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Predictions for muon electric and magnetic dipole moments
from h - pu*p~ in two-Higgs-doublet models with new leptons
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We calculate chirally enhanced corrections to the muon’s electric and magnetic dipole moments in
two-Higgs-doublet models extended by vector-like leptons, and we explore a sharp correlation between
h — p*u~ and the muon’s dipole moments in these models. Among many detailed predictions, for a
model with new leptons with the same quantum numbers as standard model leptons, we find that 0.38 <
tan f < 21 necessarily requires a muon electric dipole moment to be observed at near-future experiments,
assuming & — uu~ is measured within 1% of the standard model prediction for the current central value
of the measured muon magnetic moment. In all studied models, the predicted values of the electric dipole
moment can reach up to current experimental limits. Moreover, we show that in some models there can be
two sources of chiral enhancement, parametrizing the correlation between h — uu~ and the dipole
moments by a complex number. This leads to sign-preferred predictions for the electric dipole moment.
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I. INTRODUCTION

Recently, measurements of fundamental properties of the
muon have gained renewed interest in serving as harbingers
of new physics. Measurements of the standard model (SM)
Higgs boson decay into muons allow for a deviation by
more than a factor of 2 compared to the SM prediction [1],
while the most recent measurement [2] of the muon’s
anomalous magnetic moment, Aa,,, suggests that the exper-
imental world average is discrepant by more than five
standard deviations from the SM prediction of 2020 [3].
Current theoretical and experimental efforts aim to under-
stand this result [4,5]. Additionally, the muon electric dipole
moment has been a popular tool in studying the possible
effects of large CP violation from new physics [6].

In this paper, we calculate contributions to the electric
and magnetic dipole moments of the muon in a two-
Higgs-doublet model (2HDM), assuming a Z, symmetry
which enforces type-II couplings to SM leptons, extended
with vector-like leptons. We explore representations of
new leptons up to and including SU(2) triplets that were
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previously studied in SM extensions [7,8]. Such models
(and other possibilities, see for example Refs. [9-12]) can
generate simultaneous corrections to the muon mass and
dipole moments as &m, ~A*v?/M?, Aa, ~m,vRe[2’]/
167°M?, and d, ~ evIm[A*]/327°M?, where 2* and M?
are the products of the couplings and mass scales of new
particles. The corrections to dipole moments enjoy a chiral
enhancement of Av/m, compared to the naive estimate,
Aa, ~m’Re[2*]/167*M? and d, ~ em,Im[A*]/322*M?,
and allow for the largest scales of new physics to explain
the anomaly. Chirally enhanced corrections to the muon
dipole moments from vector-like leptons may also be
connected to new physics relevant for models of dark
matter [13-18] and the Cabibbo anomaly [19,20].]

In a 2HDM with type-II couplings (2HDM-II), these
contributions can be even further enhanced by factors of
tan> # [25,26] [where tanf is the ratio of the vacuum
expectation values (VEV) of the two-Higgs doublets]. For
the models not explored in [25,26], we find yet another
source of chiral enhancement. For all of the models that we
consider, we present complete expressions of both dipole
moments in the mass eigenstate basis. These formulas are
completely generic and can be applied to any model with

' Additional explanations for Aa, consistent with searches for
new Higgses can be accomplished exclusively in 2HDMs,
requiring light scalar and pseudoscalar masses below the electro-
weak scale and large couplings to leptons, such as in type-X and
flavor-aligned 2HDMs [21,22], and even in the general 2HDM
where flavor-changing currents are permitted [23]. A muon-
specific 2HDM can also accomplish this [24].

Published by the American Physical Society
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new leptons and an extended Higgs sector. These could be
applied, for instance, to other types of 2HDMs [27-34] or
more generic extensions of the SM with vector-like leptons
and new scalar particles [33,35-39].

In addition to calculations in the mass eigenstate basis,
we also present results using a SM effective field theory
(SMEFT)-like 2HDM effective field theory working at
dimension six, where the SU(2), x U(1), symmetry is
linearly realized and both Higgs doublets are kept light
while vector-like leptons are integrated out. These results
reproduce the leading-order v>/M? corrections in the mass
eigenstate basis. We find that working in the so-called
Higgs basis [40-43] greatly simplifies the matching cal-
culation, leading to strikingly simple parametrizations for
the muon dipole moments.

Although chirally enhanced dipole moments can allow
for extremely heavy scales of new physics currently out of
reach at the Large Hadron Collider (LHC) and possible
future colliders, it was recently shown that these corrections
are highly correlated to the 4 — u*u~ decay rate [9,44-50],
although this was explored earlier for lighter new leptons
[7,8]. In particular, the dimension-six operator generating
the muon dipole operators is directly proportional to
the one that modifies the muon mass by a real factor, k.
This allows for a simultaneous parametrization of three
observables—Aa,, d,, and h — u*u~—through a single
model-dependent factor, providing a novel way to test high
scales in the theory that are directly inaccessible to current
and future colliders. In a 2HDM-II extended with vector-
like leptons, the proportionality factor can now be complex
due to the interference of multiple sources of chiral
enhancement. This was first pointed out in a model-
independent fashion in [47,48]. The complex factor leads
to asymmetric and sign-preferred predictions of d,, pre-
viously not investigated in the literature. We find a similar
behavior can also occur when including subleading loop
corrections to the muon mass. The correlation of muon
observables can be used to obtain novel bounds on the
masses and parameter space of 2HDMs with vector-like
leptons inferred from current and future limits of A — u*p~
and projected measurements of d,,.

The paper is organized as follows. In Sec. I we
introduce models of vector-like leptons in the context of
2HDM-II allowing for complex Yukawa couplings and
discuss our conventions for the scalar potential. In
Sec. III we present general formulas for contributions
to Aa, and d, in the mass eigenstate basis. In Sec. IV we
present calculations of the dipole moments in the 2HDM-
IT effective field theory. In Sec. V we explore the
connection between Aa,, d,, and h — uuT, present
detailed results, and extend discussions from previous
works. We conclude in Sec. VI. We also include lengthy
appendices providing details of the 2HDM scalar poten-
tial, representations for new leptons and our conventions
for calculations in the mass eigenstate basis, approximate

formulas for couplings of leptons, and further details of
the effective field theory calculations.

II. 2HDM-1I WITH VECTORLIKE LEPTONS

A. Model setup and parameters

We consider a 2HDM extended with charged vector-
like lepton doublets L, ; and singlets £, g, as well as neutral
vector-like singlets N, z. We assume a Z, symmetry,
enforcing couplings of the SM leptons to the Higgs doublets
asin atype-Il 2HDM. This model was first considered in [51]
and studied extensively in [25,26] in order to explain the
anomalous magnetic moment of the muon. The most general
Lagrangian assuming only mixing of second-generation
leptons with new leptons is described by

LD =y, lugHy— gl ExHy— A LipugHy— AL EgH,
_ZHZELLR - KNiLNRHu - KZ‘LNRHM — R‘HZNLLR
_MLZ‘LLR_MEELER_MNNLNR+H'C' (1)

Quantum numbers of the fields are given in Table L
Couplings of H; and H, to other SM fermions are like
those in the typical type-II 2HDM. Additional models with
different representations of vector-like leptons are described
in Appendix C. An alternate version of these models exists
motivated by the minimal supersymmetric SM extended
with vector-like leptons [25]. Because the superpotential is
holomorphic, terms involving H 2 and H;, are forbidden (but
similar terms appear through H, and H,, respectively). In
principle, each of the eight couplings and three vector-like
masses can be complex. Field redefinitions can be chosen
such that several phases of the parameters are unphysical.
The Lagrangian in Eq. (1) admits four additional physical
phases (two in the charged and two in the neutral lepton
sectors) that cannot be rotated away. For example, we could
take the mass parameters M; g v and all Yukawa couplings
to be real except for A1, 2.k, and k (although we do not make
this assumption). We explore the impact of these complex
couplings later in Sec. III.
The doublet components are defined as

v Lo H HO
u= (o) tn= (o) 1= (i )- 1= ()
1273 Ly g H; H,
(2)

TABLEIL SU(2), x U(1)y x Z, quantum numbers of standard
model leptons, Higgs doublets, and vector-like leptons. The
electric charge generated after EWSB is Q = T3 + Y.

Iy MR H, H; Lyg Nig Erg
FF; 2 1 2 2 2 1 1
I R S T
Z + - - + -
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After electroweak symmetry breaking (EWSB), the
neutral components of the Higgs doublets develop VEVs

(H%) = v, and (HY) =wv,, whereby v = /v +12 =

174 GeV and their ratio is parametrized by v,/v; =
tan 5. The diagonalization procedure for rotating these
fields to the physical basis is outlined in Appendix C
and also provided for other representations. Integrating out
the heavy lepton fields reduces the above Lagrangian to

LD _yﬂZLMRHd - CdezLﬂRHd(Hj[Hd) +H.ec, (3)

AL/IEZ mﬁE
Cpy = = . 4
i <MLME) <vz “

LE
i

where

The parameter m,” would be the muon mass if y,
were zero. The effective field theory Lagrangian addi-
tionally contains dimension-six operators such as
C”HMZLyRHd(HZHM); however, after EWSB, they vanish
at tree level and do not contribute to the muon mass. In
Sec. IV we explore nonzero contributions of these types of
operators to the muon mass at loop level via quartic
interactions in the scalar sector.

After EWSB, the physical muon mass m,, is given by

mﬂeidzmﬂ ~y,v4+ mﬁE’ (5)
and the muon Yukawa coupling is
M, =y, cosf+3mLE v~ (mﬂei"”"lu +2mLE) v, (6)

Since (4%,)sm = m, /v, the decay rate of h — u*pu~ com-

pared to its SM rate is
e BRO ) L
T BR(h =t g my/0?

—ith —i 2
144 <_Re[m5Ee _"]> 44 (R_e[mﬁEe “]>

my, my,

Im ml;Ee_i(ﬁm}, 2
+4 <7[ - ]) : (7)

my,

which is currently limited by R_,,+,- < 2.2 [1].

B. Softly broken 2HDM potential

The most general scalar potential of the two-Higgs
doublets, H; and H,, consistent with our conventions
while allowing soft Z,-breaking terms is given by

’In 2HDM models with a Z, symmetry, the doublets are
usually defined as ®; = (¢;, v; + #?/+/2)", which transform as
&, - —®; and ®, —» +D, [52]. Matching to our definitions of
H ; , requires rotating the fields via ®; — H,; and ®, — —ic?H},
obtaining the potential through V(®,,®,) — V(H,, H,).

V(Hd’Hu) = m%(Hled) + m%(HzHu)
. 1
+mdy(H) - Hy+ Hy - H,) +§/11(H2Hd)2

1
+ 5 Aa(HLH,)* + 25 (HyH o) (HLH.,)

+J4(H}-H})(Hy - H,)

LA P H P (8)

where the explicit “” contracts SU(2) doublets through
the antisymmetric €;;, e.g., H,-H,=¢;(H,),(H,), +
€1(Hy),(H,), = H; Hy — HYHY. The exact Z,-symmetric
potential is modified by the additional free parameter m?,
which is required to softly break the symmetry. For further
details, see Appendix A.

After diagonalization of the scalar fields to the mass
eigenstate basis, the quartic couplings 4, 4,, 43, 44, and A5
can be written as

1 .
A= (F) (m}cos’a+ misina —m3, tanf3),
v
d

! 2 sina + m2cos? iy
m?sin’a +m a——=1,
202 a h tan 3
1 sin2a m?
NV (o2m2. 2 _ oy RN
(21}2) < M= <sin2ﬂ> (i = mj) sinfcos 3
1 m?
= — 2 -2 2 12 ,
* <2v2> <mA M= sinfcos

_ ! m,
5= <2—112> (mf\ - sinﬂcosﬁ) ) ®)

: 2 s 2 2 2 ki :
If we consider mj ~ mj ~ my,. > my, this regime also

enforces that « — f — /2 (i.e., the alignment limit), in
which the light eigenstate & behaves as the SM Higgs boson
[52]. In this limit, the above couplings highly simplify to

A

A3

1 .
A = (2—1;5> (m%I’A’Hi sin’f — m?, tan f3),

1 m?
~ 2 2 12
Ay (2%) <mH,A,HiCOS 14 _t—anﬂ>’

! 2 m,
13 = —/14 = —15 ~ ﬁ mH’A’Hi —m . (10)

Notice that these couplings are not independent from one
another in the decoupling limit, but rather 1, = 1,/tan*p
and 13 = 1,/tan?$. In addition, the stability conditions of
Eq. (A1) all reduce to the same lower bound:
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2 mi,
> — . 11
Mt sin fcos f (11)

Now, this range is further restricted by imposing per-
turbative unitarity constraints on the above couplings. The
condition for unitarity is expressed in the form of partial-
wave scattering from W* and Z bosons in the high-energy
limit, which are realized by the Goldstone boson equiv-
alence theorem through their longitudinal (scalar) modes in
2 — 2 scattering [53-55]. Applying this analysis to the
softly broken 2HDM-II (see [56—58] for details while using
the condition for unitarity in [59]), partial-wave unitarity
and perturbativity require |,

Applying these unitarity constraints on each coupling,
we find that the heavy Higgs mass is bounded above:

2 2
Ai]: m2 . < S0 o
HAH™ = tan?  sinfcosfB’
2
m
2 < 8zv’tan’p + —12—
Ao m HAHi p sin ff cos f3
2
m
1 © m? <8m? +——2 . 12
43451 HAH* sin fcos 12)

For an exact Z, symmetry, these unitarity conditions lead to
upper limits on each individual Higgs mass discussed
in [60,61], similar to the Lee-Quigg-Thacker upper mass
limit obtained in a single-Higgs-doublet model [53,54].

However, with a softly broken Z, symmetry, m% ~ m? =~

2

my,. can be arbitrarily large when appropriately choosing

m?3, for a given tan 3. In the limit m?, > 8zv?, the bounds
in Eq. (12) all become equal. For sufficiently heavy
my; =~ my ~m7,., the entire range of tanf is allowed by
direct searches [62,63].

III. CONTRIBUTIONS TO THE MUON
DIPOLE MOMENTS

We turn our attention to calculating the anomalous
magnetic (Aa,) and electric (d,) dipole moments of the
muon. They can be extracted via the effective Lagrangian
(where we use e > 0 and the time-like metric)

1/ e _ i
LD 3 <ﬁ> Aa,jctuF,, — Ed"ﬂaﬂ ysuF,,. (13)
U

which are both calculated via Fig. 1. The contributions to
(9 —2), discussed in [25] are not specific to any type of
2HDM and, in a similar manner, the contributions to dﬂ
presented here are general for any model with an extended
Higgs sector. For completeness, we list contributions to
Aa, in addition to d,. Couplings to mass eigenstates are
defined identically as therein but for complex Lagrangian
parameters studied here and are collected in Appendix B.

e = oe, - M
gl
H* €q
S CD S | H mT
v v
FIG. 1. Contributions to Aa, and d, from diagrams involving

Z, W=, and Higgs bosons with new fermion eigenstates. The
bottom four diagrams are for representations involving doubly
charged fermions.

Approximate formulas for couplings relevant to (g —2),
and d, are given in Appendix C.

In the mass eigenstate basis, charged or neutral lepton
eigenstates f, couple to the Z boson through

2 (fLaJ’”gff”fbbe + J_CRa?’”gif”fbeMZw (14)

and generate contributions to Aa, and d, as

8 = (s ) X Il + 7)o (x)

82°m3)

— mg,Re[gg" (97"*)"]G(x5)], (15)

4 = (g 3o medmlo 616,09

where x4 = m; /M7 parametrizes the following loop
functions F,(x) and G,(x):
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5x% — 14x +39x% — 38x + 8 — 18x% In(x)

Fzlx) = 12(1—x)* ’

(17)

x> +3x — 4 —6xIn(x)

Gy(x) = — CTE : (18)

In a similar way, couplings of charged and neutral leptons
to the W* boson are given by

LD Brargr e, + irar' g " ery)W; +He.  (19)

The corresponding contributions to Aa, and d, are

W _ mll Wy p 2 Wy, u 2 a
Aa, = <16n2m2 ) 24:5[ u(19R +lgr "17) Fw(xiy)
— my, Relgg " (g7 ") Gy (5], (20)
W _ ¢ Wuap ¢ Wuapy«
dif = (m) ;m Im{gg " (g7 *") |G (xfy).
(21)
where x§, = m? /M parametrizes the loop functions

Fy(x) and GW(x)
4x* — 49x3 + 78x% — 43x + 10 + 18x% In(x)
6(1 —x)* '
(22)

Fy(x) =

—x3 4+ 12x% — 15x + 4 — 6x? In(x)
(1-x)3 ’

Gw(x) = (23)

For neutral Higgs scalars ¢p = h, H, A, their couplings to
charged leptons are defined as

1 -
L£L> —\ﬁémﬂ‘faeh érpp +H.c., (24)

where their contributions to Aa, and d, are given by

o m ¢ 2 a
Ay = <327r Mmzp) a245[ oAl MW )F¢(x¢>
o+ e RelAfe, ,4]Gy(x3)], 25)

di = (64ﬂ2 2>Zm Im[Afe, A2, Gy(x4).  (26)

with x§ = mg /mj and

x3 — 6x% + 3x + 2 + 6x1In(x)

Fyx) = 6(1—x)* ’

—x? +4x -3 —2In(x)

Gplx) = (1—x)

The couplings that describe interactions between charged
and neutral leptons to the charged Higgs boson H* are

LD by M, epyH — &1, M) bpyH™ +He.  (29)

The contribution from the charged Higgs to Aa, and d, are

—m
A H* _ ([ "k j’Hi /'lHi F Y
aﬂ (167[2111%#) 24:5[ (| Valt | HYg ) H* (xHi)
oy, Reld 4, |G (x5 (30)

+ L L .
di” = <3zﬂ2m2 )Zm JmA A0 Gy (x4,), (31)

a=45
whereby x¢ . = m; /m7,. and
2x% +3x2 — 6x + 1 — 6x? In(x)
Fp=(x) = . (32)

6(1 —x)*

—x? 4+ 1+ 2xIn(x)

GHi(x) = (1 _x)3

(33)

Models involving doubly charged fermions coupling to
the W* boson and a singly charged fermion are described by

Wepe,™ P

o Weye, ™ A p— —
LD (e g, " epp + era 7" gr ery)W, +H.c.

(34)

Contributions from the W* boson to Aa, and d, are
given by

30t = (ot ) 3 i

4.5

+ |gW;4e | )F/ ( a——)
= e Relgl (G IG L (35)

7 = () Sl 04,

(36)
where x{;~ = m2— /M3, parametrizes the loop functions
Fiy(x) and Gl (x),

Fiy(x) = =(Fw(x) + 4F2(x)), (37)
Gy (x) = —=(Gw(x) +4G(x)), (38)

as defined above. Finally, the couplings that describe
interactions between singly and doubly charged fermions
to the charged Higgs boson H* are
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= N N A_— E N —
LD —ep Ml -tpy HY = ey A, epyH™ +He.  (39)

The charged Higgs contributes to Aa,, and d, by

—m
Adll” = <27ﬂz> [m,, (AL
g 1677 my,. aZél:S M
+ P (x97)
+ mg-Re[M A 1G. (xs77)],  (40)
+ e + +
dH _ /1H /IH G/ a—— ,
= (o) 3o I 10, )

(41)

whereby x{" = m —/ m? 7+ and with the functions defined
above,

Flu(x) = =(Fps(x) + 2F(x)), (42)

Gl (x) = (G- (1) +2Gy (). (43)

IV. 2HDM-II EFFECTIVE FIELD THEORY

From Egs. (A2)—(AS5), one can see that the SM degrees
of freedom h,G,G* are mixed with the new scalars
H,A, H* whose masses we consider as being anywhere
between the EW scale and the masses of new leptons. It is
more convenient to work in the Higgs basis [40—43], where
the SM and additional Higgs fields are separated into two
doublets H; and H,, respectively. Details of the Higgs basis
are listed in Appendix A and will be used exclusively in the
effective field theory calculations from now on.

Dimension-six operators that modify the Higgs coupling
to the muon as well as generate contributions to the muon’s
dipole moments via a chiral enhancement were studied
extensively in [9,47,48,64]. Models involving UV com-
pletions where two new fermions mix with left- and right-
handed muon fields through the SM Higgs, which generate
C,n at tree level at the matching scale, are called tree
models. Completions involving either a single scalar and
two fermions (fermion-fermion-scalar [FFS]) or two scalars
and one fermion (scalar-scalar-fermion [SSF]), where C, 5
is generated at one loop, are referred to as loop models.
Other kinds of models include bridge models, where UV
completions generate C,y at one loop purely from new
leptons; however, a tree-level contribution is also present,
proportional to the muon Yukawa coupling. In this paper,
the 2HDM-II extended with vector-like leptons is a type of
tree model that exhibits this same behavior, whose relevant
Lagrangian is

LD _yuzLﬂRHd - CyH,,ZLﬂRHd(HZHd)

1) 5 2) 5
- LI-}MZL/‘RHd(HzHu) - C/SI;L‘IL/'{R : H:;(Hd -H,)

3) 3 T Vi
— C\) Toug - HY(HY - HY) = Cypli 0 ugH B,
— C”WzLG’uDIMRTaHdWﬁU + H.c. (44)

The mass operators with Cflll‘ff)

are generated at one loop
for all models we consider. In the Higgs basis, the relevant
part of the Lagrangian above containing the light doublet

Hl is

LD _yﬂlL,"tRHl COSﬂ H lL/lRH (H H )COS ﬂ
- C;JBZLG; ,uRHlB/w COSﬁ

— Cywlp o™ ugt®H; W, cos f + H.c., (45)
where C,y = C,py, + (C/(llh),u + C(,} + CLH ) tan® B,
including loop corrections. Note that there are additional
operators involving H,; however, they do not contribute
to the mass or dipole moments. After EWSB, the Wilson
coefficients C,5 and C,y combine to generate the muon’s
dipole moments in Eq. (13) and we find

4m,v, _
Aa, = - <5> Re[C,, e™m], (46a)
d, = 2v,Im[C,, e”"m], (46b)

where C,, = cos Oy C,p — sin Oy C,yy and Oy is the weak
mixing angle. We now present the contribution to Aa, and
d, for the five representations of vector-like leptons listed
in [7], calculated in the unbroken SU(2), x U(1), theory
from diagrams in Fig. 2. Allowing for only down-type
couplings in the limit M; ;> v, x (A1, g, 4,4), Aa, and
d, become

1 4
Ady == 1672 <m )Re[ Ee™m](Q) + Q, tan? B),

(47a)

1
= gy () mbngFe (@) + Qorar ). (470

Notice how each representation experiences a tan’j3
enhancement in addition to the standard chiral enhance-
ment. The factors Q, = Ql(xg_)E) and 9, = Qz(x(Lz,)E)
represent contributions from light (SM) and new scalar
fields, respectively, parametrized by x(L E) = M% £/ M3, for
arbitrary masses of new leptons in each representatlon.
Depending on the model and how the diagram is closed in
Fig. 2, contributions may also involve the A coupling.
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B,W® B,W®
Hl T - S ;’rrﬂ T - S /JIHJ‘ Hl
: Hy(Hj) | R Hy(H3) | RN i
— = = L > = : = >
R T E B HR L E I
B,W*
HL(H‘D ’ \‘\ ”J-rlr
1ir T E 1
,

FIG. 2. Generic diagrams in the Higgs basis contributing to C,3 and C,y containing heavy leptons coupling to the muon. Different
diagrams are generated for different representations of vector-like leptons. The B and W* fields are understood to attach to all possible

locations in the loop.

To obtain Eq. (47) in a simplified way, we distinguish
situations where A* = 0 and A* = 1 in the following text,
while expressions containing the full mass dependence on
Q) , with arbitrary couplings are presented in Appendix D.

If we consider the decoupling limit where m% =~ m3 ~
m?,. > mj, then the mass parameter M3 in the Higgs basis

becomes M3 =m? .. —24v*/tan* f. We find that

My ~my 4 g+ > m, can be easily achieved for masses
myap+ and My p 23 TeV and couplings up to the

perturbativity limit.> If there is one scale of new physics

such that M = M; p ~ M,, then we may take xj(;) - 1in

Q,. In this limit, the SM fields are significantly lighter
compared to the vector-like leptons and Q; is well
approximated when x,(é) — o00. The obtained expressions
for (Q, + O, tan? B) agree with the leading-order contri-
butions of Aa, and d, calculated in the mass eigenstate
basis in each representation4 and are collected in Table II.

Contributions involving the 1 coupling arise from
diagrams where each heavy fermion propagator contains
its mass insertion. However, diagrams where each propa-
gator contains its momentum term are responsible for
generating contributions from A. In the latter situation,
diagrams involving A in the top row of Fig. 2 vanish
due to on-shell equations of motion for the spinors,
whereas the bottom diagram remains nonzero when

This regime is a valid range for explaining Aa,, for couplings
>0.5. See [25] for details.

Refer to Sec. III using approximate diagonalization matrices
and couplings in the mass eigenstate basis given in Appendix C,
expanding to ~O(v? /M7 ;).

integrating over loop momentum entering the numerator.
This happens for 2_3, @ 1_1,2_3, & 3_;, and 2_,,, ®
3, representations. Additionally, note that only the tan” 3
term is affected by A; contributions from the light Higgs
doublet precisely cancel in the limit where the masses of
new leptons are much heavier than the EW scale.
However, contributions from the now-heavy doublet
H, remain nonzero when the masses of leptons are
comparable to M,.

When we consider the other limit, m;, < M, < M, all
terms with A vanish and Q, — 9, = Q. For all represen-
tations given in Table II, Q reduces to 1, 5, or 9. Note that
the heavy Higgses are not required to be near the EW scale;
this is already a good approximation for M, ~ M /4.

Scenarios involving the mixing between new heavy
leptons and the muon via only the SM Higgs were first
studied in the mass eigenstate basis in [7,8,65] and revisited

TABLE II. Summary of Q; + Q,tan?f factors for repre-
sentations of L @ E fields entering Aa, and d,, evaluated in
the decoupling limit and assuming one scale of new physics,
x§}> — oo and xﬁ? — 1, with 2* = 0 (second column) and A* = 1
(third column). The Z, charge assignments for L and E are as
they are in Table I.

L®E =0 » =2

2,01, 1 + tan? 8 1+ tan? B
21, D3, 9 + 5tan’ 9 + 5tan®
25,@1, 5+ %tanzﬁ 5+ 3tan’ B
250@03 5+tan?p 5+ 3tan’p
2,203 1+ Gtan’ g 1+ tan? B
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H, H] H} H,

H, H,

\‘\ /‘/

Hi(H]) . el Hi(HY)

# 4
hE T, Lr | B, Er 1,

FIG. 3.

Diagrams contributing to the Wilson coefficient C,p, 1-loop in the 2_,,, @ 1_; representation. Arrows denote chiral flow.

Note that there are additional diagrams similar to the second and third row where two mass insertions are replaced with momentum lines

in the loop.

in [48,64] in the SMEFT landscape. To provide insight into
these scenarios, although unphysical, one can take the limit
tanff — 0 in Eq. (47) which isolates loop contributions
only from the SM doublet H;. We find agreement with
results in [64] in every representation. However, we
disagree with [7], notably, in representations including
doubly charged vector-like fields.

The quartic couplings 1, 4,, 43, 44, and A5 in the scalar
potential are relevant contributions at the one-loop level to
the Wilson coefficient C,p, . In principle, the combination
of tan 5, M,, and large couplings can generate sufficiently
large contributions to overcome loop-suppressed effects,

(tree)
CﬂHl -

mf,E / vf’i. Turning our attention to the main representation
of the paper, the contribution to C, 5, assuming only down-
type couplings and the same common mass M, p = M for
new leptons up to one loop in Fig. 3 is

competing with the tree-level contribution

LE 3A
Cunt, = <%> [1 - <F7z32> K(x}7) )tan?p
+<—7>@@$km%+L&ﬁﬁm%)

+ (20)" + AP (N (xjy )eosp

(1.2)

where x,,” parametrizes the loop functions

—x2 X X2 n(x
K(x) = +(1 jx)zl )

(49)

=X’ 4 x4 2x%In(x)

L) 1—x7

(50)
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x® —4x? + 3x + 2xIn(x)
2(1 - x)?

N(x) = — (51)

If we assume once more that x,ﬁ? — oo while using A; =

2J,/ tan?  in Appendix A, the muon mass is additionally
modified by the above Wilson coefficient:

i 34 2
mye' P =y, + mhE [1 - <8—”12> K(x?)

+ <1/61/_1 )(coszﬁ+L( (2))sin2p)
(a2 ) 4P + "+ ) eos'p
+ 2N(x§§>)sin2ﬂ)] . (52)

In principle, for the representations listed in [7], one can
construct similar diagrams to Fig. 3 and calculate its full
one-loop correction to the muon mass from the same
dimension-six operators. However, we expect their con-
tributions to be of similar order in all cases and it suffices to
present results in the 2_;, @ 1_; representation. We will
discuss the impact of these loop effects in the following
section.

V. RESULTS

The current experimental world average of the muon’s
anomalous magnetic moment deviates from the SM pre-
diction by 5.1¢ [2,3],

Aa, = (2.49 +0.48) x 1077, (53)

and the current upper bound on the muon’s electric dipole
moment is [66]

d]<19x%x1072¢ . cm. 54
u

The Fermilab Muon g —2 Collaboration estimates an
improvement in d, up to a level of [67]

|d,| <107e-cm, (55)

whereas the Paul Scherrer Institute (PSI) intends to host a
new experiment involving the frozen-spin technique [68],
and projects a measurement of

|d,| <6x107¢-cm. (56)

Precision electroweak measurements of Z and W=
bosons constrain possible modifications of couplings to
the muon at the 0.1% level which, in the limit of small
mixing, translate to the following bounds on 4; and Ag [25]
specifically in the 2_;,, @ 1_; model:

/1L Vg AEvd

<0.04,
M, 0.0

<0.03, (57)

E

respectively, at 95% C.L. Additionally, we impose a bound
on the mass parameters M; and Mg, such that M; >
800 GeV and M > 200 GeV to generically satisfy con-
straints placed by searches for new leptons [69-71].

A. 2HDM-II ellipse of dipole moments

It was first pointed out in [47,48] that the connection
between the three observables h — ptu~, Aa,, and d, is a
byproduct of a correlation between the Wilson coefficients
that modify the muon mass (C,y, ) and generate the muon
dipole moments (C,,) through a real model-dependent

Hy
factor k. In the 2HDM-II, this relation is

k
(hﬁ:;ggﬁ@r

(58)

This connection parametrizes the new physics contribu-
tions to the dipole moments and modification of & — ™ p~
in a given model on an ellipse defined by

kv?Aa 2 kv?d)\?
Ryopiv = L1 ). (59
h=wn ( Zmﬁ ) +(em > (59)

i

This is derived from rewriting the definition of R;_,,+,- in
Eq. (7) in terms of the moments in Eq. (46). The k factor is
defined for a class of models in which C,; is generated at
either tree or loop level [47,48]. Although k may include
radiative corrections, we will not consider their effects until
Sec. VC.

From Eq. (47), the k factor for the 2HDM-II extended
with vector-like leptons is

64n?

“=lo T oup) (60
which is generalized for different representations as sum-
marized in Table II. As follows from Eq. (59) as well as
mentioned in [47], only models with £ <19 or 483 <k <
750 are consistent with Aa, within 16 and |d,| =0
assuming R;_,,+,- = 1 & 10%. In other words, models
with 1.31 < (Q; + Q,tan? B) <33 or (Q; + Q, tan? f) <
0.84 necessarily require a nonzero value for |d,| with the
expected precision level of R),_,,+,- at the LHC. Further
improvement of the precision of Rj_,,+,~ to 1% would
extend these ranges to 1.28 < (Q; + Q, tan?f) <427
or (9, + Q,tan’ ) < 0.86.

When heavy Higgses are significantly lighter than
vector-like leptons, we saw in the previous section that
Q,=0,=0=1,5, or9 for all five representations. In
this limit, the k factors become k = 64z%/Q(1 + tan? §). In
Fig. 4, we see that as Q increases for fixed tan /3, the center
of the ellipse shifts to larger vales of Aag, and d,. The

experimental value of Aa, restricts the parameter space of
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o 2HDM + VL Rhoptu- tanp =1
— 0=1 === Rhop+u- =22
— 0=5 Rhop+u- =1%10%

15 4

dy % 1022 [e-cm]

-20

o 2HDM +VL Rhoy+u- o=1
— tanB=1 — tanB =50

15] — tanp=2 === Rhop+p-=22 /
— tanB=5 Rhsptu- =1%£10%

dy % 1022 [e-cm]

-1 0 1 2 3 4 5 6
Aa, x 10°

FIG. 4. Contours of R),_,,+,- in the Aa, — d, plane for tan # = 1 when Q = 1, 5, and 9 (left) and Q@ = 1 when tan# = 1, 2, 5 and 50
(right). Solid lines correspond to the SM prediction, R),_,,+,- = 1, while the shaded region extends to +10%. Dashed lines correspond to
the current upper limit on R,_, ,+,- = 2.2. A colored x corresponds to the center of its ellipse. Dark and light green regions correspond to

the +-1¢ and 420 regions of Aa,, respectively.

models to specific ranges of d, and R),_, ,+,-. For example,
for tanf = 1, models with Q@ =9, 5, and 1 predict |d,,|
between ~(6-12) x 1072%¢ -cm, ~(5-8) x 1072%¢ - cm,
and ~2 x 107*%¢ - cm, respectively, while explaining Aa,
and assuming Rj_,,+,- lies within 10% of the SM pre-
diction (left plot). Predictions from an extensive range of
tan § for Q = 1 are shown in the right plot. Note that in
different ranges of tan f3, there are constraints on my 4 y-=.
The results do not depend significantly on these masses and
we assume they are sufficiently large to evade the limits.

In Fig. 5, we show the full range of d, allowed for
Ry~ £22 with @ =1. For tanf =1 and 5, the
region is limited up to |d,| ~3 x 107*?¢-cm and up to
|d,| ~33 x 107*¢ - cm, respectively. As tanf increases,
larger couplings are needed to explain Aq,, for fixed masses
of new leptons. Limiting couplings only by perturbativity
[while satisfying precision measurements as in Eq. (57)],
|d,| can reach up to ~300 x 107*?¢ - cm for tan 8 = 50.
This is just above the current experimental limit.

We show the full range of R;_,+,~ consistent with
experiment and predicted values of |d,,| for the central value
of Aa, as tan 8 varies in Fig. 6 for models with @ = 1. The
solid and dashed lines represent the smaller and larger of the
two solutions for tan # [or k through Eq. (60)] that predict
the same value of |d,| and R, ,+,-. When 0.41 < tan 8 < 6.4,
Ry, = 1 £10% necessarily requires values of d, that
can be seen at PSI. As tan f increases, the predicted range of
|d, | extends from zero to current experimental limits. Further
assuming R;,_,+,~ = 1 & 1% extends the range of tan f§ that
can be fully tested at PSI to 0.38 < tan# < 21. Note that the
blue hatched region is where the top Yukawa coupling
becomes nonperturbative.

In the left plot of Fig. 7, we plot curves explaining Aa,
within 1o for a common scale of new physics versus the
size of couplings for different values of tanff = 1, 2, 5, 20,
and 50 as well as the SM+VL scenario for @ = 1. As tan 3
increases, the slope of the contours increases and further
limits the allowed range of the predicted mass spectrum.
In the right panel, the red and blue curves highlight the
behavior of, respectively, R;_,,+,- = 0.9 and 0.99. With
increasing levels of precision on R;,_,,+,-, we see that the
maximum scale of new physics becomes more limited,
decreasing as R;_,+,~ — 1. According to Eq. (59), a
nonzero d,, may increase R;,_,,+,~, meaning that measuring
d, # 0 will infer a scale of new physics that is always lower
than the corresponding maximum scale allowed in the
left plot of Fig. 7. Given the current upper limit on
R+~ < 2.2, the absolute maximum scale of new physics
occurs at ~47 TeV, agreeing with numerical results for
randomized scenarios with couplings up to the perturba-
tivity limit in [25,26]. Even when the precision increases
closer to the SM-like scenario Ryt = 1, the scale
will only slightly decrease to ~45 TeV from above. Due
to the quadratic form of Eq. (59), when a given value of
Rj,_,+y~ < 1, there are two positive, distinct solutions for k
[or for tan 8 through Eq. (60)] corresponding to the same
value of Ry_,,+,-. In the right panel, the dashed (solid)
curves represent the smaller (larger) of the two k solutions.
Conversely, when R),_,,+,~ > 1, there is only one solution
that is positive and one that is negative. From Eq. (60)
and Table II, we see that k is always positive [even
when considering the full mass dependence of Qz(x/(vz))],
meaning that solutions where k <0 for R,_,,+,- > 1 are

never possible (as opposed to some specific FFS- and SSF-
type scenarios considered in [48]). For example, when
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Contours of R,_, +,- in the Aa, — d, plane for Q = 1 when tan # = 1 (top left), tan # = 2 (top right), tan # = 5 (bottom left),

and tan # = 50 (bottom right). Solid purple lines correspond to R;,_,,+,~- = 1 (SM prediction), while the purple shaded region extends to
+10%, if possible. An X corresponds to the center of the ellipses. Dashed black lines represent the boundary excluded by R),_, +,- > 2.2
in shaded grey (this region is not relevant for tan 8 = 50). The hatched grey region shown for tanf# = 50 is restricted by both

perturbativity and EW precision constraints on couplings.

d, — 0 for the dashed red (blue) curves, future LHC
precision measurements of i,’j,, at the 10% (1%) level will
rule out models with tan § < 6.4(21), restricting the mass
spectrum to M < 18(10) TeV for Yukawa couplings up to

= = -9
1020 271 tanB Aa,=2.49 x 10
—_ 10721 4
S
(9]
)
=
kS
-_— 10722 4
10723 T y T y T T f T
0.00 0.25 0.50 0.75 1.00 125 150 1.75 2.00

Rh-u+u-

the perturbativity limit, \/4z. However, if we consider the
other solid red (blue) branches, the mass limit approaches
M ~45 TeV for both R,_,+,- = 0.9(0.99), restricting
tan # to <0.31(0.26), respectively, which is close to (in)

= = -9

o0 271 tanp Aa,=2.49 x 10
—_ 10721, .
S
(]
2
E!
S
e 10722,

10723 T T T 4 f T T

0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100
Rhsp*u-

FIG. 6. Left: contours of tan 3 for predictions of |d, | with respect to R),_, ,+,~ assuming the central value of Aa,, for Q = 1. Projected
sensitivities from Fermilab and PSI experiments are shown respectively by dash-dotted and dotted lines. The blue hatched region is
where the top Yukawa coupling becomes nonperturbative. Right: contours for tan f when R, ,+,- = 1 £ 0.1.
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Left: common scale of new physics for models with Q = 1 for the SM+ vector-like leptons (VL) case, tanf = 1, 2, 5, 20, and

50 required to explain the central value of Aa, (solid) and the 1o region (shaded) for a given overall size of couplings with d, = 0.
Right: range of |d,| with respect to the maximum mass needed to explain the central value of Aa, for several values of R),_, ,+,- = 0.5,
0.9, 0.99, 1, and 2.2. Dashed and solid lines represent the smaller and larger of the two solutions of Eq. (59). The dash-dotted maroon
line corresponds to tan # = 1. The shaded light blue region is where the top Yukawa coupling becomes nonperturbative. Projected
sensitivities from Fermilab and PSI experiments are given by grey dash-dotted and dotted lines, respectively. The grey shaded region is

where the model violates electroweak precision constraints.

the region where the top Yukawa coupling is nonperturba-
tive, as indicated by the light blue region. These branches
can be extrapolated to the left figure and lie between the
black and cyan curves.

When comparing with the FFS-type models with dou-
blets and singlets discussed in [48], both model types have
k o« M* and thus have identical profiles and shapes up to
some scaling. For the same factor of Q between models,
one can obtain the FFS-type curves through scaling the
contours in the right panel of Fig. 7 by (7/9)"/4.

B. Complex k factor

In the previous section, contributions involving A van-
ished in the limit of leptons being the heaviest particles in
the spectrum. Because of this, the correlation was direct
between C,y, and C,,, enforcing k € R. However, for a
general spectrum of leptons and heavy Higgses, contribu-
tions from A will not vanish and attribute to the moments, as
in Egs. (D10), (D14), and (D18) in Appendix D. Hence, if
arg(2) # arg(4), k will necessarily be complex. When k =
|k|e?x becomes complex, the ellipse equation in Eq. (59) is
modified to

k|v?Aa, 2 (|klv*d, | 2
Ryyry-=\|—F7—>5—cos¢ | + o —singy | ,

2
2my, »

(61)

where the axes of the ellipse in the Aa, —d, plane are
shifted by the phase angle ¢;. The center of the ellipse is
now located at (2m2 cos ¢y /|k|v?, em,, sin ¢ /|k|v*), which

is no longer symmetric along |d,| = 0. The asymmetry
along with a large complex phase suggests that certain
models may shift the entire ellipse to a region where a
nonzero |d,| is always predicted. This occurs when the
edge of the semiminor axis intersects with |d,| = 0 and is
satisfied whenever Rj,_,,,~ < sin® ¢;.

In Fig. 8 we demonstrate this behavior for a variety
of phases of k = 50e'% for ¢, =0,—n/4,—n/3,—n/2.
Models generating a large complex phase can be extended

+,- = 1" = i
30 Rh_,“ u 1; k =50e

— ¢«=0

— = —n/4
20 — ¢x=-—n/3

— ¢x=—n/2

dy x 10%2 [e-cm]

-15 —iO —'5 (') E'S 1'0 1'5 20
Aa, x 10°

FIG. 8. Ellipses of R),_,,+,- =1 when k = 50 for phases
¢r =0,—r/4,—n/3, and —x/2. Each colored x marks the center
of the ellipse. The dark and light green bands represent the region
of Aa, within 1o and 20, respectively.
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FIG. 9. Curves representing the ratio of the one-loop contributions to k normalized to its tree-level value k°"¢1°°P/k"*® when
A =—1=+/4z (left) and 1 = 1 = \/4x (right) are real, assuming M = 3 TeV. The dashed and dash-dotted lines correspond to

myap+ =3 XM and 5 x M, respectively, in both plots.

to ones where the 1 coupling is present alongside A,
such as the 2_3,, @ 1_; model, and similar arguments
can apply to 2_3,, @ 3,2, @ 3 models as well.
In the limit that M ~M, for arbitrary A, k = 64x%/
(5 + tan? B(17 4 4% /2)/6). In order to generate |k| = 50
with phases between ¢, = —x/4 and —z/2 for tan f = 2,
the magnitude of [4* /1| ~ 17.4-31.0 and its phase should
lie between ¢;.; ~ —0.88 4+ 7 and —0.66 + zrad, respec-
tively. Notice that the =z phase shift is required for
Re[A*/] to cancel with the other real terms in order
to generate a large magnitude of k, which prefers a larger
tan for a more comparable size of couplings (or vice
versa, as presented here). Im[1*/4] is responsible for
generating the phase of k. We note that a wide variety of
scenarios can accommodate these large ratios of cou-
plings while respecting perturbativity and EW precision
constraints needed to explain Aa,. However, for Aa,,
because of the partial cancellation from the real part of
A* /2, a large complex phase in the combination 1, AzA is
required.’

C. One-loop corrections to k

In the Higgs basis, additional contributions from
quartic couplings can appear from one-loop corrections
to the mass operator C,y, [Eq. (48)]. The full one-
loop corrected k factor for our main model of interest,
new leptons with quantum numbers identical to SM
leptons, is

>0On a side note, models may also generate a complex k factor
induced by loop corrections (see, for example, the 2_;,, @ 1_,
model in the next section).

647> 3/11) )
k= 1-(— |K
(1 + Q,(xtan2p) [ (8ﬂ2 (i)

+ <1/61/;2) (cos?f + L(x\2)sin2p)

_ (L) (A2 + ) + 1AP)

1672

X (cos’f + 2N(x}(l,2,))sin2ﬂ)} ) (62)

Notice that C,;, now also involves 4 at loop level, which
in general can generate a nonzero phase for complex
Lagrangian parameters.

The one-loop contribution can be relatively large due to
the fact that K(x), L(x), and 2N(x) > 0 when x > 0 and of
similar order for x < 1, while the range of the quartic
coupling 4; is limited to 0 < A; < 4z, required by the
stability of the scalar potential and perturbativity. The
Yukawa couplings are only limited by perturbativity in both
directions: |4|,|4| < v/4z. Additionally, when the Higgs
masses are split from the leptons, in the limit when M3 ~

2
My am*

L(x), and N(x) — 0 when the heavy Higgses decouple,
leaving only contributions from the light H; doublet. Hence,
in Fig. 9 the dashed and dash-dotted lines when my 4 p+ =
3x M and 5 x M, respectively, reduce the relative loop
contribution compared to my 4 y+ = M (solid lines) in both
plots. Notice that the behaviors in both plots plateau for
tanf 2 4 as both the quartic piece and heavy scalar con-
tribution remain when cosf — 0 and sinf§ — 1.
According to Fig. 9, when my; 4 y+ = M, we see that the
one-loop corrections can affect its tree-level contribution at
most when all couplings are near their perturbativity limits,

becomes large, xﬁ) — 0 and the functions K(x),
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such as ~37-32% for tan f = 1-50 when 4; = 47z (green
solid line) and 1= —1 = VA4zx (left plot). For an even
smaller quartic coupling 4; = 1 (red solid line), the con-
tribution is at most ~14%. In the other direction, A = A =
V4r (right plot) when A, =4z (green solid line), the
relative contribution is almost ~40% throughout the entire
domain of tanf, while the contribution is nearly ~16%
everywhere for 4; = 1. We note that the behavior is similar
in both plots because, irrespective of sign, there is a partial
cancellation between A4 and (A4)* terms, leaving terms
such as |4|?, |4|* unaffected by their relative sign. In fact, the
difference L(x) —2N(x) < 0, meaning that when A1 =
—4r the contribution in each scenario is slightly reduced
when comparing to A4 = 4x. In any case, the magnitude of
k will be reduced by the loop corrections.

VI. CONCLUSIONS

Building upon previous works, we demonstrated that in
the 2HDM-II extended with vector-like leptons, there can
be multiple sources of chiral enhancement to the muon
dipole moments, generating a correlation to s — pu~
through a single, model-dependent complex factor. This
correlation parametrizes deviations of these observables
from their SM values through an ellipse. We explored
representations of new leptons that were previously con-
sidered in SM extensions and, by expanding on calcula-
tions of previous works, we found new radiative corrections
relevant for this correlation.

The ellipse of muon dipole moments allows for novel
constraints on the scale of new physics and the 2HDM-II
parameter space that are not accessible by colliders. For
example, assuming that the central value of Aa, stays the
same, future measurements of 4 — p*u~ imply predicted
values of d, that could be probed at future muon electric
dipole experiments. We found that for models with new
leptons that have analogous quantum numbers to SM
leptons, Q = 1, measuring R;_,,+,~ within 10% leads to
values of d, up to the projected sensitivity at PSI for
0.41 <tanf < 6.4. Increasing the precision to +1% leads
to a range of 0.38 <tanf < 21. These bounds imply an
upper bound on the scale of new leptons that is ~18 and
10 TeV, respectively. On the other hand, if d, is not seen at
PSI, the precision of 7 — ptu~ at 10% and 1% requires
tanff 2 6.4 and 21, respectively, and with the same upper
limit on the scale of new leptons. Furthermore, other
solutions allowed by the ellipse would lead to an upper
bound on the scale of new leptons, ~45 TeV, but would
require pushing the values of tan f to the limit of pertur-
bativity related to the top Yukawa coupling.

We obtained similar bounds for all other models we
explored. For example, if the central value of Aa, is
assumed with Ry, +,- = 1 £ 10%, models with 1.31 <

(Q + Q,tan? f) <33 necessarily require nonzero d,.

More specifically, in the cases with Q; =9, =1, 5, 9
and tan § = 1, these models predict |d,| = 2 x 1072¢ - cm,
(5-28) x 10722¢ - cm, and (6 — 12) x 10722¢ - cm, respec-
tively. For tan # = 50 and limiting couplings only by pertur-
bativity, the maximum predicted value of |d,| is ~300x
1072%¢ - cm, for Q = 1. This limit is already at the range
of current sensitivity and other models would only give
larger |d,|.

In addition to our main results, we explored new
radiative corrections to the muon mass and dipole
moments, appearing only in models where new leptons
transform as 2_3, @ 1_,2_3, ®3_;, and 2_;,, @ 3.
We found that these corrections become clear in the
Higgs basis, where contributions to the dipole moments
scale as (Q; + Q,tan’ 8), where each factor behaves
differently when leptons are much heavier than the SM

doublet, 9, (x](vl,) — 00), or comparable to heavy Higgses,

Qz(x,(‘,zl> — 1). By happenstance, if we compare the SM
contributions of each representation with that in the
2HDM-II as in Table II, the same pattern of contributions
occurs for both when 1* = 1 and produce integer values.

The additional corrections modify the ellipse equation
through an additional phase in the & factor. In fact, fork € C, a
striking feature occurs: situations exist where the prediction
for d,, is asymmetric and sign-preferred, shifting the ellipse to
aregion where a portion of the parameter space can be ruled
out while being consistent with Aa,. This behavior appears
for models whose contribution to C,, also comes from an
additional source for generally complex 1*, whenever ¢, #
¢; +an for n=0,1,... and M, ~ M. Other sources of
complex k can occur via subleading corrections to the muon
mass, generating up to 40% of the contribution compared to
the tree-level piece when all couplings are near their
perturbativity limits in nearly the entire range of tanjf.
However, this will reduce the magnitude of k by the same
amount, causing the center of the ellipse to shift to larger Aa,,
while predicting a large nonzero d, within the range of
R+~ = 1 £ 10% [47], increasing the discovery potential
of these effects in near-future experiments.

The mass and couplings of the muon remain among the
last vestiges of indirect hints of new physics beyond the SM.
The need to precisely measure these quantities is currently
driving new experimental efforts [67,68] and inspiring the
next generation of particle colliders [72-77]. The comple-
mentarity of future measurements of the muon dipole
moments and 4 — uTu~ will provide an important road
map to understanding high scales of new physics whose
presence may already be leaving clues in experiments.
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APPENDIX A: DETAILS ABOUT THE 2HDM
SCALAR POTENTIAL

The parameters m?,m3,;,4,,43, and A4 of the scalar
potential in Eq. (8) are real by Hermiticity, while m?,
and 45 are taken to be real to preserve CP symmetry in
the Higgs sector. The stability of the potential further
requires [52,78-80]

ﬂ.],/’{z >O, \/l]/?.z—i—/?.:; >O, and
VA + Aa 4 A = |2s] > 0.

After EWSB when the neutral components of the
doublets acquire a VEV, (HY) = v, and (HY) = v,, the
rotation angle o diagonalizes the CP-even scalar fields &
and H to the physical basis and yields

(A1)

1
HY = vd—f——z(—hsina—i—Hcosa)

V2

i

+—(Gcosfi —Asinf), A2
\/5( B p) (A2)

1 i
HY = v, +—(hcosa+ Hsina) ——=(Gsinp+ Acosf3),
\/i( ) \/5( p B)
(A3)
HF = G*cosp— H* sin 3, (A4)
Hf = —G*sinp — H* cos . (A5)

From the original basis, we can rotate via the angle f to
the Higgs basis where the SM and additional scalar fields
become separated:

H, B cosf sinf H,
<—io-2H§) B (—sinﬁ cosﬁ) <—io—2HZ>. (A6)

We see that in the alignment limit when f — a = z/2 the
two doublets simplify to

G+
iy = <v+\/i§(hsin(/)’—a)+Hcos(ﬂ—a)+iG))

_)<v+%G(I:+iG)>’ (A7)
H, — <Ja(h005<ﬁ—a>_—;sin<ﬁ—a) —iA)>
- (ﬁg: iA))’ (A8)

where H; contains only the SM degrees of freedom and
H, contains the additional Higgs fields in this new basis.
From Egs. (A7) and (A8), one notices that (H?) = v and
(HY) = 0, such that H, becomes the SM Higgs doublet in
the alignment limit. Inverting Eq. (A6), the transformations
(thHu) - (HI’H2) are

H, - H, cosﬂ+eH; sin /3, (A9)

H, — —Hlesinf + H, cos j, (A10)
where we used the fact that ic> = e and €;, = +1. Inserting
these definitions into the 2HDM-II scalar potential (8), we
find in this basis

1 1
V(H\, Hy) = Mi(H\H\) + M3(HyH,) + M}, (H| - Hy + H, - Hy) + = A (H H))? + < Ay(HYHy)* + Ay (HH, ) (HSH;)

1

2 2

+ Ay(H| - HY)(Hy - Hy) + S As[(H] - HY)* + (H, - Hy)?| + Ag(H{H))[H] - Hy + H, - Hy)

2
+ N(HYH,)[H) - Hy + H, - Hy].

If we utilize the extrema conditions of the potential in Eq. (8)

1 9V
v“ BHH

listed below can be simplified as

2

(Al1)

1 oV
> vy 0H,

v — m% - m%z tanﬁ +/11U5 +/1345U12t = 0 and

2
, = m5 — t':T‘z + A2 + Azas 0‘21 = 0 using the shorthand notation 4345 = A3 + 44 + A5, the dimensionful parameters

M? = micos*f + m3sin?f — 2m?3, sin ff cos 8
= —v%(Acos*B + Aysin*B + 24345sin’fcos?f),

M3 = m?sinB + m3cos’f + 2m3, sin S cos 8

2
mi,

sin f cos

— 2 (A1 + A — 2345)sin*fcos + Aass ),
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M3, = (m? — m3) sin f cos f + m3,(cos’ B — sin®f)

= v?((=A4; + Az4s) sin fcos® B + (A, — Azgs)sin®B cos ), (A12)
as well as the quartic couplings,

Ay = 2,cos*B + A,sin*B + 213455in%fcos>f,

Ay = Aysin*B + A,cos*f + 23458in fcos? B,

Ay = A3+ (A + Ay — 24345)sin®Bcos?,

Ay = Ay + (A + Ay — 24345)sin®Bcos?

As = A5 + (A + Ay — 24345)sin®Bcos?f,

Ag = (A1 = A345) sin fcos’ B + (=Ay + Azgs)sin’ B cos 3,

Ay = (A = A345)sin®Bcos B+ (=2y + Az4s) sin fcos’, (A13)

which agree with results in [43]. Using the exact definitions of couplings in Eq. (9), we may also express these parameters in
terms of the physical Higgs masses and mixing angles:

M3 = = L (052 (6 - @) + misin® (6 - ).

2

w2 ] [m%, (sinz(ﬂ —a)+ sin 2a> + mj, <0052(ﬂ —a) sin 20!)] :

2" sinficosf 2 sin 2/ sin2p
1 .
Mi, = ~3 (m3, — m3) sin( — a) cos(f — a), (A14)
and
Al = —M%/UQ,
1 4m?2,cos?2
Ay = _ 12 2 (o e B ) 5
? (szsinQﬁcos2/3> [ sin fcos + my (sin(f + @) — sin(p — @) cos 23)

+ m3(cos(f + a) + cos(f — a) cos 2,6)2} ,

1 2m?3 in 2 in 2
Ay = (—2> {2’”%# - m%, (sinz(ﬂ —a)+ i a> +m3 <cosz(ﬁ —a)— — a>] ,

2v sinffcos sin 23 sin 23
1
Ay = (2—1}2> [m3 —2m3,. 4 my;sin®(f — a) + mjcos*(f — a)],

As = (#) [—m} + m%sin®(B — a) + micos? (B — a)],

A6 = —M%z/l]z,

Ny = (202 1 ) |:m%2 cos 23 — m12£1 sin(f — a)(cos(ff — a) sin f cos ff — sin(ff + a))

sinffcos /) | sinfcos f
+ m? cos(f — a)(sin(f — a) sin fcos f — cos(f + a))| . (A15)

Finally, working in the decoupling limit (m%, ~ m3 =~ mii > m3, which also enforces # — a — x/2) while writing the

parameters in terms of a single quartic coupling 4; from Eq. (10), we find
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M% =0, APPENDIX B: MODELS AND MASS

M% _ mé - 20,2 /tan?B, | | EIGENSTATE BASIS |

M —0 First, we introduce models and define their mass
=Y

eigenstate basis in each of the five representations. We

A =0, additionally present couplings of lepton eigenstates to
+ +

Ay =2 (2— l/sinzﬁ)Z’ SM b'osons Z, W=, h z'lnd new bosons H.,A,H . These

couplings are defined with a common notation and will be

A3 = 2), /tan’p, further characterized by diagonalization and Yukawa matri-
Ay=As=Ag=0 ces in each individual representation.
Ay = 2;(2 = 1/sin’p)/ tan . (A16) L2 @1,
These are the relevant formulas used for the discussion in After EWSB, the Lagrangian of Eq. (1) gives the charged
the main text. lepton mass matrix,

HR YuUa 0  Agvg HR
(Ap Ly EL)M, | Ly | = (A, L7, EL) | Apva My Avg Lk |, (B1)
ER 0 Zvd ME ER
and the neutral lepton mass matrix,
vg =0 0 0 «kyv, vg =0
(DIMZ‘?"NL)MU L(I)Q = (DL’ZgyNL) 0 ML Kvy LOR . (B2)
NR 0 R"Uu MN NR

We construct the mass eigenstate basis in the following steps. First, we find U; x such that UZMM U, and U ;M TMUp are

diagonal. In this procedure, U ZM Uy becomes diagonal where the diagonal entries are the physical masses up to possible
phases. Applying this procedure to the mass matrices M, and M, above, we have

yuva 0 Agvy mﬂew)mﬂ 0 0
US| vy My dvy UG = 0 Mg, e 0 , (B3)
0 vy, Mg 0 0 meseiaﬁmfs
0 0 «kyvu, 0 0 0
vilo M, ke, |Uy={0 me?s 0 | (B4)
0 kv, My 0 0 m,, eid)mbs

where m,, m, ,m, , m, ,and m,_are the physical masses of  so that

the leptons. Further, we define

yﬂvd 0 /IEUd mﬂ 0 0
e_i¢mﬂ 0 0 UZT /1Lvd ML lvd U%: 0 me4 0 y (B7)

Uo=Usl 0 e ne o |, (B 0 vy Mg 0 0 m,

—l'f/)m(,
0 0 e s and

10 0 0 0 Kyv, 0 0 0
Uy=U4(0 e 0 |, ®6) US| 0 M, kv, |U%=]0 m, O |. (BS)

0 0 e—i¢mu5 0 kvu MN 0 0 ml/5
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The diagonalization matrices U; and Uy represent rota-
tions to the mass eigenstate basis e;, — U{e;, ex — UfeéR
and v, — UiDp, vg — U%ﬁR. This procedure will be also
followed for other representations of leptons.

In Appendix C we present approximate formulas for
the diagonalization matrices and resulting couplings. Those
formulas are valid only when following the above procedure.

2. 2_1/2 (&) 3_1

In this representation, the doublet L and triplet E are
defined as

. L%.R ara E} g \@EOL,R
Lir= I ) TEL,R— __ _ ’
L.R \/QEL,R _EL,R
(B9)

and couple to H,; and SM leptons via the following
Lagrangian:

E D —ﬂEiLTaHdEaR - j’LZ‘LﬂRHd — ALLTaHdEIae

— JH' 7 LRES — M L, Ly — MgESES +He. (B10)
After EWSB, the mass matrices are
YuUa 0 —Agvq HR
(AL, LT ED) | Apvg My —Avg Ly
0 —Zl)d ME EI_Q
yva 0 —Agyy
—)éLUzT j’Lvd ML —lvd U;éR, (Bll)
O —Zvd ME
O \/.//{Evd Up = 0
(0. LY. EY) M V24, Ly
0 V2iv, Mg EY
0 0 V2Agvy,
U0 M, V2w, |Ukig (B12)

0 V2w, Mg

Additionally, there is a doubly charged mass eigenstate £E~~
with mass M. Hence,
vy =04

= I3.3. (B13)

323,81,

The doublet with singly and doubly charged components
is defined as

I-
L= () (B14)
Lix
The Lagrangian for this representation becomes
E D _)“EZLERHd - /1LZ’L . HZ/.!R - ﬂ'Hjj . I:LER
—ZLR'HdEL—MLI:LLR—MEELER+H.C. (BIS)

We remind the reader that the explicit - corresponds to
contracting SU(2) indices by ¢;;, such that Lg-H,=
e12(Lg)i(Ha)y + €21 (Lg)y(Ha)y = LgHy — L™ Hj, where
€12 = —€,1 = +1. Alternatively, we could continue to
contract SU(2) indices with &;; by introducing eH, = H,.
The difference between the two notations is an overall
minus sign for the term AH,L; Eg. After EWSB, the mass
matrices are

yuva 0 Agvg HR
(A, Ly, ED) | Apvg My —dvg Ly
0 vy, Mg Ex;
Yuva 0 Agvg
= 2 US| vy My =ty | Ugen, (B16)
0 vy, Mg

which is diagonalized by U{ and U % asin Eq. (B7), but with
the replacement of 4 — —A. There is one massless neutral
eigenstate v, and one doubly charged eigenstate L™~ with
mass M; . Hence,

Uy =04 =U5 =04 =Tys  (BIT)

4. 2_3/2 (3] 3_1

The doublet L containing both a singly and doubly
charged field as well as the triplet E are defined as

Ly g Erg  V2E),
LL,R = L s TaElll“R = s
L1 \/EEZ} —E7
(B13)
which couple to the SM leptons in the following way:
[: D —AEZLTaHdE;é - ALI:L . HZ,L{R - AI:LTa . H;E%
—AH; E¢t°Lg =M L, Ly — MgE{E% + Hec.
(B19)
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After EWSB, the mass matrices are

YuVa 0 —AEVq HR
(AL L7 Ep) | ALvg My Ay Ly
0 —Avy Mg Ex
yva 0 —Agyy
=2 US| Apvy My dwy | Ugen, (B20)
0 —lvy, Mg
0 0 0 0
(0,L; E;)| 0 M, V2w, || Lz
0 —2l, Mg Ez”
0 0 0
Ul Tl 0 My V2w, |04 e, (B21)

0 —\/z/_lvd ME

5.2 @3
Finally, this representation is described by the following
doublet L and triplet E:

LY Er  V2E[g
LL,R = _ N TaEz’R = .
Ly g \/EEZ,R

0
_EL,R

(B22)

These fields interact with the SM leptons in the following
way:

L D —/1E7LTa . H;E% - /,{LZ‘LIMRHd — ALLTZZ . H;EaR
- ZHd . EleaLR - MLZ‘LLR — MEE(ZE% + H.C.

(B23)
The mass matrices after EWSB are
YuPd 0 V22, KR
(ﬁLvZ‘ZvEZ> )“Lvd ML \/zﬂvd Ll_i
0 —\/Z/_I’Ud ME EI_Q
Yula 0 \/EﬂEvd
e US| 2w, M, V2iu, |U%er  (B24)

O _\/ij.vd ME

and

0 0 AEV4 vrg =0
(oL, L3 ED)| O My Jvg Ly
0 —iv, Mg EY
0 0 gy,
S U0 M, vy | Ukbg. (B25)
0 —lv, Mg

6. Couplings of leptons to Z and W= bosons

The couplings of leptons to the Z boson come from
kinetic terms in the Lagrangian,

£ ) éLaiDaéLu + éRuiDaéRa + élja_lpaélja_ + él_?;lpuél_?;’

(B26)
whereby the covariant derivative is
_ .9 3 w2

Dy =0, — L o (T, —sin”* 0y Q,)Z,. (B27)

For couplings of left- and right-handed singly charged
leptons to the Z boson, we have

LD éLaV”Qfeaeb ez, + éRa}’”!Jie”eb erpZy (B28)
whereby
Zeaeb S . + sin®Oy |8, + éf(UZ"') 4(U7)ap
cos Oy 2 “
XL (et
X CARUIN (B29)
and
geaeh = sin®Oyy 6., +§(U§;) 2(0%)a
cos Oy @2 “
A0SO (B30)

The couplings to W* bosons are defined by

= Wu,ep o = Wy, ep, o +
LD (Dpar'ar “ery + Urar'gr " egp) W,

+ (@LargL " euy + Srar"gr " ery) Wy + He.,
(B31)
where
W, 9
g = V2 (U a2(US) 2y + EF (U ia(US)
1 (U 05 (US)sy) (B32)
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TABLE III. Representation-dependent factors for left- and
right-handed couplings to Z and W* gauge bosons.

2,,@1 2,83 25,01 ;23,032,083

& 0 0 1 1 0
7 1 1 1 1 -1
£z -1 -1 1 1 -1
% 0 0 0 0 -1
v 1 1 0 1
X 0 -2 /2 NG
W 1 1 0 1
Va4 0 -2 -2 V2
v 0 1 1
Y V2 0 V2
and

v,e g 1V rre TV rre
gW b= —[fXV(URT)M(UR)ztb +X;€V(URT)a5(UR)Sb}'

o2
(B33)

Additionally, for representations with doubly charged
fermions, the left- and right-handed couplings are

S NCAUAMUS AT MCA Y
(B34)
RO = (O 08 D 2O O
(B35)

The representation-dependent &; and y; factors for each set
of left- and right-handed Z and W* gauge couplings are
collected in Table III.

7. Couplings to Higgs bosons

The softly broken 2HDM-II scalar potential is given by
Eq. (8) and is diagonalized to the mass eigenstate basis
through Eqgs. (A2)-(AS5). We also work in the alignment
limit where f — a = z/2 such that couplings to the light
eigenstate 7 are SM-like. For singly charged leptons in a
given model, the Lagrangian for Yukawa couplings to
neutral Higgs bosons is defined by

= H
eLaleaeb eRbH

e h——
5 ., CRb \/E
(B36)

where
A = cos pUS YU e
A, = sin (U YEUR)
W, = —isin (U YEUS) - (B37)

where Yy and Y4 are Yukawa matrices defined per
representation for CP-even (h, H) and CP-odd (A) bosons,
respectively. The notations of Eq. (B37) are the same for all
representations except for their respective diagonalization
and Yukawa matrices.

Yukawa couplings of the charged Higgs boson H* to
leptons are defined by
Ly = —l;/LMZj;b erpH ™ — éLaﬂfjbf/RbH -
— b M ey H — &, ep,H™ + Hec.
(B33)
The last two terms are relevant for representations with
doubly charged leptons. The couplings are defined as
45;,, = (UZTYT Ufe)abv
o, = ULV UR)ap:
Ko, = UL YR UR) .

Wem = (ULYEUR e (B39)
The matrices Yg,jv, are the Yukawa matrices present for
doubly charged fermions coupling to singly charged ones.

For the 2_;, @ 1_; model, the Yukawa matrices for
neutral Higgs bosons are

yﬂ 0 /1E yll 0 /1E
Ye=|2 0 2|, va=|2 o 4| (B40)
0 2 0 0 -1 0

The Yukawa matrices for charged Higgs bosons are

y/,t 0 )“E
Y = —sing| 4, 0 2.

0 k/tanp O
0 0 Ky

Y = —cospl 0 0 « (B41)
0 Atanp 0

In the 2_,/, @ 3_, representation, the Yukawa matrices
for neutral Higgs bosons are

o 0 —dg y. 0 —Ag
Ye=|4 0 =1 ], Yoi=1|4 0 =2
0 -2 0 0 4 0

(B42)
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The Yukawa matrices for charged Higgs bosons are

y. 0 g 0 0 0
Y =—sinp|l 4, 0 2|, YE =—cosplO 0 0|,
0 0 0 0 ZtanB 0
0 0 0 0 0 V2
YIS =—singl 0 0 o0, Y& =-sinplo 0 V22 (B43)
0 V21 0 00 0
Then, for the 2_3,, & 1_;, we have the following Yukawa matrices for neutral Higgs bosons:
yﬂ 0 /IE y}t 0 /1E
Ye=|4 0 =11, Ya=|-4 0 1 |. (B44)
0 1 0 0 1 0
The Yukawa matrices for charged Higgs bosons are
yu 0 /IE
Yi* =—sing| 0 0 0 |, Y = 05,4,
0 0 O
0 0 0 O
YH = —sing| -4, Y =—sinp[ 0 0 0 (B45)
0 0 -4 0
The Yukawa matrices for neutral Higgs bosons in the 2_3/, @ 3_; model are
yll 0 _;LE yll 0 —/1E
Ye=|44 O A, Ya=1|-4 0 =2 (B46)
0 -2 0 0 -2 0
The Yukawa matrices for charged Higgs bosons are
yo 0 g 0 0 0
Y =—singl 0 0 0 [, Y = —sinp|l 0 0 —v24 |,
0 V22 0 00 O
0 00 0 0 V2
Y =—sing| -4, 0 2|, Y =—sinplo o o |. (B47)
0 00 0 -2 0

For the last model we consider, 2_;,, @ 3, we find that the Yukawa matrices involving neutral Higgs bosons are

yy 0 \/EJ*E
Ye=14 O V24 |
0 —-v21 0
The Yukawa matrices for the charged Higgs are
yo 0 0
Y =—sing| 4, 0 0],
0 -2 0

Vu 0
Ye=11 0
0 —V21
0
Y = —sing| 0
0
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APPENDIX C: APPROXIMATE FORMULAS
FOR DIAGONALIZATION MATRICES AND COUPLINGS

We present in full detail approximate diagonalization matrices for our main representation, as defined in Egs. (B3) and
(B4), and the other four models. We also give a complete list of approximate couplings to bosons in our representation.
Computing approximate couplings in other representations is straightforward and follows similar arguments as those
presented for our model.

1.2_,1_4
In the limit when the mass eigenstates e, and v, are mostly doublet-like, while es and vs are singlet-like,
the masses approximately become me4ei¢’"e4 ~ m,,4ei¢'"V4 ~|M,|ev. and mESe"ﬁ% = |Mg|ee, m, es | My|en,
respectively. From now on, eigenstates corresponding to the SU(2) vector-like doublet are labeled with index L, whereas
the SU(2) charged and neutral singlet states are indexed with labels E and N. In this approximation,
one can also expand the diagonalization matrices Uj p U7 p in terms of ep = vy X (A1, Ap. A, 4)/M g and ey =
v, X (ky,k, &) /My y for |egy| < 1. Keeping terms up to O(e% ), we find for the diagonalization matrices

1 — 22 2 |Ag)? _ 2(/15(}1M;+/1*ML) _ yMZ) oA
d2|Mg|? d\M(IMgP=[ML|*) M dMg
¢ o (M =y M) o | MpIM; (" M, +IM3)
UL = | Yo" m,mr, V= va s, . 77 Va ot o, ’ (C1)
—y, e —v UM} 4 M) 1 =22 2 |l 2 |2 M +AM|?
4 d M =M, d2AME ~ Vd 2(Mp M, P
AP 2 o 2O M A+AM) Vilg
1— 2 v,k vo| A -
d2)M, 4T a\ate gt P
k= —vg ik _ 2 P MM @ Mg+a})
Uk Vai; V= Va3, ~ Vaan, Va g, o, ’ (C2)
2 (AL AMy =y, M) . (M4 M) 1 =2 M 42" Mg |
d M |Mg|? M =M. P d2(|Mg|* =M *)?
e—l(/)mﬂ 0 0
Uy=Us|l 0 e 0 |, (C3)
0 0 e mi
1 — 2l 2 Kn(CMARMY) v, Kn
U2[Myl[? UM (IMy* =M %) UMy
v 2 KR 2 [RM; +x* M y|? (R*M +xMy)
U= vy 1= veaqmpm Ou R = TH : (C4)
v Ky 0 (RM; +x*My) 1— 2 lien 2 2 k"M +xM,|?
u M, u M [P=TM, P WMy~ Ve My Pm, )
1 0 0
M +ikM? |? (kM +&"My)
0 1—12 P‘Li p, KM ARMy)
Uy = u My P—IM, )2 u My P[0, P , (C5)
“My+RM?,) > kM AR My
0 —p, SR | R V7 s A
UMy P-|M U2(|MyP—|M.[*)?
and
1 0 0
_ TV —i¢,
=U4|0 e 0 . (C6)

0 0 e uy
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Note that exact couplings of fermions to Z, W*, H, h, A, H, and H* bosons in the mass eigenstate basis were defined first
in Appendices Al and A2 of [25]. Those definitions apply identically in this paper, except that one must replace the

diagonalization matrices with their complex versions U{" and Ug".
In this limit, couplings of charged fermions to the Z boson are approximated by

ZuL _ g ”tziflE(i*ME + /_1M1*_)
L 2cos Oy \Mg(|IMg|?> — M%)
= g vl it [ 1 — 12 s , M+ M it
K 2cos by M 2AML P d2(|ML‘2 M g|*)?
g v )“L ezqﬁm
2cost9W M, | '
G~ g Vil |- > gl , M+ M
t 2005'9W Mg d2|ME|2 d2(|ME|2 ML ?)?
— g Vg
2cosOy Mg’
wE 9 Vi (AMp+AM}) oty

g - *
K 2COS€WML(|ME|2_|ML‘2)

Couplings of charged and neutral fermions to the W* boson are approximated below:

wig 9 [ 5 , kM — k"M [? (XM, — yiA M)
g, " =—7x=|va| 1 — vy 2 2\2 e
V2 2(|My|* = ML) |M, "M,

(e et ) (s LY
"\t (=, Py T 2 P

N Ky (kM7 + KMy 42 s
V2 =i, ) ) |
2 L N L LME
G 9 valp i, (1 _ 2 k"M, +’_<M7v|2>ei¢M
K VaM, “2(|My P - M7)?
g vilr o~ P,
\/_|ML| h
e S (g T (1M o)) (i)
t V2 | My, d2|M ? TN My - M, [P |M_|* M
ViMy
GiNu g v (KM + kMy) =i, pihury
K V2 My MyP =ML

Approximate couplings of charged fermions to the light SM Higgs boson /4 are given below:

30226 303|217\ | 3cos puda Al o=,
2Mg? 2Mi] M Mg ’

= {y,, cosﬁ(l -
P {_ cos v Aph B cosﬁvd(/lE/_le}i: + /Igﬁ*ML)] oit,
g Mg (Mg|* = M|

lﬁE = cos fAge e,

h _l¢m
A, = cosfipe ",
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cos fvgrd | cos fug(A AM; + 2 A" ME)] iy
Ay, = [— i ITRERRITAE e, (C19)
L |Mg|* =M, |
A AAM% 4+ A*M AA My, + AM; ,
M = cosf {U‘A f' - v, ( g + Lz) — vy ( 2L * g)] e~ uy (C20)
ML |ME| _|ML| ‘ME| _|ML|
M- = cos pAe” P, (C21)
Ag|? AAME + 1M AN M g + AM; .
j’}ElE = COSﬂ |:1)d| *E| Vy ( lé * 2) + (] ( 2E + lé):| _l(/)ME, (sz)
M |Mgl* — M| (Mg|” = |My|
A = cos fleme (C23)

Couplings to the CP-even heavy Higgs field H can be found by simply replacing cos # — sin f# in the above couplings to
h. Couplings to the CP-odd heavy Higgs field A are given below:

l/'{;:xL _ |:Sinﬂ’Ud/1EZ _ Sinﬁvd</1E/_121W2 + AEZA*ML):| e_i¢ML 7 (C24)
Mg IMg|® = M,
iAly = sin fAge”" P, (C25)
iAf, = sinfi e (C26)
i, = [sin oA sinﬁvd(ﬂLZZMZ +/1L2/1*ME)] — (27)
My |Mgl* — M|
(w4l |? MAMy + M AAMp + M)
2}, =sinp vl *L| — vy ( g+ Lz) Uy ( 2L+ g) e m, (C28)
L M} (ME|* =M IMEg|* = M| |
i} = sin pAe™ P, (C29)
(04| Ag]? AAM; + 2*M AXMg +IM3)]
i4, = sinf al f' vy ( Lf 2)—vd ( 2E+ Lz) e~ im | (C30)
L Mg IMg|* — M| IMg|* = M. [* ]
iMh, = —sinple” P, (C31)
Finally, the approximate couplings of fermions to the charged Higgs field H* are given by
M = —sin pige” P, (C32)
M, [My|* =My
s . P v A(AME + M (KM M ,
A — —mnﬁ{vd' f| vl 2E+ ZL) v,k (k L2+’< NZ }e—ldmy (C34)
My (Mgl* — M| tan f(|My|* — [M.|*)
Ay = —sin pre= e, (C35)
+ . AEKy U ARM + KM R(A*Mg + AM »
/IZE:—smﬂ[v Ey (® LTX ZN) vak( s L)2 ]e it (C36)
My |My|* — M| tan f(|Mg|* — [ML[*)
Aff = —cos re™ P, (C37)
/1/7; _ [sinﬂvd/lEZ cosﬂvu(KNfczM}*V + KAZIK*ML):| — (C38)
Mg (My[* = M|
M = = cos freye ™, (C39)
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v, k(KM + kM)

vy tan BAA M + AM)

. .
M = —cos ﬂ[— Je= i (C40)
LL 2 2 2 2 ’
(My|* = M| |Mg|” — M|
Hi _ . N —
M = —sin fle e, (C41)
25— —cos |:Ud/1EKN Vak(AM; + A*Mg) v, tan PA(kM; + K*My) ity (C42)
EN — 2 2 2 2 )
M (Mgl* — M| |My|* = |M_|
. »
M = —cos fre™ v, (C43)
2.2 4,03,
In the same expansion limit as for the main model above, the diagonalization matrices become
_ 2 el M A
b A Vo = R Va i,
¢ Q2N o 200 2 [AM; +0 M| ("M, +IM3)
UL=| —vapge tvamir; 1~ Yasgm ey Va o, P (C44)
v i (M +1Mg) | = 2 Al _ 2 |7 MM 2
"M* Va oz, Pt P d2imgP ~ Ya (= \Ms\
1 =2 2 Al v AL vz(lZW*EHZZ*ML _ -";'15)
d2[M,[? 4, d\ M (M P=[Mg[*) Mgl
M40 M |? (M + 1" M)
UL’ = —_ /‘{_L — ML‘ — 2 I E L M, 4 Mg) C45
R Va ', =25 2,7 Va2, P, Va g, [, 2 (C45)
2 Ve .2 M (M +IM}) 1 — 2 |AM; +7 Mg |*
diMgP?  “dM.Mg Va g Pl Va2, =1, )2
e—ll/)m# 0 0
Us,=U41 0 e 0o |, (C46)
0 0 e m
2 5 [ ApAMp+lgIM )
1 — g2 e 205 | ek 20,k
a7 2Va o, (1, P ) V2va3
vy |AM +2* M g |? ("M +AM*)
UY = 202 : 1 — 2 L™ MEL —\/ 2y, L) , C47
L Va i, 4 T, PP V204 i (C47)
yi (AM: +2*M ) 2 1A 0 |AM;+A M
-2,k PR s Fe et 22 1 — 05 5 — s L
aite V20alig g Mg Va Tty P
1 0 0
VM p+AML|? (AM; +2*Mg)
0 1- vz "7 — 2,
Uy = d (M P=Mg)? V2, M= |, (C48)
XM AIM) o [AM AT M|
0 20 (Lifi 1 - ML EL
V204 i g, 4 M, PP
and
1 0 0
— IV —i¢,
=U%| 0 e 0 (C49)
0 0 e
3. 2_3/2 @ 1_1

The diagonalization matrices for this model are the same as in the 2_; /, @ 1_; model, Egs. (C1)~(C3), with the exception
that A — —4.
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4. 2_3/2 @ 3_1
In the same mass limit, the diagonalization matrices for this representation are
1 — 2 el Uz( o A*zEML—AEzM*E) _p, e
d2|Mgl? d\[M. > ML(ML[P~|MEP) dMg
] A |AM: =0 Mg |? (AM [, —AM%)
US = | —o2 2% E | — 2 22 Vg
L it dM M d2(IMP~|Me*)? dIM P
px (AM: =2*M ) 2 |Ag? 2 M —AM?
vgE —Vg iy 1 — 02020 —y
d M}, 4 M =M d2Mgl T 2(IM P |MeP)?
22 7 > 2 Miy—23 "M,
1— 2k Vg ik —v T y-aa 71
a2, a7 e+ vk o
_ a2 2 | M —IM | (AM; —2* M)
Ui = —py 1 — 2 el —yp, WML Me)
R N d 2, Va2, P ) dIM L P=[M P
2 Yulp — 2 My (M —AM}) 1 =2 M}~ Mg |?
diMpl TdM M Vd a1, 2 d2(|MyP~IMe)?
and
e 0 0

Us = Us 0 e~ it 0

0

The diagonalization matrices for doubly charged fermions are

O e—i¢ME

1 0 0
B 2 M =IM)? ("M =My)
vgm = | 0 V- vigmEnre V2 |,
oy, UM My) o M T M
O \/El)d IMLIZ_IME‘Z 1 d (‘ML‘Z_‘MElz)Z
1 0 0
B o M =M (AM; =1 M)
Up = S AT A= —V2v VAT |
("M —IM}) g2 MM
0 Vvl - Vg
as well as
1 0 0
Uy, =U4 |0 e 0
0 0 e~ ue
521,03

Evaluating the same mass limit as above, the diagonalization matrices are

e 5 (2052 My =2gIMS) | v i
1- 1)2 [Ae E L 2, LE
1M, d\ My (1, P gl) T T V2uagit
A yiA 5 W My—IM: 2 ("M —AM?)
U¢ = | =292 22k g2 2wt 1 — 2 2 2y, L LT E)
L M T Vd e, 4 (M, P2, V204 {57,
g (M=) M) 2 PP o M =AM
V2vaif: ~V20u g V= vang,r ~ Y, rps ey
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2. x Vidg (M =AM
1- U 2 A VL 2 ZUE L LM
43,7 a3 VUit p + M)
- A2 o M —IM%? (M p—=AM*)
U = —p, L 1— 22l L Qv ETL C57
k a3, 43T~ Va M ) V2047 P . (C5T)
A0 2 Vs (M2 My) 2 |AM; =3 Mg|?
—\/2 2 L _ 2 H'E 2 WV E—A ML) 1 — Ay A VEL
V20551t = V205 M| —V2v Va Ta, P, P Va (it =T
e 0 0
Uy = Uy 0 e my 0 . (CSS)
0 0 e mi

The diagonalization matrices for the neutral sector are

i) o Ap(XM—IMY) A
1 7_) | E v E v E
d2[M d M (ML ~[Mg]?) dMy
A M = M |2 (M, —AM%)
UY = ) L 1 — 2 284 MEl PPl i 24 C59
L d MM d2(|M[P~|Mg[*)? dIM, P=M g ’ ( )
2 (AME =AM ) 2 |Agl 0 |I*Mp—IME?
—vyk —Vg l—vysufr—v -
d My 4 M [P=[Mg? d2|M g d2(|MLP~[Me[*)
1 0 0
0 12 WMIMGE M M)
Uy, = d 2(My, P=M )2 4 M, =M, . (C60)
0 FMIM) o MM
Va [M[P—|M[? dz(\ML\Z [M[?)?
1 0 0
Uy =U4%[0 e 0 |. (Co1)

0 0 e g

APPENDIX D: CONTRIBUTIONS TO THE DIPOLE MOMENTS IN THE HIGGS BASIS

In this appendix, we list the full contributions of C,; and C, in the context of SU(2) singlets, doublets, and triplets
discussed in [7]. For compactness, we use the shorthand notation cos # = ¢ and sin § = 5. Loop functions can be found in
Egs. (D20)—-(D26) in this appendix and their useful limits can be found in Eqgs. (D27)-(D33).

For the main representation of the paper, 2_; , @ 1_;, and translating the Lagrangian of Eq. (1) to the Higgs basis, while
omitting up-type couplings, the Wilson coefficients are

ALAgA 1
Cus = —(L)g’c,% [YEF@S;)) +2Y F(xp)) =3 Glx) + Gy ’)}

641*M; Mg
A Agh 2 @) L) @)
- (647r2MLME>gIs/j [YEF(XE ) +2Y.LF (XL )_EG( )+G( ) (Dl)
and
AL AgA (1) ALAgh 2)
Cow = (—EE2 )26 __MAEE ) 26 ®), D2
uw (1287;2MLME> 965G (x5 + 1282M, 0, ) 9O ED) (D2)

where Y, ; are the hypercharges of the new fermions and xﬁﬁ) = M3 /M3 ,. In the limit where M7 ;> M7? and M7 ; ~
M% while inserting their respective hypercharges, we find

A Ag 5 5
Cﬂ]’ = <64.71'2A4LA4E> eCﬁ(] 4+ tan ﬁ) (D3)

If we consider the limit where M7 , > M7 and M3, we find the same expression.

055019-27



DERMISEK, HERMANEK, MCGINNIS, and YOON PHYS. REV. D 108, 055019 (2023)

Next, the Wilson coefficients for the 2_;,, @ 3_; representation, using the Lagrangian of Eq. (B10) in the Higgs
basis, are

3L Aph , ay o 34 Aph 2 @y_L.- @
C"B:‘<m>g/cﬂ[y‘5”’“'f ) =360 | = \Gammaary )90 | VEF e ) =3 Gl ) | (DY)

and

ALAgA 1
Cow = — (L) ac {zF(xg”) + P 56O + G(x?’)}

K 647T2MLME 2
ApAgh @) @y, 1@ @)
- (gt )95t |2 4 P 4 56657 + 6| (03)

Taking the same mass limits x(Lle — oo and xf)E — 1 while inserting respective hypercharges, we find

ALAgA 5 5
Cﬂ}’ = (m) €Cﬂ(9 + 5tan ﬁ) (D6)

(1.2)

Considering the other limit where x; z” — oo, we have

ALAgA 5 5
Cﬂ}’ = 9<m> €Cﬁ(1 4+ tan ﬂ) (D7)

For the 2_3,, @ 1_, representation, using the Lagrangian of Eq. (B15) in the Higgs basis, the Wilson coefficients are

c

AL Ag
5= — <L> gjcﬁ[YE(A(xg),x(Ll)) + B(xt), xMy)

647T2MLME
1 1 1 1 1 1 1 1
+ Y A ) + BO 6y 2R ) —c (e, 2 = G )]

A Apd N2 ) 2

- (gt ) I AGE ) + B )
2 2 2 2 2 2 2 2

+ Y (AT o)) + B 1) + 2P ()~ xE)) - G

AL ApA ) M (1
+ <m>g/cﬁ |:YE<2I(X(E)’X(L)) + (M_f>A(xl(E>’x(L)>>

M
+n<y@ﬁ$5+gfywyw90+ﬂéwﬁﬂ
E

ALApA* 2) (2 M 2) (2
+ <m>g/s/21 |:YE<21(XEZ)’)C(L)> + (M—E)A(X(E)’X(L))>

M
+ Y, (21<x<f),x5§>> + (ML)Auf%xE?)) + J(xf%x?))} , (D8)
E

and

ﬂLiEZ 1 1 1 1 1 1 1
Cow = <m)gq§ [5 (A(x(L>,x1<E)) + B(X(L)’XJ(E))) + C(x2)7x§5)):|

A Agh ,[1
" <64772MLME) » 12
A Apht 1 M
_ (*) 9¢j 2 <2I(x(Ll>,xg)) + (—L)A(xg),xg))) _J(X(Ll)’x%l))]
1
2

647[2MLME
ﬂLlEﬂ* D) 2 ML ) 2 . 5
- (gt o5t 5 (2100 + (G A4 - 2.2 (D9)

2 2 2 2 2 2
AGD.52) + B £2)) + c<x2>,x2>>}
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Note that the combination 2/(x, y) + /x/yA(x, y) multiplying the A coupling vanishes in the limit x, y — oo. In the limit

x(Ll‘Zg — oo and xﬁ; -1,

A AgA 17 A ApAt 1
C,, =|—=—)ec(5+—tan? — P ecZ | —tan?p ), D10
mr <647[2MLME> ecﬂ( + 6 an ﬂ) + <64ﬂ'2MLME ecﬂ 6 an ﬂ ( )

and in the limit where x(L]ﬁ) — oo, we find

A A
C LVE

u — <m>€cﬂ( +tan ﬂ) (Dll)

Likewise, using the Lagrangian of Eq. (B19) in the Higgs basis for the 2_3/,, @ 3_; representation, the Wilson
coefficients are

Cun =~ (Gueagians )96 (a0l )+ 3 )

+ 7 (A )+ BGE ) ) - e )

34 i @ @ @
- (e )5 Ve (A6 ) + BG4

+ 7, (AG ) + B, xﬁ?)) - C? )|

3 AA 2 Mg (1 (1)
9 A 9
+ (64712MLME> Cp xE XL )+ M, (xg’sx”)
L
E

ty, <21(x(L>,x§)) + ( )A(XE” xg))) +J(x§1),xg))]

M
30 AgA 2 @) Mg @ @)
+ (tany )75 | e (210 () A

M
#12 (262) + (SE)AGE ) ) + 1652 (D12)
E

ALAgA [ 1 I 1 1
v = (Gt Yot [ - Gaf) + 2 (At ) + B )

1 1
3 A6+ B ) + €6 )]

1

2

Ay Aph I ) )
(647[LMELME)QS _—F(x(L)) - G(x @ )) + 2(A(x55),x(L)) + B(x,(5>,x(L)))

< (xL s X > +B<xL 7xE )) +C(x2),xg))]

)
ALAgh [ M () Mg (1)
(647:2MLME>gc _2<2I(xE Jx )+ M, A( Xg ,xL )

1 M
o5 (206 )+ () A6 ) ) = a6 )

Mg
ALAgA” [ @ @y, (Me\,, @ @
+ (m)@fﬁ _2<2I(XE » XL )+ M—L A(XE » X, )
1 M
5 (62 )+ () A6 ) ) = a6 )| (D13)
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Taking the limits x(Ll}E — oo and xf}s — 1, we find

AL AgA 11 ALAEA* 7
C,=|—5—|ec}|5+—tan? == ec2(—tan’p ). D14
m <647z2MLME> ecﬂ( et > " (647:2MLME g™ P (D14)
. (1.2)
In the limit where x; ” — oo, we have

A Agh ) )
Cﬂy = 5 (m) ecﬁ(l + tan ﬂ) (DIS)

Finally, for the last representation 2_; , @ 3, we translate the Lagrangian of Eq. (B23) to the Higgs basis and compute
the following Wilson coefficients:

3A A 1
Cip= <m>dc/2}|:YE(A(xg>’x(L)>+B(XE ,xL )+F( H))

1
+ Y, (A, D)+ B 2Dy + oD 1D +§G(xg))]

30 ApA [ s
(ot v (34 50 )+ )

1
VLA AD) + B ) + ) + 3608

3ApAph* [ 1 () Mg (1 (1
~(Garar g )2 1o (2t (s
M
Y, <2I(x(Ll),x<E])) + (M—Z>A(x§”,x§;))> —J(xf),xg))]
3 ApA* @ @2 Mg @ (2
~ (Gt 3 e (a0 (o)

M
7, (2062 + ()AL ) =167 )| (D16)
E

lLllE/_‘L 1 1 1 1 1
Cuw = <m>gcé {2<A(x,<5),)€2)) —|—B(x§5),x1(~>) +F<x1(5)))

1 ) (1 IERONE 1
(A ) 4 B ) + €Ol 4 560

"2
A Agh 2
( 1) ) 2[2(A<x2>,x2)>+B<x2>,x2)>+F< D)

AR D) + BOD 22)) + e 22 + Lol ﬂ

)

ALAEA* [ (
2121 , A(x

<4n MLME>QC < (i x1) ( ) )
1 M

3 (2167 + (G2 ) ) - J(lexg’)}
2 M,

(

A ApA* [ @ 2 Mg @ @
— <m>98§ _2<2I('XE ’xL )"’ M_L A(.XE ,XL )

1 M
5 (216524 () a6 ) ) = a6 )| (D17)
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Taking x(Lle — oo and xéz}s — 1, we have

A AgA 11 A ApA* 1
C, =—|—Fr——eck|2+—tan’ B | — [ ——— |eci( ~tan? 3 |, D18
“ (647[2MLME) “ﬁ( g/ ) (647;2MLME o\’ (D18)
and in the limit x;'7) — oo, we find
A AgA 5 5
Cﬂ}/ = — (m> ecﬂ(l + tan ﬂ) (Dlg)
Note that for this representation m5% = —2 x A; ApAv /MMy when rewriting C,, in terms of C,y, .
The loop functions relevant for contributions to tree models are given by
3 4x? 4 3x + 2x1
F(x) = xG,(x) = -+ 33+ 2xIn(x), (D20)
(1-x)
— x> 4+ 2x%1
Gx) = xGyp- () = X 2N, (D21)
(1-x)
xy [-3y+x(1+x+y)  2(x*+x*y(x=3) +y?) In(x 2y% In(y
21 r=1)*x-y) (1-x)*(x—y) (x=y)*(1-y)
Xy l—y)(y=3)—2In(y I—x)(x—=3)—=2In(x
N S L0 v 023,
2(x—y) (I-y) (1—-x)
xy|[x+xy+y-3 2x1In(x) 2yIn(y)
cn =5 | - , (D24)
2 [(1=xP(1=y) (=y)1=-x)° (x=-y)(1-y)
I(x.y) = VY [3(;&(3 —0) oy =31 +x) +y 2 x(xr = 1)) | 247 =2y + %) In(x/y)
’ 12 (1=x)(x=y)*(1 - ) (x=y)*
N 203x* + XPy(x*(x = 6) —4) + xy*(2 + 6x + x%) + ¥} (x*(x = 3) — 1)) In(x)
(1=x)*(x—y)*
2 -5 =2 2(4 -2 2(1 N1
L DO =5 =2) +xX( +>;(y )1+y (1+y+y%) n(y)} (D25)
(I=y)*(x=y)
1 -3 2x%1 2?1
J(.x,y) — \/‘W |: + X —Zy xi X 3n('x) _ y 3n(y) :| (D26)
2 [(I=x) 1=y (I-xP -y (I-y)P(x-y)
|
Additionally, we list limits useful to the discussion in the . 1 . 1
’ lim B(x,y) ==, lim B(x,y) = —, D30
text, namely, when both doublets are light compared to x.ylgloo (x.7) 3 x,;r—l}l (x.y) ( )
Mg (x(Ll";) — o), or when M, ~ M, ¢ ()C(Lzz5 - 1): |
lim C(x,y) ==, lim C(x,y) = —, (D31)
. . 2 x,y—>00 2 xy—1 12
lim F(x) = 1, hrrllF(x) =3 (D27)
X— 1 1
1 lim I(x,y) = ——, limI(x,y) = —-—, (D32)
lim G(x) =1, lln'llG(x) = 57 <D28) X,y—00 12 x,y—>1 12
1
1 1 i = i - —
lmA(ry) =, lmAGy) =5, (D29) Jim JOey) =0, JimJ(xy) =15. (D33)
x,y—00 X, y—
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