which will be
discussed in detail in Sec. VII. The first thing to be noted is
that the contribution in the singlet direction only comes
from the Higgs mass and the singlet mass. Another
important thing is that the maximum allowed value for
the interaction quartic coupling λhΔ for the Higgs field and
the triplet field from the Planck scale perturbativity is 1.25
and this will not contribute in the singlet direction.
Therefore, the order of phase transition remains unaltered
in the singlet direction (Case 2) with the variation in the
triplet bare mass parameter (denoted by left and right
triangle). For Case 1, the order of phase transition reduces
with the increase in mass of the triplet and the order of phase
transition is not strongly first order for either of the masses
and in contrast, it is strongly first order for both the mass
values for Case 3. There is no possibility for a strong first-
order phase transition for Case 1, since the Higgs-triplet
interaction quartic coupling is restricted to λhΔ ¼ 1.25 from
Planck scale perturbativity because of the positive contri-
bution from more number of degrees of freedom in
comparison to [90] (solely triplet λhΔ ¼ 1.95). For Case 2,
it happens because of the fact that the contribution in the
singlet direction comes only from the Higgs mass and the
singlet mass and this contribution is very less to achieve
strongly first order phase transition. In contrast to this, the
strongly first-order phase transition is achieved for both
700 GeV and 1200 GeV for Case 3. Hence, the first
transition from the symmetric phase to the singlet direction
is not strongly first order and later, the second transition

FIG. 2. Variation of the order of phase transition ðζ ¼ hc
Tc
Þ with

the Higgs boson mass in GeV. The red star corresponds to the
measured Higgs boson mass of 125.5 GeV. The color coding from
green to blue corresponds to two different values of the bare mass
parameter for the triplet field 700 GeVand 1200 GeV. The different
transitions, i.e., Case 1: Vsymm

1 ð0; 0Þ ¼ V1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh
p

; 0Þ, Case 2:
Vsymm
1 ð0;0Þ¼V1ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

S=λS
p

Þ, and Case 3: V1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

h=λh
p

;0Þ¼
V1ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

S=λS
p

Þ for computing the order of phase transition are
depicted by different plotmarkers, i.e., circle, triangle and square,
respectively.
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from the singlet minimum to the usual EW minimum is
strongly first order. The EWPT is sufficient to suppress the
washout of the generated baryon number by sphaleron
transitions. Hence, it gives the EWBG.
The variation of the order of phase transition with the

triplet mass in GeV is given in Fig. 3, denoted by the red
dashed line. This plot is done for Case 3, where the
transition occurs from the singlet vacuum to the usual
electroweak vacuum. The black dashed line convey the
strongly first-order phase transition criteria, i.e., ζ ¼ hc

Tc
≳ 1.

The upper mass bound on the triplet gives the strongly first-
order phase transition and it is consistent with the Planck
scale stability, perturbativity, and the observed Higgs boson
mass. Here, its upper bound comes out to be 3.8 TeV,
denoted by the green star. The other parameters are the
same as those in BP2, which is consistent with the Planck
scale perturbative unitarity and the measured Higgs boson
mass in GeV.
The direct transition from the symmetric vacuum at high

temperatures to the electroweak vacuum does not give
strongly first-order phase transition for any of the triplet
masses. However, the two-step transition is driven by the
changing Higgs field and strongly first-order.
In case of nonzero direct coupling of singlet with the

triplet field (λΔs), the positive effect will be enhanced and
the coupling relevant for the strength of electroweak phase
transition (λΔh) would be restricted to lower values from
Planck-scale perturbativity. In the case of the very weak
limit (λΔs ¼ 0.01–0.1), the positive effect would not change
the coupling, λΔh. For higher values of λΔs ∼ 0.1–0.5, λΔh
reduces to 1.20, but this would still not have any significant
change in the strength of phase transition, and the bound on
the DM mass remains almost unaltered. Hence, it is
absolutely fine to ignore the singlet-triplet coupling for
the phase-transition analysis.

The next section is devoted to the GW signatures
generated during the first-order phase transition. The
expressions for computing the GW spectrum are given
for completeness of the paper.

VI. GRAVITATIONAL WAVE SIGNATURES

The electroweak strongly first-order phase transition
from the higher-temperature symmetric phase to the
broken phase occurs via nucleation of bubbles; the bubbles
of the broken phase nucleate in the sea of symmetric
phase, and ultimately the broken phase is achieved. While
expanding gives rise to GW, the collision of these
bubbles can be computed from three different contribu-
tions, i.e., bubble-wall collision [91–96], sound waves in
the plasma [97–101], and the magnetohydrodynamic
turbulence in the plasma [102–106]. These contributions
to the GW intensity are computed as follows [107]:

h2ΩGW ≃ h2Ωϕ þ h2Ωsw þ h2Ωturb: ð6:1Þ

The first term from the envelope approximation [92–94]
via numerical simulations is given as

h2ΩenvðfÞ ¼ 1.67 × 10−5
�
β

H

�
−2
�

κϕα

1þ α

�
2
�
100

g�

�
1=3

×

�
0.11v3w

0.42þ v2w

�
3.8ðf=fenvÞ2.8

1þ 2.8ðf=fenvÞ3.8
; ð6:2Þ

with

β ¼
�
HT

d
dT

�
S3
T

��				
Tn

: ð6:3Þ

Here, β defines the length of the time in which the phase
transition completes, Tn is the nucleation temperature at
which the bubble nucleation starts, H is the Hubble
parameter. S3 is the Euclidean action of the background
field that is computed for the critical bubble in the
spherical polar coordinates as follows:

S3 ¼ 4π

Z
drr2

�
1

2
ð∂rϕ⃗Þ2 þ V1ðTÞ

�
: ð6:4Þ

Other important parameters for computing the GW back-
ground are α; κϕ; κv, and vw. α describes the ratio of the
energy density of vacuum to the radiation bath, which is
being released during the phase transition defined as

α ¼ ρvac
ρ�rad

; ð6:5Þ

where ρ�rad ¼ g�π2T4�=30, g� being the number of relativ-
istic degrees of freedom at temperature T� in plasma with
T� ¼ Tn in the absence of reheating. Other additional

FIG. 3. Variation of the order of phase transition ðζ ¼ hc
Tc
Þ with

the triplet mass in GeV. The black dashed line corresponds to the
strongly first-order criteria ζ ¼ hc

Tc
≳ 1 and the green star denotes

the upper-mass bound on the triplet mass consistent with the
measured Higgs boson mass and the Planck-scale perturbative
unitarity along with the first-order phase transition.
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parameters for assessing the GW frequencies are found
as [107–112]

κv ¼
ρv
ρvac

; κϕ ¼ ρϕ
ρvac

¼ 1 −
α∞
α

;

vw ¼ 1=
ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2α=3

p
1þ α

;

α∞ ¼ 30

24π2g�

�
vn
Tn

�
2
�
6

�
mW

v

�
2

þ 3

�
mZ

v

�
2

þ 6

�
mt

v

�
2
�
:

ð6:6Þ

κv defines fraction of the vacuum energy that is being
converted into the bulk motion of the fluid and κϕ defines
fraction of vacuum energy that is being converted into
gradient energy of the Higgs-like field. vw is the defined
bubble wall velocity of the fluid, v; vn is the VEV of the
Higgs field at zero temperature and the nucleation temper-
ature Tn, mW , mZ, and mt are the masses for the W boson,
Z boson, and the top quark mass, respectively. Finally,
the expression for the peak frequency fenv, contributing to
the GW intensity obtained from the bubble collisions, is
given by

fenv ¼ 16.5 × 10−6 Hz

�
0.62

v2w − 0.1vw þ 1.8

��
β

H

�

×

�
Tn

100 GeV

��
g�
100

�1
6

: ð6:7Þ

Secondly, the contribution from the sound waves in the
plasma to the GW intensity is given as

h2ΩSW ¼ 2.65 × 10−6
�
β

H

�
−1
vw

�
κvα

1þ α

�
2
�

g�
100

�
−1
3

×

�
f

fSW

�
3
�

7

4þ 3
�

f
fSW

�
2

�
2

; ð6:8Þ

where the parameter κv, given previously in Eq. (6.6),
defining the fraction of latent heat that is converted to the
bulk motion of the fluid, can now be rewritten as

κv ¼
α∞
α

�
α∞

0.73þ 0.083
ffiffiffiffiffiffi
α∞

p þ α∞

�
: ð6:9Þ

The peak frequency contribution of sound wave mecha-
nisms fSW to the GW spectrum produced is

fSW ¼ 1.9 × 10−5 Hz

�
1

vw

��
β

H

��
Tn

100 GeV

��
g�
100

�1
6

:

ð6:10Þ

Lastly, the contribution from the magnetohydrodynamic
turbulence to the GW spectrum is given as [113]

h2Ωturb ¼ 3.35 × 10−4
�
β

H

�
−1
vw

�
ϵκvα

1þ α

�3
2

�
g�
100

�
−1
3

×

�
f

fturb

�
3
�
1þ f

fturb

�
−11

3

�
1þ 8πf

h�

� ; ð6:11Þ

where ϵ ¼ 0.1 and fturb is again the peak frequency
contribution by the turbulence mechanism to the GW
spectrum and is given as follows:

fturb ¼ 2.7 × 10−5 Hz

�
1

vw

��
β

H

��
Tn

100 GeV

��
g�
100

�1
6

;

ð6:12Þ

where,

h� ¼ 16.5 × 10−6 Hz

�
Tn

100 GeV

��
g�
100

�1
6

: ð6:13Þ

The upgraded expression for the κv given in Eq. (6.9) which
is being used for this analysis is given as follows [114,115]:

κv ≃
�

α∞
0.73þ 0.083

ffiffiffiffiffiffi
α∞

p þ α∞

�
: ð6:14Þ

The effective potential in Eq. (4.7) is implemented in the
CosmoTransition [116] package for computing the relevant
parameters necessary for the computation of frequencies
of the GWs. The variation of the potential minima as a
function of the temperature in GeV is given in Fig. 4 for the
BPs (BP1 and BP2) in Table I where, h1, h2, and h3 are the
background fields for the SM Higgs doublet, inert triplet,
and the singlet, respectively. For each BP, we show the value
of the critical temperature Tc, nucleation temperature Tn,
“pattern” 1 or 2 indicates the one-step or two-step phase
transition and “order” denotes the first and second-order
phase transition. fhh;l1 ; hh;l2 ; hh;l3 g denotes the minima of the
potential and the superscript h and l denotes the high-VEV
and the low-VEV in the SM Higgs, triplet and the singlet
direction, respectively, at a particular temperature. For BP1,
there exists a one-step phase transition, which is first order as
given in Table II. At critical temperature Tc ¼ 114.87, the
symmetry breaks in the SM Higgs and the singlet direction
as ðhl1; hl2; hl3Þ ¼ ð189.23; 0.0; 403.1Þ. For BP2, the value of
κ is reduced to −0.019 and now, there exists two-step
strongly first-order phase transition where, the symmetry
first breaks in the singlet direction at Tc ¼ 829.71. The field
values for this temperature are ðhh1; hh2; hh3Þ ¼ ð0.0; 0.0; 0.0Þ
and ðhl1; hl2; hl3Þ ¼ ð0.0; 0.0; 230.89Þ, which is second order.
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Then, at Tc ¼ 114.87, the symmetry breaks in the SM
Higgs and the singlet direction as ðh1; h2; h3Þ ¼
ð189.23; 0.0; 403.1Þ similar to BP1. The nucleation temper-
ature Tn ¼ 112.33 is same for both BPs. The other relevant
parameters necessary for the GW spectrum are given below
in Table III and the condition for the strongly first-order

electroweak phase transition is ζ ¼ hc
Tc

≥ 1, where hc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhl1 − hh1Þ2 þ ðhl2 − hh2Þ2 þ ðhl3 − hh3Þ2

q
at the critical

temperature Tc.
Using the parameters given in Table III, the variation of

the GW intensity with the frequency in Hertz is given in
Fig. 5. The chosen BP is allowed from the measured SM
Higgs boson mass bound, Planck scale stability and
perturbative unitarity, which is also consistent with the
strongly first-order phase transition. The nucleation tem-
perature Tn and the other relevant parameters are similar
for both BP1 and BP2. Hence, the blue curve corresponds
to the GW intensity variation for the chosen BPs. The
purple, orange, and cyan colors respectively correspond to
the GW spectrum for the detectable frequency range for
LISA, LIGO, and BBO experiments. The frequency range
between 6.978 × 10−4 − 1.690 × 10−2 Hz for the chosen

FIG. 4. The variation of the minima of the scalar potential as a function of temperature in GeV, where h1, h2, and h3 are the background
fields for the SM Higgs doublet, inert triplet and the singlet, respectively. For BP1, one-step phase transition is acheived while BP2
proffers the two-step phase transition.

TABLE III. Thermal parameters needed for the frequency
analysis of the SMþ singletþ IT for the chosen BPs, where
Tn defines the nucleation temperature, α is defined as the strength
of phase transition, β defines the length of the time of phase

transition and hn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhl1 − hh1Þ2 þ ðhl2 − hh2Þ2 þ ðhl3 − hh3Þ2

q
at

the nucleation temperature Tn.

Tn[GeV] α β=H hn=Tn

BP1–2 112.33 0.436 290.68 1.69

FIG. 5. Variation of the GW intensity with the frequency in
Hertz for the allowed BP which satisfies the measured Higgs
boson mass bound, Planck-scale stability and the perturbative
unitarity, which is also consistent with the strongly first-order
phase transition.

TABLE II. Phase transition associated with the chosen BPs in
Table I. For each BP, we show the value of the critical temperature
Tc, nucleation temperature Tn, “pattern” 1 or 2 indicates the one-
step or two-step phase transition and “order” denotes the first-
and second-order phase transition. fh1; h2; h3g denotes the
minima of the potential and the superscript h and l denotes
the high-VEV and the low-VEV in the SM Higgs, triplet and the
singlet direction, respectively, at a particular temperature.

i Pattern
Ti

[GeV]
fhh1 ; hh2 ; hh3g

[GeV] Order
fhl1; hl2; hl3g

[GeV]

BP1 Tc 1 114.87 f0.0; 0.0; 403.5g 1 f189.23; 0.0; 403.1g
Tn 1 112.33 f0.0; 0.0; 403.5g 1 f190.45; 0.0; 403.1g

BP2 Tc 2 829.71 f0.0; 0.0; 0.0g 2 f0.0; 0.0; 230.89g
Tc 2 114.87 f0.0; 0.0; 403.5g 1 f189.23; 0.0; 403.1g
Tn 2 112.33 f0.0; 0.0; 403.5g 1 f190.45; 0.0; 403.1g
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BP lies in the detectable frequency range for LISA
experiment. It also lies in the detectable frequency range
of BBO from 2.80 × 10−3 − 1.096.
The next section is devoted for the computation of the

baryon asymmetry of the Universe arising from the addi-
tional phase introduced through the dimensional-5 effective
operator.

VII. ELECTROWEAK BARYOGENESIS

During the EWPT, the CP violation must be present
within the bubble wall which separates the symmetric and
broken phases for successful EWBG [5]. Then this CP
asymmetry is converted into the net baryon versus
antibaryon excess in the symmetric phase in front of
the bubble wall by the nonperturbative sphaleron proc-
esses. Later, when the bubble expands, this net baryon
asymmetry diffuses inside the bubble wall, where these
sphaleron transitions must be suppressed to avoid the
washout of the net created baryon asymmetry. This
suppression of sphaleron transitions brings another con-
straint that the EWPT must be strongly first-order
(vc=Tc > 1) [117,118], where vc is the Higgs VEV in
the broken phase at the critical temperature Tc. Neither of
these conditions are satisfied in case of SM, because the
CP-violating phase provided by the CKM is too small, and
hence the phase transition is a smooth crossover which puts
a lower mass bound on the Higgs mass from LEP [10]. As
already mentioned, the EWPT in case of SM extended with
singlet has been studied in detail [26,43,44,51,119–121].
Here, we consider an additional CP-violating parameter,
i.e., α, in the dimension-5 operator, and we choose α ¼ eiπ=2

to maximize the CP violation. Another important thing to
note is that the tree-level barrier is crucial in variation of
singlet VEV during the EWPT. If the VEV for the singlet is
constant, then the scalar potential will have the similar shape
as the SM potential at the tree-level, and there will be no
tree-level barrier. Following Eq. (2.13), the top-quark mass
can be written as mt ¼ jmtjeiθt . At zero temperature, it is
always possible that θt can be absorbed by rotating the top
quark field, ı.e., it is unphysical. However, at finite temper-
ature, the VEV for singlet might change during EWPT, and
the possibility of redefinition of the top quark field goes
away. Hence, the singlet VEV must change during EWPT
for a CP violation to give EWBG. This change in the VEV

is not at all guaranteed when the barrier is generated at loop
level, unlike tree level. Hence, we assume that both v and x
change along the z direction which is perpendicular to the
bubble wall, and the top mass is rewritten as

mtðzÞ ¼
ytffiffiffi
2

p h1ðzÞ
�
1þ h3ðzÞ

ytΛ

�
¼ jmtðzÞjeiθtðzÞ; ð7:1Þ

where h1ðzÞ and h3ðzÞ are respectively the field profiles
around the bubble wall for the SM Higgs field and the
singlet field S, z being the coordinate perpendicular to the
bubble wall. With the assumption that the bubble wall is
large enough, the bubble-wall curvature is ignored, and it is
assumed to be planar. Therefore, the field configurations for
the SM Higgs and the singlet in the vicinity of the bubble
wall are given as [122]

h1ðzÞ ¼
vc
2
½1 − tanhðz=LwÞ�;

h3ðzÞ ¼ xc þ
Δxc
2

½1 − tanhðz=LwÞ�; ð7:2Þ

where Lw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔx2cþv2cÞ

8Vx

q
is defined as the width of the bubble

wall, vc is the VEV of the Higgs-field at the critical
temperature Tc, Δxc is the net change in the singlet
VEV at the critical temperature, and Vx is the height of
the potential barrier at the critical temperature Tc (the
maximum height of the potential barrier along the path
connecting the two minima). The weak-sphaleron transition

rate is given by Γws ¼ 10−6Te−a
h1ðzÞ
T , where a ¼ 37. Using

Eq. (7.1) in Eq. (7.2), the complex phase for the varying top-
quark mass in Eq. (7.1) is computed as

θtðzÞ ¼ Arc tan

�
Δθ
2

½1 − tanhðz=LwÞ�
�
; ð7:3Þ

where, the CP phase is more or less described by
tanhðz=LwÞ, since the CP violation is usually small,
Δθ ≪ 1. The arbitary profile of the Higgs field h1ðzÞ in
Eq. (7.2) is given in Fig. 6. The Higgs VEV goes to zero in
front of the bubble wall in the symmetric phase and is
nonzero in the broken phase. The weak-sphaleron transition
rate Γws is active only in the symmetric phase where it
converts the CP asymmetry into the net baryon number

FIG. 6. Profile of the Higgs field h1ðzÞ, and sphaleron transition rate Γws as a function of z
Lw
. The Higgs VEV becomes zero in the

symmetric phase in front of the bubble wall and is nonzero inside the bubble. The weak-sphaleron transition rate Γws, is active in front of
the bubble wall in the symmetric phase and suppressed in the broken phase.
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excess and inside the bubble, these transitions are strongly
suppressed to avoid the washout of net baryon asymmetry
created.
This space dependence leads to different dispersion

relations for the particles and the antiparticles in the bubble
wall, and this results in force terms in the transport
equations from the WKB formalism. Thus, excess left-
handed antiquarks are obtained in front of the bubble wall,
and this asymmetry is converted into net baryon asymmetry
by the active sphaleron transitions in the symmetric phase.
It is interesting to see that the nontrivial phase θðzÞ is
sufficient enough to generate the desirable baryon asym-
metry in this study. The energy scale in Eq. (2.13) is chosen
as Λ ¼ 1000 GeV for the further calculations.
For the top-quark profile obtained from Eq. (2.13), we

need to compute the chemical potentials for the particles
involved in this particular interaction, i.e., for the left-
handed SUð2Þ doublet top ðμt;2Þ, left-handed SUð2Þ
doublet bottom ðμb;2Þ, left-handed SUð2Þ singlet top quark
ðμtc;2Þ, and Higgs bosons ðμh;2Þ, and also the plasma
velocities corresponding to these. The net chemical poten-
tial for the left-handed quarks is given by

μBL
¼ 1

2
ð1þ 4κtÞμt;2 þ

1

2
ð1þ 4κbÞμb;2 − 2κtμtc;2; ð7:4Þ

where the κ factors are basically the thermal averages. Now
the net baryon asymmetry can be easily computed using the
following formula:

ηB ¼ nB
s

¼ 405Γws

4π2vwg�T

Z
∞

0

dzμBL
ðzÞe−νz; ð7:5Þ

where, vw is defined as the bubble-wall velocity, Γws is the
weak sphaleron rate, ν ¼ 45Γws

4vw
, g� ≃ 106.75 is the effective

degrees of freedom in plasma, and the bubble-wall velocity

vw is chosen to be 0.1 for further calculations. The detailed
computation for the chemical potential using the transport
equations [68,122] is given in Appendix C.
The variation of the source term, i.e., K4;tvwm2

t θ
00 þ

K5;tvwðm2
t Þ0θ0t with z

Lw
is given in Fig. 7(a). The K4 and K5

integrals are given in Appendix C. The bubble-wall width is
approximately chosen from the tunnel bounce that was
computed for the Froggatt-Nielsen models [123] and the
values are typically between 3

T and
20
T . In case of Fig. 7, this

value is chosen to be 8
T and Δθ is fixed to 0.1. The vc

Tc
factor

which enters through the change in the top mass is 1.5.
Using Eqs. (7.1) and (7.3), the source term can be easily
computed and Fig. 7(a) depicts that the source term is
typically peaked within the bubble wall. Then the chemical
potential can be computed by solving the transport equa-
tions given in Appendix C for estimating the net baryon
asymmetry and the variation of the chemical potential as a
function of z

T is given in Fig. 7(b). Substituting this in
Eq. (7.5) the baryon asymmetry is computed which comes
out to be 6.13 × 10−11.

VIII. DARK MATTER CONSTRAINTS

After considering the theoretical constraints from the
vacuum stability, perturbative unitarity, and EWPT, we
focus on the DM constraints. Since the triplet field, being
Z2 odd, does not take part in the EWSB, the neutral scalar
M0

Δ serves as the DM candidate. The dominant annihilation
mode which contributes to the DM relic density in case of
ITM is W�W∓, discussed in Ref. [124] in details. The
bound on the DM mass for the correct DM relic density
from the WMAP [16] and Planck experiments [3] comes
out to be 1.2 TeV where freeze-out scenario is assumed.
This mass bound was not consistent with the strongly first-
order phase transition in accordance with the measured
Higgs boson mass and the Planck scale perturbativity in

FIG. 7. Variation of the source term SðzÞ and the chemical potential μLðzÞ as a function of z
T. The source term on the right-hand side of

the diffusion equations, i.e., K4;tvwm2
t θ

00 þ K5;tvwðm2
t Þ0θ0t for Lw ¼ 8

T, vw ¼ 0.1 and Δθ ¼ 0.1. The source term actually peaks within
the bubble wall.
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just the ITM case [90], and additional degrees of freedom
were needed. Thanks to introduction of real singlet with
VEV in our model, the DM relic mass bound of 1.2 TeV
can satisfy the strongly first-order phase transition along
with the observed Higgs boson mass and the Planck-scale
perturbative unitarity.

IX. ELECTRON ELECTRIC DIPOLE
MOMENT CONSTRAINTS

The sufficient amount of CP violation is crucial in
explaining the observed baryon asymmetry of the Universe
(BAU) during the electroweak phase transition. The recent
bound on the electron EDM (eEDM) from the ACME
Collaboration [125], i.e., de < 1.1 × 10−29 e cm = 1.69 ×
10−16 GeV−1 impose stringent constraints on the beyond
Standard Model scenarios which accomodate CP violation.
Since, CP violation is crucial in explaining the BAU, it is
important to check the consistency of the chosen parameter
space with the eEDM constraints. The eEDM contribution
comes only from the two-loop Barr-Zee diagrams mediated
by the top quark, and it is proportional to the imaginary part
of α (CP-violating parameter), i.e., de ∝ Imα as given in
detail in [126].

d2−loope;t ¼ e
ð3π2Þ

�
αGFvffiffiffi
2

p
πmt

�
me

�
vImα

2Λ

�

× sin θ cos θ
h
−gðzth1 þ gðzth2ÞÞ

i
; ð9:1Þ

where gðzÞ is the loop function given as follows:

gðzÞ ¼ 1

2
z
Z

1

0

dx
1

xð1 − xÞ − z
log

�
xð1 − xÞ

z

�
; ð9:2Þ

with zth1 ¼ mt2

m2
h
and zth2 ¼ mt2

m2
H
. Equation (9.1) predicts that

for mh ∼mH ¼ 125.5 GeV and gðzth1 ∼ gðzth2ÞÞ, the
two-loop contribution to de is reduced. The BP chosen
in our considered scenario for the EWPT and explaining
the BAU gives mH as 177.26 GeV, and this gives the
eEDM as 1.47 × 10−16 GeV−1 for sin θ ¼ 0.06 and
vImα
2Λ ¼ 0.0615. This eEDM value is consistent with the
current bound of 1.69 × 10−16 GeV−1, and the parameter
space is strongly constraint with a very small region for
sin θ ¼ ð0.00 − 0.06Þ and vImα

2Λ ¼ (0.00–0.0615) is allowed
from the recent eEDM bound for singlet mass, mH as
177.26 GeV.

X. CONCLUSION

We have analyzed a SM extended with a real singlet and a
Y ¼ 0 Higgs triplet considering an additional dimension-5
term. The parameter points are chosen to be consistent with
the Planck scale stability and the perturbative unitarity using
two-loop β-functions. The interaction quartic coupling

between Higgs and the triplet λhΔ, which is crucial for
determining the triplet mass, is restricted to 1.25 from
Planck scale perturbativity in presence of an additional
singlet field. While the bound has to be 1.95 in case of inert
triplet solely. We have also studied that the presence of
singlet helps in achieving the two-step phase transition
where the symmetry firstly breaks in the singlet field
direction, and later, to the usual electroweak minima. The
phase transition from the singlet field to the electroweak
minima is found to be strongly first-order consistent with
the measured Higgs boson mass of 125.5 GeV.
We have found that the lightest stable neutral component

from the Higgs triplet can be a DM candidate that satisfy
the observed relic density for 1.2 TeV of the DM mass
where the DM mass below 1.2 TeV is not allowed because
of under-abundance. We have also checked that our DM is
consistent with the strongly first-order phase transition
along with the observed Higgs-boson mass and the Planck-
scale perturbativity. If we introduce the inert triplet only, the
upper bound on the DM mass to satisfy the strongly first-
order phase transition is 259.0 GeV that would already be
ruled out by current experiments such as LHC. Thanks to
the singlet boson that causes the possibility of a two-step
phase transition, however, the bound shifts to 3.8 TeV that
is still within the range of allowed space.
Then, we have studied electroweak baryogenesis using

the CP asymmetry generated by the fermionic sector of the
dimension-5 term. The chosen BP satisfies all possible
constraints; i.e., strongly first-order phase transition,
Planck-scale perturbativity, and measured Higgs boson
mass. Moreover, the DM constraint from relic density also
satisfies the correct baryon to entropy ratio ð6.13 × 10−11Þ.
The chosen BP also gives eEDM as 1.47 × 10−16 GeV−1

which is allowed by the recent eEDM bound from the
ACME Collaboration.
We have also explored the GW and the corresponding

frequency lies in the detectable frequency range of the LISA
(6.978 × 10−4 − 1.690 × 10−2) Hz and BBO experiments.

ACKNOWLEDGMENTS

This research was supported by an appointment to
the JRG Program at the APCTP through the Science
and Technology Promotion Fund and Lottery Fund of
the Korean Government. This was also supported by
the Korean Local Governments—Gyeongsangbuk-do
Province and Pohang city (H. O.). This research was also
supported by an appointment to the YST Program at the
APCTP through the Science and Technology Promotion
Fund and Lottery Fund of the Korean Government. This
was also supported by the Korean Local Governments—
Gyeongsangbuk-do Province and Pohang city (S. J.). S. J.
thanks Thomas Konstandin and Professor Ligong Bian for
useful guidance in computing the baryon asymmetry. S. J.
also thanks Anirban Karan for useful discussions.

EXPLORING CP-VIOLATION IN Y ¼ 0 INERT TRIPLET … PHYS. REV. D 108, 055025 (2023)

055025-13



APPENDIX A: TWO-LOOP β-FUNCTIONS FOR DIMENSIONLESS COUPLINGS

1. Scalar quartic couplings

βλh ¼
1

16π2

�
þ 27

200
g41 þ

9

20
g21g

2
2 þ

9

8
g42 −

9

5
g21λ − 9g22λþ 24λ2h þ 2λ2hs þ 9λ2hΔ þ 12λhTrðYdY

†
dÞ

þ 4λhTrðYeY
†
eÞ þ 12λhTrðYuY

†
uÞ − 6TrðYdY

†
dYdY

†
dÞ − 2TrðYeY

†
eYeY

†
eÞ − 6TrðYuY

†
uYuY

†
uÞ
�

þ 1

ð16π2Þ2
�
−
3411

2000
g61 −

1677

400
g41g

2
2 −

317

80
g21g

4
2 þ

277

16
g62 þ

1887

200
g41λh þ

117

20
g21g

2
2λh −

29

8
g42λh þ

108

5
g21λ

2
h þ 108g22λ

2
h

− 312λ3h − 20λhλ
2
hs − 16λ3hs þ

105

4
g42λhΔ þ 171

2
g22λ

2
hΔ − 90λhλ

2
hΔ − 132λ3hΔ

þ 1

20
ð−5ð64λhð−5g23 þ 9λhÞ − 90g22λh þ 9g42Þ þ 9g41 þ g21ð50λh þ 54g22ÞÞTrðYdY

†
dÞ

−
3

20
ð15g41 − 2g21ð11g22 þ 25λhÞ þ 5ð−10g22λh þ 64λ2h þ g42ÞÞTrðYeY

†
eÞ − 171

100
g41TrðYuY

†
uÞ

þ 63

10
g21g

2
2TrðYuY

†
uÞ − 9

4
g42TrðYuY

†
uÞ þ 17

2
g21λhTrðYuY

†
uÞ þ 45

2
g22λhTrðYuY

†
uÞ

þ 80g23λhTrðYuY
†
uÞ − 144λ2hTrðYuY

†
uÞ þ 4

5
g21TrðYdY

†
dYdY

†
dÞ − 32g23TrðYdY

†
dYdY

†
dÞ

− 3λhTrðYdY
†
dYdY

†
dÞ − 42λhTrðYdY

†
uYuY

†
dÞ −

12

5
g21TrðYeY

†
eYeY

†
eÞ − λhTrðYeY

†
eYeY

†
eÞ

−
8

5
g21TrðYuY

†
uYuY

†
uÞ − 32g23TrðYuY

†
uYuY

†
uÞ − 3λTrðYuY

†
uYuY

†
uÞ þ 30TrðYdY

†
dYdY

†
dYdY

†
dÞ

− 12TrðYdY
†
dYdY

†
uYuY

†
dÞ þ 6TrðYdY

†
uYuY

†
dYdY

†
dÞ − 6TrðYdY

†
uYuY

†
uYuY

†
dÞ

þ 10TrðYeY
†
eYeY

†
eYeY

†
eÞ þ 30TrðYuY

†
uYuY

†
uYuY

†
uÞ
�
:

2. Gauge couplings

βg1 ¼
1

16π2

�
41

10
g31

�
þ 1

ð16π2Þ2
�
1

50
g31ð135g22 þ 199g21 − 25TrðYdY

†
dÞ þ 440g23 − 75TrðYeY

†
eÞ − 85TrðYuY

†
uÞÞ
�
:

βg2 ¼
1

16π2

�
−
17

6
g32

�
þ 1

ð16π2Þ2
�
1

30
g32ð−15TrðYeY

†
eÞ þ 27g21 þ 360g23 þ 455g22 − 45TrðYdY

†
dÞ − 45TrðYuY

†
uÞÞ
�
:

βg3 ¼
1

16π2
½−7g33� þ

1

ð16π2Þ2
�
−

1

10
g33ð−11g21 þ 20TrðYdY

†
dÞ þ 20TrðYuY

†
uÞ þ 260g23 − 45g22Þ

�
:

APPENDIX B: DIMENSIONALLY REDUCED PARAMETERS

The scalar potential given in Eq. (2.6) for the SM extended with a singlet and an inert Higgs triplet scenario in the
dimensionally reduced 3D effective theories (DR3EFTs) is given as

Veff
0 ¼ m2

h;3Φ†Φþm2
Δ;3TrðΔ†ΔÞ þ λh;3jΦ†Φj2 þ λΔ;3ðTrjΔ†ΔjÞ2 þ λhΔ;3Φ†ΦTrðΔ†ΔÞ þm2

S;3S
2 þ λS;3S4 þ κ3S3

þ λhs;3ðΦ†ΦÞðS2Þ: ðB1Þ
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The matching relations for the quartic couplings and the bare masses (which are the tree-level parameters) are computed as
follows [127–129]:

λh;3 ¼ T

�
λhðΛÞþ

1

ð4πÞ2
�
2− 3Lb

16
ð3g42 þ 2g22g

2
1þ g41ÞþNcLfðy4t − 2λhy2t ÞþLb

�
3

2
ð3g22þ g21Þλh − 12λ2h −

1

2
λhs

��

þ 1

ð4πÞ2
�
1

8
ð3g42þ g41þ 2g22g

2
1Þþ 3Lfðy4t − 2λ1y2t Þ−Lb

�
3

16
ð3g42þ g41þ 2g21g

2
2Þ−

3

2
ð3g22þ g21 − 8λhÞλhþ

3

4
ð2λhtÞ2

��
;

λs;3 ¼
T
4

�
4λsðΛÞ−

1

ð4πÞ2Lbðð2λhsÞ2þ 9ð4λsÞ2Þ
�
;

λhs;3 ¼
T
2

�
2λhsðΛÞþ

2λhs
ð4πÞ2

�
Lb

�
3

4
ð3g22þ g21Þ− 6λ1 − 4λhs − 12λs

�
−NcLfy2t

��
;

λΔ;3 ¼
T
4

�
4λΔðΛÞþ

1

ð4πÞ2 ½4g
4
2 −Lbðð2λhΔÞ2þ 11ð4λΔÞ2 − 48g22λΔ þ 6g42Þ�

�
;

λhΔ;3 ¼
T
2

�
2λhΔðΛÞþ

1

ð4πÞ2
�
2g42 − 6λhΔy2t Lf −Lb

�
8λ2hΔ þ 40λhΔλΔ þ 3g42þ 12λhΔλh −

3

2
λhΔðg21þ 11g22Þ

���
;

κ3 ¼
ffiffiffiffi
T

p

3

�
3κðΛÞ− 3Lb

ð4πÞ2 ð36λsκÞ
�
; ðB2Þ

where

Lb ¼ ln

�
Λ2

T2

�
− 2½lnð4πÞ − γ�; ðB3Þ

Lf ¼ Lb þ 4 ln 2: ðB4Þ

Here, Lb and Lf are logarithms that arise frequently from one-loop bosonic and fermionic sum integrals with Λ is the MS
scale and γ is the Euler-Mascheroni constant. The expressions for the two-loop mass parameters are computed as follows:

m2
h;3 ¼ ðm2

h;3ÞSM þ T2

12
λhsðΛÞ −

Lb

ð4πÞ2 ð2λhsm
2
SðΛÞÞ þ

1

ð4πÞ2
�
3

4
ð3g22 þ g21ÞLb − Ncy2t Lf

��
T2

12
λhs

�

þ 1

ð4πÞ4 ½9ð3þ 2Lb þ L2
bÞðλhsκ2Þ� −

2T2

ð4πÞ2 Lbλhs

�
1

4
λh þ

5

12
λhs þ

1

2
λs

�
−

2

ð4πÞ2 λ
2
hs;3

�
cþ ln

�
3T
Λ3d

��

þ T2

4
λhΔðΛÞ þ

1

16π2

�
þ6λhΔm2

ΔLb þ T2

�
5

24
g42 þ λhΔg22 −

3

4
λhΔy2t Lf þ Lb

�
−

7

16
g42 −

5

2
λ2hΔ − λhΔλΔ þ 33

16
λhΔg22

þ 3

16
λhΔg21 −

3

2
λhΔλh

�
þ
�
cþ ln

�
3T
Λ3d

���
−6λ2hΔ;3 þ 12λhΔ;3g22;3 −

3

4
g42;3

���
; ðB5Þ

where

ðμ23ÞSM ¼ μ2ðΛÞ þ T2

12

�
3

4
ð3g22ðΛÞ þ g21ðΛÞÞ þ Ncy2t ðΛÞ þ 6λ1ðΛÞ

�
þ μ2ðΛÞ

ð4πÞ2
��

3

4
ð3g22 þ g21Þ − 6λ1

�
Lb − Ncy2t Lf

�

þ T2

ð4πÞ2
�
167

96
g42 þ

1

288
g41 −

3

16
g22g

2
1 þ

ð1þ 3LbÞ
4

λ1ð3g22 þ g21Þ þ Lb

�
17

16
g42 −

5

48
g41 −

3

16
g22g

2
1 − 6λ21

�

þ 1

T2

�
cþ ln

�
3T
Λ3d

���
39

16
g42;3 þ 12g22;3h3 − 6h23 þ 9g22;3λ1;3 − 12λ21;3 −

5

16
g41;3 −

9

8
g22;3g

2
1;3 − 2h023 − 3h0023
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þ 3g21;3λ1;3

�
−

1

96
ð9Lb − 3Lf − 2Þ

�
ðNc þ 1Þg42 þ

1

6
Y2fg41

�
nf þ

Nc

32
ð7Lb − Lf − 2Þg22y2t

−
Nc

4
ð3Lb þ LfÞλ1y2t þ

Nc

96

�
ð9ðLb − LfÞ þ 4ÞY2

ϕ − 2ðLb − 4Lf þ 3ÞðY2
q þ Y2

uÞ
�
g21y

2
t

−
NcCF

6
ðLb − 4Lf þ 3Þg2sy2t þ

Nc

24
ð3Lb − 2ðNc − 3ÞLfÞy4t

�
; ðB6Þ

with CF ¼ N2
c−1
2Nc

¼ 4
3
and c ∼ −0.348723 is the fundamental quadratic Casimir of SUð3Þ and Y2f ¼ 40

3
; Yu ¼ 4

3
;

Yϕ ¼ 1; Yl ¼ −1; Ye ¼ −2; Yq ¼ 1
3
; Nc ¼ 3.

And the two-loop mass expressions for the mass parameter of the singlet and the triplet are given as:

m2
S;3 ¼

1

2

�
2m2

SðΛÞþT2

�
1

3
λhsðΛÞþ λsðΛÞ

�
−

Lb

ð4πÞ2 ð18κ
2ðΛÞþ 4λhsm2

hðΛÞþ 12λsm2
SðΛÞÞþ

1

ð4πÞ4
�
9ð3þ 2LbÞ

2
ð120λsκ2Þ

þ 756L2
bλsκ

2

�
þ 1

ð4πÞ2 ð2ð3g
2
2;3þ g21;3Þλhs;3 − 8λ2hs;3 − 96λ2s;3Þ

�
cþ ln

�
3T
Λ3d

��
þ T2

ð4πÞ2
�ð2þ 3LbÞ

12
ð3g22 þ g21Þλhs

−Lb

��
λh þ

7

3
λhs þ 4λs

�
λhsþ 36λ2s

�
−
Nc

6
ð3Lb −LfÞy2t λhs

��
;

m2
Δ;3 ¼

1

2

�
2m2

Δ þT2

�
1

3
λhΔðΛÞþ

5

3
λΔðΛÞþ

1

2
g22ðΛÞ

�
−

1

16π2

�
−2ð6g22 − 20λΔÞm2

ΔLb þ 4m2
hλhΔLbþT2

��
71

18
þ 2

9
Nf

�
g42

þ 20

3
λΔg22þ

1

2
λhΔg22 þ

1

6
λhΔg21þLb

�
5

12
g42 − 3λ2hΔ −

880

12
λ2Δ þ 11

4
λhΔg22þ

1

4
λhΔg21þ 20λΔg22 −

20

3
λhΔλΔ − 2λhΔλh

�

þ
�
cþ ln

�
3T
Λ3d

��
ð−8λ2hΔ;3 − 160λ2Δ;3 þ 2λhΔ;3ð3g22;3þ g21;3Þþ 80λΔ;3g22;3 − 3g42;3þ 24g22;3δ3 − 24δ23þ 8g22;3δ

0
3

− 16δ3δ
0
3 − 16δ023 Þ−Lf

�
λhΔy2t þ

2

3
g42Nf

�
þ lnð2Þð6λhΔy2t þ 4g42NfÞ

���
: ðB7Þ

The other parameters which are used in the above expressions are computed as follows:

g22;3 ¼ g22ðΛÞT
�
1þ g22

ð4πÞ2
�
44 − Nd − 2Nt

6
Lb þ

2

3
−
4Nf

3
Lf

��
; ðB8Þ

g21;3 ¼ g21ðΛÞT
�
1þ g21

ð4π2Þ
�
−
Nd

6
Lb −

20Nf

9
Lf

��
; ðB9Þ

h3 ¼
g22ðΛÞT

3

�
1þ 1

ð4πÞ2
��

44 − Nd − 2Nt

6
Lb þ

53

6
−
Nd

3
−
2Nt

3
−
4Nf

3
ðLf − 1Þ

�
g22 þ

g21
2
− 6y2t þ 12λ1 þ 8λht

��
;

h03 ¼
g21ðΛÞT

4

�
1þ 1

ð4πÞ2
�
3g22
2

þ
�
1

2
−
Nd

6
ð2þ LbÞ −

20Nf

9
ðLf − 1Þ

�
g21 −

34

3
y2t þ 12λ1

��
; ðB10Þ

h003 ¼
g2ðΛÞg1ðΛÞT

2

�
1þ 1

ð4πÞ2
�
−
5þ Nd

6
g22 þ

3 − Nd

6
g21 þ Lb

�
44 − Nd

12
g22 −

Nd

12
g21

�

− NfðLf − 1Þ
�
2

3
g22 þ

10

9
g21

�
þ 2y2t þ 4λ1

��
; ðB11Þ

δ3 ¼
1

2
g22ðΛÞT

�
1þ 1

ð4πÞ2
�
λht þ 8λt þ g22

�
16 − Nd − 2Nt

3
−
4

3
NfðLf − 1Þ þ Lb

44 − Nd − 2Nt

6

���
; ðB12Þ
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δ03 ¼ −
1

2
g22ðΛÞT

�
1þ 1

ð4πÞ2
�
4λt þ g22

�
−
20þ Nd þ 2Nt

3

−
4

3
NfðLf − 1Þ þ Lb

44 − Nd − 2Nt

6

���
; ðB13Þ

where, Nd ¼ 1, Nt ¼ 1, and Nf ¼ 3 to identify the con-
tributions from the SM Higgs doublet, the real triplet and
the fermions, respectively.

APPENDIX C: TRANSPORT EQUATIONS

The diffusion equations for the left-handed quarks are
as follows:

ð3κt þ 3κbÞvwμ0q3 − ð3K1;t þ 3K1;bÞv0q3 − 6Γyðμq3 þ μtÞ
− 6Γmðμq3 þ μtÞ − 6Γss½ð2þ 9κt þ κbÞμq3
þ ð1 − 9κtÞμt� ¼ 0; ðC1Þ

where, the effect from the Higgs has been neglected, since
it has relatively smaller effect on the final baryon asym-
metry [67] and

− ðK1;t þ K1;bÞμ0q3 þ ðK2;t þ K2;bÞvwv0q3

−
�
K2

1;t

κtDQ
þ K2

1;b

κbDQ

�
vq3 ¼ K4;tvwm2

t θ
00
t þ K5;tvwðm2

t Þ0θ0t: ðC2Þ

Similarly, the transport equations for the right-handed top
quark is

3κtvwμ0t − 3K1;tv0t − 6Γyðμq3 þ μtÞ − 6Γmðμq3 þ μtÞ
− 3Γss½ð2þ 9κt þ 9κbÞμq3 þ ð1 − 9κtÞμt� ¼ 0; ðC3Þ

and

− K1;tμ
0
t þ K2;tvwv0t −

K2
1;t

κtDQ
vt

¼ K4;tvwm2
t θ

00 þ K5;tvwðm2
t Þ0θ0t; ðC4Þ

where, primes denotes the derivative with respect to the z
coordinate perpendicular to the wall. The redefinition of
chemical potential which is used in the above transport
equations is μq3 ¼ μt;2þμb;2

2
, μtc;2 ¼ μt, now becomes

μL ¼ ð1þ 2κt þ 2κbÞμq3 − 2κtμt, where, Km;j and κi are
certain moments in momentum space as given below,

hXi ¼
R
d3pXR

d3pf0þðm ¼ 0Þ ; ðC5Þ

f�ðmiÞ ¼
1

eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
� 1

; ðC6Þ

where,

κi ¼ hf0�ðmiÞi; ðC7Þ

K1;i ¼



p2
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
i

p f0�ðmiÞ
�
; ðC8Þ

K2;i ¼ hp2
zf0�ðmiÞi; ðC9Þ

K3;i ¼



1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p f0�ðmiÞ
�
; ðC10Þ

K4;i ¼

 jpzj
2ðp2 þm2

i Þ
f0�ðmiÞ

�
; ðC11Þ

K5;i ¼

 jpzjp2

2ðp2 þm2
i Þ
f0�ðmiÞ

�
: ðC12Þ

The momenta functions are normalized in such a way
that κi ¼ 2 and 1 for massless bosons and fermions,
respectively. The values used for the interaction rates
and the quark diffusion constant are Γws ¼ 1.0 × 10−6T4,

Γss ¼ 4.9 × 10−4T4, Γy ¼ 4.2 × 10−3T, Γm ¼ m2
t

63T, and
DQ ¼ 6

T [37,130–132].
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