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I. INTRODUCTION

Owing to the lack of discoveries of particles beyond the
Standard Model (SM), one of the main research directions
over the past decade has been effective field theories
(EFTs). Given a renormalizable low-energy theory L like
the SM, EFTs parametrize possible new heavy physics
beyond that theory in terms of operators of mass dimension
larger than four. The Wilson coefficients compensate for
the surplus mass dimension through inverse powers of a
generic new-physics scale Λ which is assumed to be much
larger than the energy at which this physics is probed. The
operators are composed of the fields of L and obey the
same gauge symmetries as L.
In order to uniquely constrain the Wilson coefficients

by experiment, a number of possible redundancies among
the operators need to be taken into account. On the one
hand, these arise because operators which vanish by
equations of motion (EoMs) can be eliminated through a
redefinition of the field variables in the path integral
[1,2]. Moreover, operators differing by a total derivative
can be identified. Finally, operators which are related by
algebraic identities associated with the group structure of
the underlying internal or Lorentz symmetry can have
dependencies.
The EFT constructed from the SM is usually referred

to as Standard Model effective field theory (SMEFT).
At mass dimension five, it contains only the lepton-
number violating Weinberg operator (up to generation
multiplicities). Currently, the nonredundant basis of
operators is known up to mass dimension nine [3–10].
Beyond that, only the number of independent operators

that form a basis1 is currently known, albeit broken up
into operators with a specific field content. This number
can be obtained from a suitable Hilbert series [11,12] or
by explicitly considering the field quantum numbers and
permutation symmetries [13]. The fact that it grows
roughly exponentially with the mass dimension implies
that, beyond a certain order in 1=Λ, it is necessary to give
the task of explicitly constructing the basis to a computer.
In fact, in Refs. [3,4], partly building on concepts

developed in Ref. [14], a fully algorithmic approach
was used to determine the SMEFT basis up to mass
dimensions eight and nine. Utilizing various functions
of Refs. [15,16],2 its implementation has been published
as a MATHEMATICA package [17], but its application
currently appears to be restricted to mass dimensions equal
to or less than nine.
An automated approach to constructing EFT bases is

also desirable from the point of view that as-of-yet
undiscovered light particles might still exist which could
couple to the SM via effective operators. Examples for
this are sterile neutrinos [18] or axionlike particles [19]. In
addition, one should expect that the low-energy limit of
some theory that includes both the SM interactions as well
as gravity will be described by an effective Lagrangian
which extends SMEFT by gravitational fields, resulting in
general relativity ⊕ SMEFT (GRSMEFT) [20].
Finally, an efficient automated approach to constructing

EFTs will allow one to study operator bases at higher
mass dimension, and thus operators with a richer structure.
For example, it is only starting at mass dimension ten that
B − L can be violated at ΔðB − LÞ ¼ 4, where B and L
are the baryon and lepton number [21,22]. Furthermore,
studying higher-dimensional operators, or specific subsets
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1From now on, a basis shall always denote a complete,
nonredundant basis, unless stated otherwise.

2Thanks to R. Fonseca and the authors of Ref. [17] for
clarifications on this issue.
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thereof, may give insight on a possible all-order structure of
such operators; see Ref. [23], for example.
In this paper, we report on a reimplementation of the

algorithm of Refs. [3,4,17] into SageMath [24] which is a free
open-source mathematics software system, and the sym-
bolic manipulation system FORM [25,26], both licensed
under the GNU General Public License (GPL) [27]. Using
this code, named AutoEFT, we have evaluated the
(on-shell) SMEFT basis as well as the GRSMEFT basis
up to mass dimension 12.
A description of AutoEFT, its usage, and the program itself

will be deferred to a separate publication.3 The main
purpose of the present paper is to make the SMEFT and
GRSMEFT operators of mass dimensions 10, 11, and 12
accessible to the public.4 However, the number of operators
is too large for listing them in this paper. Instead, we
provide them in electronic form, using a notation which is
both rather compact, but also straightforward to interpret.
The remainder of the paper is structured as follows. In

Sec. II we briefly review the algorithm of Refs. [3,4,17] on
which the results of this paper are based. This includes the
treatment of scalar fields, chiral fermions, vector bosons, as
well as gravitons. The majority of Sec. III is devoted to
describing the format in which we encode the operators.
The results themselves are provided in the form of
Supplemental Material [28] which accompanies this paper.
Section IV contains our conclusions and an outlook.

II. CONSTRUCTING EFT OPERATOR BASES

In this section, the concepts introduced in Refs. [3,4] for
the systematic construction of an EFT operator basis are
briefly reviewed. Contrary to the formal representation in
Refs. [3,4], only the central ideas are illustrated.

A. Field representations

In a standard construction of SMEFToperators, as it was
done for the Warsaw basis at mass dimension six [6],
for example, the fundamental building blocks are taken to
be complex scalars ϕ, Dirac spinors ΨL=R, field strength
tensors Fμν, and the derivative5 Dμ. It turns out that for the
operator construction at higher mass dimensions, it is more
convenient to characterize the fields and derivatives by the
irreducible representation ðjl; jrÞ in which they transform
under the Lorentz group SLð2;CÞ ≃ SUð2Þl × SUð2Þr.
This corresponds to adopting a chiral basis, where the
SM fields are scalars, two-component Weyl spinors, or
chiral field-strength tensors:

ϕ∈ ð0; 0Þ;
ψα ∈ ð1=2; 0Þ; ψ†α̇ ∈ ð0; 1=2Þ;

FLαβ ∈ ð1; 0Þ; Fα̇ β̇
R ∈ ð0; 1Þ: ð1Þ

Here, α; β;… and α̇; β̇;… denote indices of the funda-
mental representation of SUð2Þl and SUð2Þr, respectively.
Note that each of the fields in (1) has a unique helicity value

h ¼ jr − jl: ð2Þ

The derivative transforms nontrivially under both SUð2Þl
and SUð2Þr,

Dα̇
α ∈ ð1=2; 1=2Þ: ð3Þ

Thus, the derivative of a field has the same helicity as the
field itself. This definition of the fields is equivalent to the
conventional representation of the SM fields. The trans-
lation between the two notations is given by

Fμν¼ i
4
ðFαβ

L σμναβ−Fα̇β̇
R σ̄μν

α̇β̇
Þ; Dμ¼−

1

2
Dα̇

αðσμÞαα̇

ΨL¼
�
ψα

0

�
; Ψ̄L¼ð0;ψ†

α̇Þ; ΨR¼
�

0

ψ†α̇
C

�
; Ψ̄R¼ðψα

C;0Þ;

FLαβ¼
i
2
Fμνσ

μν
αβ; F

α̇β̇
R ¼−

i
2
Fμνσ̄α̇β̇μν ; Dα̇

α¼DμðσμÞα̇α; ð4Þ

where ψC denotes a charge conjugated spinor, and the σ
matrices are given by

σμν ¼ i
2
ðσμσ̄ν − σνσ̄μÞ; σ̄μν ¼

i
2
ðσ̄μσν − σ̄νσμÞ;

σμαα̇ ¼ ðI; σ⃗Þ; σ̄μα̇α ¼ ðI;−σ⃗Þ: ð5Þ

Here, I is the 2 × 2 identity matrix and σ⃗ ¼ ðσ1; σ2; σ3Þ
denotes the Pauli matrices.

B. Construction of the operators

The operators can be classified into families,6 charac-
terized by the tuple

ðnFL
; nψ ; nϕ; nψ† ; nFR

; nDÞ; ð6Þ

where nΦ equals the number of fields with helicity hΦ, and
nD is the number of derivatives. It is further useful to define

nl ¼ nFL
þ 1

2
nψ þ 1

2
nD; nr ¼ nFR

þ 1

2
nψ† þ 1

2
nD; ð7Þ

which correspond to the sum of jl=r of each field and
derivative as defined in (1). Lorentz invariance and a given

3A β version of the code is accessible upon request from the
authors.

4The lower-dimensional operators will be provided as well.
5Throughout this paper, derivative denotes the gauge covariant

derivative, unless stated otherwise. 6In Ref. [3] the term subclass is used instead.
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mass dimension d of the operators put constraints on the ni
such as

N þ nl þ nr ¼ d; ð8Þ

where N is the total number of fields, and thus restrict the
set of allowed families.
Since Hermitian conjugation exchanges the two SU(2)

representations of the Lorentz group, taking the con-
jugate of the operators of a particular family generates
the conjugate family

ðnFL
; nψ ; nϕ; nψ† ; nFR

; nDÞ† ≡ ðnFR
; nψ† ; nϕ; nψ ; nFL

; nDÞ:
ð9Þ

Hence, one can identify real families that satisfy

ðnFL
; nψ ; nϕ; nψ† ; nFR

; nDÞ† ¼ ðnFL
; nψ ; nϕ; nψ† ; nFR

; nDÞ:
ð10Þ

All operators in a real family are either Hermitian, or their
conjugate operator is part of the same family. The remain-
ing families are all complex, such that any operator features
a distinct Hermitian conjugate version, which is part of the
conjugate family.
All operators in a specific family can be further charac-

terized by their type, which corresponds to a specific multiset
of fields from a given model. Types of the same field content
are identified by ordering the fields by increasing helicity and
sorting fields of the same helicity alphanumerically. For
example, the dimension-five Weinberg operator, consisting
of two lepton doublets and two Higgs doublets, belongs to
the family ð0; 2; 2; 0; 0; 0Þ and the type L2H2.

C. Lorentz structure

In this section, only the Lorentz structure of an operator
will be considered, while all internal symmetry and gen-
eration indices of the fields will be neglected. All operators
of a particular family can thus be identified for the purpose
of this discussion.
Since any operatorO of the EFTwill be constructed from

the objects of (1) and (3), it will be of the form

OLorentz ¼ ðTLorentzÞα1…αN
α̇1…α̇N

YN
i¼1

ðDniΦiÞα̇iαi ; ð11Þ

where αi ¼ ðαð1Þi ;…; αðmiÞ
i Þ and α̇i ¼ ðα̇ð1Þi ;…; α̇ðm̃iÞ

i Þ are
multi-indices with mi ¼ ni þ 2jl;i and m̃i ¼ ni þ 2jr;i,
where ni is the number of derivatives acting on the field
Φi, and ðjl;i; jr;iÞ defines its representation according to (1).
The indices αð1Þi ;…αðniÞi and α̇ð1Þi ;…; α̇ðniÞi are to be asso-
ciated with the derivatives acting on Φi, while the remain-
ing indices are associated with the field itself.

D. Redundancies

One of the most challenging aspects when constructing
EFTs is the elimination of redundancies, i.e., operators
that are related to other operators by certain identities. As
stated in Ref. [3], for the chiral convention of the fields, the
structure of TLorentz must be a polynomial in ϵαβ and ϵα̇ β̇,

where ϵ is totally antisymmetric, and ϵ12 ¼ ϵ21 ¼ ϵ1̇2̇ ¼
ϵ2̇1̇ ¼ 1. This already eliminates all redundancies from
Fierz identities (up to Schouten identities). Furthermore,
redundancies due to EoMs or the identity i½Dμ; Dν� ¼P

Fμν, where the sum is over all gauge groups, can be
eliminated by substituting

ðDniΦiÞα̇iαi → ðDniΦiÞðα̇iÞðαiÞ ð12Þ

in Eq. (11), where ðαiÞ ¼ ðαð1Þi ;…; αðmiÞ
i Þsym and ðα̇iÞ ¼

ðα̇ð1Þi ;…; α̇ðm̃iÞ
i Þsym denote totally symmetric multi-indices.

In the following, we refer to the combined object on the rhs
of (12) as a building block.
The remaining redundancies to be considered are due to

integration by parts and Schouten identities. These can be
avoided by introducing an auxiliary SUðNÞ group, whereN
equals the total number of fields [cf. Eq. (8)]. Under this
group, the (dotted) spinor indices of TLorentz transform as
the (anti-)fundamental representation, i.e.,

αi →
XN
j¼1

Uijαj; α̇i →
XN
j¼1

U†
ijα̇j; ð13Þ

with αi, α̇i defined in Eq. (11), and U (U†) group elements
of SUðNÞ in the (anti-)fundamental representation. For a
given family, TLorentz contains nl ϵ tensors with undotted
and nr ϵ tensors with dotted indices. Consequently, TLorentz

must transform in the representation

ð14Þ

under the auxiliary SUðNÞ group. According to the
Littlewood-Richardson (LR) rule, the two factors can be
decomposed as

ð15Þ

where dropping all diagrams represented by the dots
eliminates the Schouten identities. The further decompo-
sition of Eq. (15) into irreducible representations results in
a Young diagram of shape
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ð16Þ

plus diagrams that contain at least one column with
N − 1 entries which will be discussed below. A basis of
tensors that transform under this irreducible representa-
tion can be constructed from semistandard Young tableaux
(SSYTx) of shape λ and content7 μ ¼ ½nr − 2h1;…; nr −
2hN � [cf. Eqs. (2), (7), and (8)] as follows: Replace the first
nr columns through the SUðNÞ relation (no summation
implied)

ð17Þ

where E denotes the N-dimensional Levi-Civita symbol,
and a; b;…; x; y; z is some permutation of 1; 2;…; N.
Subsequently identify each column with an ϵ tensor
according to

ð18Þ

Since the set of all SSYTx forms a basis in the vector space
of a particular representation, performing these steps for
every such SSYTx leads to a set of Lorentz tensors TLorentz

which is nonredundant. To see that it is also complete,
consider a Young diagram other than Eq. (16) in the
decomposition of Eq. (15). As pointed out above, it
contains at least one column of lengthN − 1. Such columns
correspond to tensors proportional to

P
N
j¼1 ϵ

αiαjϵα̇jα̇k .

The index pair (αj; α̇j) implies a derivative acting on the
jth field, so that the sum corresponds to a total derivative.

E. Internal symmetries

After identifying all independent Lorentz structures, one
can continue in a similar manner with the remaining
symmetries of the underlying low-energy theory. In the
following, the expression internal symmetry refers to a
global or a local U(1) or SUðnÞ symmetry. In analogy to
Sec. II. C, all Lorentz and generation indices will be
neglected in this section, and only the transformation
properties of the fields under the internal symmetry group
are considered.
Concerning Abelian internal symmetries, it is required

that the total charge of an operator under this symmetry
vanishes. In the SM, for example, this is achieved by only
considering combinations of fields such that the sum of
their hypercharges equals zero, hence forming a U(1)
invariant operator. However, one may also allow for the
breaking of a certain U(1) symmetry, specified by the
amount the associated charge of the operators may deviate
from zero. This can be useful, for example, if one is only
interested in operators that violate baryon number con-
servation up to a certain degree ΔB.
For each non-Abelian symmetry, the modified LR rule

[3] is used to construct all sets of independent tensors. To
apply this method, the fields of the low-energy theory must
be characterized in terms of fundamental SUðnÞ indices
only. Consider, for example, the non-Abelian part of the
SM, i.e., SUð3Þ ⊗ SUð2Þ. In terms of Young diagrams, the
fundamental representations are identified as for
SU(3), and for SU(2). For the SM fields that
transform under the fundamental representations, the sym-
metry of their indices can be identified with the states

ð19Þ

where Q and L denote a left-handed quark and lepton
doublet, respectively; q the right-handed quark fields; and
H the Higgs doublet. Here, a; b; c;… and i; j; k;… denote
fundamental indices of SU(3) and SU(2), respectively.
The fields that do not transform under the fundamental

representation of the internal symmetry group can never-
theless be written in terms of quantities with fundamental
indices only. In particular, for the SM,

Gabc¼ ϵacdðλAÞdbGA; Wij¼ ϵjkðτIÞkiWI;

Q†
abi¼ ϵabcϵijðQ†Þcj; q†ab ¼ ϵabcðq†Þc;
L†
i ¼ ϵijðL†Þj; H†

i ¼ ϵijðH†Þj; ð20Þ

where A and I are adjoint indices of SU(3) and SU(2). The
λA are the Gell-Mann matrices for SU(3), and the τI are the
SU(2) Pauli matrices.
Considering the Young diagrams for the adjoint repre-

sentation of SU(3) and SU(2), given by and

, one can identify the symmetry of the funda-
mental symmetry group indices of Gabc and Wij with the
states

7AYoung tableau with content (or weight) μ ¼ ½i; j; k;…� has i
entries of the number 1, j entries of the number 2, k entries of the
number 3, and so on. This requirement ensures that the resulting
tensors have the correct indices corresponding to the fields
specified in the family. A Young tableau is called semistandard
if the entries weakly increase along each row and strictly increase
down each column.
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ð21Þ

meaning that Gabc is symmetrized in a ↔ b and subsequently antisymmetrized in a ↔ c, whileWij is totally symmetric in

i ↔ j. Equivalently, the antifundamental representations of SU(3) and SU(2) are given by and

, respectively. The symmetry of the fundamental symmetry group indices can be identified with

ð22Þ

where the only nontrivial symmetry is given by Q†
abi and

q†ab which are antisymmetric under the exchange a ↔ b.
From the discussion above, it is clear that one can write a

generic operator as

OSUðnÞ ¼ ðTSUðnÞÞI1…IN
YN
i¼1

ðΦiÞIi ; ð23Þ

where Ii is a multi-index containing SUðnÞ fundamental
indices only. The independent set of tensors TSUðnÞ is
constructed by combining the Young tableaux of each field
in the operator according to the modified LR rule, and
subsequently identifying each column of the resulting
tableau with an SUðnÞ ϵ tensor.

F. Permutation symmetries

It is important to note that, up to this point, the
algorithm considers all fields that occur in an operator
as distinct. But if an operator contains several copies of the
same field, new redundancies can occur. This happens
because in expressions like Eqs. (11) and (23), the sum
over indices is not explicitly carried out. Therefore, the
Lorentz and internal symmetry groups can no longer be
treated independently as soon as the operator contains
identical fields.
As a generalization of this, a theory may contain several

copies of fields that transform identically under the Lorentz
and internal symmetry groups and are thus indistinguish-
able for our considerations. In the spirit of the SM, we will
refer to these copies as generations.8 Owing to the Lorentz
and internal symmetry of the operator, not all combinations
of generations are independent of one another, in general.
Both of these problems can be treated in the same way

when introducing generation indices for all fields, even for
those that occur only in a single generation. The expression
repeated fields denotes the product of fields which at most
differ by their generation index. The general strategy is to
decompose any operator into a sum of terms with specific

permutation symmetry λ of the generation indices for
repeated fields [14].9

Following the philosophy of Ref. [3], the permutation
symmetry is not inscribed on the operator by symmetrizing
the generation indices themselves, but at the level of the
Lorentz and internal symmetry tensors they are multiplied
with. Consider a specific type, i.e., the set of operators
which contain a certain set of fields. Up to now, the
algorithm has generated a set of tensors TLorentz ¼
fTLorentz

1 ;…; TLorentz
l g for the Lorentz symmetry, and

TSUðnkÞ ¼ fTSUðnkÞ
1 ;…; TSUðnkÞ

lk
g for each internal sym-

metry; see Secs. II. C and II. E. These tensors are now
combined in such a way that they reflect the permutation
symmetries, labeled by λ:

T λ
j ¼

X
i

Kλ
jiðTLorentz ⊗ TSUðn1Þ ⊗ � � � ⊗ TSUðnkÞÞi; ð24Þ

where the K are obtained from the plethysm technique and
inner-product decomposition (for details, see Ref. [3]). The
redundancies due to the permutation symmetries are
reflected in the fact that K is an n ×m matrix with n ≤
m ¼ l · l1 � � � lk in general. The set of independent operators
is then given by contracting the fields with T λ

j for each
j ¼ 1;…; n and each permutation symmetry λ, and enu-
merating the generation indices according to the set of
SSYTx. Explicit examples will be given below.

G. Including gravity

The algorithmdescribed above can be extended to theories
which include fields with higher spin [17,20,29]. In particu-
lar, gravitational interactions can be taken into account by
considering the Weyl tensor Cμνρσ as an additional building
block in the EFT construction [20]:

Cμνρσ ¼ Rμνρσ − ðgμ½ρRσ�ν − gν½ρRσ�μÞ þ
1

3
gμ½ρgσ�νR; ð25Þ

where Rμνρσ denotes the Riemann tensor, Rμν ¼ Rλ
μλν the

Ricci tensor, R ¼ Rμ
μ the Ricci scalar, and gμν the metric

8Ref. [3] uses the term flavors instead.

9In general, the symbol λ can denote multiple irreducible
representations of the symmetric group, one for each set of
repeated fields.
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tensor, and the indices between square brackets are to be
antisymmetrized. In analogy to Sec. II. A, wewrite the Weyl
tensor in terms of left- and right-handed components that
transform under irreducible representations ðjl; jrÞ of the
Lorentz group:

Cμνρσ ¼ 1

64
ðCαβγδ

L σμναβσ
ρσ
γδ þ Cα̇ β̇ γ̇ δ̇

R σ̄μν
α̇ β̇
σ̄ρσ
γ̇ δ̇
Þ; ð26Þ

where

CLαβγδ ¼ Cμνρσσ
μν
αβσ

ρσ
γδ ∈ ð2; 0Þ; and

Cα̇ β̇ γ̇ δ̇
R ¼ Cμνρσσ̄α̇ β̇μν σ̄

γ̇ δ̇
ρσ ∈ ð0; 2Þ: ð27Þ

Denoting by nCL=R
the number of left-/right-handed Weyl

tensors in the operators, we extend the families (6) to

ðnCL
; nFL

; nψ ; nϕ; nψ† ; nFR
; nCR

; nDÞ: ð28Þ

While all previously considered fields satisfy the relation

½Φ� ¼ 1þ jhΦj; ð29Þ

with ½·� denoting the mass dimension in four space-time
dimensions and hΦ the helicity, this relation is violated for
the Weyl tensor, which satisfies

½CL=R� ¼ jhCL=R
j ¼ 2; ð30Þ

instead. Therefore, the algorithm needs to account for the
actual mass dimension of the Weyl tensor. For example,
instead of Eq. (8), we get

N þ nl þ nr − nGR ¼ d; ð31Þ

where nGR ≡ nCL
þ nCR

can take values from 0;…;
minðd=2; NÞ, and the definitions in Eq. (7) are modified,
such that

nl ¼ 2nCL
þ nFL

þ 1

2
nψ þ 1

2
nD;

nr ¼ 2nCR
þ nFR

þ 1

2
nψ† þ 1

2
nD: ð32Þ

An example for an operator type of dimension-12 in
GRSMEFT will be given below.

III. APPLICATION TO SMEFT AND GRSMEFT

According to the algorithm described in Sec. II, we
construct on-shell operator bases for SMEFT and
GRSMEFT up to mass dimension 12, using our imple-
mentation AutoEFT. To be consistent with the existing
literature, we adopt the all-left chirality convention for
the SM fields. The EFT field content is given in Table I.

These fields are related to the conventional notation by
Eqs. (4), (20), (26), and (27). For example, the SM Dirac
spinors are given by

QL ¼
�
Qα

0

�
; uR ¼

�
0

u†α̇C

�
; dR ¼

�
0

d†α̇C

�
;

LL ¼
�
Lα

0

�
; eR ¼

�
0

e†α̇C

�
; ð33Þ

where all internal symmetry and generation indices are
suppressed.
For a given mass dimension, the operators are grouped

into families (6), and in each family, the operators are
classified by their type (i.e., the field content). For each of
these types, an output file is generated in YAML format.10 It
contains the relevant information to construct all operators
belonging to this type. We found this way of presenting the
results a reasonable compromise which allows one to
encode the large number of operators in a rather compact
form without leaving too much calculational effort to
the user.
In the following, four representative cases are displayed

to show how the output files can be interpreted in terms
of Sec. II.

TABLE I. SM field content in the all-left chiral convention
(cf. Sec. II. A). Spinor indices are denoted by α and β, while a, b, c
and i, j denote fundamental indices of the gauge groups SU(3) and
SU(2), respectively. Each fermion carries an additional generation
index g. The Young tableaux of the SUðnÞ groups shown in
columns three and four have been introduced in Sec. II. E. The
Symbol denotes the characters that represent the corresponding
field in the Supplemental Material [28]. Hermitian conjugated
fields are denoted by a trailing “+”. The covariant derivative is
represented by the character “D”.

Field h SU(3) SU(2) U(1) Generations Symbol

ðGLαβÞabc −1 0 1 GL

ðWLαβÞij −1 0 1 WL
BLαβ −1 0 1 BL
ðQg

αÞai −1=2 1=6 3 Q

ðugCαÞab −1=2 −2=3 3 uC

ðdgCαÞab −1=2 1=3 3 dC

ðLg
αÞi −1=2 −1=2 3 L

egCα −1=2 1 3 eC
Hi 0 1=2 1 H

CLαβγδ −2 0 1 CL

10See https://yaml.org/.
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A. No repeated fields

As a first example, let us consider the dimension-ten operators of type

QNRF ¼ WLQuCHW†
LD

2; ð34Þ
encoded in the file

operators=5=1FL 2psi 1phi 1FR 2D=1WL 1Q 1uC 1H 1WLþ 2D.yml

included in smeft_10.tar.xz. They contain a weak gauge field and its conjugate (1WL, 1WL+), a quark doublet (1Q), a
charge conjugate up-type quark singlet (1uC), a Higgs field (1H), and two derivatives (2D). This also illustrates the naming
scheme of the output files of AutoEFT. The content of this file is displayed in Listing 1. We deliberately include redundant
information in the output files in order to facilitate their interpretation and to allow for consistency checks when
constructing the explicit operators.

Listing 1 Content of the file 1WL_1Q_1uC_1H_1W+_2D.yml, which encodes the operators of Eq. (34).
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The file is structured by certain keywords which we explain
in the following:

1. version: The version of AutoEFT which was used
to produce the output file.

2. type: A list11 of two elements. The first element (line
4) specifies the multiplicities of the fields and deriv-
atives in the operator. It is equivalent to the specifi-
cation in Eq. (34). The second element (line 5) states
that the operator type is complex, (i.e., the operators
are not Hermitian). The Hermitian conjugate type is
contained in a different file. In the present case, this
would be 1WL_1H+_1Q+_1uC+_1WL+_2D.yml.
For Hermitian operators, the second entry of type
is real.

3. generations: Provides the number of genera-
tions for each field. In this case, it specifies that there
is only a single generation of WL, WL+, and H, but
three generations of quarks Q and uC.

4. n_terms: The total number of operators with
independent Lorentz and SUðnÞ index contractions.
It does not take into account the number of gen-
erations though. In Listing 1, there are five inde-
pendent ways of contracting the Lorentz indices
of the operators while there is only one option for
SU(3), and two for SU(2), so the number of terms
n_terms is 5 · 1 · 2 ¼ 10.

5. n_operators: The total number of indepen-
dent operators, taking into account the indepen-
dent values the generation indices can take.
For Eq. (34), there are 3 · 3 ¼ 9 independent combi-
nations of the Q and uC generation indices for
each of the ten terms; hence n_operators
is 10 · 9 ¼ 90.

6. invariants: The list of invariant index contrac-
tions of the fields in the operator. The contraction of
indices for each internal symmetry group and for the
Lorentz group is listed separately, as indicated by the
subkeywords Lorentz, SU(3), and SU(2) in
lines 10, 16, and 18. Each independent contraction is
labeled by O(<G>,<m>), where <G> is the name of
the Lorentz or internal symmetry group, and <m>
enumerates the contractions.
The indices are denoted by <i>_<j>, where <i>

is the position of the field that carries this index, and
<j> is the position of the index on the field. Per
invariant contraction, each index appears exactly
twice, and summation is implied. For the Lorentz
group, <i>_<j>~ denotes dotted indices. Further-
more, the indices are associated with the building
blocks of (12), rather than with the fields. Note that
the dotted and undotted indices of the building
blocks are understood to be (separately) sym-
metrized (cf. Sec. II. D).
The symbol eps denotes the ϵ tensor with eps

(1,2)=eps(2~,1~)=1 for the Lorentz group,
and eps(1,2,…,n)=1 for any internal SUðnÞ
group. All indices not associated with the symmetry
group in question are suppressed on the fields.12

7. permutation_symmetries: The list of permu-
tation symmetries according to Sec. II. F. Since the
operator type of Eq. (34) does not involve repeated
fields, this entry (lines 22–36) is redundant and is
included only for consistency. Details will be dis-
cussed in Sec. III. B for a nontrivial example.

In Listing 1, the invariant contractions are given by
[cf. Eqs. (11) and (23)]

line 11∶ OLorentz
1 ¼ TLorentz

1 ∘QNRF ¼ ϵα1γ1ϵα2γ2ϵβ1γ3ϵγ̇1η̇1ϵγ̇2η̇2WLα1α2Qβ1ðD2uCÞðγ̇1 γ̇2Þðγ1γ2γ3ÞHW†
L
η̇1η̇2 ;

line 12∶ OLorentz
2 ¼ TLorentz

2 ∘QNRF ¼ −ϵα1γ1ϵα2γ2ϵβ1δ1ϵγ̇1η̇1ϵδ̇1η̇2WLα1α2Qβ1ðDuCÞγ̇1ðγ1γ2ÞðDHÞδ̇1δ1W†
L
η̇1η̇2 ;

line 13∶ OLorentz
3 ¼ TLorentz

3 ∘QNRF ¼ ϵα1γ1ϵα2δ1ϵβ1δ2ϵδ̇1η̇1ϵδ̇2η̇2WLα1α2Qβ1uCγ1ðD2HÞðδ̇1δ̇2Þðδ1δ2ÞW
†
L
η̇1η̇2 ;

line 14∶ OLorentz
4 ¼ TLorentz

4 ∘QNRF ¼ −ϵα1β1ϵα2γ1ϵγ2δ1ϵγ̇1η̇1ϵδ̇1η̇2WLα1α2Qβ1ðDuCÞγ̇1ðγ1γ2ÞðDHÞδ̇1δ1W
†
L
η̇1η̇2 ;

line 15∶ OLorentz
5 ¼ TLorentz

5 ∘QNRF ¼ ϵα1β1ϵα2δ1ϵγ1δ2ϵδ̇1η̇1ϵδ̇2η̇2WLα1α2Qβ1uCγ1ðD2HÞðδ̇1δ̇2Þðδ1δ2ÞW
†
L
η̇1η̇2 ;

line 17∶ OSUð3Þ
1 ¼ TSUð3Þ

1 ∘QNRF ¼ ϵb1c1c2WLQb1uCc1c2HW†
L;

line 19∶ OSUð2Þ
1 ¼ TSUð2Þ

1 ∘QNRF ¼ ϵk1m1ϵk2n1ϵl1n2WLk1k2Ql1uCHm1
W†

Ln1n2
;

line 20∶ OSUð2Þ
2 ¼ TSUð2Þ

2 ∘QNRF ¼ ϵk1l1ϵk2n1ϵm1n2WLk1k2Ql1uCHm1
W†

Ln1n2
; ð35Þ

11In YAML, this is called a sequence. Its elements are marked by the leading dashes in lines 4 and 5 of Listing 1.
12This means that, if the operators contain only fields that are singlets under a particular symmetry group G (i.e., if there is no index to

be contracted), the corresponding entry G: contains just a single element +1 multiplied by the fields without indices.
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withQNRF from Eq. (34). The operation T ∘Q implies that all indices other than those of T are suppressed inQ. Since only
contractions with the Lorentz tensors determine the positions of the derivatives, we omit the latter in the contractions with
tensors of the internal symmetries.
The complete set of independent operators T ·QNRF is thus given by all possible combinations of the Lorentz and SUðnÞ

tensors:

T ≡ TLorentz ⊗ TSUð3Þ ⊗ TSUð2Þ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

TLorentz
1 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
1 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
2 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
2 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
3 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
3 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
4 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
4 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
5 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
5 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

1
CCCCCCCCCCCCCCCCCCCCCCCCA

: ð36Þ

Three examples for the ten independent terms (cf. line 7 in Listing 1) are given by

ðTLorentz
1 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1 Þ ∘QNRF ¼ ϵα1γ1ϵα2γ2ϵβ1γ3ϵγ̇1η̇1ϵγ̇2η̇2ϵ

b1c1c2ϵk1m1ϵk2n1ϵl1n2

×WLα1α2k1k2Qβ1b1l1ðD2uCc1c2Þ
ðγ̇1 γ̇2Þ
ðγ1γ2γ3ÞHm1

W†
L
η̇1η̇2
n1n2

;

ðTLorentz
1 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2 Þ ∘QNRF ¼ ϵα1γ1ϵα2γ2ϵβ1γ3ϵγ̇1η̇1ϵγ̇2η̇2ϵ

b1c1c2ϵk1l1ϵk2n1ϵm1n2

×WLα1α2k1k2Qβ1b1l1ðD2uCc1c2Þ
ðγ̇1 γ̇2Þ
ðγ1γ2γ3ÞHm1

W†
L
η̇1η̇2
n1n2

;

ðTLorentz
2 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1 Þ ∘QNRF ¼ −ϵα1γ1ϵα2γ2ϵβ1δ1ϵγ̇1η̇1ϵδ̇1η̇2ϵ

b1c1c2ϵk1m1ϵk2n1ϵl1n2

×WLα1α2k1k2Qβ1b1l1ðDuCc1c2Þγ̇1ðγ1γ2ÞðDHm1
Þδ̇1δ1W

†
L
η̇1η̇2
n1n2

: ð37Þ

Up to this point, we have suppressed the generation indices of the quarks. Since the quark and antiquark transform
differently under the symmetry groups, we can simply attach a generation index to each of the two quark fields in Eq. (34).

B. Repeated fields

The operator Eq. (34) treated in Sec. III. A is special in the sense that it does not contain repeated fields, i.e., all fields in
this type transform differently under the symmetry group of the theory. As mentioned in Sec. II. F, if repeated fields are
present, new redundancies can arise. The output file thus requires information on the permutation symmetry. As an
example, we consider the dimension-11 operators of type

QRF ¼ L2dCeCu2CH
2; ð38Þ

contained in the file

operators=8=6psi 2phi=2L 1dC 1eC 2uC 2H.yml

that is included in smeft_11.tar.xz. Its content is displayed in Listing 2.
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Listing 2: Content of file 2L_1dC_1eC_2uC_2H.yml, which encodes the operators of Eq. (38).

The meaning of the first 20 lines in this file was explained in the previous section. If all fields in Eq. (38) were different,
one would arrive at ten terms, according to the 5 · 1 · 2 ¼ 10 independent Lorentz and SUðnÞ tensors:
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T ≡ TLorentz ⊗ TSUð3Þ ⊗ TSUð2Þ

¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

TLorentz
1 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
1 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
2 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
2 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
3 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
3 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
4 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
4 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

TLorentz
5 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
1

TLorentz
5 ⊗ TSUð3Þ

1 ⊗ TSUð2Þ
2

1
CCCCCCCCCCCCCCCCCCCCCCCCA

: ð39Þ

Attaching generation indices to the fields, the number of
operators would be 10 · 36 ¼ 7290, because there are six
fields with three generations each. This, however, neglects
the permutation symmetries arising from the repeated
fields. In this example, there are three sets of repeated
fields, each of which occurs twice, as can be seen from the
first element of type (line 4). This reduces the actual
number of terms and operators to those given in lines 7 and
8. As described in Sec. II. F, this is because, on the one
hand, the permutation symmetries induce dependencies
between the terms in Eq. (39), reducing the number of
independent terms. On the other hand, a particular permu-
tation symmetry restricts the number of independent
combinations of generation indices in the field monomials.
Consider, for example, the second item (marked

by the character “-” in the first column) under permu-
tation_symmetries, i.e., lines 23–28 of Listing 2.
The entry for the keyword symmetry should be inter-
preted as a set of Young tableaux, representing the
permutation symmetry for each kind of field. In this case13

ð40Þ

The fillings are the generation indices, i.e., i; j; k; l; m; n∈
f1; 2; 3g, and r ¼ s ¼ 1, because there are three gen-
erations of leptons and quarks, and only one of Higgs
bosons.

For this permutation symmetry, only the contractions
with two combinations of the ten tensors in Eq. (39) are
independent. They are given by [cf. Eq. (24)]

T ¼ KT; ð41Þ
where

K¼
�
8 −4 0 0 −4 2 −4 2 6 −3
0 0 8 −4 −4 2 −4 2 2 −1

�
ð42Þ

is the matrix listed under the keyword matrix in lines
26–28 of Listing 2. The rank of this matrix is equal to the
number of terms n_terms in line 24. Its form depends
on the order of the factors in the Kronecker product14 in
Eq. (39). For clarity, this order is added to the AutoEFT

output file under the keyword vector; see line 22 in
Listing 2.
Considering the permutation symmetries of the fields,

only such values of generation indices are independent for
which the Young tableaux in (40) are semistandard. For the
case at hand, we thus have

ði; jÞ∈ fð1; 2Þ; ð1; 3Þ; ð2; 3Þg≡ Sð3Þ
1;1;

ðm; nÞ∈ fð1; 1Þ; ð1; 2Þ; ð1; 3Þ; ð2; 2Þ; ð2; 3Þ; ð3; 3Þg≡ Sð3Þ
2 ;

ðr; sÞ∈ fð1; 1Þg≡ Sð1Þ
2 ; ð43Þ

where S
ðngÞ
λΦ

is the set of independent generation indices for
the repeated field Φ with permutation symmetry λΦ and ng
generations. The generation indices of fields that appear only
once are still independent and are therefore not restricted
further, i.e., k; l∈ f1; 2; 3g. In total, out of the 36 combina-
tions of the generation indices, only 3 · 6 · 1 · 32 ¼ 162 need
to be considered for this particular representation of the
permutation symmetry. There are thus 2 · ð3 · 6 · 1 · 32Þ ¼
324 independent operators of this type, in agreement with
line 25.
There are three more permutation symmetries:

1. lines 29–33: , , ,

, , in which case there is only

one independent combination (cf. line 30) of tensor
contractions, with

K¼
�
0 0 0 0 4 −2 0 0 −2 1

�
: ð44Þ

The independent values of generation indices

are given by ði; jÞ; ðm; nÞ∈Sð3Þ
1;1, ðr; sÞ∈Sð1Þ

2 , and
k; l∈ f1; 2; 3g. This results in 1 · ð3 · 3 · 1 · 32Þ ¼ 81
independent operators, as indicated in line 31.

13I.e. [i,j,…] in the symmetry entry denotes a Young
diagram with i boxes in the first row, j boxes in the second, etc.

14The Kronecker product A ⊗ B of an m × n matrix A with a
p × q matrix B is a pm × qn matrix which is obtained by
replacing all entries of A by their product with the matrix B. Note
that A ⊗ ðB ⊗ CÞ ¼ ðA ⊗ BÞ ⊗ C≡ A ⊗ B ⊗ C.
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2. lines 34–38: , , ,
, , in which case the only

independent term is given by the matrix

K¼
�
0 0 0 0 0 0 4 −2 −2 1

�
; ð45Þ

and with ði; jÞ; ðm; nÞ∈Sð3Þ
2 , ðr; sÞ∈Sð1Þ

2 , and
k; l∈ f1; 2; 3g, resulting in 1 · ð6 · 6 · 1 · 32Þ ¼ 324
operators.

3. lines 39–43: , , ,

, , in which case the only

independent term is given by the matrix

K¼
�
0 0 0 0 0 0 0 0 −2 1

�
; ð46Þ

and with ði; jÞ∈Sð3Þ
2 , ðm; nÞ∈Sð3Þ

1;1, ðr; sÞ∈Sð1Þ
2 ,

and k; l∈ f1; 2; 3g, resulting in 1 · ð6 · 3 · 1 · 32Þ ¼
162 operators.

In total, the file 2L_1dC_1eC_2uC_2H.yml thus
encodes 324þ 81þ 324þ 162 ¼ 891 operators, as stated
in line 8 of Listing 2. The number of terms n_terms in
line 7 indicates that there are five independent combina-
tions, given by Eqs. (42) and (44) to (46).

C. SMEFT at mass dimension 12

The complete basis of operators up to mass dimension
12 for SMEFT is provided, in the format described in
Secs. III. A and III. B, in the Supplemental Material [28]

together with this paper. It took a few seconds to
generate the operator basis at mass dimensions 5, 6,
and 7, a few minutes for mass dimension 8 and 9, and
a few hours for mass dimension 10 and 11. At mass
dimension 12, the largest amount of time was spent by
AutoEFT on incorporating the permutation symmetry
of the operators with six gluonic field strength tensors,
which takes of the order of 104 CPU hours. For example,
for the type G6

L, the 2175 contractions of the field
strength tensors with the 15 independent Lorentz and
145 independent SU(3) tensors is reduced to only eight
independent operators. Their explicit expressions are too
long to display them in this paper. They are encoded in
the file

operators=6=6FL=6GL:yml

which is about 140 KB in size. Instead, as an example of a
dimension-12 operator, we display the following type of
eight-fermion operators in Listing 3:

L3eCL†d†2C u†C; ð47Þ

contained in the file

operators=8=4psi 4psiþ=

3L 1eC 1Lþ 2dCþ 1uCþ.yml

that is included in smeft_12.tar.xz.
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Listing 3: Content of file 3L_1eC_1L+_2dC+_1uC+.yml, which encodes the operators of Eq. (47).

In this example, there are two sets of repeated fields, L3

and d†2C . Lines 22, 27, 32, 37, 42, and 47 specify the
permutation symmetries of the generation indices i, j, k of
the three lepton doublets

ð48Þ

The corresponding sets of independent generation indices
are thus given by

Sð3Þ
1;1;1 ≡ fð1; 2; 3Þg;
Sð3Þ
2;1 ≡ fði; j; kÞj1 ≤ i ≤ j ≤ 3 ∧ i < k ≤ 3g;

Sð3Þ
3 ≡ fði; j; kÞj1 ≤ i ≤ j ≤ k ≤ 3g; ð49Þ

containing 1, 8, and 10 elements, respectively. The permu-
tation symmetries of the generation indices m, n of the two
down-type quarks are given by

ð50Þ

and thus the corresponding sets of generation indices

are Sð3Þ
2 and Sð3Þ

1;1 with 6 and 3 elements, respectively
[see Eq. (43)].
In Listing 3, all combinations of the symmetries

Eqs. (48) and (50) are present, and each combination is
given by exactly one term. Therefore, including the 33

generation multiplicities of eC, L†, and u†C, the total number
of independent operators is given by

ð1þ 8þ 10Þ · ð6þ 3Þ · 33 ¼ 4617; ð51Þ

in agreement with line 8 of Listing 3.

D. GRSMEFT at mass dimension 12

The complete basis of operators up to mass dimension 12
for GRSMEFT is provided, in the format described in Secs.
III. A and III. B, in the Supplemental Material [28] together
with this paper. As an example, we present in Listing 4 the
operators of type

CLL2eCd
†
C
2u†CD: ð52Þ
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Listing 4: Content of the file 1CL_2L_1eC_2dC+_1uC+_1D.yml, which encodes the operators of (52).

As indicated in Table I, the symbol CL denotes the left-handed Weyl tensor CL defined in Eq. (27). From the examples
above, the reader should by now be able to reconstruct all operators from this listing.
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E. Ancillary files

The complete set of SMEFT and GRSMEFT operators
up to mass dimension 12 with three generations of fermions
are published as Supplemental Material [28] together with
this paper. In addition, we provide a table with the numbers
of types, terms, and operators contained in a given family
(see Tables II and III as an example) as well as the
associated Hilbert series for each mass dimension. This
information can be extracted solely from the attached
operator files.
The operators are provided in the format described in

Secs. III. A and III. B. The files are included in the
archives smeft_<ndim>.tar.xz and grsmeft_
<ndim>.tar.xz, where <ndim> is the mass dimen-
sion.15 They are collected in directories as

operators=<N>=<family>=<type>.yml

where <N>, <family>, and <type> are the number of
fieldsN, the family and the type of the operator as defined in
Sec. II. B.Concrete examples aregiven inSecs. III. A to III. D.
This format makes it simple to access specific operators in
the set.
For SMEFTup to mass dimension 12, the size of the files

amounts to about 442 MB. This number seems to grow
roughly with the number of operators, from which we infer
that it will reach 1 TB at mass dimension 20, and 1 PB at
mass dimension 26.
The Hilbert series provides the number of operators per

type and thus constitutes a helpful check on our results. We
have compared our numbers for SMEFTand GRSMEFTup
to dimension 12 to the results for the Hilbert series as
obtained by ECO [12] and found full agreement. We have
further performed a number of consistency checks on our

results, for example that no two K matrices for a particular
operator type contain linearly dependent rows, etc. An
immediate comparison of the results at lower mass dimen-
sion to the existing literature is highly nontrivial though,
due to different representations of the final basis [3,4,9].16

A general conversion tool which would allow such com-
parisons is currently under development [30].

IV. CONCLUSIONS

We have evaluated the SMEFT and GRSMEFT operator
basis with three generations of fermions up to mass
dimension 12. They were obtained by reimplementing
the algorithm of Refs. [3,4,17] into a noncommercial
software. Aside from the results obtained in this paper,
we also confirm the completeness of the algorithm up to
mass dimension 12. The operators are provided in the form
of searchable and compact Supplemental Material [28].
In future work, we plan to extend the capabilities of

AutoEFT in various respects, for example to keep operators
that vanish by equations of motion [31], as they are needed
for the renormalization of the operators. Furthermore, we
plan to implement general basis transformations in the
spirit of Refs. [32,33], which would allow the fully
automated matching of EFTs to an ultraviolet complete
theory, for example by combining AutoEFT with methods
like UOLEA [34–37] (see also Ref. [38]).

ACKNOWLEDGMENTS

We would like to thank Svenja Diekmann, Jakob Linder,
and Maximilian Rzehak for constructive discussions. This
research was supported by the Deutsche Forschungsge-
meinschaft (DFG) under Grant No. 400140256—GRK
2497: The physics of the heaviest particles at the LHC,
and Grant No. 396021762—TRR 257: P3H—Particle
Physics Phenomenology after the Higgs Discovery.

TABLE III. GRSMEFT⊖SMEFT families at mass dimension
12. The complete table can be found in grsmeft_12.tar.xz
as table12.pdf.

Family Types Terms Operators

CLFL
2ϕ2D4 þ H:c: 8 160 160

CLFLFR
3D2 þ H:c: 24 96 96

CL
2FLFRCRD2 þ H:c: 6 24 24

..

. ..
. ..

. ..
.

CL
3ϕ2FR

2 þ H:c: 8 8 8
FL

2ϕψ†2FRCR þ H:c: 94 150 1350

460 6097 70528 3936965

TABLE II. SMEFT families at mass dimension 12.
The complete table can be found in smeft_12.tar.xz as
table12.pdf.

Family Types Terms Operators

FL
2ϕ2FRD4 þ H:c: 22 422 422

FR
5D2 þ H:c: 22 78 78

ϕ4FRD6 þ H:c: 4 96 96

..

. ..
. ..

. ..
.

FLψ
4FR

2 þ H:c: 128 1590 61398
ψ4ϕ2FRD2 þ H:c: 58 4504 161772

257 11942 472645 75577476

15Note that the file smeft_<ndim>.tar.xz contains the
complete set of SMEFT operators for mass dimension <ndim>
while grsmeft_<ndim>.tar.xz contains only operators
including the Weyl tensor. The full GRSMEFT basis is recovered
by the union of smeft_<ndim>.tar.xz and grsmeft_
<ndim>.tar.xz.

16This is even true for the comparison with the earlier results
based on the same algorithm, because further manipulations have
been applied to the final results in Refs. [3,4] in order to present
them in a more compact form.
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