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The renormalizable extension of a pure Yang-Mills theory with Lorentz violation is characterized by the
CPT-Even ðkFÞμνλρ and the CPT-Odd ðkAFÞμ constant Lorentz coefficients. In this paper, the one-loop
structure of the theory up to second order in these Lorentz violating coefficients is studied using the
background field method gauge. Results for the diverse beta functions are derived and contrasted with those
given in the literature at first order in these parameters. Special emphasis is put on the beta function βðgÞ,
which is studied in both mass-independent and mass-dependent renormalization schemes. It is found that in
a mass-independent scheme the ðkAFÞμ Lorentz coefficient does not contribute to the βðgÞ function, but it
does in a mass-dependent scheme with contributions that are gauge dependent and IR divergent.
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I. INTRODUCTION

Special relativity is the essential building block in
formulating theories of fundamental physics, especially
in the small-distance regime where it is merged with
quantum principles. However, there are well-founded
reasons to suspect that Lorentz invariance is not an exact
symmetry at the Planck length and below. Clues of Lorentz
violation (LV) arise at a fundamental level from efforts to
merge quantum theory and general relativity into a unified
theory [1]. Explicit or spontaneous LV has been studied in
Planck-scale formulations, such as string theory [2], non-
commutative geometry [3], loop quantum gravity [4], and
other contexts [5]. Therefore, it is important to look for
signs of LV at low energies. At low energies, the effects of
Lorentz and CPT violation can be described in a model-
independent way by the standard model extension (SME),
which is an effective field theory that contains general
relativity and the standard model (SM) [6,7]. In its minimal
version (mSME) [7], the model contains only renormaliz-
able interactions, in the sense of mass units, but non-
renormalizable interactions are expected to play a dominant
role at higher energies [8–12]. The SME is an effective field
theory, which does not involve new degrees of freedom, but
is built from pieces that involve only the SM fields. Besides
the SM part, the mSME Lagrangian includes a sum of all
independent operators of up to dimension four of the form
Tμ1μ2���Oμ1μ2���, with Tμ1μ2��� a constant Lorentz tensor and

Oμ1μ2��� a Lorentz tensor which is gauge invariant and
depends on SM fields. The Tμ1μ2��� coefficients introduce
LV, since they specify preferred directions in the spacetime.
The criterion to construct an effective Lagrangian that
incorporates LV is that it must be invariant under observer
Lorentz transformations (coordinate transformations or
passive transformations) but not under particle transforma-
tions (transformations of the experimental setup or active
transformations) [13]. This must be so because two
observers must agree with the result of a measurement
regardless of whether Lorentz invariance is violated or not.
Consequently, under this type of transformation both the
Oμ1μ2��� operators and their coefficients Tμ1μ2��� are recog-
nized as Lorentz covariant objects of the same range. On
the other hand, particle Lorentz transformations means
transforming the experimental setup in such a way that an
interaction of the background fields Tμ1μ2��� with the devices
can be detected through the measurements made before and
after the transformation. This type of transformation only
acts on the degrees of freedom of the theory, that is, the
Oμ1μ2��� operators transform covariantly, but the Tμ1μ2���

coefficients do not transform, so the mSME Lagrangian
is not Lorentz invariant.
Experiments with stable particles, such as photons,

electrons, and protons, have been used to investigate
possible signs of LV. Experimental devices to investigate
rotation invariance and boost invariance using photons
have been designed for a long time. The most representative
examples are the famousMichelson-Morley experiment [14]
and the Kennedy-Thorndike experiment [15]. While the
former shows that the speed of the light is independent of
the orientation of the apparatus, the latter shows that it is also
independent of the velocity of the apparatus in different
inertial frames. Some modern experimental devices have
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made it possible to establish severe limits on LV. Among
others,we have amodernMichelson-Morley experiment that
uses ultrastable oscillator frequency sources [16], experi-
ments with microwave resonators operating in Whispering
Gallerymodes [17], penning traps,which are devices that use
electric and magnetic fields to keep stable charged particles
trapped for a long time [18], experiments with polarized
electrons [19], and some noble gas maser [20]. Muon
spectroscopy experiments have also been carried out [21].
Beyond terrestrial experiments, stringent bounds have
derived from astrophysical sources [22].
In the literature, attention has focused on the first-order

effects of Tμ1μ2��� coefficients, since they describe possible
experimental implications on Lorentz violation and also
because these coefficients are expected to be quite sup-
pressed. Although it should be mentioned that one-loop
higher order effects have been studied in the context of the
minimal quantum electrodynamics extension [23,24]. On
the other hand, to consider effects on SM observables, that
is, observables that are invariant under both observer and
particle Lorentz transformations, it is necessary to include
second-order effects in the Tμ1μ2��� coefficients. It is
expected that first-order effects of Tμ1μ2��� impact experi-
ments designed to detect Lorentz violation, such as those
aforementioned, but second-order effects of these coeffi-
cients can, in addition, contribute to SM observables, such
as the static electromagnetic properties of elementary
particles [25–27]. For instance, in the mSME the electro-
magnetic f̄fγ vertex, with f standing for a lepton or quark,
can develop at the one-loop level new electromagnetic
structures proportional to the Tμ1μ2��� coefficients [25] and
new contributions that modify the usual ones if second-
order effects of the form T2 ¼ Tμ1μ2���Tμ1μ2��� are considered
[26,27]. Although these quantities do not carry information
on spatial directions or relative motion, they can provide
useful information about the importance of LVeffects when
constrained from high precision experiments, such as, for
example, magnetic and electric dipole moments of charged
leptons and nucleons. In particular, bounding these effects
is particulary useful in cases of antisymmetric 2-tensors
Tμν ¼ −Tνμ, since these types of objects are made of two
spatial e and b vectors, and thus bounds for jej and jbj can
be derived [26]. As we will see later, the study of second-
order effects is valuable in itself since it can shed light on
the very structure of the theory. This is the spirit of the
present work.
Quantum field theories (QFTs) that violate Lorentz

symmetry, such as the mSME, can lead to results that
strongly contrast with those predicted by QFTs that preserve
this symmetry. To illustrate this point, let us comment on the
case of the static electromagnetic properties of spin-1

2
charged

particles. It is a well-known fact that in the SM (and in any
Lorentz-invariant QFT) the anomalous magnetic moment of
a spin-1

2
charged particle is a one-loop prediction that is free

of both ultraviolet (UV) divergences and infrared (IR)

divergences, that is, it is a physical observable. However,
it has been shown in [26] that LVinduces contributions to the
anomalous magnetic moments of leptons and quarks that are
not free of IR divergences, showing that these quantities are
no longer observable. We think that this type of result
constitutes a strong incentive to study one-loop LV effects
on standard observables (in the sense that they are invariant
under both observer and particle Lorentz transformations)
beyond the first order in the Tμ1μ2��� coefficients. In this work,
we are interested in studying the two-point Aa

μAb
ν vertex

function in the context of pure Yang-Mills theories that
incorporate all independent Lorentz violating interactions of
renormalizable type. In particular, we will focus on the one-
loop structure of the vacuum polarization tensor by consid-
ering all effects up to second order in the Tμ1μ2��� coefficients
of the theory. To carry out this program, we will adopt the
background field method (BFM) [28], which is a gauge-
fixing procedure that allows us to maintain gauge invariance
with respect to the background fields. This method greatly
simplifies the renormalization program, since the renormal-
ization constants associated with the gauge fields and the
coupling constant of the gauge group are related to each
other. Besides studying the one-loop renormalizability of
the theory, we will put special attention on the impact of
contributions proportional to T2 ¼ Tμ1μ2���Tμ1μ2��� to the beta
function associated with the coupling constant g of the
SUðNÞ gauge group. To study the decoupling or nondecou-
pling nature of the new physics effects, the beta function will
be analyzed from the perspective of both amass-independent
and a mass-dependent renormalization scheme. The one-
loop renormalization of pureYang-Mills theories has already
been studied at first order in the Lorentz violating parameters
in [29]. The one-loop renormalization of the QCD extension
has been also studied by the same authors in [30].
The rest of the paper has been organized as follows. In

Sec. II, the structure of the SUðNÞ-invariant Lagrangian
that incorporates LV interactions of renormalizable dimen-
sion is studied. The Feynman rules in the BFM are derived.
Secs. III and IV are devoted to studying the one-loop
structure of the theory. Finally, in Sec. V a summary is
presented.

II. THE MINIMAL YANG-MILLS THEORY
EXTENSION

The minimal Yang-Mills extension (mYME) is given by
the following effective action:

SYME½Aa
μ� ¼

Z
d4xLYME; ð2:1Þ

where

LYME ¼ LYM þ LCPT−Even
YMLV þ LCPT−Odd

YMLV þ LGF þ LFPG:

ð2:2Þ
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In this expression,

LYM ¼ −
1

2
Tr½FμνFμν�; ð2:3Þ

LCPT−Even
YMLV ¼ −

1

2
ðkFÞμνλρTr½FμνFλρ�; ð2:4Þ

LCPT−Odd
YMLV ¼ −

1

2
ðkAFÞκϵκλμνTr

�
AλFμν þ

2

3
igAλAμAν

�
;

ð2:5Þ

where Aμ ¼ TaAa
μ and Fμν ¼ TaFa

μν. On the other hand,
LGF and LFPG are the gauge-fixing Lagrangian and the
Faddeev-Popov Lagrangian, respectively, which will be
defined below. In addition, Fa

μν are the Yang-Mills curva-
tures, which are given by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð2:6Þ

We will adopt the normalization Tr½TaTb� ¼ δab

2
. The

ðkFÞμνλρ tensor is dimensionless and has the same sym-
metries as the Riemann tensor, so it satisfies the algebraic
Bianchi identity

ðkFÞμνλρ þ ðkFÞμλρν þ ðkFÞμρνλ ¼ 0: ð2:7Þ

For purposes of renormalization, it is convenient to work
with the SOð1; 3Þ irreducible parts of the Riemann-like
tensor. So, in terms of its irreducible parts, ðkFÞμνλρ can be
decomposed as follows:

ðkFÞμνλρ ¼ ðk̂FÞμνλρ þ ðk̃FÞμνλρ þ
1

6
ðgμλgνρ − gμρgνλÞk̄F;

ð2:8Þ

where

ðk̃FÞμνλρ¼
1

2
½gνλðkFÞμρ−gνρðkFÞλμþgμρðkFÞνλ−gμλðkFÞνρ�:

ð2:9Þ

In the above expressions, ðk̂FÞμνλρ is a Weyl-like tensor,
which has the same symmetries as ðkFÞμνλρ, but it is defined
so that every tensor contraction between indices gives zero.
On the other hand, ðkFÞνρ ¼ gμλðkFÞμνλρ is a symmetric
tensor, analogous to the Ricci tensor. In addition, k̄F ¼
gμνðkÞμν is the analogous of the scalar curvature. In terms of
the irreducible parts of the ðkFÞμνλρ tensor, the Lagrangian
(2.4) can be written as follows:

LCPT−Even
YMLV ¼ −

1

2
ðk̂FÞμνλρTr½FμνFλρ� − ðkFÞμνTr½FμλFλ

ν�

−
k̄F
6
Tr½FμνFμν�: ð2:10Þ

Actually the k̄F coefficient does not contribute, since it can
be removed from the theory through the following rede-
finitions:

Aa
μ → Ω−1

2Aa
μ; g → Ω1

2g; ð2:11Þ

ðk̂FÞμνλρ → Ωðk̂FÞμνλρ; ðkFÞμν → ΩðkFÞμν; ð2:12Þ

where Ω ¼ 1þ k̄F
3
. From now on, we will assume that

k̄F ¼ 0. On the other hand, the coefficient ðkAFÞκ trans-
forms as a 4-vector under observer Lorentz transforma-
tions, but it is invariant under particle Lorentz
transformations. Since this coefficient has mass units, it
can lead to important nondecoupling effects at the one-loop
level. We will pay special attention to the consequences of
this fact.

A. Implementation of the background field method

Under an infinitesimal transformation, the gauge fields
transform as

δAa
μ ¼ Dab

μ αb; ð2:13Þ

where Dab
μ ¼ δab∂μ − gfabcAc

μ is the covariant derivative in
the adjoint representation of SUðNÞ and αa are the gauge
parameters. The BFM consists of decomposing the gauge
fields into a classical part, Aa

μ, and a quantum part, Qa
μ,

Aa
μ → Aa

μ þQa
μ, so Eq. (2.13) becomes

δðAa
μ þQa

μÞ ¼ ðδab∂μ − gfabcðAc
μ þQc

μÞÞαb ð2:14Þ

or

δAa
μ ¼ Dab

μ αb; ð2:15Þ

δQa
μ ¼ gfabcQb

μα
c; ð2:16Þ

which shows that the Aa
μ fields transform as gauge fields,

whereas the Qa
μ fields transform as matter fields in the

adjoint representation of SUðNÞ. On the other hand, the
gauge curvatures become

Fa
μν → Fa

μν þDab
μ Qb

ν −Dab
ν Qb

μ þ gfabcQb
μQc

ν; ð2:17Þ

which transform in the adjoint representation of SUðNÞ.
The Qa

μ fields appear integrated in the fundamental path
integral, so they are the quantum fields. On the other hand,
the classical fields Aa

μ act as sources with respect to which
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the Green’s functions of the theory are derived, that is, they
represent the external legs of such functions.
The BFM allows us to fix the gauge for the quantum

fields Qa
μ covariantly under the SUðNÞ group. For this, we

define the following gauge-fixing functions:

fa ¼ Dab
μ Qbμ; ð2:18Þ

which transform in the adjoint representation of SUðNÞ. In
this way, the gauge-fixing Lagrangian,

LGF ¼ −
1

2ξ
fafa; ð2:19Þ

is invariant under the gauge transformations (2.15). Here, ξ
is the gauge parameter.
In the BFM gauge, the Faddeev-Popov Lagrangian is

given by

LFPG ¼ −c̄aDab
μ Dbcμcc þ gfbcdc̄aDab

μ Qcμcd; ð2:20Þ

where ca and c̄a are the ghost and antighost pairs of
anticommuting fields, respectively.

B. The renormalized Lagrangian and counterterm
Lagrangian

Since the quantum fields Qa
μ only appear inside loops,

the renormalization program is implemented on the back-
ground fields Aa

μ. Also, at the one-loop level it is not
necessary to introduce a renormalization for the ghost and
antighost fields, so we do not introduce a counterterm for
the ghost sector.
Let fAa

Bμ; gB; ðk̂FBÞμνλρ; ðkFBÞμν; ðkAFBÞκg and fAa
μ; g;

ðk̂FÞμνλρ; ðkFÞμν; ðkAFÞκg be the bare and renormalized
gauge fields and coupling constants, respectively, which
are related through the renormalization constants
fZA; Zg; Z

μνλρ
Fαβγδ; Z

μν
Fαβ; Z

κ
AFαg as follows:

Aa
Bμ ¼ Z

1
2

AA
a
μ; ð2:21Þ

gB ¼ Zgg; ð2:22Þ

ðk̂FBÞμνλρ ¼ Zμνλρ
Fαβγδðk̂FÞαβγδ; ð2:23Þ

ðkFBÞμν ¼ Zμν
FαβðkFÞαβ; ð2:24Þ

ðkAFBÞκ ¼ Zα
AFκðkAFÞα: ð2:25Þ

One of the great advantages of BFM is the gauge invariance
of the theory with respect to background fields Aa

μ. As a
consequence, we have the simple relation

Fa
Bμν ¼ Z

1
2

AF
a
μν; ð2:26Þ

which in turns implies that

Zg ¼ Z
−1
2

A : ð2:27Þ

So, the bare Lagrangian is given by

LBYME ¼ LYME þ Lct
YME; ð2:28Þ

where LYME is the renormalized Lagrangian given by
Eq. (2.2) and Lct

YME is the counterterm Lagrangian, which
is given by

Lct
YME ¼ −

1

2
δATr½FμνFμν� − 1

2

�
δk̂F

�
μλνρ

Tr½FμνFλρ�

− ðδkFÞμνTr½FμλFλ
ν� −

1

2
ðδkAFÞκϵκλμνTr

×

�
AλFμν þ

2

3
igAλAμAν

�
; ð2:29Þ

where we have introduced the following definitions:

δA ¼ ZA − 1; ð2:30Þ

ðδk̂FÞμλνρ ¼ ðZAZ
αβγδ
Fμλνρ − δαμδ

β
λδ

γ
νδδρÞðk̂FÞαβγδ; ð2:31Þ

ðδkFÞμν ¼ ðZAZ
αβ
Fμν − δαμδ

β
νÞðkFÞαβ; ð2:32Þ

ðδkAFÞκ ¼ ðZAZα
AFκ − δακ ÞðkAFÞα: ð2:33Þ

Notice that the counterterm Lagrangian is gauge invariant.
This fact implies, through Eq. (2.27), that the beta function
associated with the coupling constant g is determined by
the renormalization constant ZA. So it can be determined
from a direct calculation of the vacuum polarization
function. As noted in the introduction, we will extend this
study to the complete two-point vertex function Aa

μAb
ν ,

which, up to second order in the Lorentz violating
coefficients can be written as follows:

ΠYMEab
μν ðqÞ¼Πab

μνðqÞþΠLVð1Þab
μν ðqÞþΠLVð2Þab

μν ðqÞ; ð2:34Þ

where the first term represents the usual contribution,
whereas the second and third terms include all effects of
first and second order in the Lorentz violating coefficients,
respectively. We will see below that the second-order term

ΠLVð2Þab
μν ðqÞ contains a part that modifies the vacuum

polarization, and thus it introduces modifications in the
usual beta function. The study of the consequences of these
contributions is an important objective of this work.
We now proceed to derive the Feynman rules needed for

the calculation on the one-loop correction to the two-point
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vertex functionΠYMEab
μν ðqÞ. In the BFM gauge, the standard

Yang-Mills sector is given by

LYM ¼ −
1

4
Fa
μνFaμν −

1

2
Fa
μνQaμν −

g
2
fabc

× ðFa
μν þQa

μνÞQbμQcν −
1

4
Qa

μνQaμν

−
g
4
fabcfadeQb

μQc
νQdμQeν; ð2:35Þ

where Qa
μν ¼ Dab

μ Qb
ν −Dab

ν Qb
μ. On the other hand, the LV

Lagrangians become

LCPT−Even
YMLV ¼ −

1

4
ðk̂FÞμνλρðFa

μνFa
λρ þ 2gfabcFa

μνQb
λQ

c
ρ

þ 4ðDab
μ Qb

νÞðDab
λ Qb

ρÞÞ −
1

2
ðkFÞμν

× ðFa
μλF

λ
aν þ 2gfabcFa

μλQ
bλQc

ν þQa
μλQ

λ
aνÞ

þ � � � ; ð2:36Þ

where the ellipsis indicates terms that do not contribute to
the ΠYMEab

μν ðqÞ vertex function. In addition,

LCPT−Odd
YMLV ¼ −

1

4
ðkAFÞκϵκλμν

�
Aa
λF

a
μν −

g
3
fabcAa

λA
b
μAc

ν

þ 2ðAa
λ þQa

λÞDab
μ Qb

ν þQa
λF

a
μν − gfabc

×

�
Aa
λA

b
μQc

ν þ
2

3
Qa

λQ
b
μQc

ν

��
: ð2:37Þ

The vertices that contribute to the two-point ΠYMEab
μν ðqÞ

vertex function up to second order in the LV coefficients are
QQ, AQQ, and AAQQ, whose corresponding Feynman
rules are shown in Fig. 1. The Lorentz tensors that appear in
these Feynman rules are given by

Γμνλðk1;k2;k3Þ¼ gλμ

�
k3−k1þ

k2
ξ

�
ν

þgμν

�
k1−k2−

k3
ξ

�
λ

þgλνðk2−k3Þμ; ð2:38Þ

Γabcd
μνλρ ¼ facefbde

�
gμνgλρ − gμρgνλ þ

1

ξ
gμλgνρ

�

þ fadefbce
�
gμνgλρ − gμλgνρ þ

1

ξ
gμρgνλ

�

þ fabefcdeðgμλgνρ − gμρgνλÞ; ð2:39Þ

Γ̂μνðkÞ ¼ −2ðk̂FÞμλνρkλkρ; ð2:40Þ

FIG. 1. Feynman rules needed to calculate the one-loop amplitude of the Aa
μAb

ν vertex function in the BFM gauge.

FIG. 2. Feynman rule of the counterterm associated with the Aa
μAb

ν coupling.
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Γ̃μνðkÞ ¼ ðk2δλμδρν þ gμνkλkρ − kμkλδ
ρ
ν − kνkλδ

ρ
μÞðkFÞλρ

;ð2:41Þ

ΓO
μνðkÞ ¼ −iðkAFÞκϵκμρνkρ; ð2:42Þ

Γ̂μνλðk1;k2;k3Þ¼−2½kρ1ðk̂FÞρμνλþkρ2ðk̂FÞρνλμþkρ3ðk̂FÞρλμν�;
ð2:43Þ

Γ̃μνλðk1; k2; k3Þ ¼ ½ðkFÞμνgρλ þ gμνðkFÞρλ�ðk2 − k1Þρ
þ ½ðkFÞμλgρν þ gμλðkFÞρν�ðk1 − k3Þρ
þ ½ðkFÞνλgρμ þ gνλðkFÞρμ�ðk3 − k2Þρ;

ð2:44Þ

ΓO
μνλ ¼ −iðkAFÞκϵκμνλ; ð2:45Þ

Γ̂abcd
μνλρ ¼ 2½fabefcdeðk̂FÞμνλρ þ facefbdeðk̂FÞμλνρ

þ fadefbceðk̂FÞμρνλ�; ð2:46Þ

Γ̃abcd
μνλρ ¼ 2½fabefcdeðk̃FÞμνλρ þ facefbdeðk̃FÞμλνρ

þ fadefbceðk̃FÞμρνλ�: ð2:47Þ

On the other hand, the Feynman rule associated with the
counterterm is shown in Fig. 2.
The various quantities appearing in Fig. 2 are given by

PμνðkÞ ¼ k2gμν − kμkν; ð2:48Þ

δΓ̂μνðkÞ ¼ −2ðδk̂FÞμλνρkλkρ; ð2:49Þ

δΓ̃μνðkÞ ¼ ðk2δλμδρν þ gμνkλkρ − kμkλδ
ρ
ν − kνkλδ

ρ
μÞðδkFÞλρ;

ð2:50Þ

δΓO
μνðkÞ ¼ −iðδkAFÞκϵκμρνkρ: ð2:51Þ

In Table I, we present a summary of the Feynman rules used
in the calculation of the Aa

μAb
ν vertex function.

III. THE ONE-LOOP ΠYMEab
μν ðqÞ VERTEX

FUNCTION

In this section, we study the one-loop quantum fluctua-
tions induced by LV effects on the Aa

μAb
ν vertex function.

Effects of up to second order in the Lorentz violating
coefficients will be considered. Up to second order in the
Lorentz coefficients, the contribution to this two-point
vertex function is given by the Feynman diagrams shown
in Fig. 3. The structure of the corresponding amplitude is
dictated by SUðNÞ-gauge invariance and can be written as
follows:

ΠYMEab
μν ðq;ξÞ ¼ iδab½Πμνðq;ξÞþΠEð1Þ

μν ðq;ξÞþΠEð2Þ
μν ðq;ξÞ

þΠOð1Þ
μν ðq;ξÞþΠOð2Þ

μν ðq;ξÞþΠEOð2Þ
μν ðq;ξÞ�

þ iδab½−δAPμνðqÞþ δΓ̂μνþ δΓ̃μνþ δΓO
μν�:
ð3:1Þ

Notice that we have included the contribution of the
counterterms. In these expressions, the label EðOÞ stands
for the CPT-Even (CPT-Odd) contribution. Also, the (1)
and (2) labels indicate contributions of first and second
order in the Lorentz coefficients, respectively. Notice that
interference effects between CPT-Even and CPT-Odd
terms, which can be generated to second order in the LV
coefficients, are also considered. We now proceed to
describe each of these contributions. For comparison
purposes, and also for clarity, the usual contribution, as
well as the first-order contribution already studied in
Ref. [30], will be presented. In all cases, exact expressions
calculated in the general BFM gauge will be presented.
We have performed our calculations using the FeynCalc

package [31].

A. The usual contribution Πμνðq;ξÞ
In the general BFM gauge, the one-loop contribution of

the usual theory is given through the first two diagrams
shown in Fig. 3. The vacuum polarization tensor function is
given by

Πμνðq; ξÞ ¼ Πðq2; ξÞPμνðqÞ; ð3:2Þ

TABLE I. Vertex functions contributing to the Aa
μAb

ν coupling at the one-loop level.

Vertex function LYM LCPT-Even
YM−LV LCPT-Odd

YM−LV

Qa
μðkÞQb

νðkÞ iδabðΓ̂μνðkÞ þ Γ̃μνðkÞÞ, Eqs. (2.40) and (2.41) iδabΓO
μνðkÞ, Eq. (2.42)

Aa
μðk1ÞQb

νðk2ÞQc
λðk3Þ gfabcΓμνλðk1; k2; k3Þ

Eq. (2.38)
gfabcðΓ̂μνλðk1; k2; k3Þ þ Γ̃μνλðk1; k2; k3ÞÞ,

Eqs. (2.43), (2.44)
gfabcΓO

μνλ, Eq. (2.45)

Aa
μAb

νQc
λQ

d
ρ −ig2Γabcd

μνλρ , Eq. (2.39) −ig2ðΓ̂abcd
μνλρ þ Γ̃abcd

μνλρ Þ, Eqs. (2.46) and (2.47)

ct Aa
μðkÞAb

νðkÞ −iδabδAPμνðkÞ Eq. (2.48) iδabðδΓ̂μν þ δΓ̃μνÞ, Eqs. (2.49) and (2.50) iδabδΓO
μνðkÞ, Eq. (2.51)
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where Πðq2; ξÞ is the vacuum polarization function, which
is given by

Πðq2; ξÞ ¼ g2

ð4πÞ2 C2ðGÞ
�
11

3
Δ −

11

3
log

�
−
q2

μ̂2

�
þ 67

9

−
1

4
ð1 − ξÞð7þ ξÞ

�
: ð3:3Þ

In this expression,

Δ ¼ 1

ϵ
− γE þ logð4πÞ; ð3:4Þ

with γE the Euler-Mascheroni constant and μ̂ the scale of
dimensional regularization. The quantity C2ðGÞ has to do
with the normalization of SUðNÞ generators in the adjoint
representation through the relation facdfbcd ¼ C2ðGÞδab.

B. First-order contributions

At first order in the LV coefficients, the contributions are
given by those diagrams characterized by one black point
shown in Fig 3.

1. CPT-Even contribution

The CPT-Even contribution can be written as follows:

ΠEð1Þ
μν ðq; ξÞ ¼ f1ðq2; ξÞΓ̂μνðqÞ þ f2ðq2; ξÞΓ̃μνðqÞ

þ ΠEð1Þðq2; ξÞPμνðqÞ; ð3:5Þ

where

ΠEð1Þðq2; ξÞ ¼ f3ðξÞðkFÞαβ
�
qαqβ

q2

�
; ð3:6Þ

and the Γ̂μν and Γ̃μν tensors are given in Eqs. (2.40) and
(2.41), respectively. The form factors f1ðq2; ξÞ and
f2ðq2; ξÞ are UV divergent. On the other hand, the f3ðξÞ
form factor is free of UV divergences, which is a conse-
quence of the fact that it is associated with a dimension-six
interaction. This finite contribution, proportional to the
usual vacuum polarization tensor structure Pμν, is associ-
ated with following dimension-six interaction:

ðkFÞαβDab
α Fb

λρD
ac
β Fcλρ: ð3:7Þ

The fiðq2; ξÞ form factors are given in Appendix. It is worth
mentioning that the term proportional to the Ricci tensor is
not considered in Ref. [29], since the authors take it equal to
zero from the beginning. However, this is valid only at first
order in theLVcoefficients, but not to higher orders.Next,we
will show that theRicci structure is generated to second order
by a specific indices contraction between two Weyl-like
tensors, so renormalization theory requires the presence of
said coefficient in the classical Lagrangian if contributions
beyond the first order are considered.

2. CPT-Odd contribution

On the other hand, theCPT-Odd contribution is given by

ΠOð1Þ
μν ðq; ξÞ ¼ −

ig2C2ðGÞ
2ð4πÞ2 ½13 − ξðξþ 4Þ�ðkAFÞλϵλμρνqρ;

ð3:8Þ

FIG. 3. Feynman diagrams contributing to the Aa
μAb

ν vertex function at one-loop level up to second order in the Lorentz coefficients.
The first two diagrams represent the usual contribution, whereas those diagrams with one black dot and two black dots represent
contributions of first and second order in the Lorentz coefficients, respectively. The contribution of the counterterm has been included.
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which is free of UV divergences. However, this result
seems to be unique to the BFM gauge, since it is divergent
in the linear Rξ gauge, as shown in Ref. [29]. Although the
result (3.8) is free of UV divergences, the renormalization
factor associated with the Lorentz coefficient ðkAFÞκ is UV
divergent, which acquires a pole through the renormaliza-
tion factor ZA of the gauge fields. This fact has already been
pointed out in Ref. [30], where the one-loop structure of
the QCD extension was studied to first order using the
BFM gauge.
Notice that the ϵλμρνqρ tensor is symmetric in the pair of

indices μ and ν, as the interchange μ ↔ ν must be
accompanied by the change q → −q.

C. Second-order contributions

The second-order contribution in the Lorentz coefficients
is given by those diagrams in Fig. 3 characterized by two
black dots.

1. CPT-Even contribution

The CPT-even contribution can be written as follows:

ΠEð2Þ
μν ðq; ξÞ ¼ Γ̂ð2Þ

μν þ Γ̃ð2Þ
μν þ

�
qλqρ

q2

�
Γ̃ð2Þ
μνλρ þ

�
qλqρqσqτ

ðq2Þ2
�

× Γ̃ð2Þ
μνλρστ þ ΠEð2Þðq2; ξÞPμν; ð3:9Þ

where

ΠEð2Þðq2; ξÞ ¼ ΠEð2Þ
Div þ

�
qαqβ

q2

�
ðk1Þαβ þ

�
qαqβqσqτ

ðq2Þ2
�

× ðk2Þαβστ: ð3:10Þ

In the above expressions,

Γ̂ð2Þ
μν ¼ −2qλqρðk̂ð2ÞF Þμλνρ; ð3:11Þ

Γ̃ð2Þ
μν ¼ ðq2δαμδβν þ gμνqαqβ − qμqαδ

β
ν − qνqαδ

β
μÞðk̃ð2ÞF Þαβ;

ð3:12Þ

Γ̃ð2Þ
μνλρ ¼ ðq2δαμδβν þ gμνqαqβ − qμqαδ

β
ν − qνqαδ

β
μÞðk̃ð2ÞF Þαβλρ;

ð3:13Þ

Γ̃ð2Þ
μνλρστ ¼ðq2δαμδβν þgμνqαqβ−qμqαδ

β
ν −qνqαδ

β
μÞðk̃ð2ÞF Þαβλρστ;

ð3:14Þ
where the ðk̂ð2ÞF Þμλνρ, ðk̃ð2ÞF Þαβ, ðk̃ð2ÞF Þαβλρ, and ðk̃ð2ÞF Þαβλρστ
tensors are made of contractions between the tree-level
Weyl-like ðk̂FÞμναβ tensor and the tree-level Ricci-like

ðkFÞμν tensor. The first of these tensors, ðk̂ð2ÞF Þμλνρ, is a
Weyl-like tensor, which emerges from the irreducible
pieces of the following Riemann-like tensor:

ðkð2ÞF Þμλνρ ¼ l1ðq2; ξÞðkð2ÞW Þμλνρ þ l2ðq2; ξÞðkð2ÞR Þμλνρ;
ð3:15Þ

where ðkð2ÞW Þμλνρ and ðkð2ÞR Þμλνρ are Riemann-like tensors,
which are given by

ðkð2ÞW Þμλνρ ¼ ðk̂FÞμλστðk̂FÞνρστ þ
1

2
ðk̂FÞμρστðk̂FÞνλστ

−
1

2
ðk̂FÞμνστðk̂FÞλρστ; ð3:16Þ

ðkð2ÞR Þμλνρ ¼ ðkFÞμρðkFÞνλ − ðkFÞμνðkFÞλρ: ð3:17Þ

It can be shown that these tensors satisfy all symmetries of a
Riemann-like tensor, the algebraic Bianchi identity (2.7),
and have nonzero double trace. The decomposition of

ðkð2ÞF Þμλνρ into its irreducibles parts leads to the following
Weyl-like tensor:

ðk̂ð2ÞF Þμλνρ¼ l1ðq2;ξÞðk̂ð2ÞW Þμλνρþ l2ðq2;ξÞðk̂ð2ÞR Þμλνρ; ð3:18Þ

where ðk̂ð2ÞW;RÞμλνρ are the Weyl-like parts of the ðkð2ÞW;RÞμλνρ
Riemann-like tensors. The Ricci-like part of ðkð2ÞF Þμλνρ is
given by

ðkð2ÞF Þμν ¼ l1ðq2; ξÞðkð2ÞW Þμν þ l2ðq2; ξÞðkð2ÞR Þμν; ð3:19Þ

where ðkð2ÞW;RÞμν are the Ricci-like parts of the ðkð2ÞW;RÞμλνρ
Riemann-like tensor. This Ricci-like contribution is con-

sidered inside of the ðk̃ð2ÞF Þαβ tensor appearing in the Γ̃ð2Þ
μν

tensor of Eq. (3.12). Regarding the analogue of scalar

curvature, k̄ð2ÞF , its contribution is included in the ΠEð2Þ

scalar function that appears in Eq. (3.9). The loop functions
l1ðq2; ξÞ and l2ðq2; ξÞ that appear in the above expressions
are UV divergent. They are presented in Appendix.
Some comments are in order here. The Riemann-like

tensor ðkð2ÞF Þμλνρ is the only source of a Weyl-like contri-
bution, namely, the one given by Eq. (3.11), but it is not the
only source of Ricci contributions and scalar curvature
contributions. There are additional contributions to the
Ricci and Pμν Lorentz structures arising from sources

different from the Riemann-like tensor ðkð2ÞF Þμλνρ. Once
all the Ricci-type contributions are added, we obtain

ðk̃ð2ÞF Þμν ¼ g1ðq2; ξÞðk̂FÞμλρσðk̂FÞνλρσ
þ g2ðq2; ξÞðkFÞμλðkFÞνλ
þ g3ðq2; ξÞðk̂FÞμλνσðkFÞλσ ð3:20Þ

where the ðk̃ð2ÞF Þμν tensor appears in Eq. (3.12). It is
important to note the presence in Eq. (3.20) of a Ricci-
like factor, namely, the one with form factor g1ðq2; ξÞ,
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which is independent of the tree-level ðkFÞμν Ricci-like
tensor. Since g1ðq2; ξÞ is UV divergent, we cannot take the
tree-level Ricci-like tensor ðkFÞμν equal to zero, as assumed
in Ref. [29], if second-order effects are considered. The
three form factors giðq2; ξÞ are UV divergent. They are
given in Appendix.
On the other hand, the ΠEð2Þ

Div form factor is given by

ΠEð2Þ
Div ðq2; ξÞ ¼ h1ðq2; ξÞðk̂FÞ2 þ h2ðq2; ξÞðkFÞ2; ð3:21Þ

where

ðk̂FÞ2 ¼ ðk̂FÞαβλρðk̂FÞαβλρ; ð3:22Þ

ðkFÞ2 ¼ðkFÞαβðkFÞαβ: ð3:23Þ

The UV divergent loop functions hiðq2; ξÞ are given in
Appendix.
As far as the 4-tensor and 6-tensor structures given in

Eqs. (3.13) and (3.14) are concerned, they are given by

ðk̃ð2ÞF Þαβλρ ¼ g4ðξÞ
�
ðk̂FÞασλτðk̂FÞβσρτ þ ðk̂FÞβσλτðk̂FÞασρτ

�

þ g5ðξÞðkFÞαβðkFÞλρ þ g6ðξÞ

×

�
ðk̂FÞαλρσðkFÞβσ þ ðk̂FÞβλρσðkFÞασ

�

þ g7ðξÞ
�
ðk̂FÞαρβσ þ ðk̂FÞβρασ

�
ðkFÞλσ; ð3:24Þ

ðk̃ð2ÞF Þαβλρστ ¼ g8ðξÞðk̂FÞασλωðk̂FÞβτρω þ g9ðξÞðk̂FÞαλβρðkFÞστ
þ ðα ↔ βÞ: ð3:25Þ

These observer-Lorentz structures characterize dimension-
six and dimension-eight interactions, which are Ricci-like
tensors with respect to the first two indices. The dimension-
six interactions have the following structure:

ðk̂FÞμσατðk̂FÞνσβτDab
α Fb

μλD
acβFcλν;

ðkFÞμνðkFÞαβDab
α Fb

μλD
ac
β Fcλ

ν;

ðk̂FÞμαβσðkFÞνσDab
α Fb

μλD
ac
β Fcλν;

ðk̂FÞμβνσðkFÞασDabαFb
μλD

ac
β Fcλ

ν; ð3:26Þ

while those of dimension-eight have the form

ðk̂FÞμσαωðk̂FÞντβωDab
α Dbc

σ Fc
μλD

adβDdeτFeλν;

ðk̂FÞμανβðkFÞστDab
α Dbc

σ Fc
μλD

ad
β Dde

τ Feλ
ν: ð3:27Þ

The loop functions giðξÞ (i ¼ 4;…; 9) are all free of UV
divergences, which is in accordance with renormalization
theory, as they characterize interactions of dimension

higher than four. These functions, which depend on only
the gauge parameter, are given in Appendix.
Finally, there are also dimension-six and dimension-

eight interactions which contribute to the usual Pμν tensor.
These contributions emerge through the following tensors
[see Eqs. (3.9) and (3.10)]:

ðk1Þαβ ¼ s1ðξÞðk̂FÞαλρσðk̂FÞβλρσ þ s2ðξÞðkFÞαλðkFÞβλ
þ s3ðξÞðk̂FÞαλβσðkFÞλσ; ð3:28Þ

ðk2Þαβλρ ¼ s4ðξÞðk̂FÞασβτðk̂FÞλσρτ þ s5ðξÞðkFÞαβðkFÞλρ:
ð3:29Þ

These finite contributions to the vacuum polarization arise
through the following dimension-six interactions:

ðk̂FÞαωτσðk̂FÞβωτσDab
α Fb

λρD
ac
β Fcλρ;

ðkFÞασðkFÞβσDab
α Fb

λρD
ac
β Fcλρ;

ðk̂FÞατβσðkFÞτσDab
α Fb

λρD
ac
β Fcλρ; ð3:30Þ

and from the following dimension-eight interactions:

ðk̂FÞαωβηðk̂FÞσωτηDab
α DbcσFc

λρD
ad
β DdeτFeλρ;

ðkFÞαβðkFÞστDab
α Dbc

σ Fc
λρD

ad
β Dde

τ Feλρ: ð3:31Þ

All the form factors siðξÞ (i ¼ 1;…; 5) are free of UV
divergences but are gauge dependent. They are given in
Appendix.
For clarity and later use, it is convenient to summarize

the most outstanding results of the second-order CPT-even
contribution. To this order, a Riemman-like UV divergent

interaction ðkð2ÞF Þμλνρ arises. Once expressed into its irre-
ducible pieces, UV divergent contributions are induced on
the Weyl-like, Ricci-like, and usual (Pμν) Lorentz struc-
tures. The Weyl-like contribution is given in Eq. (3.11)

through the ðk̂ð2ÞF Þμλνρ tensor of Eq. (3.18). The Ricci-like

contribution is incorporated into the ðk̃ð2ÞF Þμν tensor given by
Eq. (3.20), which also contains contributions from other
sources. One of these contributions is the one characterized
by the form factor g1ðq2; ξÞ, which does not involve the
Ricci-like tree-level structure ðkFÞμν, but it emerges from a
contraction between two Weyl-like structures. This means
that, to second order, renormalization theory requires the
presence of a nonzero Ricci-like tensor at the tree level.
To second order, the vacuum polarization function

associated with the usual Pμν Lorentz tensor also receives
contributions from the scalar curvature induced by the

irreducible parts of the ðkð2ÞF Þμλνρ Riemann-like tensor, but
there are also contributions from other sources. All con-
tributions are collected in the vacuum polarization function
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ΠEð2Þ given in Eq. (3.21). Below, we will study the
implications of this contribution on the beta function βðgÞ.
There are no IR divergences arising from this sector.

The amplitude (3.9) satisfies the Ward identity

qμΠEð2Þ
μν ðq; ξÞ ¼ qνΠEð2Þ

μν ðq; ξÞ ¼ 0; ð3:32Þ

which shows us that there is gauge invariance.

2. CPT-Odd contribution

The second-order CPT-Odd contribution can be written
as follows:

ΠOð2Þ
μν ðq; ξÞ ¼ ΠOð2Þðq2; ξÞPμνðqÞ þ t3ðq2; ξÞ

ΓAF
μν ðqÞ
q2

;

ð3:33Þ

where

ΠOð2Þðq2; ξÞ ¼ t1ðq2; ξÞ
ðkAFÞ2
q2

þ t2ðq2; ξÞ
qαqβðkAFÞαðkAFÞβ

ðq2Þ2 : ð3:34Þ

In the above expressions, ðkAFÞ2 ¼ ðkAFÞκðkAFÞκ and
ΓAF
μν ðqÞ is given by

ΓAF
μν ðqÞ ¼ ðq2δαμδβν þ qαqβgμν − qμqαδ

β
ν − qνqαδ

β
μÞðkAFÞα

× ðkAFÞβ: ð3:35Þ

Notice that the vacuum polarization receives a contribution
from a dimension-six interaction, which has the form

ðkAFÞαðkAFÞβDab
α Fb

λρD
ac
β Fcλρ: ð3:36Þ

The tiðq2; ξÞ (i ¼ 1, 2, 3) functions are free of UV diver-
gences, but they have IR divergences. We have regulated
these divergences by introducing a fictitious mass m for the
gauge fields. These form factors are presented in Appendix.
In Ref. [32], the emergence in this sector of a mass term

proportional to ðkAFÞ2gμν was suggested. In that work, the
authors arrive at such conclusion within the framework of
the Landau gauge. In our case, such mass term cannot arise
because our amplitude is gauge invariant, that is, it satisfies
the Ward identity

qμΠOð2Þ
μν ðq; ξÞ ¼ qνΠOð2Þ

μν ðq; ξÞ ¼ 0: ð3:37Þ

This result is a consequence of the use of the BFM gauge,
which preserves gauge invariance.

3. CPT-Even and CPT-Odd interference

To second order, interference effects between CPT-Even
and CPT-Odd terms are generated. Since the mSME is
renormalizable, such effects must be free of UV divergen-
ces. Therefore, the calculation of these effects is important
to test the internal consistency of the model. The corre-
sponding amplitude is given by

ΠEOð2Þ
μν ðq;ξÞ¼−i

�ðkAFÞκqλ
q2

ΓEO
κλμνþ

ðkAFÞκqλqαqβ
ðq2Þ2 ΓEO

κλαβμν

�
;

ð3:38Þ

where

ΓEO
κλμν ¼ ðq2δαμδβν − qμqαδ

β
ν þ qνqαδ

β
μÞðkEOÞκλαβ; ð3:39Þ

ΓEO
κλαβμν ¼ ðq2δσμδτν − qμqσδτν þ qνqσδτμÞðkEOÞκλαβστ; ð3:40Þ

with the ðkEOÞκλαβ and ðkEOÞκλαβστ tensors given by

ðkEOÞκλμν ¼ η1ðξÞðδαμϵστκν − δανϵστκμÞðk̂FÞαλστ þ η2ðξÞ
× ðδαμϵσκλν − δανϵσκλμÞðkFÞασ
þ η3ðξÞðkFÞλσϵσκμν; ð3:41Þ

ðkEOÞκλαβμν ¼ η4ðξÞðδτνϵσκλμ − δτμϵσκλνÞðk̂FÞταβσ
þ η5ðξÞϵκλμνðkFÞαβ: ð3:42Þ

Notice that these tensors have the following symmetries:
ðkEOÞκλμν ¼ −ðkEOÞκλνμ and ðkEOÞκλαβμν ¼ −ðkEOÞκλαβνμ.
The antisymmetry of these tensors in the pair of indices

μ and ν does not mean that the amplitude ΠEOð2Þ
μν is

antisymmetric under the interchange of indices μ ↔ ν,
since this interchange must be realized together with the
change q → −q, which leads to a symmetric amplitude.
On the other hand, the form factors ηiðξÞ are free of both
UV and IR divergencies, but they are gauge dependent.
They are given in Appendix.
The amplitude (3.38) corresponds to dimension-five

and dimension-seven interactions. The dimension-five
interactions associated with the ðkEOÞκλμν tensor have
the form

ðkAFÞκðk̂FÞαλστϵστκβðFa
αγDab

λ Fbγβ − Fa
βγD

ab
λ FbγαÞ;

ðkAFÞκðkFÞασϵσκλβðFa
αγDabλFbγβ − Fa

βγD
abλFbγαÞ;

ðkAFÞκðkFÞλσϵσκαβFaα
γDab

λ Fbγβ; ð3:43Þ

J. J. TOSCANO and O. VÁZQUEZ-HERNÁNDEZ PHYS. REV. D 108, 055017 (2023)

055017-10



while the dimension-seven interactions associated with the
ðkEOÞκλαβμν tensor arise from

ðkAFÞκϵσκλμðk̂FÞναβσðDab
α Fb

μγDad
β Dde

λ Feγ
ν

−Dab
α Fb

νγDad
β Dde

λ Feγ
μÞ;

ðkAFÞκϵκλμνðkFÞαβDab
α Fb

μγDad
β Dde

λ Feγ
ν: ð3:44Þ

The amplitude is gauge invariant since it satisfies the Ward
identity

qμΠEOð2Þ
μν ðq; ξÞ ¼ qνΠEOð2Þ

μν ðq; ξÞ ¼ 0: ð3:45Þ

IV. RENORMALIZATION AND BETA
FUNCTIONS

One of the main advantages of using the BFM gauge
is that it preserves gauge invariance with respect to the
background gauge fields. This means that the usual beta
function, βðgÞ, can be derived from the renormalized two-
point ΠYMEab

μν ðqÞ vertex function. The purpose of this
section is to derive such a beta function, as well as those
associated with the LV coefficients. To analyze the decou-
pling or nondecoupling nature of the new physics effects,
we will carry out our study of the usual beta function by
implementing two renormalization schemes, namely a
mass-independent scheme and a mass-dependent scheme.
Up to second order in the LV coefficients, the vacuum

polarization function is given by Eqs. (3.3), (3.6), (3.10),
(3.21), and (3.34):

ΠYMEðq2; ξÞ ¼ Πðq2; ξÞ þ ΠEð1Þðq2; ξÞ þ ΠEð2Þðq2; ξÞ
þ ΠOð2Þðq2; ξÞ − δA; ð4:1Þ

where the counterterm has be included. Remember that
only Πðq2; ξÞ and the form factors h1ðq2; ξÞ and h2ðq2; ξÞ
of ΠEð2Þðq2; ξÞ have UV divergences.

A. Mass-independent scheme

We will use the MS scheme, in which the counterterm is
defined by a term of the form cΔ, c being a constant
independent of the external moment and Δ the divergent
quantity given in Eq. (3.4).

1. The βYMEðgÞ function
In a mass-independent renormalization scheme, the beta

function is given by

βMS
YMEðgÞ ¼ −

1

2
g2

∂Zð1Þ
A

∂g
; ð4:2Þ

where Zð1Þ
A is the coefficient of the simple pole of ZA.

The renormalization factor ZA arises from Eq. (4.1), so in
the MS scheme, it is given by

ZA ¼ 1þ g2C2ðGÞ
ð4πÞ2

1

ϵ

�
11

3
þ 3

8
ðk̂FÞ2 þ

25

18
ðkFÞ2

�
: ð4:3Þ

Then, from Eqs. (4.2) and (4.3), the beta function
becomes

βMS
YMEðgÞ ¼ βðgÞ

�
1þ 9

88
ðk̂FÞ2 þ

25

66
ðkFÞ2

�
; ð4:4Þ

where βðgÞ is the usual beta function of a pure (without
matter fields) Yang-Mills theory. Of course, our result
reduces to the usual one when the ðk̂FÞμλνρ and ðkFÞμν
tensors are identically zero, but it can also happen in the
presence of new physics if 9

88
ðk̂FÞ2 þ 25

66
ðkFÞ2 ¼ 0, which is

possible due to the spacetime metric. Other possibilities
are 9

88
ðk̂FÞ2 þ 25

66
ðkFÞ2 > 0 or 9

88
ðk̂FÞ2 þ 25

66
ðkFÞ2 < 0. In

the first case the phenomenon of asymptotic freedom is
reinforced, while in the second case this phenomenon is
weakened.
In the MS scheme, the tensor counterterms of the CPT-

Even sector are determined by the following conditions:

ZAðZk̂F
Þμναβλργσðk̂FÞλργσ − ðk̂FÞμναβ þ fΔ1 ðk̂FÞμναβ

þ ðk̂ð2ÞF ÞμναβΔ ¼ 0; ð4:5Þ

ZAðZkFÞμαλρðkFÞλρ − ðkFÞμα þ fΔ2 ðkFÞμα þ ðk̃ð2ÞF ÞμαΔ ¼ 0;

ð4:6Þ

where fΔ1 and fΔ2 are the UV divergent parts of the f1ðq2; ξÞ
and f2ðq2; ξÞ form factors, whereas ðk̂ð2ÞF ÞμναβΔ and ðk̃ð2ÞF ÞμαΔ
are the UV divergent parts of the ðk̂ð2ÞF Þμναβ and ðk̃ð2ÞF Þμα
tensors.
On the other hand, we have seen that the CPT-Odd

sector does not generate UV divergences, so in the MS
scheme the counterterm associated with this sector is null:

ZAðZkAFÞκλðkAFÞλ − ðkAFÞκ ¼ 0: ð4:7Þ

Now, to first order in αg ¼ g2

4π and up to second order in
the LV coefficient, from (4.3) we can write

Z−1
A ¼ 1 −

αgC2ðGÞ
4π

1

ϵ

�
11

3
þ 3

8
ðk̂FÞ2 þ

25

18
ðkFÞ2

�
: ð4:8Þ
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So, working always up to this order, Eqs. (4.5)–(4.7)
become

ðZk̂F
Þμναβλργσ ðk̂FÞλργσ ¼ ðk̂FÞμναβ þ

αgC2ðGÞ
4π

1

ϵ

�
7

3
ðk̂FÞμναβ

þ 3

2
ðk̂ð2ÞW Þμναβ þ 7

6
ðk̂ð2ÞR Þμναβ

�
; ð4:9Þ

ðZkFÞμαλρðkFÞλρ ¼ ðkFÞμα þ
αgC2ðGÞ

4π

1

ϵ

�
1

2
ðk̂FÞμλρσðk̂FÞαλρσ

þ 7

3
½ðk̂FÞμλασðkFÞλα þ ðkFÞμλðkFÞαλ�

�
;

ð4:10Þ

ðZkAFÞκλðkAFÞλ ¼ ðkAFÞκ −
11

3

αgC2ðGÞ
4π

1

ϵ
ðkAFÞκ: ð4:11Þ

Some comments are in order here. From Eq. (4.10), it can
be seen that the UV pole of the Ricci-like renormalization
factor does not depend linearly on the LV coefficients,
which is due to an exact cancellation with the expression
for Z−1

A . Also, notice that, although the CPT-Odd contri-
bution is free of UV divergences, the corresponding
renormalization factor is UV divergent through the Z−1

A
renormalization factor.
In the MS scheme, the beta functions can be determined

from the simple pole of the corresponding renormalization
factor, that is,

ðβk̂FÞμναβ ¼ 2αg
dðak̂F1 Þμναβ

dαg
; ð4:12Þ

ðβkFÞμα ¼ 2αg
dðakF1 Þμα
dαg

; ð4:13Þ

ðβkAFÞκ ¼ 2αg
dðakAF1 Þκ
dαg

; ð4:14Þ

where ðak̂F1 Þμναβ, ðakF1 Þμα, and ðakAF1 Þκ are the coefficients of
the simple pole in Eqs. (4.9)–(4.11). Then, the beta
functions are given by

ðβk̂FÞμναβ ¼
αgC2ðGÞ

4π

�
14

3
ðk̂FÞμναβ þ 3ðk̂ð2ÞW Þμναβ

þ 7

3
ðk̂ð2ÞR Þμναβ

�
; ð4:15Þ

ðβkFÞμα ¼
αgC2ðGÞ

4π

�
ðk̂FÞμλρσðk̂FÞαλρσ þ

14

3

×

�
ðkFÞμλðkFÞαλ þ ðk̂FÞμλαρðkFÞλρ

��
; ð4:16Þ

ðβkAFÞκ ¼ −
22αgC2ðGÞ

3ð4πÞ ðkAFÞκ: ð4:17Þ

Notice that the beta function associated with the Ricci-like
ðkFÞμα tensor is generated up to second order in the LV
coefficients. We also note that if only first-order contribu-
tions are maintained, our results reduce to those given
in Ref. [29].

B. Mass-dependent scheme

We now proceed to study the structure of the beta
function βYMEðgÞ in a mass-dependent renormalization
scheme. The idea is to analyze the decoupling or non-
decoupling nature of the new physics effects. In this
scheme, the renormalization condition is

ΠYMEðq2 ¼ −μ2; ξÞ ¼ 0; ð4:18Þ

so, the counterterm is given by

δA ¼
�
Πðq2; ξÞ þ ΠEð1Þðq2; ξÞ þ ΠEð2Þðq2; ξÞ

þΠOð2Þðq2; ξÞ
�
q2¼−μ2

: ð4:19Þ

The beta function is given by

βðμ
2Þ

YMEðgÞ ¼ gμ2
∂ZAð−μ2Þ

∂μ2

¼ gq2
∂ZAðq2Þ
∂q2

����
q2¼−μ2

¼ g
2
qα

∂ZAðq2Þ
∂qα

����
q2¼−μ2

: ð4:20Þ

Now, using the following identity,

qα
∂

∂qα

�
qα1 � � � qα2n

ðq2Þn
�

¼ 0; ð4:21Þ

it can be shown that ΠEð1Þðq2; ξÞ and the finite part of
ΠEð2Þðq2; ξÞ do not contribute to the beta function.
Therefore,

βðμ
2Þ

YMEðgÞ ¼ g

�
μ2

∂Πð−μ2; ξÞ
∂μ2

þ μ2
∂ΠEð2Þ

Div ð−μ2; ξÞ
∂μ2

þ 1

2
qα

∂ΠOð2Þðq; ξÞ
∂qα

����
q2¼−μ2

�
; ð4:22Þ
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that is,

βðμ
2Þ

YMEðgÞ

¼ βðgÞ
�
1þ 9

88
ðk̂FÞ2 þ

25

66
ðkFÞ2

−
3

22

ðkAFÞ2
μ2

�
ðξþ 4Þ log

�
m2

μ2

�
þ ξ

2
ð4 − ξÞ þ 3

2

�

−
3

22

ðkAFÞ2
ðμ2Þ2

�
ðξþ 3Þ log

�
m2

μ2

�
þ 1

2
ð1þ ξÞð5 − ξÞ

��
;

ð4:23Þ

where we have introduced the following definition:
k̄AF ¼ qαðkAFÞα. Notice that this quantity is invariant under
Lorentz observer transformations, but not under particle
transformations.
The expression for the beta function given in (4.23) has

some interesting ingredients related to the CPT-Odd
contribution that need to be clarified. The contribution
of the CPT-Odd sector to the beta function in this mass-
dependent renormalization scheme is not surprising,
since the Lorentz coefficient kAF has units of mass.
This behavior of the beta function in this type of
renormalization scheme is already observed in the case
of a Yang-Mills theory with a fermion sector given in an r
representation ψ of the SUðNÞ group. In this case, the
usual beta function is given by

βðμ2ÞðgÞ ¼ g3

ð4πÞ2
�
−
11

3
C2ðGÞ þ 8CðrÞ

×
Z

1

0

dx
μ2x2ð1 − xÞ2

m2
ψ þ μ2xð1 − xÞ

�
; ð4:24Þ

which reduces to the well-known result of the MS scheme
in the μ2 ≫ m2

ψ limit:

βMSðgÞ ¼ g3

ð4πÞ2
�
−
11

3
C2ðGÞ þ

4

3
CðrÞ

�
: ð4:25Þ

In our case, we recover the MS-scheme result (4.4) in the
μ2 ≫ ðkAFÞ2 and ðμ2Þ2 ≫ ðk̄AFÞ2 limits.
On the other hand, the gauge dependence of βðμ

2Þ
YMEðgÞ is

puzzling because it indicates that it cannot be a physical
quantity, at least at energies of the order of kAF. This gauge
dependence of the beta function arises as a consequence of
the fact that ðkAFÞμ is a gauge coefficient in the sense that it
is structurally linked to the gauge sector of the theory.
Indeed, this behavior is not exclusive of gauge sectors that
are odd under CPT transformations. Gauge dependence of
the beta function in a μ scheme can also arise in gauge
theories with spontaneous symmetry breaking. For in-
stance, in the SM, the contribution of the W�

μ weak gauge

boson to the electromagnetic beta function is also gauge
dependent in a μ scheme.
From the above considerations, we can conclude that

our result (4.23) for the beta function is within what can be
expected in a conventional quantum field theory. The
ingredient in our result that is not common to conventional
field theories is the presence of IR divergences. As was
noted in the introduction, IR divergences in the context of
the mSME also arise in physical quantities as anomalous
magnetic moments [26]. The presence of this type of
divergence in physical observables seems to be an
undesirable characteristic of the mSME, which will
require the implementation of complicated cancellation
mechanisms [26].

V. SUMMARY

In this work, we have studied the one-loop structure of
the Yang-Mills extension without matter fields. This
renormalizable version of the theory has both a CPT-
Even sector and a CPT-Odd sector. The CPT-Even sector
is characterized by a dimensionless Riemann-like tensor,
which, for renormalization purposes, is decomposed into its
irreducible pieces, namely a Weyl-like ðk̂FÞμνλρ tensor, a
Ricci-like ðkFÞμν tensor, and a k̄F scalar, analogous to the
scalar curvature. The k̄F coefficient can be removed from
the theory through a rescaling of the gauge field Aa

μ, the
coupling constant g, and the ðk̂FÞμνλρ and ðkFÞμν tensors. As
far as the CPT-Odd sector is concerned, it is characterized
by a ðkAFÞμ vector, which has units of mass. These
coefficients transform under observer Lorentz transforma-
tions but not under particle Lorentz transformations.
In order to study Lorentz violation effects on the beta

function associated to the coupling constant g and also to
study the internal consistency of the theory, effects up to
second order in the Lorentz coefficients were considered.
To simplify the analysis, the BFM gauge was introduced,
which allows us to derive the diverse beta functions from
the Aa

μAb
ν two-point vertex function. The use of the BFM

gauge greatly simplified the one-loop calculations, which,
by the way, in a linear Rξ-gauge could constitute a
formidable challenge. In this gauge, the renormalization
constants of the gauge field Aa

μ and the coupling constant g
are related. We have focused in a special way on the usual
beta function, which receives its first contribution up to the
second order in the Lorentz violating coefficients. We have
carried out our calculations maintaining the gauge param-
eter ξ, which has allowed us to study the gauge dependence
or gauge independence of the various magnitudes of
interest. In the literature, the Ricci-like ðkFÞμν tensor has
been considered equal to zero, but we have found that its
presence is required by renormalization theory when
second-order effects are considered, since, to this order,
certain contraction of indices in the square of the Weyl-like
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tensor leads to aRicci-like tensor. Exact results are presented,
including second-order interference effects between the
CPT-Even andCPT-Odd sectors. These interference effects
are free of UV divergences, which is in agreement with
renormalization theory. Effects free of UV divergences
characterized by dimension-six and dimension-eight inter-
actions are induced. Our result for the two-pointAa

μAb
ν vertex

function satisfies the Ward identity, which means that it
respects gauge invariance, so a mass term proportional to the
CPT-Odd dimensionful parameter ðkAFÞ2 is not generated,
as has been suggested in the literature.
To first order, theCPT-Even sector induces UV divergent

amplitudes proportional to theWeyl-like ðk̂FÞμνλρ tensor and
Ricci-like ðkFÞμν tensor, as well as a finite contribution
proportional to the usual vacuum polarization tensor struc-
ture Pμν. On the other hand, the CPT-Odd sector induces a
contribution free of UV divergences, which is proportional
to the Lorentz structure introduced at the tree level.
Second-order effects are much more complicated. In the

CPT-Even sector, UV divergent contributions proportional

to the Weyl-like tensor ðk̂ð2ÞF Þμλνρ, the Ricci-like tensor

ðkð2ÞF Þμν, and to the vacuum polarization tensor are gen-
erated. Contributions free of UV divergences are also
generated by this sector. Contributions free of UV diver-
gences of Ricci type are induced by dimension-six and

dimension-eight interactions characterized by the ðk̃ð2ÞF Þμνλρ
and ðk̃ð2ÞF Þμνλρστ tensors, Eqs. (3.24) and (3.25), respectively.
Also, finite contributions to the vacuum polarization are
induced by dimension-six and dimension-eight inter-
actions. These contributions are characterized by the
ðk1Þαβ and ðk2Þαβλρ tensors given in Eqs. (3.28) and
(3.29), respectively. These interactions of dimension higher
than four involve products between the Weyl-like ðk̂FÞμνλρ
and the Ricci-like ðkFÞμν tensors in diverse combinations.
On the other hand, the CPT-Odd sector induces contribu-
tions free of UV divergences, but they are IR divergent.
These contributions are proportional to the vacuum polari-
zation Pμν tensor and an interaction proportional to the
symmetric ðkAFÞμðkAFÞν tensor, Eq. (3.34).
The interference between the CPT-Even and CPT-Odd

sectors is generated through dimension-five and dimension-
seven interactions, which involve products of the ðkAFÞμ
vector with the Weyl-like ðk̂FÞμανβ or the Ricci-like ðkFÞαβ
tensors. Although this result is free of both UV and IR
divergences, it is gauge dependent.
Second-order corrections to the beta functions arising

from the Weyl-like ðk̂FÞμναβ and Ricci-like ðkFÞμα tensors
were included. Nevertheless, the beta function ðβkFÞμα is
generated up to second order in the LV parameters. On
another hand, the beta function associated with the cou-
pling constant g was studied in both a mass-independent
and in a mass-dependent renormalization scheme. We
found that, in the MS scheme, the beta function only

receives contributions from the CPT-Even sector, which
are proportional to the ðk̂FÞ2 and ðkFÞ2 scalars. On the other
hand, in the μ2 scheme, the beta function receives, in
addition, contributions from the CPT-Odd sector, which
arise as a consequence of the fact that the ðkAFÞα coefficient
has units of mass. This result reduces to the one of the MS
scheme in the ðkAFÞ2 ≪ μ2 and ðk̄AFÞ2 ≪ ðμ2Þ2 limits. The
contribution of this dimensional parameter is not surprising,
since the same behavior is observed in conventional theories
when the masses of the particles are not neglected. Although
such contribution is gauge dependent, it agrees with the fact
that the ðkAFÞα coefficient is a gauge parameter, in the sense
that it is linked to the gauge sector. Actually, the same
behavior is observed in theories with spontaneous symmetry
breaking. In this class of theories, contributions to the beta
function arising from massive gauge bosons are gauge
dependent in a μ scheme. All of this is within what is
expected in the context of a conventional quantum field
theory.What is intriguing is the presence of IR divergences, a
phenomenon that, as has been shown inother contexts, seems
to be exclusive to theories with Lorentz violation. In general,
the presence of IR divergences in well-defined observables
in conventional theories, such as, for example, anomalous
magnetic moments, will require considering, in each case, a
more complete process, without a conventional analog, that
allows its cancellation.
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APPENDIX: FORM FACTORS

In this appendix, we list the form factors generated from
loop calculations. These loop amplitudes are exact and
have been obtained in the general BFM gauge, so they
depend on the gauge-parameter ξ.

1. First-order form factors

The form factors that arise from first-order calculations
are given by

f1ðq2; ξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
6

�
Δ − log

�
−
q2

μ̂2

��

−
1

2
ð1 − ξÞð7þ ξÞ þ 10

�
; ðA1Þ

f2ðq2; ξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
11

3

�
Δ − log

�
−
q2

μ̂2

��

−
1

2
ð1 − ξÞð5þ ξÞ þ 67

9

�
; ðA2Þ
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f3ðξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
ξ −

2

3

�
: ðA3Þ

2. Second-order form factors

These form factors are organized according to whether
they emerge from the CPT-Even sector or from the CPT-
Odd sector.

a. Form factors of the CPT-Even sector

Form factors associated with the Riemann-like tensor

ðkð2ÞF Þμλνρ.

l1ðq2; ξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
3

2

�
Δ − log

�
−
q2

μ̂2

��
þ ξ

2
þ 10

3

�
;

ðA4Þ

l2ðq2;ξÞ¼−
g2C2ðGÞ
ð4πÞ2

�
7

6

�
Δ− log

�
−
q2

μ̂2

��
−
1

8

�
ξ2−

29

9

��
:

ðA5Þ

The total Ricci-like contribution is characterized by the
following form factors:

g1ðq2; ξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
1

2

�
Δ − log

�
−
q2

μ̂2

��
þ ξ

8
þ 37

24

�
;

ðA6Þ

g2ðq2; ξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
7

3

�
Δ − log

�
−
q2

μ̂2

��

þ 1

8
ξð1 − 3ξÞ þ 89

36

�
; ðA7Þ

g3ðq2;ξÞ¼−
g2C2ðGÞ
ð4πÞ2

�
7

3

�
Δ− log

�
−
q2

μ̂2

��
þ3

4
ξþ149

36

�
:

ðA8Þ

The form factors associated with the usual contribution
Pμν are given by

h1ðq2; ξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
3

8

�
Δ − log

�
−
q2

μ̂2

��
þ ξ

6
þ 7

9

�
;

ðA9Þ

h2ðq2; ξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
25

18

�
Δ − log

�
−
q2

μ̂2

��

þ 9

432
ξð9 − 2ξÞ þ 985

432

�
: ðA10Þ

The form factors characterizing the dimension-six and
dimension-eight interactions are given by

g4ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
ξ

4
þ 5

12

�
; ðA11Þ

g5ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
ξ

4
ðξþ 3Þ − 5

3

�
; ðA12Þ

g6ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
ξ

4
ð2ξþ 3Þ − 1

4

�
; ðA13Þ

g7ðξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
5

4

�
ðξþ 3Þ; ðA14Þ

g8ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
ξ

2
ðξþ 2Þ − 41

6

�
; ðA15Þ

g9ðξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

�
ξ

2
ðξþ 2Þ − 11

2

�
: ðA16Þ

s1ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

3

8
ð1 − ξÞ; ðA17Þ

s2ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
2

3
þ ξ

4
ð3 − ξÞ

�
; ðA18Þ

s3ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

�
3

4
ξ −

17

12

�
; ðA19Þ

s4ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

1

6
ð1 − 3ξÞ; ðA20Þ

s5ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

1

12
ð1 − 3ξÞ: ðA21Þ

b. Form factors of the CPT-Odd sector

The form factors associated with theCPT-Odd sector are
free of UV divergences, but they present IR divergences.
These functions, which have been regulated with a ficti-
tious mass m of the gauge fields, are given by

t1ðq2;ξÞ¼
g2C2ðGÞ
ð4πÞ2

�
1

2
ðξþ4Þ log

�
−
m2

q2

�
þ1

4
ξð2−ξÞ−5

4

�
;

ðA22Þ

t2ðq2;ξÞ¼
g2C2ðGÞ
ð4πÞ2

�
−
1

2
ðξþ3Þ log

�
−
m2

q2

�
þ1

4
ð1−ξÞ2

�
;

ðA23Þ

t3ðq2; ξÞ ¼
g2C2ðGÞ
ð4πÞ2 ðξ − 1Þ

�
log

�
−
m2

q2

�
þ 1

�
: ðA24Þ
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c. Form factors from interference effects

Interference effects between CPT-Even and CPT-Odd
terms induce the following forms factors:

η1ðξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

3

4
ð1þ ξÞ; ðA25Þ

η2ðξÞ ¼ −
g2C2ðGÞ
ð4πÞ2

1

4
½ξðξþ 1Þ þ 4�; ðA26Þ

η3ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

3

2
ðξþ 1Þ; ðA27Þ

η4ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

1

2
ðξ2 − 5Þ; ðA28Þ

η5ðξÞ ¼
g2C2ðGÞ
ð4πÞ2

1

2
ðξ2 − 1Þ: ðA29Þ
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