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As is well known, trinification, i.e., the extension of the Standard Model (SM) to ½SUð3Þ�3 ¼
SUð3Þc × SUð3ÞL × SUð3ÞR as occurs in E6 models, allows for a partial unification of the gauge forces
even though quarks and leptons remain in separate multiplets so that no heavy gauge or scalar fields exist
which can generate proton decay. The extension of this idea to quartification, by including an additional
SUð3Þ0 factor, has also been considered in the literature maintaining the basic attributes of trinification but
now allowing, e.g., for a more symmetric treatment of quarks and leptons at the price of new matter fields
and gauge interactions. In this paper, we will consider this SUð3Þ0 to be the “dark” gauge group, now
containing the familiarUð1ÞD subgroup, under which the SM fields are all neutral, which is associated with
kinetic mixing (KM) and the existence of a light, ≲1 GeV dark photon. This setup naturally predicts the
existence of color-singlet portal matter fields, carrying both electromagnetic and Uð1ÞD dark charges, that
are necessary to generate this KM at the one-loop level and whose masses are directly tied with those of the
many new gauge bosons that originate from the extended gauge sector. In this paper, after a discussion of
the detailed structure of this model, we present a broad survey of the collider phenomenology of the large
set of new fields that must necessarily arise from this setup in a simplified version involving only a single
generation of fermions. We demonstrate that several new signatures may be anticipated at the LHC as well
as at future hadron and lepton colliders if such models are realized in nature.
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I. INTRODUCTION AND BACKGROUND
DISCUSSION

The Standard Model (SM) of particle physics, though
very successful, faces a number of significant obstacles in
explaining the world that we see. One of the most
challenging and longstanding of these is the nature of dark
matter (DM) for which there is no SM candidate: what is it
and how does it interact with us, if at all, beyond the
obvious gravitational interactions by which we know it to
exist? A perhaps reasonable expectation is that DM and SM
fields will interact rather weakly through some new, as yet
unknown, mediator which itself is not a part of the SM and
by whose action the DM obtains the value of the relic
density as measured by Planck [1]. It is not unreasonable to
ask how the SM might be extended to account for this
possibility and how a more unified description which
includes these new interactions may be achieved.
Such questions in one form or another have been under

discussion for quite some time and the consideration of

various DM candidates now extends back several decades.
As is well known, the searches for these “traditional” DM
candidates, such as the QCD axion [2–4] and the family of
weakly interacting massive particles, i.e., WIMPS [5,6],
continue to push downwards into ever lower cross section
regimes and wider over larger ranges of possible masses
with increasing sensitivities. Unfortunately, these direct
detection experiments, as well as those searching for
indirect signatures or via the direct production of DM at
the 13 TeV LHC [7–11], have all so far produced negative
results, thus excluding increasing large regions of the
parameter spaces of many specific models. These results
and others have, over the last decade or so, led the
community to greatly expand upon this set of traditional
candidates with many new ideas for the possible nature of
DM and its interactions with the SM. During this time
interval it has become clear that both the coupling strength
of DM to (at least some of) the fields of the SM as well as
its possible mass can both span previously unexpected large
ranges [12–17] which will require a wide variety of very
broad and very deep searches to provide even partially
adequate coverage. In a similar fashion, it has been found
that many distinct types of interactions between DM and
the fields of the SM are possible, many of which are best
classified by the use of the effective field theory approach
employing “portals.” Such portals can produce interaction
structures which are either renormalizable (i.e., dimension
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≤ 4) or nonrenormalizable (i.e., dimension > 4) depending
upon the specific setup. For these models to work, an
additional set of new fields also needs to be introduced
which acts as mediators linking the SM to the DM and
potentially also to an enlarged, nontrivial, dark sector of
which the DM candidate is only the lightest stable state—
possibly due to, e.g., the existence of some new, at least
approximately conserved, quantum number.
Among the various classes of these portals, significant

attention has been given in the literature to the renormaliz-
able kinetic mixing/vector portal [18–20] scenario which is
based upon the existence of a new dark gauge interaction
and which has significant model building flexibility. In
such a scenario, one finds that even in the most simple
realization, over significant ranges of the model parameters,
it is possible for the DM to reach its observed abundance
via the usual WIMP-like thermal freeze-out mechanism
[21,22]. Unlike in traditional WIMP models, however, this
will now occur only for sub-GeV DM masses by employ-
ing this previously mentioned new non-SM dark gauge
interaction that, because of its weakness, has so far evaded
detection by other means. The simplest construction of this
kinds has only a few moving pieces assuming only the
existence of this new gauge interaction based on the Uð1ÞD
gauge group, with a coupling gD, under which it it is
postulated that the SM fields are all neutral, implying that
they do not carry dark charges, i.e., thus QD ¼ 0. The new
Uð1ÞD gauge boson is then termed as the “dark photon”
(DP) [23,24], which we will generally denote as D. In the
usual setup, in order to obtain the observed relic density by
thermal means, this new Uð1ÞD is assumed to be sponta-
neously broken at or below the scale of ∼ few GeVand thus
both the DM and DP will have comparable masses. This
symmetry breaking is most simply accomplished via the
(sub-)GeV scale vev(s) of at least one (if not several) new
scalar(s), the dark Higgs(es), similar to the symmetry
breaking which occurs in the SM. While the DP couples
to DM it does not do so at tree level with SM fields but,
within this framework, is generated via renormalizable
kinetic mixing (KM) at the one-loop level between the
Uð1ÞD and the SM Uð1ÞY gauge fields and whose strength
is then described by a small, dimensionless parameter, ϵ.
Since the SM fields have QD ¼ 0 and DM has no SM
charges, these loops must arise from a set of new fields,
usually being vectorlike (VL) fermions and/or complex
scalars, which we call portal matter (PM) [25–39], that
must carry both SM andUð1ÞD dark charges. Transforming
back to the familiar canonically normalized gauge fields to
remove the KM and after both the SM and Uð1ÞD gauge
symmetries are broken, this now leads to an effective
coupling of the DP to SM fields of the form ≃eϵQem (up to
small correction terms or order m2

D=m
2
Z ≪ 1). Further, for

both DM and a DP being sub-GeV in mass, one finds that
the magnitude of the parameter ϵ is constrained by experi-
ment to very roughly lie in the ϵ ∼ 10−ð3–4Þ range, a number

which we might have already expected from it originating
due to a loop. Importantly, in such a setup, for p-wave
annihilating DM or for pseudo-Dirac DM with a suffi-
ciently large mass splitting, it is found the rather tight
constraints arising from the CMB on DM annihilation
into electromagnetically interacting final states can also be
avoided [1,40–42] for an overlapping range of model
parameters.
Finally, another interesting feature of this class of setups,

in the conventionally chosen normalization and in the IR
limit, is that the parameter ϵ can be determined in terms of
the properties of the PM fields that appear in these vacuum
polarizationlike graphs and is given by the sum

ϵ ¼ gDe
24π2

X
i

ðηiNciQem;iQDi
Þ lnm

2
i

μ2
; ð1Þ

where eðgDÞ is the usual QED (Uð1ÞD) gauge coupling and
miðQem;i; QDi

; NciÞ are the mass (electric charge, dark
charge, number of colors) of the ith PM field. We note
that, e.g., ηi ¼ 1ð1=2Þ if the PM particle is assumed to be a
chiral fermion (complex scalar).1 We then see that if the
condition

X
i

ηiNciQem;iQDi
¼ 0 ð2Þ

is also satisfied, as might perhaps be expected within a fully
unified description, then ϵ also becomes a finite and,
in principle, a calculable quantity. Such an observation
may already whet our appetite to search for such a more
enveloping framework for the KM scenario. However, as
we will see in the discussion below, this condition is not
automatically satisfied in this only partially unified model
without the introduction of some additional (likely scalar)
fields beyond this minimal setup.
It seems to be advantageous to go beyond this effective

theory to further our understanding of how this (apparently)
simple KM mechanism fits together into a single scheme
with the SM, something that we, and others, have begun to
examine in pathfinder mode employing various bottom-up
and top-down approaches in a recent series of papers
[25,26,28–35,38,39]. Two common features that one finds
from following our general approach are the embedding of
the Uð1ÞD dark Abelian symmetry into some larger, non-
Abelian GDark, e.g., with an SUð2ÞI × Uð1ÞYI

[26] gauge
symmetry [43] being its simplest manifestation and the
appearance of at least some of the SM fields in common
gauge group representations with the PM fields. In such
setups, the PMmass generation is generally the result of the
GDark → Uð1ÞD symmetry breaking and so, with Oð1Þ

1In the model framework below, there are two gauge bosons
that can also play this PM role and so will also contribute to the
sum above as we will discuss below.

THOMAS G. RIZZO PHYS. REV. D 108, 055021 (2023)

055021-2



Yukawa couplings, will share a similar overall mass scale
with the associated heavy gauge bosons. This was seen
explicitly in Ref. [26] whose PM content and the GDark ¼
SUð2ÞI ×Uð1ÞYI

gauge group were both inspired by E6

[44,45]. More recently, we extended this idea of a more
general product group G ¼ GSM × GDark from a top-down
perspective [34] and also via an augmentation of GSM to
that of the left-right symmetric model (LRM) [46–50]
while maintaining GDark ¼ SUð2ÞI ×Uð1ÞYI

wherein the
PM and RH-neutrino mass scales were shown to be related.
Interestingly, one generally finds that attempts to “unify”
the SM with the KM portal naturally brings in some of the
other portals as well, e.g., the Higgs and neutrino portals
will also frequently appear.
Following the cue from these previous studies, in this

paper we consider identifying GSM ¼ SUð3Þc × SUð3ÞL ×
SUð3ÞR, i.e., the trinification [51] subgroup of E6, while
also assuming that GDark ¼ SUð3Þ0, thus forming a quarti-
fication model. Such a class of partially unified models has
been discussed in the literature for both DM as well as in
other contexts [52] and in some cases allows for greater
flexibility than many conventional unification approaches
involving a single gauge group or a product of two groups.
While the general setup that we will obtain following
this path will share some easily recognizable common
characteristics with one or both of the previously examined
GDark ¼ SUð2ÞI ×Uð1ÞYI

model classes, it will present us
with numerous new and interesting features that we will
begin to explore in the present work. Unfortunately, due to
the necessarily numerous new fields of all varieties that will
appear in the current study (even ignoring the fact of there
being three generations) it is quite difficult to make many
specific phenomenological predictions that can provide
more that suggestive tests for this setup beyond a few
specific examples without making further assumptions
about, e.g., the relative sizes/orderings of the large mass
scale vevs. These specific choices will induce different
possible paths of symmetry breaking down to the SM ×
Uð1ÞD thus leading to quite different, quantitative predic-
tions for, e.g., the masses and, in some cases, the couplings
of the many new color singlet gauge bosons within this
setup. However, there remains many aspects that most of
these paths will share, at least at the semiquantitative level,
and we will concentrate our efforts in exploring those
phenomenological tests here. Specifically, we will examine
the capabilities of the LHC as well as future hadron and
lepton colliders to explore the essential components of this
setup: the new gauge bosons and their interplay with the
VL fermions and SM fields. As we will see, this scenario
shares many of the features that we had earlier encountered
in our analyses of one or both of the previously examined
E6 and Pati-Salam motivated models but with different (and
sometimes simultaneous) aspects of additional simplicity
and complexity. Unfortunately, while a step forward, this
type of setup is not yet fully unified in the traditional sense.

The outline of this paper is as follows: Following the
present Introduction and Background discussion, in Sec. II
we will present a broad outline of the model setup and
framework, setting the stage for the analysis in the later
sections. Sections III and IV will then individually examine
the various fermionic sectors of this setup, i.e., the gen-
eration of the Dirac and Majorana fermion masses together
with the corresponding mixings between the PM and SM/
LRM fermion fields. The KM and gauge symmetry break-
ing which takes place in several distinct steps at a hierarchy
of mass scales and the resulting gauge boson masses and
mixings that will be important at the electroweak scale and
below will then be discussed separately for the non-
Hermitian and Hermitian gauge fields in Secs. V and VI,
respectively. A further examination of a sample of some of
the (mostly collider oriented) phenomenological implica-
tions and tests of this scenario that were not touched upon
in any detail earlier as part of the model development will
then be presented in Sec. VII. Aswewill see below, given the
numerous moving parts for this model, it is quite difficult to
capture all of the interesting new physics potential of this
setup within this introductory survey in more than a
suggestive manner. Finally, a summary and discussion of
our results, possible future avenues of exploration and our
subsequent conclusions can then be found in Sec. VIII.

II. OVERVIEW OF MODEL SETUP
AND FRAMEWORK

Although the details of the fermion embedding, the
interpretation, and low energy phenomenology of the
SUð3Þ0 gauge group will differ here from that in much of
the literature, the essential features and the basic mechanics
of the general quartification model setup will remain
unaltered [52]. However, in what follows we will not, e.g.,
assume that an additional Z4 exchange symmetry among the
four SUð3Þ groups is also present and wewill not be directly
interested in specific unification issues at very high mass
scales. This freedom, e.g., allows for some asymmetric
treatment in the necessary symmetry breaking of the various
gauge group factors as we will encounter in the discussion
below. In terms of the diagonal generators of the SUð3Þc ×
SUð3ÞL × SUð3Þ0 × SUð3ÞR gaugegroup, the electric charge
in this versionof quartificationwill begiven by the somewhat
uncommon but highly symmetric decomposition

Qem ¼ T3L −
YL

2
þ T3R −

YR

2
þ T 0

3 −
Y 0

2
; ð3Þ

where Ya=2 ¼ T8a=
ffiffiffi
3

p
with a ¼ ðL;R;0 Þ. Similarly, as we

will see below, the dark charge, QD, associated with the
familiarUð1ÞD gauge group as described above, is just given
by a linear combination of the two diagonal SUð3Þ0 gen-
erators,2 up to an overall sign convention, as

2The origin of this expression will be explained shortly.
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QD ¼ T 0
3 −

ffiffiffi
3

p
T 0
8: ð4Þ

As noted above, since we will not be concerned here
with the potential vast wealth of flavor phenomenology
associated with this kind of setup, we will limit ourselves in
our discussion below to the consideration of a only single
fermion generation so that we can emphasize the corre-
sponding wealth of nonflavor physics. To this end, we will
label all the SM fermion fields by their first genera-
tion labels. Interestingly, a respectable fraction of the
phenomenology that we will encounter in the present
model has already been seen in our earlier work on PM
[25,26,28–35,38,39] but in other and generally more
simplified settings. Although related at the “unification”
scale, at accessible collider energies we will treat the three
gauge couplings for 3L3

03R, i.e., gL; g0; gR as generally
independent quantities although, for ease and clarity of
presentation at some later points, we will assume they have
a common value.
In terms of this SUð3Þc × SUð3ÞL × SUð3Þ0 × SUð3ÞR

quartification gauge group, which hereafter we will fre-
quently abbreviate simply as 3c3L303R, helped by the left-
right gauge symmetries and the VL nature of the new fields,
the 36, two-component, left-handed fermion fields of a
single generation are found to transform in an anomaly-free
manner with equal numbers of triplets and antitriplets for
each of the SUð3Þ group factors combined with singlets.
In addition to the 15 SM fields plus the familiar RH-
neutrino, there will also now be eight new VL fermions:
one electroweak singlet, VL quark (i.e., 6 degrees of
freedom) plus three charged and four neutral VL leptons
(i.e., 14 degrees of freedom). This full set of fermions
for a single generation is given by the sum of the four
representations:

½q�ð3; 3̄; 1; 1Þ þ ½l�ð1; 3; 3̄; 1Þ
þ ½lc�ð1; 1; 3; 3̄Þ þ ½qc�ð3̄; 1; 1; 3Þ; ð5Þ

where we want to especially note that all of the color (anti)
triplet fields are seen to be singlets under the new SUð3Þ0
group so that in this framework the PM fields must
necessarily be color singlets, e.g., VL leptons and/or
complex scalars. The q; qc fields, being SUð3Þ0 singlets,
are the familiar, canonical ones that also appear in
E6-inspired trinification models [51]:

½q� ¼

0
B@

d u h

d u h

d u h

1
CA; ½qc� ¼

0
B@

dc dc dc

uc uc uc

hc hc hc

1
CA; ð6Þ

with h being, to those familiar with E6 phenomenology
[44,45], a Qem ¼ −1=3, color-triplet, electroweak iso-
singlet. However, unlike in other previously considered
PM scenarios, here h is not a PM field as it (and all the

quarks) is a QD ¼ 0 singlet under the SUð3Þ0 group and
so is simply a “conventional” VL quark as has been
sought at the LHC, excluding a mass below ∼1.2 TeV
assuming decays [53] only to the third generation SM
fermions.3 Clearly, the fact that quarks do not carry any
SUð3Þ0 charges will greatly impact the production of the
various new states we will encounter below at hadron
colliders. The l; lc fields, on the other hand, are here
somewhat different due to, amongst other things, the
relationship between the diagonal SUð3Þ0 generators and
Qem as well as the necessity of keeping SM fields free of
any QD charge. Below, for these “leptonic” fields, and
following somewhat closely the nomenclature of, e.g., the
recent work of Ma in Ref. [52] to make contact with the
existing literature, we see that

½l� ¼

0
B@

ν Ec
1 N1

e Nc
1 E1

S1 Ec
3 S2

1
CA; ½lc� ¼

0
B@

νc ec Sc1
E2 N2 E3

Nc
2 Ec

2 Sc2

1
CA; ð7Þ

where the S1;2ðE3Þ and their conjugates have jQemj ¼ 0ð1Þ
and are 2L2R singlets, ðN1; E1Þ½ðN2; E2Þ�T with both
helicities together forming VL doublets with Qem¼0;−1,
respectively, under 2L½2R� and are singlets under 2R½2L�,
while ðν; eÞT þ H:c: are just the conventional SM fields
with the addition of the RH neutrino. Since the usualUð1ÞD
gauge group must be a diagonal subgroup of the SUð3Þ0
group, the familiar dark charge QD must be a linear
combination of the two diagonal generators, T 0

3;8, chosen
in a way such that the SM fields ν, e, by construction, have
QD ¼ 0. Normalizing to unit charges, this uniquely fixes,
up to a sign choice, the relationship QD ¼ T 0

3 −
ffiffiffi
3

p
T 0
8 as

given above when these generators act on an SUð3Þ0 (anti)
triplet. From this we see that QDðS1Þ ¼ 0 whereas all the
other new lepton fields, Ni; Ei; S2, will all carry QD ¼ −1
and those which also haveQem ≠ 0 can be identified as true
PM fields. Generally, leptonlike PM will, of course, be
somewhat more difficult to produce and observe at a hadron
collider as previously noted.
Lastly, although we will not be directly discussing

unification issues in the analysis that follows, we note in
passing that with the definition ofQem given above, as well
as the details of the fermion representation structure, we
can calculate the value of sin2 θw at the scale at which the
product of the gauge symmetries, G ¼ ½SUð3Þ�4, begin to
break via the relation

sin2 θw ¼ TrT2
3L

TrQ2
em

¼ 1

4
; ð8Þ

3One possible difference is that in this setup h may be
sufficiently massive as to have decays through non-SM mediators
or into non-SM final states but these are unlikely to be dominant.
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obtaining an interesting result that has been previously
discussed in the quartification literature [52] and which is
quite suggestive. Similarly, one finds that the analog of this
quantity for the dark gauge group, s2I ¼ sin2 θI , as was
employed in our earlier analyses of the SUð2ÞI ×UðIÞYI

,
E6-inspired model [26], satisfies a similar relationship and
is given by

sin2θI ¼
TrT 02

3

TrQ2
D
¼ 1

4
: ð9Þ

Given the complexity of the setup that we will examine
below, the opportunities for both KM and mass mixing
between the DP and the many more massive neutral gauge
boson states are rampant. Fortunately, the absence of
biadjoint representations somewhat restricts this possibility.
Of course, in the IR, this KM is in practice given simply by
Eq. (1) above.

III. DIRAC FERMION MASSES

In order to generate the various fermion masses, we
recall that we can form SUð3Þ singlets either as a product of
a 3with a 3̄ or by taking antisymmetric products of three 3’s
or 3̄’s. This results in a somewhat restrictive, though
sufficient, setup for the fermion mass terms and, as we
will see, also the need to introduce an additional Higgs
scalar representation, not coupling to the fermions, in order
to properly generate all of the heavy gauge boson masses.
In particular, as SUð3Þc must remain unbroken, the
independent set of Higgs fields that can be employed to
generate the fermion masses can be at most three in number
and must transform as bitriplets under the remaining broken
SUð3Þ groups. Specifically, in order to obtain the Dirac
masses for all of these fermions, it is sufficient to introduce
the three Higgs fields, Hi, i ¼ 1 − 3, which transform in
obvious manners with respect to the group 3c3L3

03R based
on the transformation properties of the fermion represen-
tations themselves as described above. A respectable
fraction of these scalars will be eaten as they play the role
of the Goldstone bosons for the many heavy gauge boson
fields that we will encounter below. These 3 × 9 ¼ 27
complex scalars are given by

H1 ¼ ð1; 3; 1; 3̄Þ; H2 ¼ ð1; 3; 3̄; 1Þ; H3 ¼ ð1; 1; 3; 3̄Þ;
ð10Þ

so that the following Yukawa couplings (with repeated
indices summed over) are allowed:

Ly ¼ y1qijqcjkðH1Þki þ y2lijlcjkðH†
1Þki

þ ϵijkϵαβγ

�
y3liαljβðH2Þkγ þ y4lciαl

c
jβðH3Þkγ

�
þ H:c:

ð11Þ

In the analysis presented here, for simplicity, we will ignore
possible CP violation and assume that all of these Yukawa
couplings (as well as the many vevs that we will soon
encounter below) are all real. Note that none of the scalars
appearing in representation H1 carry a QD ≠ 0 charge.
More generally, knowing the relationships of both Qem and
QD to the relevant gauge group generators, we see that each
of the Hi is found to contain five neutral scalars so that, in
total, it is possible to contemplate 15 distinct vevs asso-
ciated with the various required mass scales. In particular,
the following vevs for the neutral fields within these Higgs
scalars, Hi, can be considered:

ffiffiffi
2

p
hH1i ¼

0
B@

v1 0 v4
0 v2 0

v5 0 v3

1
CA; ð12Þ

which are solely responsible for quark masses and mixings
but also contribute to the lepton masses as well, and

ffiffiffi
2

p
hH2i ¼

0
B@

u1 0 x1
0 x2 0

u2 0 x3

1
CA;

ffiffiffi
2

p
hH3i ¼

0
B@

u3 0 u4
0 x4 0

x5 0 x6

1
CA;

ð13Þ

which govern the mass generation for the combined
leptonic and PM sectors. All of the vevs, vi, within H1

correspond to scalars with QD ¼ 0 but, whereas v1;2;4 will
lead to the breaking of SUð2ÞL, and so must be ≲100 GeV
or so, the vevs v3;5 do not and either will simply lead to the
breaking SUð2ÞR or to the more general breaking of
3L3R → 2L2R1LþR so we can easily imagine them being
at the ∼10 TeV mass scale or above. Similarly, while the
vevs u2–4 in H2;3 all correspond with QD ¼ 0 scalars, they
do not break SUð2ÞL and so are also expected to be large,
again ≳10 TeV. On the other hand, the vev u1, while still
having QD ¼ 0, breaks SUð2ÞL and so, like v1;2;4 above, is
expected to be of order ≲100 GeV. The remaining six vevs
in H2;3, the xi, all arise from scalars having jQDj ¼ 1 so
will lead to the breaking of Uð1ÞD and thus are required to
lie at the much smaller ≲1 GeV scale. Due to the hierarchy
of scales of ∼Oð102Þ or possibly greater between the three
sets of vevs, it will sometimes be convenient to treat their
effects iteratively. Although rather obvious, it should be
noted that whereas the vevs vi will lead to a breaking
of only 3L3R, the vevs ui will instead break either 3L30 or
3R3

0 and so, in particular, link the scales associated with
SUð3ÞR=SUð2ÞR and SUð3Þ0 breaking, similar to those
discussed in earlier work [38]. Table I summarizes the
quantum number and transformation properties of this large
set of vevs that are responsible for, at least partly, both
gauge symmetry breaking and fermion mass generation;
those appearing in H1 appear almost universally in the
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quartification literature [52]. Note that among the set of vi,
ui vevs, both the same and opposite signs for their values of
T3L; YL (and also T3R; YR) appear but only like sign values
of T 0

3; Y
0 appear; this is dictated by the requirement of QD

conservation. Once the Uð1ÞD generator is broken by the
small xi vevs we indeed see both the same as well as
opposite signs of T 0

3; Y
0 now appearing.

Interestingly, we note that unless there exists some
relationship among the various vevs it is difficult to
break only one of the SUð3Þ group factors without
also breaking another unless some care is taken which
can have a significant impact on the pattern of how all
these symmetries must eventually be broken down to
Uð1Þem. Note that neglecting the QD ≠ 0 vevs is an
excellent first approximation in obtaining the fermion
masses below.
The mass terms generated by the H1 vevs (all of which

have QD ¼ 0) with a single Yukawa coupling for the
quarks are the simplest to consider and take the form

y1ffiffiffi
2

p
�
dcdv1 þ ucuv2 þ hchv3 þ hcdv4 þ dchv5

�
þ H:c:;

ð14Þ

where we see that, as might be expected, there is a single
term for the u-type quarks whereas the d, h fields undergo a
mixing quite similar to what one finds in the E6-inspired

scenarios, forming a 2 × 2 mass matrix of the form
DcM−1=3D, where D ¼ ðd; hÞT and

M−1=3 ¼
y1ffiffiffi
2

p
�
v1 v5
v4 v3

�
; ð15Þ

that can be diagonalized as usual by a biunitary trans-
formation, which in this very simple case can be expressed
via the mixing angles between the two right-handed and
two left-handed fields, respectively. To leading order in the
small vev ratios, these are given by the expressions

tan 2ϕ−1=3
R ≃

2v3v5
v25 − v23

; tan 2ϕ−1=3
L ≃

−2ðv1v5 þ v4v3Þ
v23 þ v25

:

ð16Þ

From these we see that we might expect ϕ−1=3
L to be

relatively small, ≲10−2, due to the appearance of the ratio
of the small to large vevs, whereas ϕ−1=3

R may be signifi-
cantly larger since only the large multi-TeV scale vevs
appear to leading order in this particular case. The possible
relative sizes of v3;5 (as well as the other large vevs) will
become further clarified when we discuss the gauge
symmetry breaking and the corresponding various new
gauge boson masses later below.
As is easily imagined, the mass terms for the leptonic

sector are significantly more complex as they involve two
fermion representations, can arise from all three sets of
QD ¼ 0 Higgs vevs in the hHii as expressed above, as well
as involving multiple mass scales. We note that in the
absence of any of the QD ≠ 0 vevs we can uniquely assign
lepton number to all of the fields in both l and lc and also to
the corresponding scalars lying inH2;3, e.g., it is easy to see
that in this approximation all of the Ei share the same
lepton number as does the SM charged lepton, here
represented as an electron.
We begin by first considering the Qem ¼ −1 states

which form a 4 × 4 mass matrix, EcM−1E, where E ¼
ðe; E1; E2; E3ÞT and

ffiffiffi
2

p
M−1 ¼

0
BBB@

y2v2 0 B C

D y3u2 y2v1 y2v4
0 y2v2 y4u4 −y4u3
F −y3u1 y2v5 y2v3

1
CCCA: ð17Þ

Similarly, for the Qem ¼ 0 fermions, the various mass
terms now lead to the 5 × 5 Dirac mass matrix, N cMD

0 N ,
where the neutral fermion basis is chosen to be as N ¼
ν; S1; N1; N2; S2 and

TABLE I. Higgs scalar vacuum expectation values. The proper-
ties of the multiple vevs contained in the three Higgs scalar
representations, H1–3, that are discussed in the text and which are
responsible for generating both Dirac and Majorana fermion
masses and which contribute to gauge symmetry breaking. The
horizontal line in the middle of the table separates the QD ¼ 0
from the QD ≠ 0 vevs and acts as a guide to the eye. Here
QD ¼ T 0

3 −
ffiffiffi
3

p
T 0
8. It is to be noted that both of the vevs, x2;4, will

also violate lepton number by 2 units, i.e., are ΔL ¼ 2, as is also
discussed in the text.

vev T3L YL=2 T3R YR=2 T 0
3 Y 0=2 QD

v1 1=2 1=6 −1=2 −1=6 0 0 0
v2 −1=2 1=6 1=2 −1=6 0 0 0
v3 0 −1=3 0 1=3 0 0 0
v4 1=2 1=6 0 1=3 0 0 0
v5 0 −1=3 −1=2 −1=6 0 0 0
u1 1=2 1=6 0 0 −1=2 −1=6 0
u2 0 −1=3 0 0 −1=2 −1=6 0
u3 0 0 −1=2 −1=6 1=2 1=6 0
u4 0 0 0 1=3 1=2 1=6 0

x1 1=2 1=6 0 0 0 1=3 −1
x2 −1=2 1=6 0 0 1=2 −1=6 1
x3 0 −1=3 0 0 0 1=3 −1
x4 0 0 1=2 −1=6 −1=2 1=6 1
x5 0 0 −1=2 −1=6 0 −1=3 −1
x6 0 0 0 1=3 0 −1=3 −1
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ffiffiffi
2

p
MD

0 ¼

0
BBBBB@

y2v1 y2v5 0 −B 0

y2v4 y2v3 0 −C 0

−D −F −y3u2 y2v2 y3u1
0 0 y2v1 −y4u4 y2v5
0 0 y2v4 y4u3 y2v3

1
CCCCCCA
: ð18Þ

In both of these matrices, the shared entries represented by
the upper case roman letters B, C, D, F are somewhat
special in that they arise from the rather smallQD ≠ 0 vevs,
xi ≲ 1 GeV and play an essential role in the phenomenol-
ogy of the new states appearing in this setup (i.e., particle
decays) but can be essentially neglected when discussing
the (Dirac) masses themselves to a very good approxima-
tion. Note that the lepton number violating vevs, x2;4, do
not appear here. In particular, we have that

B¼ −y4x6; C¼ y4x5; D¼ −y3x3; F ¼ y3x1: ð19Þ

We will return to the Majorana mass terms that are
generated by the remaining QD ≠ 0, ΔL ¼ 2 vevs, x2;4,
in the next section below.
There are many observations that one can make about the

overall structure of the matrices M−1 and MD
0 with respect

to their apparent subcomponents that result from both the
locations of null entries as well as the hierarchy of the
various vevs which make their appearances within them. In
the case of the Qem ¼ −1 fermions, we first observe that,
unsurprisingly, in the absence of the smallQD ≠ 0 vevs, xi,
the electron is “isolated” and does not mix with the
remaining VL Ei states since, unlike SM fields, they all
have QD ¼ −1. However, once these small vevs are turned
on, e − Ei mixing of a generally chiral nature is induced
allowing for the 2-body decays Ei → eþ DP. As has
frequently been discussed and is by now well known
[25,26,28–35,38,39], due to the enhanced coupling of
the DP’s longitudinal component (or the Oð1Þ Yukawa
coupling of the equivalent Goldstone boson [54]) arising
from the large ratio of the mass of the PM lepton to that of
the DP, this is the dominant PM decay mode over
essentially all of the entire model parameter space and
provides the production/decay signature for these particles
at colliders [31], i.e., an oppositely charged, same-flavor
charged lepton pair plus MET, assuming the DP decays to
DM or is sufficiently long lived. In any case, naively, we
would roughly expect the size of this SM-PM mixing to be
on the order of the ratio of the relevant vevs/mass scales,
i.e., ∼1 GeV= ∼ 10 TeV ∼ 10−4 ∼ ϵ, or so as has been
noted in previous works, which is essentially just the
inverse of the large mass ratio enhancement discussed
above. At the opposite end of the mass spectrum, we see
that when we turn off the ∼100 GeV, SUð2ÞL violating
vevs, v1;2;4 as well as u1, one finds that E1 no longer mixes
with E2;3 while both the left- and right-handed components

of these later two states can still mix significantly depend-
ing upon the relative sizes of the remaining large vevs.
The masses and mixings among these three states will
depend upon the values and mass ordering among the set of
large vevs which is clearly correlated with the pattern of
gauge symmetry breaking within this setup but in any case
the mixing of E1 with E2;3 is expected to be of order
∼100 GeV= ∼ 10 TeV ∼ 10−2. However, the correspond-
ing mixing between the remaining states E2;3 is likely to be
∼Oð1Þ for both helicities unless special hierarchies
amongst the various vevs are preferred by the gauge
symmetry breaking patterns to be discussed below.
In the case of the Dirac masses for the neutral fermions,

we find a somewhat similar pattern outside of some
essential differences due to, amongst other things, there
now being five fields that mix instead of four and that the
SM ν as well as S1 fields both have QD ¼ 0 here. We also
observe that the SUð2ÞL;R partners ðN1; E1Þ and ðN2; E2Þ
are (separately) degenerate in the absence of mixing as
might be expected. We similarly note that S2, E3, which are
both SUð2ÞL;R singlets, are also found to be degenerate in
this same limit. In addition, as we will discuss in the
next section, Majorana mass terms are likely also present
amongst some of these neutral fields, inducing further
mixings beyond those discussed below, which arise solely
from the lepton-number violating subset of theQD-violating
vevs, x2;4. Here we observe that the most essential differ-
ence, as far as the Dirac mass terms are concerned, with
respect to the Qem ¼ −1 case, is that there exists an addi-
tional fermion, S1, which, together with the SM ν, is also a
QD ¼ 0 fermion. In the limit that the QD ≠ 0 vevs can be
ignored, this 5 × 5 mass matrix breaks down into a 2 × 2
block,Mν;S1 , for theQD ¼ 0 fields, ν; S1, as well as a 3 × 3

block for theQD ¼ −1 fields N1;2; S2; recall that N1;2 share
isodoublets with the previously discussed electrically
charged PM fields E1;2.
Our first observation is that apart from an overall

Yukawa coupling, the submatrix Mν;S1 is identical to
M−1=3 and so can be diagonalized by the same rotations
as described above. This mixing allows for the 2L2R
isosinglet to have suppressed decays through both SM
as well as LRM-like interactions. The 3 × 3 submatrix is,
essentially, apart from some signs, observed to be the
transpose/Hermitian conjugate of the 3 × 3 submatrix
appearing in M−1 above and, like there, if the SUð2ÞL-
violating vevs are turned off, one sees that the correspond-
ing field N1 no longer mixes with the remaining states N2,
S2. This implies that, similar to the case of E1 above, the
mixing between N1 and both N2, S2 will be of order
∼100 GeV= ∼ 10 TeV ∼ 10−2. We again note that due to
the SUð2ÞL;R symmetries, the pairs of states N1, E1 and N2,
E2 are degenerate prior to both their mixings with the other
states as well as loop radiative corrections; this is also
observed to be true for the states S2, E3 due to the extended
SUð3ÞL;R; 0 symmetries. This implies that 2-body decays,
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such as, e.g., E1 → N1WSM, even if kinematically allowed,
will more than likely be highly suppressed by the very
small phase space availability; even less likely are any on-
shell, 2-body decays via W�

R since these new gauge states
are substantially more massive. The parallel with the
Qem ¼ −1 states is further strengthened by the presence
of the QD ≠ 0 vevs that allow for both N1;2 to directly mix
in a chiral manner with ν; S1 while S2 mixes only indirectly
with them and must first mix with N1;2 beforehand. As in
the Qem ¼ −1 case, we might expect this QD-violation-
induced mixing to be ∼1 GeV= ∼ 10 TeV ∼ 10−4 ∼ ϵ,
allowing for the presence of the dominant decay modes
ðN1;2; S2Þ → ðν; S1Þ þ DP, while the DP in most cases will
likely appear simply as MET. As will be seen below, S1 can
be produced through the production and decay of UL,
the mixing of UL with the SMW, the mixing of S1 with the
SM ν, or some combination of these mechanisms.

IV. NEUTRAL FERMION MAJORANA MASSES

As noted in the previous section, in the neutral fermion
sector, all of the QD ¼ 0 vevs produce only Dirac mass
terms but two of the QD-violating vevs, x2;4, which
correspond to scalar fields of opposite QD charge from
those sourcing the other xi, can generate ΔL ¼ 2Majorana
mass terms. Since H2;3 are the scalar analogs of l; lc in that
they transform under 3c3L303R in exactly the same manner,
we observe that the “central” neutral member of these
multiplets are distinctive in this manner as can be seen from
Table I. However, these vevs only result in the following
rather simple pair of Majorana mass terms linking four of
the five neutral fermion fields which can then be used to
define the corresponding left- and right-handed Majorana
mass matrices, ML;R:

y3
�
νS2 −N1S1

� x2ffiffiffi
2

p þ y4
�
νcSc2 −Nc

1S
c
1

� x4ffiffiffi
2

p →ML þMR;

ð20Þ

which are in some sense, almost conjugates of each other;
note that N2 is not involved in this interaction. These
matrices, when combined with MD

0 , will then form a more
general 10 × 10 Majorana mass matrix. With the perhaps
naive expectations that x2 ∼ x4 and y3 ∼ y4 we might
expect then that ML ≃MR. Needless to say, in comparison
to most of the entries in the neutral Dirac mass matrix given
above, these Majorana mass matrices are quite sparse,
having nonzero elements that are all quite small, ≲1 GeV,
as the relevant vevs are both Uð1ÞD violating as well as
being lepton-number violating. As a result they will have
little influence on the heavy neutral lepton states (except
for the possibility of making them pseudo-Dirac with
extremely small fractional mass splittings in some cases
[55] as we encountered in our previous study based on
the Pati-Salam setup [38]) and they are not capable of

explaining the observed light neutrino masses without
further extensions of this setup as has been noted elsewhere
in the quartification literature [52].

V. NON-HERMITIAN GAUGE BOSON
MASSES AND MIXINGS

Apart from QCD, the gauge boson sector of the 3c3L303R
quartification setup is rather complex with a total of 24
gauge fields of which 6 are Hermitian while the remainder
form nine pairs of complex, i.e., non-Hermitian fields
including the SM W�

L as well as the corresponding W�
R ,

familiar from the LRM. It should be noted that not all of
these non-Hermitian fields carry electric charge, i.e., have
Qem ¼ �1. In this section, the masses of these non-
Hermitian gauge bosons (NHGB) will be discussed and,
as we will see, an additional Higgs scalar, Ω, beyond the
three discussed above, the Hi, that are responsible for
fermion mass generation, will need to be introduced to
satisfy our model building assumptions. The corresponding
discussion for the six Hermitian fields will be the subject of
the next section. Except for rare circumstances and in the
absence of any large mixing effects, the couplings of the
NHGB to the various fermions will generally be chiral, a
notable exception being, e.g., that of the SM[LRM]
WL½WR� to the ðN1; E1ÞT ½ðN2; E2ÞT � doublet which is
vectorlike.
Before beginning, the first observation to make is that,

apart from W�
L , all of these nine NHGB need to be heavy,

likely in excess of several TeV, to avoid the many LHC
searches [56–58] and so must have their masses generated
by combinations of the vevs v3;5; u2–4 above as well as
possibly by others of a similar magnitude. A second
observation is that the three NHGB arising from SUð3Þ0
all carry different valuesQD ≠ 0 (as well as different values
of Qem) and so, in the limit that Uð1ÞD remains unbroken,
they will not mix with the remaining six fields or even with
each other. A third observation is, given the definition of
the electric charge in terms of the gauge group generators
above, that the three pairs of NHGB associated with each of
the SUð3Þa gauge will consist of two pairs of fields with
Qem ¼ �1, which we will generically refer to as W�

a ; U�
a ,

while the remaining pair of NHGB is electrically neutral,

which we will refer to as V0ð†Þ
a . These two observations,

when combined, tell us that the full 9 × 9 mass matrix for
the NHGB in the limit of Uð1ÞD conservation will consist
of three blocks: a diagonal 3 × 3 block for the three
QD ≠ 0, SUð3Þ0 fields, a 2 × 2 block for the QD ¼ 0,
neutral fields VL;R, and the remaining 4 × 4 block for the
electrically charged QD ¼ 0 fields WL;R; UL;R, respec-
tively. Lastly, it is useful to be reminded about what the
roles are for the three classes of gauge bosons,Wa, Ua, and
Va, in the sense of which fermion fields, that here lie in 3’s
or 3̄’s of SUð3Þa, are connected to each other by them. If we
label the three triplet fermions a ðf1; f2; f3ÞT , then W
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connects f1 − f2 while V connects f1 − f3 and U connects
f2 − f3. Thus, e.g., WL connects ðν; eÞ and ðd; uÞ in the
familiar way, while VL connects ðν; S1Þ and ðd; hÞ and UL
connects ðe; S1Þ and ðu; hÞ, respectively. In practice,
amongst other things, this implies that Wa and Ua will
have opposite values of Qem so that, e.g., WL mixes
with U†

L and not with UL. Finally, with this notation,
one finds thatQDðW0; V 0; U0Þ ¼ ð1;−1;−2Þ and, given that
QemðV 0Þ ¼ 0, we see that this NHGB plays essentially the
same role (in the leptonic sector) as did the WI gauge field
in the GDark ¼ SUð2ÞI ×Uð1ÞYI

model encountered in
several of our earlier works, while the W0 acts in a similar
manner being its electrically charged partner. The gauge
field U0, on the other hand, in the absence of any mixing,
will only connect pairs of states with nonzero values of QD
and so will not easily be produced or probed in a simple
fashion, especially at a hadron collider while future
searches in conventional W0 channels at FCC-hh may
reach as high as ∼40 TeV [56,57,59,60].
It is interesting to note that since the W0 and U0 gauge

bosons carry no-zero values of both QD and Qem,
they too can act as PM fields, something we had not

previously encountered but is an obvious result of the
embedding of Uð1ÞD within SUð3Þ0 and that fact that
Qem also depends upon the diagonal SUð3Þ0 generators.
Another interesting feature of these NHGB states is also
to be observed: while WL;R, UL;R, and VL;R will clearly
carry zero lepton number, L ¼ 0, this is not generally
true for the SUð3Þ0 NHGBs. In fact, one finds that W0, U0
carry jLj ¼ 2 while V 0 remains an L ¼ 0 state. We will
return to this issue below when we consider the mixing
induced by the small x2;4 ≠ 0 vevs which we have seen
above generate ΔL ¼ 2 Majorana mass terms among the
new neutral fermions.
With this preparation we will now consider the 4 × 4

(M2
44), 2 × 2 (M2

22), and 3 × 3 (M2
33) blocks of the full

9 × 9 NHGB mass-squared matrix that are obtained in the
approximate limit that we can ignore the ≲1 GeV, QD ≠ 0
vevs; we will then return and discuss the perturbing effects
that these additional vevs will have. As a first step, we will
assume that the only Higgs vevs that are relevant are those
that are employed above to generate the various fermion
masses and whose properties are already given in Table I.
In the ðWL;U

†
L;WR;U

†
RÞ basis,4 we find that

M2
44 ¼

1

4

0
BBB@

g2Lðv21 þ v22 þ v24 þ u21Þ g2Lðv1v5 þ v3v4 þ u1u2Þ 2gLgRv1v2 2gLgRv2v4
g2Lðv1v5 þ v3v4 þ u1u2Þ g2Lðv23 þ v25 þ u22Þ 2gLgRv2v5 2gLgRv2v3

2gLgRv1v2 2gLgRv2v5 g2Rðv21 þ v22 þ v25Þ g2Rðv1v4 þ v3v5 þ u3u4Þ
2gLgRv2v4 2gLgRv2v3 g2Rðv1v4 þ v3v5 þ u3u4Þ g2Rðv23 þ v24 þ u24Þ

1
CCCA;

ð21Þ

whereas, in the ðVL; VRÞ basis we obtain

M2
22 ¼

1

4

�
g2LXL 2gLgRðv1v3 þ v4v5Þ

2gLgRðv1v3 þ v4v5Þ g2RXR

�
;

ð22Þ

where XL ¼ v21 þ v23 þ v24 þ v25 þ u21 þ u22 and XR ¼ v21 þ
v23 þ v24 þ v25 þ u23 þ u24. Note that VL −UL have their
masses split by electroweak scale vevs only as they form
anSUð2ÞL doublet. Finally, in the ðW0; U0†; V 0Þ basiswe find

M2
33 ¼

g02

4
X0

0
B@

1 0 0

0 0 0

0 0 1

1
CA; ð23Þ

where X0 ¼ u21 þ u22 þ u23 þ u24.
There are many things to observe about these results,

beginning with the most obvious ones arising fromM2
33:U

0

is massless andW0, V 0 are degenerate. The masslessness of
U0, alluded to above, is the result of the requirement of
preserving Uð1Þem as well as Uð1ÞD down to low mass

scales so that the Higgs in the (anti)triplet representations
only break SUð3Þ0 down to SUð2Þ0. Clearly U0 must be a
rather massive field with MU0 ≳ a few TeV or so and thus
we must employ an additional Higgs scalar with vevs
beyond those found in the Hi which transforms differently
under SUð3Þ0. The simplest possibility is to employ an
SUð3Þ0 octet, i.e., Ω, that is a (1, 1, 8, 1) representation
under 3c3L3

03R, which will not influence the fermion
masses discussed above, will not contribute to the masses
of the Hermitian gauge bosons that we will discuss in the
next section, nor to the masses of the other NHGB which
are all SUð3Þ0 singlets. Note that this additional scalar
representation represents an explicit breaking of the ap-
parent symmetry Z4 among the gauge fields and fermions
dictated by anomaly freedom and the various ½SUð3Þ�4
group factors but, as we have noted above, we have not
assumed that such a symmetry exists as part of our present
discussion. We will return to this issue later below. As is
well known, the vevs of an SUð3Þ octet acting on (anti)
triplet representations can be expressed as

4Recall that, e.g., WL and U†
L carry the same electric charge.
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hΩi ∼

0
B@

w1 0 0

0 w2 0

0 0 w3

1
CA; ð24Þ

subject to the constraint that the sum of these vevs satisfiesP
i wi ¼ 0 due to the tracelessness of the octet. This results

in a shift, ΔM2
33, in M2

33 that is given by

ΔM2
33 ¼

g02

8

0
B@

ðw2 − w1Þ2 0 0

0 ðw3 − w2Þ2 0

0 0 ðw3 − w1Þ2

1
CA;

ð25Þ

thus resolving our problem with the U0 mass (under the
assumption that the vevs wi≳ a few TeV or so and that
w3 ≠ w2) and also simultaneously removes the W0 − V 0
mass degeneracy, not that this was a problem in any way.
From this result it is easy to imagine that the U0 may be the
lightest of the three SUð3Þ0 NHGB.
Turning now to M2

22, we see both diagonal entries
involve the squares of large vevs whereas the off-diagonal
terms also involve the weak-scale vevs, v1;4, so that this
matrix is diagonalized via the small angle

tan 2ϕ22 ¼
2κðv1v3 þ v4v5Þ

XL − κ2XR
; ð26Þ

where κ ¼ gR=gL ≃ 1, and which we might thus expect to
be of order ∼10−2 or so. Again, with κ ≃ 1, the masses
resulting for both of the eigenstates, V1;2, will clearly lie in
the range of at least several TeV.
Lastly,M2

44 is seen to be the most complex of these three
sets of mass-squared blocks but one immediate observation
is that the limit that the electroweak scale vevs are
neglected, not only is SM WL massless but its mixings
with the remaining three states, who dominantly obtain
their masses from the larger vevs, will all vanish. Looking
a bit closer we see that whereas we might expect that
the mixing of the WL with WR;U

†
R to be of order

∼ð100 GeV=10 TeVÞ2∼ 10−4, its mixing with U†
L is poten-

tially much larger, of order ∼100 GeV=10 TeV∼ 10−2,
which could lead to significant phenomenological conse-
quences as it, e.g., “depletes” a small amount of the ūd-type
coupling into a ūh-type coupling. However, since an
identical effect occurs in the leptonic sector (since gauge
boson mixing has nothing to do with the fermion sector at
tree level) in that the ν̄e-type coupling is also diverted into
an S̄1e-type coupling, the effect of this tree-level WL − U†

L
mixing may be more subtle than it first appears, requiring a
consistent treatment since it is a “universal” effect expe-
rienced by both the quark and lepton sectors. In the other
parts of this matrix, we see the WR − U†

R mixing can be
Oð1Þ since it involves only the large vevs (assuming that

there is also no significant hierarchy amongst these large
vevs which may or may not be the case depending upon
how the guage symmetries are broken) while the mixing of
these two fields withU†

L is also seen to naively be relatively
small, of Oð10−2Þ. In a manner similar to WL −WR
mixing, we see that UL − UR mixing may also roughly
lie at the level of 10−2.
Since WR −U†

R mixing is allowed to be significant
∼Oð1Þ, they will likely both couple to the ūdþ H:c: initial
state though the lighter of the two mass eigenstates, W̃,
would have the largest production cross section but would
now have two distinct leptonic decay modes. Since SM
neutrinos are likely Dirac in the present setup, W̃ will decay
into both the eν → eþMET as well as the eSc1 → eejj
final states with somewhat comparable branching fractions,
allowing for phase space. This implies that a signal may be
observable in more than one search mode [56,57].
It should be noted that whereas WL −U†

L mixing will
result in a small downward shift in the SM W mass, the
SM Z mass, as we will see below, is also pushed downward
due to a similar mixing. However, we note that the
combination of these two effects, at tree level, will most
likely not provide any explanation for the apparent upward
shift in theW mass, relative to that of the Z, as measured by
CDFII [61].
Overall, we see that apart from the (approximate) SM

WL mass eigenstate, all of the NHGB masses will lie at
the (at least) several TeV scale, but their specific mass
spectrum is quite sensitive to the various potentially large
mixings among these states as well as the specific ordering
of the values of the multiple high-scale vevs v3;5; u2−4 as
well as w1–3.
Finally, we now discuss how this picture of the NHGB

masses and mixings is altered when we turn on the small
QD-violating vevs, xi, appearing in the Higgs fields H2;3

above. Clearly, some previously unmixed states with the
same value of Qem can now mix but the most important
effect is most obviously the specific induced mixing
between states of different QD that were forbidden to
mix previously. Mixings can now also occur between states
with differing lepton number as the x2;4 violate this quantity
as was noted earlier. Specifically, this also means that,
e.g., there is now a small induced mixing of V 0 and V 0†

with both VL;R and V†
L;R (all of which mixings are lepton

number conserving). There are also correspondingly small
mixings of the W0 with the fields WL;R, etc., with specific
sets of xi participating, and, furthermore, there is now an
induced mixing between the two SUð3Þ0 fields W0 −U0† at
second order, ∼xixj. We note that there is no mixing
between the U0 and either WL;R or UL;R to leading (i.e.,
linear) order in xi as all of the vevs are jΔQDj ¼ 1 and these
states differ by two units of QD as well as by lepton
number. However, still at leading order in the xi, there is
such mixing between the UL;R and the W0. One might
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expect that, roughly speaking, the size of these typical
mixings to be or order, e.g., ϕWL;RW0 ∼ x2;4=ðv3;5; u2–4Þ ∼
10−ð4–5Þ or so. Phenomenologically, while these tiny mix-
ings have very little effect on any of the NHGB masses,
they will now allow (via the x2;4 ΔL ¼ 2 vevs) for new
decay paths, e.g., W0 → WL;R þD assuming that the W0 is
more massive than the WR. As in the well-known example
of PM decay induced by a similar type of mixing, the
longitudinal coupling of the DP, i.e., D, (and also that of
the SM/LRM WL;R) is enhanced by a double ratio of
large masses,M2

W0=ðMWL;R
MDÞ ∼ 104 or so, which is likely

sufficient to overcome the correspondingly expected tiny
mixing angle suppression so that this may become one of
(if not solely) the dominant W0 decay mode(s); in this
example, the corresponding (single) production signature at
a collider would then be just W þMET for which, e.g.,
LHC searches exist [62] assuming these W0 states are
kinematically accessible, which is one of the issues that we
will return to below. Explicitly, to leading order in these
large mass ratios, we obtain, e.g., the following expression
this partial width:

ΓðW0 → WL þ DÞ ≃ αDMW0

48

�
ϕWLW0

M2
W0

MWL
MD

�
2

; ð27Þ

where αD ¼ g2D=4π with gD being the DP’s Uð1ÞD gauge
coupling, ∼g0 as we will find in the next section below, and
where we expect the expression in the square bracket to
be Oð1Þ.
While some of the NHGB may be easily produced by

a hadron collider, this will not be true for all of them as a
subset will only interact with QD ≠ 0 sector fields and
not directly with those of the SM except via mixing
which leads us directly to the some of the discussions in
later sections. However, the same mixing that allows for
the W0 → WL þD decay process can also be used to
singly produce a W0 together with a DP at a hadron
collider via, e.g., an off-shell transverse WL exchange in
the s-channel. In such a case, one would find that the
cross section scales as the square of ϕWLW0

MW0
MD

, which is

seen to be a factor of
MWL
MW0 ∼ 10−2 smaller in amplitude

than that appearing in the square bracket above and
which was presumed to be Oð1Þ. This would then imply
that the cross section for this W0 production process is
relatively suppressed by a factor of roughly ∼10−4 and so
would be “difficult” to observe at best unless the W0 were
not to bee too massive.

VI. HERMITIAN GAUGE BOSON MASSES
AND MIXINGS

In some ways, the mass-squared matrix for the six
Hermitian gauge bosons (HGB), i.e., W3a;W8a;
ða ¼ L; R; 0 Þ, is more complex than that encountered

above in the NHGB case although we have several guide-
posts thanks to the expected hierarchy of symmetry break-
ing scales. For example, in the limit that we can ignore the
∼1 GeV, QD-violating vevs, this mass-squared matrix will
have two zero eigenvalues corresponding to both the DP as
well as the usual SM photon and, furthermore, in the limit
of vanishing SUð2ÞL-violating vevs, the SM Z must also be
massless. Finding a convenient and useful basis for this
matrix is, however, somewhat nontrivial and clearly the
above set of HGB, W3a;W8a, is itself not a very useful
choice in this regard. Given the various Higgs multiplets
introduced above, we have sufficient freedom to generate
all of the HGB masses as we will see below.
One obvious observation is that, due to the definition of

QD and the fact that Uð1ÞD remains unbroken down to low
mass scales, we can decompose the SUð3Þ0 terms corre-
sponding to the diagonal generators appearing in that part
of the covariant derivative (dropping Lorentz indices)
as the two orthogonal combinations5

g0ðT 0
3W

0
3 þ T 0

8W
0
8Þ ¼ g0

ffiffiffi
3

p

2
½T 0

3 þ T 0
8=

ffiffiffi
3

p
�W0þ

þ g0

2
½T 0

3 −
ffiffiffi
3

p
T 0
8�D̃; ð28Þ

with the definitions

W0þ ¼
ffiffiffi
3

p

2
½W0

3 þW0
8=

ffiffiffi
3

p
�; D̃ ¼ 1

2
½W0

3 −
ffiffiffi
3

p
W0

8�: ð29Þ

Here we recognize the expression in the square bracket
associated with gauge field D̃ as just equal to QD (up
to a possible sign) such that if D̃ were to be identi-
fied with the DP, D, with this chosen normalization
the usual Uð1ÞD gauge coupling must then be just
gD ¼ g0=2 ¼ g0sI . In the limit where we can neglect
the contributions arising from the QD ≠ 0 vevs, xi, as
a good approximation, we can simply omit the appear-
ance of this DP term in the covariant derivative
when constructing the HGB mass-squared matrix which,
effectively, now becomes only 5 × 5 since D̃ neither has
a mass or any off-diagonal mixing terms with the
other HGB states. When combined with the quantum
numbers of the various Higgs fields in Table I, this
result motivates us to consider the following useful (but
not always physically intuitive) basis for these neutral
gauge fields:

Aa ¼ gaðW3a þW8a=
ffiffiffi
3

p
Þ; Ba ¼ ga

2ffiffiffi
3

p W8a; ð30Þ

5This normalization has been chosen so that, as usual,
Tr½Gi�2 ¼ 1=2, where the Gi are the combinations of the
SUð3Þ0 generators appearing in the brackets, obtained for either
the fundamental 3 or antifundamental 3̄ representation.
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with, as usual, a ¼ L;R; 0. It is important to note that
the gauge couplings have been absorbed into these
definitions; note also that A0 ∼W0þ as defined in the
equation above, apart from a normalization factor.
Interestingly, in this basis, instead of the SUð3Þ0 part
of the covariant derivative decomposition above, we find
that, e.g.,

g0ðT 0
3W

0
3 þ T 0

8W
0
8Þ ¼ T 0

3A
0 −

1

2
½T 0

3 −
ffiffiffi
3

p
T 0
8�B0; ð31Þ

and similarly for a ¼ L;R. Note that, due to the possible
QD sign assignment ambiguity, apart from an absorbed

gauge coupling, here B0 might alternatively be identified
as the DP, D, again with gD ¼ g0=2 as before.6 More
generally, we can define the Ba fields as coupling to the
generalized charges Qa with Q0 ¼ −QD. In this basis,
neglecting the QD ≠ 0 vevs, xi, for the moment as we
did above, the B0 field decouples and remains massless
and so the general 6 × 6 HGB mass squared matrix
again reduces to one which is 5 × 5 by the earlier
argument.
In this AL; AR; BL; BR; A0 basis, we can write this

truncated (the B0 or DP now being omitted) 5 × 5 HGB
mass squared matrix as

M2
HGB−5 ¼

1

4

0
BBBBBB@

v21 þ v22 þ v24 þ u21 −v21 − v22 −v22 v22 þ v24 −u21
−v21 − v22 v21 þ v22 þ v25 þ u23 v22 þ v25 −v22 −u23

−v22 v22 þ v25 v22 þ v23 þ v25 þ u22 −v22 − v23 u22
v22 þ v24 −v22 −v22 − v23 v22 þ v23 þ v24 þ u24 u24
−u21 −u23 u22 u24 U

1
CCCCCCA
; ð32Þ

where we have defined the quantity U ¼ P
i u

2
i . It is

important to remember when viewing this matrix that
the gauge couplings do not appear as they have been
absorbed into the definitions of the set of the gauge fields,
Aa, Ba. Here we observe that the first row and column
consists solely of combinations of the SUð2ÞL-breaking
vevs so that, in the limit where the squares of the

electroweak-scale breaking can be neglected and only
the mult-TeV scale vevs are relevant, the AL gauge boson
will decouple as “massless.” In such a case, this matrix can
effectively be further truncated to the much simpler, lower
right-hand, 4 × 4 block with the vevs v1;2;4; u1 all set to zero
in this approximation. Explicitly, this matrix is found to be
given as

M2
HGB−4 ≃

1

4

0
BBB@

v25 þ u23 v25 0 −u23
v25 v23 þ v25 þ u22 −v23 u22
0 −v23 v23 þ u24 u24

−u23 u22 u24 u22 þ u23 þ u24

1
CCCA: ð33Þ

In this same limit, we should expect this truncated 4 × 4
mass-squared matrix to have one null eigenvalue whose
associated field, which well callH, which together with AL,
will form the familiar W3; BY ones of the SM. In fact, not
surprisingly, it is easily seen that in this truncated basis (and
here taking gL ¼ gR ¼ g0 ¼ g as is frequently done in the
quartification literature [52] for clarity of presentation
except where noted), that H ∼ ð1;−1;−1; 1ÞT , i.e., the
combination of fields ∼ðAR − BL − BR þ A0Þ, forms the
null eigenvector corresponding to a massless HGB state.7

Interestingly, if we return to the 5 × 5 matrix above, also
including the additional electroweak scale vevs, then in
this more general case we would, perhaps unsurprisingly,
find that the corresponding null eigenvector is instead
∼ð1; 1;−1;−1; 1ÞT , on its way to being identified with
the photon given the definition of Qem. Returning now to
the 4 × 4 case at hand, we note that, since all these vevs are
large, we might expect that these four states, AR, BL;R, and
A0, will in general mix together rather strongly unless the
vevs have some sort of associated hierarchy about which
we have no a priori knowledge; this implies that general
expression for all the mass eigenvalues and eigenstates in
terms of these vevs would be hardly enlightening.
One possibility is to make a choice of basis based on

familiar dynamics which suggests that an examination of
these HGB states in a phenomenological basis. Since, from

6One could instead just redefine D ¼ −B0 and ignore this sign
issue altogether.

7Importantly, we recall that each of the remaining three mass
eigenstates/eigenvectors must be orthogonal to this state as well
as to each other.
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the large vev perspective, three of these HGB are clearly
either massless or close to being massless eigenstates to a
fairly good approximation, one might consider employing,
e.g., γ; D; ZSM; ZR; B̃; A0, where ZR is the familiar and well-
studied Z0 of the LRM and B̃∼BL−BR ∼ gLW8L− gRW8R.
On the other hand, it is may be more useful to explore
the nature of this matrix under variously motivated
assumptions about the vevs themselves, e.g., one might
expect that the product 3L3R breaks at a very high scale
to 2L2R1L1R → 2L2R1LþR, similar in nature to the LRM,
although a piece of both A0; B0 will also be necessary to
form the familiar 1B−L gauge group factor as can be
seen from the definition of Qem in terms of the set of
diagonal generators. Note that B̃ is just the orthogonal
combination to that which appears in the gauge field for
Uð1ÞB−L, and will be discussed in more detail below.
We recall that in the well-known trinification model [51]
limit this field is seen to be just the result of the
reorganization and/or diagonal breaking of the prod-
uct 1L1R → 1B−L1B̃.
The field B̃, in fact, provides an excellent (but simplified)

case in point for both studying the influence of vev
hierarchies as well as a phenomenological motivation for
choosing a particular HGB mass eigenstate basis as we see
that the large vev, v3, preserves, e.g., in the generalized
charge notation above, the combination QL=2þQR=2 but
breaks the difference QL=2 −QR=2. To clarify for dem-
onstration purposes, consider for simplicity rewriting only
the relevant pieces in the covariant derivative and neglect-
ing the contributions from the other gauge fields (while
again dropping Lorentz indices and also restoring the
different gauge couplings here for more clarity, i.e.,
Aa → gaÃa, etc.) as

gLðT3LW3L þ T8LW8LÞ þ ðL → RÞ

¼ gLT3LÃL þ gRT3RÃ3R − gL
QL

2
B̃L − gR

QR

2
B̃R; ð34Þ

and we now recall that the vev v3 has QL ¼ −QR from
Table I. For further purposes of demonstration, let us
concentrate on the second pair of terms and imagine in
this example that we live in a model realization where this
vev, v3, is significantly greater than all of the other large
vevs so that we can neglect their effects. Then we see
that one combination of the B̃L;R, i.e., B1 ¼ cB̃L − sB̃R,
will get a mass whereas the second, B2 ¼ cB̃R þ sB̃L,
where ðs; cÞ ¼ ðgR; gLÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2L þ g2R

p
, remains massless.

Rewriting the covariant derivative terms, we see that
these two mass eigenstates will couple as (recalling that
κ ¼ gR=gL ≃ 1)

gLffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
�
QL

2
− κ2

QR

2

�
B1þ

gLκffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
�
QL

2
þQR

2

�
B2; ð35Þ

where, restoring all the constants, we can now identify
the previously mentioned field, B̃ ¼ BL − BR ∼ B1, and the
massless B2 field will subsequently become (part of) the
usual LRM/SM B − L/hypercharge gauge boson after
further symmetry breaking and mixing.
It thus appears attractive to examine the matrix

M2
HGB−4 in some more detail when certain vevs, or sets

of them, become large relative to the others forcing
certain symmetries to be broken while others respected.
Of course, we cannot treat any given scenario too
seriously but they can provide us with guideposts for
the many scenarios that one might imagine. As was noted
earlier, given the set of vevs in the Table I above it is
impossible to break SUð3Þ0 without also breaking SUð3ÞR
since the set of vevs u2–4 all carry SUð3ÞR quantum
numbers; the reverse, however, is not true as the vevs v3;5
do not carry SUð3Þ0 quantum numbers. Let us now turn
to a specific example of this approach which presents a
reasonable setup, which we will call scenario I, general-
izing on the discussion above. We have already seen that
a (very) large v3 will break 3L3R → 2L2R1L1R →
2L2R1LþR; we also simultaneously observe that if u ¼
u2 ¼ u4 is also very large it will act somewhat similarly
while simultaneously breaking SUð3Þ0 but will also
leave SUð2ÞR intact. This being the case, let us consider
the limit where v23; u

2 ≫ v25; u
2
3 [but still neglecting the

SUð2ÞL-breaking vevs] as a working scenario; then
one finds (in this approximation), in addition to the
massless field described above, two (very) heavy fields:
B̃, also known as, Z1, corresponding to the eigenvector
∼ð0; 1;−1; 0ÞT as we might have expected, with M2

Z̃1
¼

g2ð2v23 þ u2Þ=4, and also Z2 ∼ ð0; 1; 1; 2ÞT , with M2
Z2

¼
3g2u2=4. Finally, there is also a somewhat lighter
field (though being still quite heavy in comparison to
the electroweak scale), Z3 ∼ ð3; 1; 1;−1ÞT , with M2

Z3
¼

g2ðv25 þ u23Þ=3. Note that none of the Zi appear very
much like either ZR, or A0 due to the rather large amount
of mixing that one finds in this scenario I. This is,
perhaps, not overly surprising as such large mixings
between ZR and the SUð2ÞI’s heavy partner of the DP,
the A0 analog in that analysis there termed ZI , was also
found to occur in earlier work [38].
To demonstrate the efficacy/transparency of taking the

gL ¼ gR ¼ g0 limit in obtaining the results above, we note
that if we had not assumed the equality of the gauge
couplings, then the 4 × 4 eigenvector for the massless
HGB field would instead be ∼ð1;−gR=gL;−1; gR=g0ÞT and
the eigenvector for the gauge field B̃ would now be
∼ð0; 1; γ; δÞT where we have defined

γ ¼ −
gR
gL

þ gR
g0

δ; δ ¼ g0ðλ − cÞ
gLg02u2 − gLg2Rv

2
3

;

c ¼ ðg2L þ g2RÞv23 þ g2Lu
2; d ¼ ðg2R þ 2g02Þu2; ð36Þ
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and

λ ¼ 1

2
ðcþ dÞ þ 1

2
½ðc − dÞ2 þ T�1=2; ð37Þ

with T ¼ ðg2L − g2RÞðg02u2 − g2Rv
2
3Þ and the corresponding

mass-squared eigenvalue would instead have been M2
Z̃1

¼
λ=4, none of which is very transparent or overly useful
other than observing that the results are g0 independent.
We clearly see, however, that as gR → gL, i.e., κ → 1, one
finds that both T, δ → 0 so that λ → c and γ → −1 and
we staightforwardly recover the previously obtained sim-
plified result.
Due to their interplay in the phenomenology, it is

interesting to consider the corresponding set of masses
for the NHGB in this same scenario I under the gL ¼
gR ¼ g0 simplifying assumption employing the set of
expressions above and in which limit mixing between
these states can be approximately ignored. Here we see
in this approximation that WR is very likely to be the
lightest amongst these states with M2

WR
¼ g2v25=4,

while for UL;R one finds M2
UL;R

¼ g2ðu2 þ v23 þ v25Þ=4;
g2ðu2 þ v23Þ=4, respectively, and for VL;R, M2

VL;R
¼

g2ðu2 þ v23 þ v25Þ=4; g2ðu2 þ u23 þ v23 þ v25Þ=4, respec-
tively. We also see that for Oð1Þ Yukawa couplings, the
various new fermions will have masses interspersed in this
same mass range. Also we note the equality of the UL and
VL masses due to the (at this point) unbroken SUð2ÞL
gauge symmetry. Furthermore, before turning on any
of the wi vevs, one finds that M2

W0;V 0 ¼ g2ð2u2 þ u23Þ=4
and, obviously, the contributions for the wi will only make
these states heavier. Of course, the U0 mass is set only by
the values of the wi themselves.
By way of contrast, we now consider a second scenario

(II) where we imagine a common scale for the large vevs in
H1, i.e., v3 ¼ v5 ¼ v, which do not break SUð3Þ0, and a
similar common scale for the large vevs inH2;3 that do, i.e.,
u2−4 ¼ u, but, to be general, with no specific ordering
between v and u. In such a case, we find instead the
following mass eigenstates, still assuming a common
gauge coupling for simplicity: Z1 ∼ ð1;−1;−1;−3ÞT with
a mass M2

Z1
¼ g2u2, Z2 ∼ ð1; 0; 1; 0ÞT with mass M2

Z2
¼

g2ðv2 þ u2Þ=4, and Z3 ∼ ð1; 2;−1; 0ÞT with M2
Z3

¼
g2ð3v2 þ u2Þ=4; note that, necessarily, M2

Z3
> M2

Z2
while

the mass ordering of Z1 and Z3 depends on whether u or v
is the larger. Again, we see that, in this case, all three of the
very heavy states are quite highly mixed with none of them
appearing to be much like ZR; A0 or even B̃ and this result is
also observed to be insensitive to any further assumptions
with respect to possible hierarchies between v2 and u2.
In the corresponding NHGB sector, ignoring mixing
effects, the WR again appears as the lightest of these
new gauge boson states with M2

WR
¼ g2v2=4, while for

UL;R one finds M2
UL;R

¼ g2ðu2 þ 2v2Þ=4; g2ðu2 þ v2Þ=4,
respectively, and now for VL;R, one obtains instead
M2

VL;R
¼ g2ðu2 þ 2v2Þ=4; g2ð2u2 þ 2v2Þ=4, respectively.

We again note the equality of the VL and UL masses in
the limit that SUð2ÞL remains unbroken and that the WR
tends to be the lightest state. Furthermore, before turning on
any of the wi vevs, in this case one finds that M2

W0;V 0 ¼
3g2u2=4 with the contributions for the wi further increasing
these masses while also providing one for the U0. From
these considerations (although only based on our experi-
ence with this pair of specific breaking scenarios) it is clear
that the HGB and NHGB will always have overlapping yet
hierarchal mass spectra. Though quantitatively different
from scenario I, scenario II possesses essentially the same
qualitative features although, apart from the overall scale,
the mass spectrum in this case depends upon a single
parameter, the vev ratio r ¼ v=u, as can be seen in Fig. 1.
Of course, even in this simplified case, we find that mass
relations can be somewhat complex due to this single
parameter sensitivity especially when r ∼ 1 although this
situation does simplify if either the r ≪ 1 or r ≪ 1 limits
are realized, resulting in some further degeneracy among
these new gauge boson states.
Of course, many other orderings of the large scale vevs

are possible and will correspond to differing symmetry
breaking patterns.
In either of the scenarios above, and more generally, once

the electroweak scale vevs, v1;2;4; u1, are turned on, the two,
non-DP, massless states H and AL of the 5 × 5 mass
squared matrix will mix to form the familiar SM fields, γ
and ZSM, as usual and we see that the amount of mass

FIG. 1. Sample mass spectrum of the various NHGB and HGB
for scenario II in units of M0 ¼ gu=2 as a function of the vev
ratio r ¼ v=u, as discussed in the text. For values of r slightly
above unity, the curves, from top to bottom, correspond to the
masses of the Z3 (blue), VR (cyan), UL ¼ VL (green), Z1

(yellow), UR ¼ Z2 (red), and WR (magenta), respectively.
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mixing between the Z and the other more massive Zi,
which generically live at the few TeV scale and above, will
always be suppressed by mixing angles which are or order
∼M2

ZSM
=M2

Zi
∼ 10−4, consistent with any requirements

from the (tree-level) electroweak constraints [63]. The size
of the different ZSM − Zi mixings will also be somewhat
sensitive to the relative magnitudes of the set of v1;2;4; u1
vevs. From the structure of the 5 × 5 mass-squared matrix
above we see that these same vevs will also induce very
small corrections to the Zi masses and the mixings among
these HGB beyond those which we have already encoun-
tered but which we can safely ignore numerically amongst
just these heavy states. Also, as noted, once the SUð2ÞL
gauge symmetry is broken, the degeneracy among some of
the NHGB states, e.g., UL, VL, will be lifted although this
mass splitting will remain relatively small.
Apart from these specific spectrum scenarios, some

further intricacies are introduced once the QD ≠ 0 vevs
turn on, as they produce the DP mass itself and also induce
the usual mass mixings between the DP and all of the other
more massive HGB states, ZSM and Zi, as was seen in the
corresponding case of the NHGB discussed earlier. Since
these mass mixings are generally of order M2

D=M
2
ZSM;i

, we
see that the dominant one (via the x1;2 vevs) is that with
ZSM and thus the DP essentially picks up a small ZSM-like
coupling to the SM fermions, which is a familiar and
frequently occurring feature of many DP models. As usual,
due to the small magnitudes of these vevs, these newly
induced mass mixings will generally have very little
influence on the masses and couplings of the heavier
HGB eigenstates themselves as already discussed.
One other effect of these QD ≠ 0 vevs, which has also

been observed in our earlier work, is to generate a small
mixing between the HGB ZSM, Zi states (which all have
QD ¼ 0) and the electrically neutral NHGB jQDj ¼ 1

states via the Hermitian structure ∼ZSMðV 0 þ V 0†Þ, which,
e.g., allows them to have new decay paths such as
V 0 → ZSMD, somewhat analogous to the W0 → WLD
decay previously discussed. It is to be noted that this
particular coupling preserves lepton number as V 0 has an
L ¼ 0 assignment. Overall, the lepton-number violating
vevs x2;4 have far less direct impact in the HGB sector
than in the NHGB one since here such vevs can only
appear quadratically (instead of linearly in lowest order
in the NHGB case) and they are already relatively small,
≲1 GeV.
As a last point of discussion before ending this section,

we can easily see that there are several reasons why we
should already suspect that the current model, as so far
described, remains incomplete; one might strongly suspect
that this is at least partially due to the lack of a fully unified
setup. First, we have already seen the necessity of intro-
ducing the additional Higgs scalar field, Ω, beyond those
required to generate the corresponding fermion masses, to
complete the corresponding mass generation for the NHGB

gauge fields. This explicitly breaks the apparent Z4

symmetry that this model would otherwise possess.
Second, we have not yet discussed the identity of the
DM field itself which, at the very least, must carry QD ≠ 0
while also being an 3c3L3R singlet with Qem ¼ 0, proper-
ties not possessed by any of the fermion fields or among the
many scalars in any of the Hi introduced above. Indeed, as
mentioned previously, the CMB constraints on annihilating
DM are most easily satisfied when the DM is a p-wave
annihilating complex scalar, ϕ, which does not get a vev so
as to maintain its stability. Since all of the diagonal
members of the Ω Higgs field are seen to obtain vevs to
complete the NHGB mass generation process as just dis-
cussed, only the off-diagonal field, Ω13, could potentially
be a DM candidate (albeit with significant fine-tuning),
with the alternative being to introduce an additional,
vev-less, scalar representation with all of the necessary
properties. Finally, since the gauge and fermion fields in
this setup are completely fixed and the Higgs scalar
fields necessary to break the gauge symmetries and gen-
erate the relevant fermions masses have all been intro-
duced, one might ask whether or not the KM parameter ϵ,
as was defined above in terms of the field content
of the model, is finite or not, i.e., is Eq. (2) satisfied
automatically? Certainly this is not the case given the field
content of the single fermion generation, ng ¼ 1, toy model
described above as can be easily seen. While q, qc, and H1

make no contribution here as they all have QD ¼ 0, both l
and lc, being color-singlet chiral fermions, will each
contribute a factor of 3. Correspondingly, the fields H2;3,
being complex scalars, will each make an additional
contribution of 3=2 to this sum, assuming that the relevant
fields are physical and do not become Goldstone bosons.
The scalar Higgs field, Ω, on the other hand, also yields a
further donation of 3=2 to the sum (again assuming that all
of the contributing scalar fields remain physical after SSB)
and so the only remaining possible addition to the total,
as has been mentioned above, will then arise from the U0
and W0 NHGB as they carry both QD and Qem ≠ 0. To
determine their contributions, we follow the work in
Ref. [64] which determines that the value of ηi for a
massive gauge boson with g ¼ 2 at the tree level, as is the
case in renormalizable theories, i.e., ηi ¼ −10. Hence,
these two gauge bosons will then yield a total contribution
to the sum of −30. However, we must subtract from this the
contribution that arises from the relevant eaten Goldstone
bosons which we have previously included as part of this
sum, an amount equivalent to that obtained from Ω. In any
case, it is clear from this analysis that the total sum
appearing in Eq. (2) is not identically zero (and is, in fact,
found to be equal to −21) implying that ϵ is not finite in this
setup without the presence of some (to avoid issues with
any gauge anomalies) large number of additional scalar
fields. For the general case of an arbitrary number of
fermion generations, assuming the same scalar content as
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above, we find that this sum is now given by 6ng þ 3 − 30

so that for the realistic case of ng ¼ 3, we still do not obtain
a null result although we are appreciably closer to our goal.
Here too, a (now somewhat smaller) number of additional
scalar fields in the correct representations that are 3c3L3R
singlets could render ϵ finite.

VII. PHENOMENOLOGICAL DISCUSSION

The complexities of the current setup are many, mostly
due to the signifciant parameter freedom controlling the
mass spectrum thus preventing the details of its phenom-
enology from being easily explorable in all generality.
However, as we have seen, specific scenarios with a fixed
set of assumptions are clearly much more amenable to such
analyses. If anything, this setup is awash in new particles at
least some of which may be produced at the LHC and/or
FCC-hh as well as at future multi-TeV lepton colliders. It
predicts eight new NHGB and four new HGB plus a host of
vectorlike fermions, i.e., one new quark, three new charged
leptons, four new neutral leptons in addition to a right-
handed neutrino for each generation as well over a dozen
new neutral and charged Higgs scalars. Here we limit our
discussion to only a small subset of the new gauge bosons
and fermions that we have encountered and which have
somewhat complex interactions with the conventional SM
fields due to their unusual quantum number assignments.
While much of this phenomenology will certainly depend
upon the details of both the mass hierarchy and the mixings
among the various new states, in some cases a few model-
independent conclusions can be drawn. Given the complex-
ity of the model, in many (if not most) cases, it is also
impossible to separate out the consequences of existence of
these new gauge bosons from those of the new fermions.
This is especially true in the limit that the mixings effects
induced by the QD ≠ 0 vevs in the various production
processes are neglected since many of these new fields
connect SM fields to the new ones and their relative
locations in the mass spectrum are extremely flexible.
There is not much new to say in the present context
regarding the “conventional” SUð2ÞR LRM gauge bosons,
WR, ZR, where these particles are close to mass eigenstates
except for possible purposes of comparisons,as they has
already been the subject of many analyses [56,57,65]
which, at least semiquantatively, will still apply to the
present situation. Similarly, there is not much new to say
about the new isosinglet vectorlike quark, h, as it too is
rather conventional in that it is by now a well-studiedQD ¼
0 state [53], with the only exceptions being when it
participates in the production processes for other new
heavy states or it becomes sufficiently heavy to have on-
shell, 2-body decays into these new states, e.g., h → uW−

R.
These however, will in many cases simply mimic some of
the more familiar SM modes such as h → uWSM. The
production of some of the other new states will also mimic
familiar production modes that have been well studied.

For example, as was noted above, the eSðcÞ1 final state can
be produced either via ν − S1 and/or W − U†-type mixings
from initial state quarks, i.e., ūdþ H:c:, similarly to a
conventional heavy neutrino [56,57]. Likewise, these same
mixings will allow for familiar decays such as, e.g.,
S1 → eW;W → jj. The production of and signatures for
the new PM leptons, Ei, Ni, are also already familiar from
earlier work, being dominantly pair produced at a hadron/
lepton collider via the SM/LRM electroweak gauge boson
interactions and decaying back into the corresponding SM
field plus a DP as was noted above. As noted, these, like h,
can also act as “intermediaries” or important components of
other more interesting interactions.
It is to be noted, given the discussion of the HGB in the

previous section, that it is not always obvious what is the
best basis for making phenomenological predictions
involving these states due to the rather large amount of
mixing involved among the heavier ones (i.e., those outside
of γ, D, and ZSM) and one is forced to consider the various
specific symmetry breaking scenarios such as I and II above
for overall guidance if one wants to make precise pre-
dictions. More globally we simply just refer to these three
heavy HGB states collectively as Zi (as above) and they
will share many common features at the semiquantitative
level outside of certain corners of parameter space. The
reason for this is that, fortunately, as we have seen above,
the Zi are all sufficiently well mixed implying, e.g., that
they all will have some reasonable couplings to the
SM quarks, via the T3L;3R and YL;R generators. This implies
that they may be made resonantly at a hadron collider and
decay into the familiar dilepton final state as is traditionally
employed for LHC Z0 searches provided that they are
kinematically accessible. For example, in the case of
scenario I, we see that Z1 is fairly typical in that its
(making the standard assumption that only SM final states
are kinematically allowed) width to mass ratio is ≃0.017
and its leptonic branching fraction is ≃0.083 when κ ¼ 1,
values which are not unusual for a new Z0 [45,66–68].
Not surprisingly, the current 13 TeV LHC constraints

from ATLAS [69] on the, e.g., scenario I Zi’s are not too
dissimilar from those on the SSM standard reference
model, Z0

SSM, of ≃5.1 TeV. Following this analysis we
obtain a lower bound of roughly ≃4.33 (4.28, 4.72) TeVon
the masses of Z1ðZ2; Z3Þ, respectively, assuming only
decays to SM fields in the final state and making the gL ¼
gR ¼ g0 assumption as employed in the previous section as
can be seen in Fig. 2. Note that the reaches for the Zi are
somewhat suppressed relative to the usual SSM guidepost
at least partially due either the absence or suppression of
their couplings to up-type quarks. In all cases, however,
these reaches may improve by up to ∼20%–25% at the
HL-LHC given the significantly greater integrated luminos-
ity and the slightly higher value of

ffiffiffi
s

p
. For the 100TeVFCC-

hh, employing the same integrated luminosity (30 ab−1) and
search criteria as in Refs. [60,70], we find the corresponding
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reaches of roughly ≃35.2 (34.8, 38.9) TeV for the Z1;2;3,
which are comparable to that of the SSM Z0 result of 42 TeV.
Of course, if the Zi have additional important non-SM decay
modes these search reaches will be somewhat degraded by
the lower leptonic branching fraction but this possibility also
opens up new paths for discovery involving signatures
produced by some subset of the other new fields that needed
to be introduced in this setup. The HGB in scenario II will
semiquantitatively behave quite similarly.
While these new heavy HGB can be treated reasonably

symmetrically, the situation with the NHGB will be some-
what different as generally the mixing amongst most of
these states is rather small. The NHGB will clearly fall into
two main categories: those that are part of the SUð3Þ0 gauge
group and those that are not due to the possible couplings
of the SM fields to others that have nonzero values of QD
(in the absence of the QD ≠ 0 vevs). As will be noted,

we will omit discussions of the production and signatures
of all such states that which are purely of the canonical
heavy-W-like dilepton pair type.
Beginning with these NHGB, the states UL;R and VL;R

are of immediate interest as, in the absence of mixing with
the SUð3Þ0 NHGB, these are the only new ones (apart from
WR) that will couple directly to the SM quarks and so are
more readily made at hadron colliders such as the LHC and
FCC-hh. There are two conventional mechanisms by which
such states may be produced in the absence of significant
mixing with the other NHGB states (e.g.,WR in the case of
UR): associated production together with the heavy h
vectorlike quark or via pair production. Note that in the
absence of large mixing these NHGB cannot be produced
singly (on their own) as a resonance as can, e.g., the SMW
or theWR in the LRM, since they couple to ūh and d̄h (and
not to ūd), respectively. Unlike in previous studies, where
the analog of h carried QD ≠ 0, here h − d-mixing induced
processes such as, e.g., VL;R; 0D production cannot occur in
this setup. In the case of associated production, which is the
least model dependent since it (roughly speaking) only
depends upon the particle masses, UL;R (VL;R) can be made
via gluon-quark fusion in the initial state, i.e., guðdÞ →
hUL;RðVL;RÞ þ H:c: and, as might be expected, is only
limited by the available collider phase space. Figures 3 and
4 show the production cross sections for these processes at
the 13 TeV LHC and 100 TeV FCC-hh, respectively, for
different values of mh, as functions of the UL;R and VL;R
masses assuming for simplicity that κ ¼ gR=gL ¼ 1. The
analogous process, gd → hD, does not occur in the present
setup since here h has QD ¼ 0.
The corresponding signatures for these production proc-

esses will depend, to some extent, upon the ordering of the
h mass (and whose decays are well known) relative to the
UL;R; VL;R NHBG masses as well as on the masses of
leptonlike states Si, Ei, and Ni into which the U’s and V’s
might also pair-wise decay to (approximately) conserve
QD. For ULðRÞ, the simplest final state will likely be that of

eSðcÞ1 with a clean, very high pT charged lepton, while for

the case of VLðRÞ, with SðcÞ1 → νðcÞ, MET will likely be the
most important part of the signature depending, of course,

on how the SðcÞ1 itself decays.
The second process, UL;R; VL;R NHGB pair production,

is the result of s-channel exchange (by at least some) of
the set of HGBs as well as the t-channel (u-channel)
exchange of the h quark, required to maintain unitarity, and
is much more highly dependent upon the details of the
model than is associated production. Of course in the
original weak basis, the only contributing s-channel
exchanges for ULðRÞ, VLðRÞ pair production are the corre-
sponding W3LðRÞ, W8LðRÞ, but in the mass eigenstate basis
the situation is much more complex due to the rather
nontrivial mixing among the Zi as described above. For
example, for the case of ULðRÞU

†
LðRÞ production, the ZSM,

FIG. 2. Top: production cross section times leptonic branching
fraction for the three Zi NHGB in scenario I in comparison to
ZSSM at the 13 TeV LHC as a function of their mass under the
assumptions as discussed in the text. From top to bottom the
curves correspond to ZSSM, Z3, Z1, and Z2, respectively. Bottom:
same as the top panel but now for the 100 TeV FCC-hh.
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the three Zi, as well as the photon will contribute to this
process in the s-channel. Specifically, in addition to the
masses of the h and U=V which appear in the expression
for the associated production cross section, these additional
s-channel exchange contributions will also be sensitive to
the masses of, e.g., the Zi as well as the mixing angles
among the weak eigenstates making any model-independent
predictions for these cross sections impossible. However,
the masses and couplings of the various states may be such
that one (or more) of the Zi, which is kinematically
accessible, so can be resonantly produced at a hadron
collider, may decay into on-shell pairs of U’s and/or V’s
and so will provide the dominant mechanism for accessing
these states, with significant cross sections. In both
scenarios I and II, introduced in the previous section, it
was found that the masses of the NHGB and HGB are
generally comparable and interspersed with each other. For
example, in scenario I, both Z1;2 are sufficiently massive to

decay into Wþ
RW

−
R, with Z2 also being allowed to on-shell

decay toVL;RV
†
L;R; othermodesmay be possible depending

upon the specific relative magnitudes amongst the various
vevs. Scenario II shows a similar pattern although differing
in the specifics.
Away from any resonances, it is more difficult to

ascertain pair production rates in general due to the many
contributing amplitudes. However, as a simple toy exam-
ple, we again consider the case of VL;RV

†
L;R pair production

far above the SM Z peak but below the Zi resonance
regions and assuming that only one of the Zi’s is the
dominant contributor (Z0) to the cross section. The h
exchange amplitude in the t-channel is then “fixed” by
the specific assumed value of the h mass. This is somewhat
similar to what occurs in the previously examined E6-
inspired model. Figure 5 shows some examples of this
scenario for various values of MZ0=MV for both the

ffiffiffi
s

p ¼
13 TeV LHC and the

ffiffiffi
s

p ¼ 100 TeV FCC-hh where we
see this cross section is not very sensitive to the mass of
the h since the Z0 contribution is resonant. As the Z0 mass
increases relative to that of the VL;R, the cross section is

FIG. 4. Same as the previous figure but now, from top to
bottom, for mh ¼ 5; 7.5; 10;…25 TeV at the 100 TeV FCC-hh.

FIG. 3. Top: gu → UL;Rhþ H:c: associated production cross
section as a function of the UL;R mass assuming a SM gauge
coupling, gR ¼ gL and, from top to bottom, that mh ¼
1; 1.25;…3 TeV at the 13 TeV LHC. Bottom: same as the top
panel but now for the gd → VL;Rhþ H:c: associated production
cross section as a function of the VL;R mass.
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found to decrease until MZ0=MV ∼ 7 is reached at which
point this resonance effect essentially saturates. Even
though the Z0 is resonant, its mass has become sufficiently
large that it ends up making only a rather small contribution
to the overall production cross section. If the Z0 mass is
such that it cannot (or can barely) resonantly contribute to
VL;RV

†
L;R pair production, i.e., below 2MV, we instead

obtain results as typically shown in Fig. 6 for the particular
case of the FCC-hh. Here we see that while there is some
enhancement exactly on/near resonance, once 2MV
exceeds MZ0 this contribution essentially becomes MZ0

independent as might be expected. In more realistic
scenarios, the situation will be somewhat more complex
than presented above for numerous reasons, although we
might expect that these toy examples have captured at least
some of the possibilities.
For the case of the SUð3Þ0 NHGB, in the limit that they

remain unmixed with the other NHGB fields, the situation
is somewhat different as the SM quarks do not carry any of
the corresponding SUð3Þ0 quantum numbers so that these
gauge bosons are not easily produced at a hadron collider,
other than by pair production. At lepton colliders, however,
other processes may are possible, e.g., eþe− → V 0 þD,
with D being the DP, via t-/u-channel exchange of one or
more of the QD ≠ 0, Ei PM fields. Recall from our
discussion above that the effective eEiD couplings for
longitudinal DPs, λi, are both suppressed by the eEi-mixing
angles, ϕeEi

∼ 10−4, while simultaneously being enhanced
by factors of the large mass ratios MEi

=MD ∼ 104 so that
we expect λi ¼ gϕeEi

MEi
=MD ∼Oð1Þ. This, together with

the IR behavior of the amplitude, leads us to anticipate
sizable cross sections for this process right up to the

FIG. 5. VL;RV
†
L;R pair production cross section as a function of

the mass of VL;R, M, at (top) the
ffiffiffi
s

p ¼ 13 TeV LHC with mh ¼
2 TeV assuming MZ0=M ¼ 3; 5; 7;… from top to bottom.
Middle (bottom): same as the previous panel but now for theffiffiffi
s

p ¼ 100 TeV FCC-hh with mh ¼ 3ð7Þ TeV and assuming the
same gauge boson mass ratios as above. gR ¼ gL is also assumed
in all panels.

FIG. 6. Same as in the previous figure and assuming that
mh ¼ 7 TeV at the

ffiffiffi
s

p ¼ 100 TeV FCC-hh but now for
M=MZ0 ¼ 0.5; 1; 2; 3; 4, respectively, from top to bottom on
the left-hand side of the panel.
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kinematic production threshold, i.e., MV 0 ≲ ffiffiffi
s

p
. Figure 7

shows a sample set of production cross section results for
an assumed

ffiffiffi
s

p ¼ 10 TeV lepton collider under the further
assumption that a single PM lepton, E, exchange is
dominant showing that (i) the result is not overly sensitive
to the specific PM Emass and (ii) as might be expected, the
cross sections is highly peaked along the beam direction.
Once produced, the V0 will likely dominantly decay in a not
very boosted fashion back into the eE final state, assuming
it is kinematically allowed, i.e., that MV 0 > ME, produ-
cing a final state with wide-angle, opposite sign leptons.

This process can still happen in a 3-body mode when E is
the more massive, V 0 → eE� → eþe−D, but in either case
the final state will still appear as two opposite sign leptons
plus missing energy/momentum.
As noted the V 0 þD production process cannot occur at

a hadron collider via h exchange in the t-/u-channel but
may occur via, e.g., ZSM;i mixing with V 0 induced by the
QD ≠ 0 vevs as was mentioned earlier. However, since the
relevant mixing angle is likely to be of order ∼M2

D=M
2
V 0,

i.e., quadratic in the small mass ratio unlike in the case of
fermions or the NHGB, one finds that the rate for this
process is numerically suppressed and so is not very useful
in probing this setup. We note, however, that if relevant Zi
is more massive than V 0 then it is possible for this sup-
pression to be at least partially offset by a resonance
enhancement provided the Zi is within the kinematically
accessible mass range of the collider as was noted earlier.

VIII. DISCUSSION AND CONCLUSIONS

As is well known, the kinetic mixing of the SM photon
and the dark photon allows for the possibility that thermal
dark matter, lying in the sub-GeV mass range, can
reproduce the observed relic abundance of dark matter
for a reasonable range of model parameters while still
satisfying all other known constraints. However, the gen-
eration of such KM relies on the existence of a new set of
particles, here termed portal matter, that will transform
nontrivially under both the SM as well as the DP’s Uð1ÞD
gauge groups. Given the electroweak constraints, such
states will most likely consist of heavy vectorlike fermions
and/or new scalars, some of which must acquire vevs to
break Uð1ÞD as well as any larger gauge structure into
which it may be embedded. If such particles do indeed exist
and generate this KM portal, what are their properties, how
can they be discovered, and how can we explore their
detailed natures? Howwill they plus the dark photon fit into
a more UV-complete theoretical framework with the fields
of the SM, and what other additional structure is necessary
to achieve this? In a recent series of papers, we have begun
to explore these issues following both bottom-up and top-
down approaches to model building by employing the
guidance provided by some basic frameworks that will
naturally contain at least some of the necessary ingredients
to construct successful scenarios of this kind.
In the present paper, we have continued to explore these

possibilities, motivated by our earlier analyses of both the
E6 and Pati-Salam inspired setups. In the past, we have
considered UV structures in the form of product groups,
i.e., G ¼ GSM ×GDark, where GSM was identified as either
the conventional SM, 3c2L1Y , in the case of E6 or,
effectively, the LRM, 3c2L2R1B−L, in the corresponding
Pati-Salam setup. For either of these possibilities it was
assumed that GDark ¼ SUð2ÞI ×Uð1ÞYI

, again inspired by
E6. In both of theses cases, there was at most only a partial
symmetry directly linking the full SM and dark sectors, but

FIG. 7. Top: production cross section for the V 0Dþ H:c: final
state at a

ffiffiffi
s

p ¼ 10 TeV lepton collider as a function of the V 0
mass M assuming PM lepton masses from 0.5 to 6.5 TeV from
top to bottom on the right-hand side of the panel in steps of 1 TeV.
Bottom: unnormalized angular distributions, where z ¼ cos θ,
for the same process and

ffiffiffi
s

p
as in the top panel assuming

that, from top to bottom on the left side of the panel,
ðMV 0 ;MEÞ ¼ ð8; 1Þ; ð8; 3Þ; ð8; 5Þ; ð4; 1Þ; ð4; 3Þ, and (4, 5) TeV,
respectively, where ME is the PM lepton mass. In the top panel,
the parameter λ, as described in the text, is assumed to be equal
to unity.
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these two setups were found to share some general (and
obvious) necessary common features: the natural occur-
rence of both new VL fermions and/or charged scalars
that can play the role of PM as well the extended gauge
group sector that partly connect SM fields to the PM ones
at the multi-TeV mass scale. In this paper, we have con-
sidered a scenario based on anomaly-free quartification,
a quark-lepton symmetric setup previously considered in
the literature in other contexts, where we now identify
GSM ¼ 3c3L3R, the familiar trinification group arising
from E6, and where also GDark ¼ SUð3Þ0 so that now
G ¼ ½SUð3Þ�4, which clearly displays an obvious sym-
metry between the visible and dark sectors that was absent
from our previously examined scenarios. Although not a
true unification in the very traditional sense, since quarks
and leptons remain in different representations and the
value of ϵ remains uncalculable with the minimal field
content, this brings us much closer to goal of realizing a full
UV theory than either of our earlier attempts. In this setup,
Uð1ÞD is simply a diagonal subgroup of SUð3Þ0 with QD
being a linear combination of the two diagonal generators,
T 0
3;8, that is uniquely determined by the requirement that

SM fields will all have QD ¼ 0. However, a general,
assumption-free, phenomenological analysis of this type
of setup is made somewhat challenging due to the signifi-
cant, but necessary, augmentation of the gauge, fermion,
and Higgs scalar (containing multiple vevs at various
scales) sectors beyond those of the SM or LRM which
is viewed as being realized at large mass scales, ≳10 TeV.
In particular, we are confronted by a set of eight new, non-
Hermitian plus three new, Hermitian gauge bosons (in
addition to the DP) and, per generation and ignoring color
degrees of freedom, eight additional VL fermions as well as
the RH neutrino. Of these, one is an “ordinary,” QD ¼ 0,
color triplet, weak isosinglet quark, h, another a QD ¼ 0,
isosinglet neutral lepton, S1, while the remainder are both
charged and neutral leptons, all of which carry dark
charges, Ei, Ni, S2. Thus, unusually, the PM in this model
necessarily consists solely of only color-singlet fields [39],
which for both scalar and fermion result in relatively low
discovery reaches for these new states at hadron colliders.
While both h and S1 are fairly conventional VL fermion
states and will decay to SM fields via the usual SM (or
LRM) gauge and Higgs bosons, e.g., h → dZ, the PM
fermion fields, as we had found in earlier work, will instead
dominantly decay to a corresponding analog SM field plus
the DP, e.g., Ei → eD. Uniquely in the present setup, two
of the NHGB, W0; U0, can also act as PM since they carry
nonzero values of both QD and Qem; this is correlated with
the fact that Uð1ÞD is an Abelian subgroup of SUð3Þ0 and
that Qem also partially depends upon the same two SUð3Þ0
diagonal generators. Since the setup is only partially
unified, ϵ is not finite and calculable if only the minimal
particle content is present but can be made so for the case
of three fermion generations with the addition of several

complex scalar fields which can be chosen to be 3c3L3R
singlets.
As we have seen, this scenario leads to numerous testable

predictions, at least at the semiquantitative level, which are
the result of the extended gauge structure, the existence of
PM fields/new VL fermions, as well as our other model-
building requirements, e.g., that the DP’s Uð1ÞD gauge
symmetry remains unbroken until the ∼GeV mass scale is
reached. As we have neglected flavor physics issues in this
discussion for simplicity, the primary tests of the current
setup will necessarily directly involve these new gauge
bosons and fermions and be provided by high energy hadron
and/or lepton colliders. Since the set of three new heavy
HGB, Zi, all couple to various linear combinations of the
four group generators T3R;8L;8R;30 , they will necessarily
couple to at least some of the SM quarks and leptons and
so, apart from the details discussed above, will generally
behave somewhat similarly to the many Z0 gauge bosons
already encountered in the literature. However, if they are
sufficiently massive, they may also decay to pairs of both
newVL fermions, includingPM, aswell as some of the other
gauge bosons, which may be fortuitous as some of these
other states can be difficult to produce at colliders by other
means with large cross sections. This is especially true for
the SUð3Þ0 NHGB, W0, U0, and V 0, as these states do not
directly couple to the SM quarks in the proton (except via
mixing with the other NHGB states) and so can only be
produced in association with PM or in pairs unlike, e.g., the
WR in the LRM. Unfortunately, the mass spectrum and, in
particular, themass ordering of these newgauge bosons (and
the VL fermions as well) is highly model dependent and can
have a significant impact on detailed phenomenological
tests of this setup. For example, in the two sample scenarios,
I and II, analyzed above it was observed that theWR was the
lightest among the set of new gauge boson states, although
this result can easily be seen not to be true in all generality
but only reflects the particular choices wemadewith respect
to the assumed ordering of spectrum of the five multi-TeV
vevs. However, even with this handicap some quite general
model signatures were obtainable and analyzed in the
previous sections and which will be further discussed
elsewhere.
The KM portal remains a very attractive approach to

linking the SM and dark sectors and providing a window for
sub-GeV DM; it is hoped significant experimental evidence
for this idea will soon be obtained. Further exploration of
these types of PM scenarios is clearly necessary.
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