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The renormalizable extension of a pure Yang-Mills theory with Lorentz violation is characterized by the

CPT-Even (kp)/Ml,

and the CPT-Odd (k4r), constant Lorentz coefficients. In this paper, the one-loop

structure of the theory up to second order in these Lorentz violating coefficients is studied using the
background field method gauge. Results for the diverse beta functions are derived and contrasted with those
given in the literature at first order in these parameters. Special emphasis is put on the beta function f5(g),
which is studied in both mass-independent and mass-dependent renormalization schemes. It is found that in
a mass-independent scheme the (k, ), Lorentz coefficient does not contribute to the f3(g) function, but it

does in a mass-dependent scheme with contributions that are gauge dependent and IR divergent.
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I. INTRODUCTION

Special relativity is the essential building block in
formulating theories of fundamental physics, especially
in the small-distance regime where it is merged with
quantum principles. However, there are well-founded
reasons to suspect that Lorentz invariance is not an exact
symmetry at the Planck length and below. Clues of Lorentz
violation (LV) arise at a fundamental level from efforts to
merge quantum theory and general relativity into a unified
theory [1]. Explicit or spontaneous LV has been studied in
Planck-scale formulations, such as string theory [2], non-
commutative geometry [3], loop quantum gravity [4], and
other contexts [5]. Therefore, it is important to look for
signs of LV at low energies. At low energies, the effects of
Lorentz and CPT violation can be described in a model-
independent way by the standard model extension (SME),
which is an effective field theory that contains general
relativity and the standard model (SM) [6,7]. In its minimal
version (MSME) [7], the model contains only renormaliz-
able interactions, in the sense of mass units, but non-
renormalizable interactions are expected to play a dominant
role at higher energies [8§—12]. The SME is an effective field
theory, which does not involve new degrees of freedom, but
is built from pieces that involve only the SM fields. Besides
the SM part, the mSME Lagrangian includes a sum of all
independent operators of up to dimension four of the form

T”l”z'”(“)mm,,_, with TH1#2 a constant Lorentz tensor and
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Oy, @ Lorentz tensor which is gauge invariant and
depends on SM fields. The T#1#2 coefficients introduce
LV, since they specify preferred directions in the spacetime.
The criterion to construct an effective Lagrangian that
incorporates LV is that it must be invariant under observer
Lorentz transformations (coordinate transformations or
passive transformations) but not under particle transforma-
tions (transformations of the experimental setup or active
transformations) [13]. This must be so because two
observers must agree with the result of a measurement
regardless of whether Lorentz invariance is violated or not.
Consequently, under this type of transformation both the
Oy, Operators and their coefficients 7% are recog-
nized as Lorentz covariant objects of the same range. On
the other hand, particle Lorentz transformations means
transforming the experimental setup in such a way that an
interaction of the background fields 7#1#2"" with the devices
can be detected through the measurements made before and
after the transformation. This type of transformation only
acts on the degrees of freedom of the theory, that is, the
Oy, Operators transform covariantly, but the T#/#2
coefficients do not transform, so the mSME Lagrangian
is not Lorentz invariant.

Experiments with stable particles, such as photons,
electrons, and protons, have been used to investigate
possible signs of LV. Experimental devices to investigate
rotation invariance and boost invariance using photons
have been designed for a long time. The most representative
examples are the famous Michelson-Morley experiment [14]
and the Kennedy-Thorndike experiment [15]. While the
former shows that the speed of the light is independent of
the orientation of the apparatus, the latter shows that it is also
independent of the velocity of the apparatus in different
inertial frames. Some modern experimental devices have
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made it possible to establish severe limits on LV. Among
others, we have a modern Michelson-Morley experiment that
uses ultrastable oscillator frequency sources [16], experi-
ments with microwave resonators operating in Whispering
Gallery modes [17], penning traps, which are devices that use
electric and magnetic fields to keep stable charged particles
trapped for a long time [18], experiments with polarized
electrons [19], and some noble gas maser [20]. Muon
spectroscopy experiments have also been carried out [21].
Beyond terrestrial experiments, stringent bounds have
derived from astrophysical sources [22].

In the literature, attention has focused on the first-order
effects of T#1#2 coefficients, since they describe possible
experimental implications on Lorentz violation and also
because these coefficients are expected to be quite sup-
pressed. Although it should be mentioned that one-loop
higher order effects have been studied in the context of the
minimal quantum electrodynamics extension [23,24]. On
the other hand, to consider effects on SM observables, that
is, observables that are invariant under both observer and
particle Lorentz transformations, it is necessary to include
second-order effects in the T*i#2™ coefficients. It is
expected that first-order effects of 7/1/2" impact experi-
ments designed to detect Lorentz violation, such as those
aforementioned, but second-order effects of these coeffi-
cients can, in addition, contribute to SM observables, such
as the static electromagnetic properties of elementary
particles [25-27]. For instance, in the mSME the electro-
magnetic f fy vertex, with f standing for a lepton or quark,
can develop at the one-loop level new electromagnetic
structures proportional to the 7#1#2 coefficients [25] and
new contributions that modify the usual ones if second-
order effects of the form 7% = kT, .. are considered
[26,27]. Although these quantities do not carry information
on spatial directions or relative motion, they can provide
useful information about the importance of LV effects when
constrained from high precision experiments, such as, for
example, magnetic and electric dipole moments of charged
leptons and nucleons. In particular, bounding these effects
is particulary useful in cases of antisymmetric 2-tensors
T, = -T,,, since these types of objects are made of two
spatial e and b vectors, and thus bounds for |e| and |b| can
be derived [26]. As we will see later, the study of second-
order effects is valuable in itself since it can shed light on
the very structure of the theory. This is the spirit of the
present work.

Quantum field theories (QFTs) that violate Lorentz
symmetry, such as the mSME, can lead to results that
strongly contrast with those predicted by QFTs that preserve
this symmetry. To illustrate this point, let us comment on the
case of the static electromagnetic properties of spin—% charged
particles. It is a well-known fact that in the SM (and in any
Lorentz-invariant QFT) the anomalous magnetic moment of
a spin—% charged particle is a one-loop prediction that is free
of both ultraviolet (UV) divergences and infrared (IR)

divergences, that is, it is a physical observable. However,
it has been shown in [26] that LV induces contributions to the
anomalous magnetic moments of leptons and quarks that are
not free of IR divergences, showing that these quantities are
no longer observable. We think that this type of result
constitutes a strong incentive to study one-loop LV effects
on standard observables (in the sense that they are invariant
under both observer and particle Lorentz transformations)
beyond the first order in the 7#1#2 coefficients. In this work,
we are interested in studying the two-point A,‘jA,’Z vertex
function in the context of pure Yang-Mills theories that
incorporate all independent Lorentz violating interactions of
renormalizable type. In particular, we will focus on the one-
loop structure of the vacuum polarization tensor by consid-
ering all effects up to second order in the 7#1#2"" coefficients
of the theory. To carry out this program, we will adopt the
background field method (BFM) [28], which is a gauge-
fixing procedure that allows us to maintain gauge invariance
with respect to the background fields. This method greatly
simplifies the renormalization program, since the renormal-
ization constants associated with the gauge fields and the
coupling constant of the gauge group are related to each
other. Besides studying the one-loop renormalizability of
the theory, we will put special attention on the impact of
contributions proportional to 7% = kT, .. to the beta
function associated with the coupling constant g of the
SU(N) gauge group. To study the decoupling or nondecou-
pling nature of the new physics effects, the beta function will
be analyzed from the perspective of both a mass-independent
and a mass-dependent renormalization scheme. The one-
loop renormalization of pure Yang-Mills theories has already
been studied at first order in the Lorentz violating parameters
in [29]. The one-loop renormalization of the QCD extension
has been also studied by the same authors in [30].

The rest of the paper has been organized as follows. In
Sec. II, the structure of the SU(N)-invariant Lagrangian
that incorporates LV interactions of renormalizable dimen-
sion is studied. The Feynman rules in the BFM are derived.
Secs. III and IV are devoted to studying the one-loop
structure of the theory. Finally, in Sec. V a summary is
presented.

II. THE MINIMAL YANG-MILLS THEORY
EXTENSION

The minimal Yang-Mills extension (mYME) is given by
the following effective action:

SYME[AZ] :/d4x£YME» (2.1)

where

_ CPT—Even CPT—-0dd
Lyme = Lym + Lypyry ™ + Lyyry© + Lok + Lepc-

(2.2)
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In this expression,

1
‘CYM = _ETI‘[F/M/F”U}’ (23)
1
LS = L (TP (24)
1 2
‘CIC/‘;ITL_VOdd = ) (kAF)KeKMDTr A/IF;w + gigAiAﬂAu ,
(2.5)

where A, = T“Aj; and F,, = T“F},. On the other hand,
Lgr and Lppg are the gauge-fixing Lagrangian and the
Faddeev-Popov Lagrangian, respectively, which will be
defined below. In addition, Fy, are the Yang-Mills curva-
tures, which are given by

Fy, =9,A) —9d,A; + gf“b”AﬁAf,. (2.6)

We will adopt the normalization Tr[TT"] = %. The

(kg )*“* tensor is dimensionless and has the same sym-
metries as the Riemann tensor, so it satisfies the algebraic
Bianchi identity

(kF)/w/ip + (kF)/Mpu + (kF>/4pM =0. (27)
For purposes of renormalization, it is convenient to work
with the SO(1,3) irreducible parts of the Riemann-like
tensor. So, in terms of its irreducible parts, (kz),,,, can be
decomposed as follows:

uvip

~ ~ 1 -
(kF)ﬂyﬂ/) = (kF)ﬂy},/) + (kF);uM,/) + 6 (gﬂﬂgup - gy/)gzzﬂ)kF’

(2.8)

where

(]}F)ﬂl/ﬂp = % 1902 (kE) 1y = Gup (ki) Gup (k) 1 = Gua (ki) -
(2.9)

In the above expressions, (k) wip 18 @ Weyl-like tensor,
which has the same symmetries as (kr),,,,, butit is defined
so that every tensor contraction between indices gives zero.
On the other hand, (kf),, = ¢**(kr),,;, is a symmetric
tensor, analogous to the Ricci tensor. In addition, I_cF =
¢ (k),, is the analogous of the scalar curvature. In terms of
the irreducible parts of the (kf),,,, tensor, the Lagrangian

(2.4) can be written as follows:

vp

1 4
Loy == ) (kp)P%Tx[F,, F,,) — (kp)"Tr[F,, F}]
k
- FFTr[FWF’”’}. (2.10)

Actually the k r coefficient does not contribute, since it can
be removed from the theory through the following rede-
finitions:

qg— Q%g,

a ~1pa
A% — QT3AY, (2.11)

~

(kF)/wllp - Q(I}F)/w/lp’ (2 12)

(kF);w - Q(kF)/w’

where Q =1 —I—%F. From now on, we will assume that
kp = 0. On the other hand, the coefficient (k). trans-
forms as a 4-vector under observer Lorentz transforma-
tions, but it is invariant under particle Lorentz
transformations. Since this coefficient has mass units, it
can lead to important nondecoupling effects at the one-loop
level. We will pay special attention to the consequences of
this fact.

A. Implementation of the background field method

Under an infinitesimal transformation, the gauge fields
transform as
SAY = DiPab, (2.13)
where D4? = 5929, — gf**¢AS is the covariant derivative in
the adjoint representation of SU(N) and a“ are the gauge
parameters. The BFM consists of decomposing the gauge
fields into a classical part, Ay, and a quantum part, Qf,
Ay — Aj + 0Oy, so Eq. (2.13) becomes

S(Al + Off) = (579, = gf (A} + Qp))a”  (2.14)

or
5A4 = Dabab, (2.15)
504 = gfeQbar, (2.16)

which shows that the Ay fields transform as gauge fields,
whereas the Qy fields transform as matter fields in the
adjoint representation of SU(N). On the other hand, the
gauge curvatures become

F, — Fi, + D@ Qb — Dl + gf Qb5 (2.17)
which transform in the adjoint representation of SU(N).
The Qy fields appear integrated in the fundamental path

integral, so they are the quantum fields. On the other hand,
the classical fields Ay act as sources with respect to which
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the Green’s functions of the theory are derived, that is, they
represent the external legs of such functions.

The BFM allows us to fix the gauge for the quantum
fields Qf covariantly under the SU(N) group. For this, we
define the following gauge-fixing functions:

fe= D,‘ijb”, (2.18)

which transform in the adjoint representation of SU(N). In
this way, the gauge-fixing Lagrangian,

1
£ — __ fa a’
o = =5¢/"f
is invariant under the gauge transformations (2.15). Here, &
is the gauge parameter.
In the BFM gauge, the Faddeev-Popov Lagrangian is
given by

(2.19)

Lrpg = —E“DZbDbC/‘cC + gbedE“DﬁbQC”cd, (2.20)
where ¢ and ¢“ are the ghost and antighost pairs of
anticommuting fields, respectively.

B. The renormalized Lagrangian and counterterm
Lagrangian

Since the quantum fields Qy only appear inside loops,
the renormalization program is implemented on the back-
ground fields Aj. Also, at the one-loop level it is not
necessary to introduce a renormalization for the ghost and
antighost fields, so we do not introduce a counterterm for
the ghost sector.

Let {A%/vgB7(kFB>”MP7(kFB)IW’ (karp)} and {Af. g,
(kp)##  (kp)*, (ksp),} be the bare and renormalized
gauge fields and coupling constants, respectively, which

are related through the renormalization constants
{Z24.2,. ’;f/g;é,Z’;zﬂ,ZﬁFa} as follows:

Ag, = 7\ AL, (2.21)

98 = Z,9, (2.22)

(kpg)rt = Z’;l:j;yé(I}F)aﬂyév (2.23)

(kpp)" = Ziy(kp)?. (2.24)

(karp)e = Zipc(kar)a- (2.25)

One of the great advantages of BFM is the gauge invariance
of the theory with respect to background fields Ay. As a
consequence, we have the simple relation

1
a — 72 [a
F4,, = Z3F3,.

(2.26)

which in turns implies that

l—

Z,=2Z,. (2.27)
So, the bare Lagrangian is given by
Leyme = Lyme + L9ve- (2.28)

where Lyyg is the renormalized Lagrangian given by
Eq. (2.2) and L, is the counterterm Lagrangian, which
is given by

ct 1 v )
St = =5 GaTHlF F) = 5 (8kp | Te[F,, Fy)]

1
— (B VT ) = 3 (ap) e Tr

N[ =

(2.29)

2
X A/IF/U./ + 5 lgA,lAﬂAy:| s

where we have introduced the following definitions:

Oy =24 — 1, (2.30)

(Okr ) = (ZaZ3n, = 838,505 (ki) oy (231)
(0kp) = (ZaZh, = 8300) (kp) gy (2.32)
(5kAF)K = (ZAZZFK - 5?)(kAF)a- (2-33)

Notice that the counterterm Lagrangian is gauge invariant.
This fact implies, through Eq. (2.27), that the beta function
associated with the coupling constant g is determined by
the renormalization constant Z,. So it can be determined
from a direct calculation of the vacuum polarization
function. As noted in the introduction, we will extend this
study to the complete two-point vertex function AﬁAfj,
which, up to second order in the Lorentz violating
coefficients can be written as follows:

a 114 LV (1)ab LV (2)ab
TME (g) =112 (q) + 11V (g) + 11 P (g), (2.34)

where the first term represents the usual contribution,
whereas the second and third terms include all effects of
first and second order in the Lorentz violating coefficients,
respectively. We will see below that the second-order term

Hﬁ,y (2)”b(q) contains a part that modifies the vacuum
polarization, and thus it introduces modifications in the
usual beta function. The study of the consequences of these
contributions is an important objective of this work.

We now proceed to derive the Feynman rules needed for
the calculation on the one-loop correction to the two-point

055017-4
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Qb
v
b
Az Al/
AZ
_ ;2 Pabed
- —g F;w/\p
d
Q5 @
Q5

=g 5o [fw(k) + T (k) + F,‘fy(/f)]

= gfoe {fwx(/ﬁ, ko, k3) + T (kn, ko, k3) + F,?VA]

Q5
A
_ - 2 |Thabed rabed
- —tg F;W/\p + F,ul/)\p
@

FIG. 1. Feynman rules needed to calculate the one-loop amplitude of the A,‘jA,’j vertex function in the BFM gauge.

vertex function IT}}/4%(g). In the BFM gauge, the standard
Yang-Mills sector is given by

1 1
LYM:_ZF/‘”’F” —EF”DQ” -

9 rab
_fa c
2

1
x (Fg, + Q4,) 0% 1 L QM

— L pebe pede 0hos QM 0, (235)

where Q%, = D4*Q} — D> Q. On the other hand, the LV
Lagrangians become

1

LOHPn = = (k)0 (Fy F, + 29" F}, 0505
1
+ 4D O)(DF°Qp)) — 5 (ki)
x (FiFly +20f " Fi,0" 05 + 95, Q)

TR (2.36)

where the ellipsis indicates terms that do not contribute to
the TI}MEeb(g) vertex function. In addition,

k

— 1 KAUL a a g abc a C
ﬁgﬁTLVOdd = _1 (kAF)Ke A {AiFﬂu - gf b A/lA/I;Au
+ 2(A4 + Q4)DL Qb + Q4F4, — gf*°
2 .
x <AjA,’jQ; + 3 Qj‘Q,’jQ;) } (2.37)

The vertices that contribute to the two-point IT}}E4% (¢)
vertex function up to second order in the LV coefficients are
00, AQQ, and AAQQ, whose corresponding Feynman
rules are shown in Fig. 1. The Lorentz tensors that appear in
these Feynman rules are given by

k k
Uik ko ks) = gy, <k3 —k +€2> + 9w <k1 —k> —€3>
v A
+ g (ka —ks3),. (2.38)
l—*abcd __ face gbde 1
ulp f f 9wYrp — Gup9ua + Egﬂﬂgup
ade rbce 1
+ f f 9w9ip — Gua9up + Egﬂpgul
+ fabefcde (gyﬂgu/) - gﬂpguﬂ)’ (239)
0, (k) = =2(kg) 0, k57 (2.40)

/\/\®/\/\—’ =0 0% [~ 04 Py (k) + O (k) + 0T (k) + 0T, (k)|

A A

FIG. 2. Feynman rule of the counterterm associated with the A,‘jA,’j coupling.
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TABLE I. Vertex functions contributing to the A;Af coupling at the one-loop level.

Vertex function Lym L§FTEven L§RT-0dd

0s (k)Y (k) i6° (0, (k) + T, (k)), Egs. (2.40) and (2.41) i619,(k), Eq. (2.42)

Afl (ky) QP (ka) Q5 (k3) 9f T (kys ey, k) gfere (U (ki ky ks) + Fa(kyy kau k), gf Ty, Bq. (2.45)
Eq. (2.38) Egs. (2.43), (2.44)

AsAb Qs 04 —ig’Tabed, Eq. (2.39) —ig?(Tapsd 4 Tabed), Egs. (2.46) and (2.47)

ct A (k)A} (k) —i65,P,, (k) Eq. (2.48) i6°> (61", + 6T ), Egs. (2.49) and (2.50) i6°26T°9,(k), Eq. (2.51)

fﬂv(k) = (kz(sﬁé/l: + g/wklkp - kﬂkléﬁ - kl/kiéz)(kF)/lﬂ
(2.41)

IO, (k) = —i(kap) ek, (2.42)

Kupr

fﬂbﬂ(kl ’ kZ’ k3) = _z[kﬂ)(]%F)/mM + klZ)(iéF)/JMﬂ + kg(i%F)/}/lyu] ’
(2.43)

fﬂvi(kl7 k2’ k3) = [(kF);wgpA + g;w(kF)p/l} (kZ - kl )/J
+ [(kF>/4/1.gpv + gﬂi(kF)puKkl - k3)p
+ [(kF)wlg/m + gwl(kF)pﬂ](kS - kZ)/)’

(2.44)
F;(l)l/l = _i(kAF)Kelqw/lv (245)

fzf;;i _ Z[fabefcde'(AF)MMp + facefbde U}F)M/{U/)
+ fadefbce (IQF)W)UA]’ (246)

fzf]gﬂd — Z[fuhefcde (];F)/w/lp + fucefbde (%F)u/lpp
+ fedefoee (ki) pual- (2.47)

On the other hand, the Feynman rule associated with the
counterterm is shown in Fig. 2.
The various quantities appearing in Fig. 2 are given by

P, (k)= g — k'K, (2.48)

1, (k) = =2(6kp) 10, kK, (2.49)

pAvp
5fﬂu(k) = (kzé;};yv7 + gyykllkp - kyklétlj - kukléft)(ékF)/lp’
(2.50)

S0, (k) = —i(Skar) €pupk? . (2.51)

In Table I, we present a summary of the Feynman rules used
in the calculation of the AzAfj vertex function.

III. THE ONE-LOOP HZB”E"” (¢9) VERTEX
FUNCTION

In this section, we study the one-loop quantum fluctua-
tions induced by LV effects on the A;}Af vertex function.
Effects of up to second order in the Lorentz violating
coefficients will be considered. Up to second order in the
Lorentz coefficients, the contribution to this two-point
vertex function is given by the Feynman diagrams shown
in Fig. 3. The structure of the corresponding amplitude is
dictated by SU(N)-gauge invariance and can be written as
follows:

TMED (g,€) = 6T, (q.8) + T (¢.£) + T (¢.€)
+ 10 (q.8) + 1107 (¢,6) + 1150P (¢,8)]
+i6%[~8,P,,(q) + 8L, + 6L, +dTY).

(3.1)

Notice that we have included the contribution of the
counterterms. In these expressions, the label E(O) stands
for the CPT-Even (CPT-Odd) contribution. Also, the (1)
and (2) labels indicate contributions of first and second
order in the Lorentz coefficients, respectively. Notice that
interference effects between CPT-Even and CPT-Odd
terms, which can be generated to second order in the LV
coefficients, are also considered. We now proceed to
describe each of these contributions. For comparison
purposes, and also for clarity, the usual contribution, as
well as the first-order contribution already studied in
Ref. [30], will be presented. In all cases, exact expressions
calculated in the general BFM gauge will be presented.
We have performed our calculations using the FeynCalc
package [31].

A. The usual contribution IL,, (¢.§)

In the general BFM gauge, the one-loop contribution of
the usual theory is given through the first two diagrams
shown in Fig. 3. The vacuum polarization tensor function is
given by

1,,(q.€) =T(g* &P, (q). (3.2)
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where T1(g?, £) is the vacuum polarization function, which
is given by

N(q*.¢) = (492)2 < [% Ao 13_110g <_/7> i 6?7

9

1
- ;=90 + 0], 33

In this expression,

1
A= . ve + log(4n), (3.4)

with y5 the Euler-Mascheroni constant and i the scale of
dimensional regularization. The quantity C,(G) has to do
with the normalization of SU(N) generators in the adjoint
representation through the relation fe¢fb<d = C,(G)5.

B. First-order contributions

At first order in the LV coefficients, the contributions are
given by those diagrams characterized by one black point
shown in Fig 3.

1. CPT-Even contribution

The CPT-Even contribution can be written as follows:

0" (q,6) = f1(¢% OF(9) + f2(¢% O (q)

+IFW (g%, 6P, (), (3.5)

where

0. = @k (C0). 36)

and the fﬂy and f,w tensors are given in Egs. (2.40) and
(2.41), respectively. The form factors f,(q% &) and
f2(q%, &) are UV divergent. On the other hand, the f5(&)
form factor is free of UV divergences, which is a conse-

quence of the fact that it is associated with a dimension-six
interaction. This finite contribution, proportional to the

usual vacuum polarization tensor structure P,,, is associ-
ated with following dimension-six interaction:
(kF)“ﬂngF‘jngcFW. (3.7)

The f;(g?, £) form factors are given in Appendix. It is worth
mentioning that the term proportional to the Ricci tensor is
not considered in Ref. [29], since the authors take it equal to
zero from the beginning. However, this is valid only at first
orderin the LV coefficients, but not to higher orders. Next, we
will show that the Ricci structure is generated to second order
by a specific indices contraction between two Weyl-like
tensors, so renormalization theory requires the presence of
said coefficient in the classical Lagrangian if contributions
beyond the first order are considered.

2. CPT-Odd contribution
On the other hand, the CPT-Odd contribution is given by

_ig?Gy(G)

H;?uu)(q"f) = 2(471_)2

[13 = &+ D] (kar) €30

(3.8)

o
Al o
A o
e

+
N

FIG. 3. Feynman diagrams contributing to the A,‘}A,{’ vertex function at one-loop level up to second order in the Lorentz coefficients.
The first two diagrams represent the usual contribution, whereas those diagrams with one black dot and two black dots represent
contributions of first and second order in the Lorentz coefficients, respectively. The contribution of the counterterm has been included.
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which is free of UV divergences. However, this result
seems to be unique to the BFM gauge, since it is divergent
in the linear R; gauge, as shown in Ref. [29]. Although the
result (3.8) is free of UV divergences, the renormalization
factor associated with the Lorentz coefficient (kyf), is UV
divergent, which acquires a pole through the renormaliza-
tion factor Z, of the gauge fields. This fact has already been
pointed out in Ref. [30], where the one-loop structure of
the QCD extension was studied to first order using the
BFM gauge.

Notice that the ¢,,,,¢” tensor is symmetric in the pair of
indices p and v, as the interchange u <> v must be
accompanied by the change ¢ — —¢.

C. Second-order contributions

The second-order contribution in the Lorentz coefficients

is given by those diagrams in Fig. 3 characterized by two
black dots.

1. CPT-Even contribution

The CPT-even contribution can be written as follows:

AP AP A0 4T
~(2) 9 \=(2) 9949
Pl =121+ ()0 + ()
X Fl(wilmr + HE (q é) Hy? (39)
where
a.f af 0 4T
q°q 99494
) =5 + (T8 )+ (T
b 7 ) (¢*)?
X (k2)aﬂa‘r‘ (310)
In the above expressions,
A 2 > ~ 2
£ = =200 (k) (3.11)

£ = (58 + 9,00°a” — 4,4°5) — 4,4°0) (K)o

(3.12)
(2 o4 a q*
F;(w)/lp ( 25 éﬁ + I qﬂ —4qu9 5ﬁ Cqu y)( )aﬂlp’
(3.13)
~(2 a a 7(2
F;(w)/lpaf ( ’5 5ﬂ+gﬂl/q qﬁ_qu 55 q9.9 %)(k;))aﬂ/lpar’

(3.14)

~(2 ~(2 ~(2
where the (k;—‘))ylyp’ (k}))aﬁ’ (k< ))aﬂllp’ and (k( ))aﬁ/lpm'
tensors are made of contractions between the tree-level
Weyl-like (kr) s tensor and the tree-level Ricci-like

%ol
(kp),, tensor. The first of these tensors, (I%f))”w, is a

Weyl-like tensor, which emerges from the irreducible
pieces of the following Riemann-like tensor:

L (G2 &) (k) ) + 1o (62 E) (K

) uivp>

(3.15)

where (kg}‘zl))ﬂlw and (kg))ﬂw are Riemann-like tensors,
which are given by

N A 1
(kg)izf))ﬂﬂy[) = (kF)ﬂﬂo“r(kF) +3 2 (kF)ﬂpn'T(kF)uAgT

S Euanhr) ™ (3.16)
(K = (ki) (ki) = (ki) (ki) e (3.17)

It can be shown that these tensors satisfy all symmetries of a
Riemann-like tensor, the algebraic Bianchi identity (2.7),
and have nonzero double trace. The decomposition of

(k(Fz)) iy I0to its irreducibles parts leads to the following
Weyl-like tensor:

(K WO RY) a4 O (k) (3.18)

)y/lvp = );ulup’

where (IACQ) ), are the Weyl-lik f the (k'
W.R/ulvp yl-like parts of the ( W,R)/Mbp

2

Riemann-like tensors. The Ricci-like part of (k
given by

)y/lvp is

2 2 2
kD), = k) + (@2 &) (),

(g%, &)( (3.19)

where (k%ﬁ?R are the Ricci-like parts of the (kif,?R) wvp
Riemann-like tensor. This Ricci-like contribution is con-
sidered inside of the (121(3))(,/, tensor appearing in the f“,(fu)
tensor of Eq. (3.12). Regarding the analogue of scalar
curvature, 7{5;2), its contribution is included in the TTE()
scalar function that appears in Eq. (3.9). The loop functions
1,(q%. &) and 1,(g?, &) that appear in the above expressions
are UV divergent. They are presented in Appendix.
Some comments are in order here. The Riemann-like
tensor (kl@) vy 18 the only source of a Weyl-like contri-
bution, namely, the one given by Eq. (3.11), but it is not the
only source of Ricci contributions and scalar curvature
contributions. There are additional contributions to the
Ricci and P, Lorentz structures arising from sources

different from the Riemann-like tensor (kfpz) )iy OnCE

all the Ricci-type contributions are added, we obtain

(7&(2)) =a0 (q f) (]% );t/lpa(]% )1/ re
+92(4%. &) (k) k),
+ 93( )( )ﬂ/luo'( )

where the (l}f))w tensor appears in Eq. (3.12). It is
important to note the presence in Eq. (3.20) of a Ricci-
like factor, namely, the one with form factor g,(g2, &),

);w

(3.20)
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which is independent of the tree-level (kz),, Ricci-like
tensor. Since g, (g%, &) is UV divergent, we cannot take the
tree-level Ricci-like tensor (k),, equal to zero, as assumed
in Ref. [29], if second-order effects are considered. The
three form factors g;(¢>, &) are UV divergent. They are
given in Appendix.

On the other hand, the HD< ) form factor is given by

v

M5 (62.8) = m (@ &) (ke)? + ha(q?. O) (k). (3.21)
where

(IACF)2 = (]A(F)a/ﬂﬂ(]/%F)aﬂllpv (3-22)

(kp)? =(kp)qp(kp)® (3.23)

The UV divergent loop functions /;(g?, &) are given in
Appendix.

As far as the 4-tensor and 6-tensor structures given in
Egs. (3.13) and (3.14) are concerned, they are given by

= 94(5) [(I%F)aalr(icf’)ﬂﬁpf + (I%F)ﬁaﬁr(I%F)aapf]
+ 95(&) (kr)ap(kr)s, + 96(&)
X [(]%F)alpa(kF)ﬂa + (l/%F)ﬁlpa(kF)aa]

+ 97 (‘f) |:(]%F)a/)ﬂ6 + (]%F)ﬁpa6:| (kF)/lo—’ (324)

(12572)> g8 (5) (],%F)(mﬂa) (],%F)ﬂrpw + 99 (Zj) (]}F)(Mﬂp (kF)m:

+ (a < p). (3.25)

apipor —

These observer-Lorentz structures characterize dimension-
six and dimension-eight interactions, which are Ricci-like
tensors with respect to the first two indices. The dimension-
six interactions have the following structure:
( F)”mn(kF)uo-ﬁr'Dub Fb DacﬂFc/lu’
(kF)ﬂ (k )aﬁpabe Dachi

ab b 2
(ke () D FL D P

kp ﬂ/”l/rr( )anpahaFZﬂD?ichw (326)
while those of dimension-eight have the form
(]}F)Maaa) (]}F)Urﬂw’ngngcF;lfDadﬂ’Dde‘rFeﬁv’
(kF)W”ﬂ(kF)”TngDZCF;lDZdeeFdU. (3.27)

The loop functions g;(¢) (i =4, ...,9) are all free of UV
divergences, which is in accordance with renormalization
theory, as they characterize interactions of dimension

higher than four. These functions, which depend on only
the gauge parameter, are given in Appendix.

Finally, there are also dimension-six and dimension-
eight interactions which contribute to the usual P, tensor.
These contributions emerge through the following tensors
[see Egs. (3.9) and (3.10)]:

(kl)a[)’ = ( )(]} (1/1/)6( ) oo + 52 (é) (kl")(l}»(kl")/)’}L
)

)
+ 53(8) (kr )a/lﬁa(kF) , (3.28)

~

(k2)apsp = S4<§)("F>aaﬂf(i<F)pr +55(8) (kp)ap(kp) -

(3.29)

These finite contributions to the vacuum polarization arise
through the following dimension-six interactions:

(I’%F)awm (k ) wTUDabFZ)Dac de

(ke)* (ke )/ DS, Dl F,

(I%F)afﬁo(kF)TJngF?,/)DgCFCM)’ (330)

and from the following dimension-eight interactions:

(]%F)aw/}r] (]}F>gwmpabDbCUFc DadDdeTFelp’

(k ) (k )D‘TD[ZbDbCFC DadedeFe/lp (331)
All the form factors s;(&) (i =1,...,5) are free of UV
divergences but are gauge dependent. They are given in
Appendix.

For clarity and later use, it is convenient to summarize
the most outstanding results of the second-order CPT-even
contribution. To this order, a Riemman-like UV divergent
interaction (kf) )uiwp arises. Once expressed into its irre-
ducible pieces, UV divergent contributions are induced on
the Weyl-like, Ricci-like, and usual (P,,) Lorentz struc-
tures. The Weyl-like contribution is given in Eq. (3.11)

through the (IACSVZ) tensor of Eq. (3.18). The Ricci-like

contribution is incorporated into the (1}53) ), tensor given by
Eq. (3.20), which also contains contributions from other
sources. One of these contributions is the one characterized
by the form factor g, (g?, €), which does not involve the
Ricci-like tree-level structure (kf),,, but it emerges from a
contraction between two Weyl-like structures. This means
that, to second order, renormalization theory requires the
presence of a nonzero Ricci-like tensor at the tree level.
To second order, the vacuum polarization function
associated with the usual P,, Lorentz tensor also receives
contributions from the scalar curvature induced by the

irreducible parts of the (kf)) uwp Riemann-like tensor, but
there are also contributions from other sources. All con-
tributions are collected in the vacuum polarization function

) Y
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M€ given in Eq. (3.21). Below, we will study the
implications of this contribution on the beta function $(g).

There are no IR divergences arising from this sector.
The amplitude (3.9) satisfies the Ward identity

¢ (q.8) = ¢ (q,8) = 0, (3.32)

which shows us that there is gauge invariance.

2. CPT-0Odd contribution

The second-order CPT-Odd contribution can be written
as follows:

FAF
M (g.8) = 192 (g%, &P, (q) + 13(¢%. &) %
(3.33)
where
o (g2, &) = 1,(4*.¢) (kA§)2
agP(k k
" tz(qz,(f) q°q ((/;Fz);( AF)ﬂ. (3.34)

In the above expressions,
I (q) is given by

(kAF)2 = (kar)c(kap)* and

Ui (q) = (8% + 4° P 9 — 4,070 — 0,9°50) (kar)y

x (kar)p- (3.35)

Notice that the vacuum polarization receives a contribution
from a dimension-six interaction, which has the form
(kap)* (kap )P DS FY DY F. (3.36)
The #,(¢*, &) (i = 1, 2, 3) functions are free of UV diver-
gences, but they have IR divergences. We have regulated
these divergences by introducing a fictitious mass m for the
gauge fields. These form factors are presented in Appendix.
In Ref. [32], the emergence in this sector of a mass term
proportional to (k)2g,, was suggested. In that work, the
authors arrive at such conclusion within the framework of
the Landau gauge. In our case, such mass term cannot arise

because our amplitude is gauge invariant, that is, it satisfies
the Ward identity

qﬂnm/ (q f) VH/w (6] 5) =0. (337)

This result is a consequence of the use of the BFM gauge,
which preserves gauge invariance.

3. CPT-Even and CPT-Odd interference

To second order, interference effects between CPT-Even
and CPT-Odd terms are generated. Since the mSME is
renormalizable, such effects must be free of UV divergen-
ces. Therefore, the calculation of these effects is important
to test the internal consistency of the model. The corre-
sponding amplitude is given by

K A K A 0
EO(Z)(q’é):_i((kAF) 9" rro +(kAF) 9°9°q" 1o )

qZ KAy ( q2 ) 2 KAapuv

(3.38)

where

TEC, = (4058 = 4,9°0) + 0,4°00) (Kko)giaps (3.39)

rEe . = (485,

KkAafuy - %MI”@Z + qvqﬁéﬁ)(kEO)x/la/}ar’ (340)

with the (kgo) s and (Kgo)gpo. tensors given by

(kEO)ldpw =m (é) (‘Sze(mw - 556011(#) (]}F)mlm + ’72(5)
X (5Z€akﬁu - 53€5K/1ﬂ><kF)ao-
+ 3 (5) (kF)/lgeaKyw (341)
(kEO)Klaﬂyy = 774(5) (5Z€axi/4 - 5/1460'1011/) (IACF)mﬂO.
+ 115 (&) € (kF) op- (3.42)

Notice that these tensors have the following symmetries:
(kEO)K/l;w = _(kEO)K/'{l//l and (kEo)Kmﬂﬂy = _<kE0)ldaﬂl//4'
The antisymmetry of these tensors in the pair of indices
u and v does not mean that the amplitude l'[fyo @ s
antisymmetric under the interchange of indices u < v,
since this interchange must be realized together with the
change ¢ — —¢, which leads to a symmetric amplitude.
On the other hand, the form factors #;(&) are free of both
UV and IR divergencies, but they are gauge dependent.
They are given in Appendix.

The amplitude (3.38) corresponds to dimension-five
and dimension-seven interactions. The dimension-five
interactions associated with the (kgp),, tensor have
the form

(kAF>K(]%F)a/1M arKﬁ(Fa Dabeyﬁ _ Fa Dabeya)
(g )26 g (i D F70 — g Db ),

(kap)* (k) €ouapF ", DIP F1P, (3.43)
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while the dimension-seven interactions associated with the
(K£O) xiapy tensor arise from

<kAF) eﬁKlﬂ(]} )vaﬁ (Dabe ngpiieFeyy
_ Dabny'D;d'DdeFey )

(kap) € (kp)P D Fl, DYDY Fer . (3.44)

The amplitude is gauge invariant since it satisfies the Ward

identity

D(g.&)=0. (3.45)

EO(2 i EO
G ( )(‘1’5) =q'Tw (

IV. RENORMALIZATION AND BETA
FUNCTIONS

One of the main advantages of using the BFM gauge
is that it preserves gauge invariance with respect to the
background gauge fields. This means that the usual beta
function, f(g), can be derived from the renormalized two-
point ITIMEeb(g) vertex function. The purpose of this
section is to derive such a beta function, as well as those
associated with the LV coefficients. To analyze the decou-
pling or nondecoupling nature of the new physics effects,
we will carry out our study of the usual beta function by
implementing two renormalization schemes, namely a
mass-independent scheme and a mass-dependent scheme.

Up to second order in the LV coefficients, the vacuum
polarization function is given by Egs. (3.3), (3.6), (3.10),
(3.21), and (3.34):

(g &) + EW (g, &) + TEA) (g2, €)
+ %) (g2, &) - 8,

HYME(CIZ’QE) -
(4.1)

where the counterterm has be included. Remember that
only (q &) and the form factors h,(g?, €) and h,(q?, &)
of TI*?) (g2, &) have UV divergences.

A. Mass-independent scheme

We will use the MS scheme, in which the counterterm is
defined by a term of the form cA, ¢ being a constant
independent of the external moment and A the divergent
quantity given in Eq. (3.4).

1. The Byng(g) function

In a mass-independent renormalization scheme, the beta
function is given by

1,0z

Wie(9) = =39 5y (4.2)

(1)

where Z,’ is the coefficient of the simple pole of Z,.

The renormalization factor Z, arises from Eq. (4.1), so in
the MS scheme, it is given by

+?Z(kF) }

Then, from Egs. (4.2) and (4.3), the beta function
becomes

Z, = (4.3)

1+ 26(0) [3

3
(4n)? € |3 + 8 (ke)?

Woulo) = o)1+ g e 4 5o k| (4

where f(g) is the usual beta function of a pure (without
matter fields) Yang-Mills theory. Of course, our result
pHivp and (kF);w
tensors are identically zero, but it can also happen in the
presence of new physics if g5 (k)> + 2 (kz)? = 0, which is
possible due to the spacetime metric. Other possibilities
are g (kp)? + 2 (kp)? > 0 or g (kp)> + 2 (kp)? < 0. In
the first case the phenomenon of asymptotic freedom is
reinforced, while in the second case this phenomenon is
weakened.

In the MS scheme, the tensor counterterms of the CPT-
Even sector are determined by the following conditions:

reduces to the usual one when the (kj)

ZA (ZIQF)MD(lﬁipya(I%F)My” _ (]}F)uzxa/} 4 flA (]A(F)Muaﬂ
+ (kR =0, (4.5)
a o a 7.(2) \pa
ZA(Z4, ) (ke 7 = (ke + £ (ko) 4 (R Vi = 0.
(4.6)
where 4 and f2 are the UV divergent parts of the f (¢, &)
and f,(q*, &) form factors, whereas (kg,-))” P an, (l?g.-))’ga
are the UV divergent parts of the (l%%))””“/j and (I};))

tensors.

On the other hand, we have seen that the CPT-Odd
sector does not generate UV divergences, so in the MS
scheme the counterterm associated with this sector is null:

Zy (ZkAF)Kz(kAF)'1 - (kAF)K =0. (4-7)

Now, to first order in o, = Z and up to second order in

the LV coefficient, from (4.3) we can write

25
18

C Gl 11 3
_ag 2( ) _+§(k )2

Z’Xl =1 4 3

< (kp)?|. (48)
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So, working always up to this order, Eqs. (4.5)—(4.7)
become

a,C>(G)

A 1{7 4+
(@3, Yt = et + 22D Gy
€

oo 4n
G RGN
@y e = e+ 22D yon e,
3 e et ()
(4.10)
@ sk = Gapy =2 92O e )

Some comments are in order here. From Eq. (4.10), it can
be seen that the UV pole of the Ricci-like renormalization
factor does not depend linearly on the LV coefficients,
which is due to an exact cancellation with the expression
for Z;l. Also, notice that, although the CPT-Odd contri-
bution is free of UV divergences, the corresponding
renormalization factor is UV divergent through the Z3!
renormalization factor.

In the MS scheme, the beta functions can be determined
from the simple pole of the corresponding renormalization
factor, that is,

d(aIICF);wa[)’
(ﬂkF );wa/} 2a, th , (4.12)
(") a
(/Bk}:)ﬂa 2ag dag ) (4 13)
(Brye)s =2 i), (4.14)
= a b .
kar /x ! da,

where (a’;{F) was (at) e @0d (a “47) are the coefficients of

the simple pole in Eqgs. (4.9)—(4.11). Then, the beta

functions are given by

agCZ (G)
47

@y |

14 A
i o0 = 2D e 4 305 o

+
[SSEREN

(4.15)

a,C,(G) 14

pa _ 9 7 \uipo (T \a -
e = D L e+

)t + et | | 16

22agC2 (G)

(ﬁkAF)K == 3(471_)

(kap)~. (4.17)

Notice that the beta function associated with the Ricci-like
(k),q tensor is generated up to second order in the LV
coefficients. We also note that if only first-order contribu-

tions are maintained, our results reduce to those given
in Ref. [29].

B. Mass-dependent scheme

We now proceed to study the structure of the beta
function fyme(g) in a mass-dependent renormalization
scheme. The idea is to analyze the decoupling or non-
decoupling nature of the new physics effects. In this
scheme, the renormalization condition is

HYME(q2 = -4, &) =0, (4.18)
so, the counterterm is given by
o1 = |2, + TP 6) + T 2.
+I1°C) (g2, 5)] (4.19)
=i
The beta function is given by
20Z4(=17)
ﬁYME(Q) = gﬂ T
_ 2 aZA( )
aq2 q2=_ﬂ2
_ 9 a9Z4(2) (4.20)
2 ()q“ qzz_ﬂz
Now, using the following identity,
a (qal [ qa2n>
"~ \—— =0 (4.21)
9"\ (¢*)

1t can be shown that TT¥() (g2, &) and the finite part of

2)(g?,£) do not contribute to the beta function.
Therefore,

W) [y oI(—p%, &) M2 (—42, &)
wie(9) =9 [/42 P s 0
1 ore®
o Eff’ J) ] , (4.22)
2 aq P=—p?
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that s,
Fike(9)
—pa {1+ gy e +
-l v ayiog (M) + S0+
jzf )>2 [(5+3)log<m—22> L1865 - 5)”

(4.23)

where we have introduced the following definition:
kar = q*(kar),. Notice that this quantity is invariant under
Lorentz observer transformations, but not under particle
transformations.

The expression for the beta function given in (4.23) has
some interesting ingredients related to the CPT-Odd
contribution that need to be clarified. The contribution
of the CPT-0dd sector to the beta function in this mass-
dependent renormalization scheme is not surprising,
since the Lorentz coefficient k,r has units of mass.
This behavior of the beta function in this type of
renormalization scheme is already observed in the case
of a Yang-Mills theory with a fermion sector given in an r
representation y of the SU(N) group. In this case, the
usual beta function is given by

93[11

P0) = i | =3 C2(6) +8C()

| 2,201 — )2
x / dxM], (4.24)
o my +pux(l—x)

which reduces to the well-known result of the MS scheme
in the y > m? limit:

P50 = i |- e rem). @2

In our case, we recover the MS-scheme result (4.4) in the
w2 > (kap)? and (u?)? > (kap)? limits.

On the other hand, the gauge dependence of ﬁYME( ) is
puzzling because it indicates that it cannot be a physical
quantity, at least at energies of the order of k4. This gauge
dependence of the beta function arises as a consequence of
the fact that (k) is a gauge coefficient in the sense that it
is structurally linked to the gauge sector of the theory.
Indeed, this behavior is not exclusive of gauge sectors that
are odd under CPT transformations. Gauge dependence of
the beta function in a p scheme can also arise in gauge
theories with spontaneous symmetry breaking. For in-
stance, in the SM, the contribution of the Wff weak gauge

boson to the electromagnetic beta function is also gauge
dependent in a g scheme.

From the above considerations, we can conclude that
our result (4.23) for the beta function is within what can be
expected in a conventional quantum field theory. The
ingredient in our result that is not common to conventional
field theories is the presence of IR divergences. As was
noted in the introduction, IR divergences in the context of
the mSME also arise in physical quantities as anomalous
magnetic moments [26]. The presence of this type of
divergence in physical observables seems to be an
undesirable characteristic of the mSME, which will
require the implementation of complicated cancellation
mechanisms [26].

V. SUMMARY

In this work, we have studied the one-loop structure of
the Yang-Mills extension without matter fields. This
renormalizable version of the theory has both a CPT-
Even sector and a CPT-0Odd sector. The CPT-Even sector
is characterized by a dimensionless Riemann-like tensor,
which, for renormalization purposes, is decomposed into its
irreducible pieces, namely a Weyl-like (kf),,,, tensor, a
Ricci-like (kr),,
scalar curvature. The ky coefficient can be removed from
the theory through a rescaling of the gauge field Ay, the
coupling constant g, and the (k) awip and (kg),, tensors. As
far as the CPT-0Odd sector is concerned, it is characterized
by a (ksp), vector, which has units of mass. These
coefficients transform under observer Lorentz transforma-
tions but not under particle Lorentz transformations.

In order to study Lorentz violation effects on the beta
function associated to the coupling constant g and also to
study the internal consistency of the theory, effects up to
second order in the Lorentz coefficients were considered.
To simplify the analysis, the BFM gauge was introduced,
which allows us to derive the diverse beta functions from
the AﬁA’U’ two-point vertex function. The use of the BFM
gauge greatly simplified the one-loop calculations, which,
by the way, in a linear R:-gauge could constitute a
formidable challenge. In this gauge, the renormalization
constants of the gauge field A7 and the coupling constant g
are related. We have focused in a special way on the usual
beta function, which receives its first contribution up to the
second order in the Lorentz violating coefficients. We have
carried out our calculations maintaining the gauge param-
eter £, which has allowed us to study the gauge dependence
or gauge independence of the various magnitudes of
interest. In the literature, the Ricci-like (kp),, tensor has
been considered equal to zero, but we have found that its
presence is required by renormalization theory when
second-order effects are considered, since, to this order,
certain contraction of indices in the square of the Weyl-like

uvdp
tensor, and a kj scalar, analogous to the
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tensor leads to a Ricci-like tensor. Exact results are presented,
including second-order interference effects between the
CPT-Even and CPT-0Odd sectors. These interference effects
are free of UV divergences, which is in agreement with
renormalization theory. Effects free of UV divergences
characterized by dimension-six and dimension-eight inter-
actions are induced. Our result for the two-point A,‘jAfj vertex
function satisfies the Ward identity, which means that it
respects gauge invariance, So a mass term proportional to the
CPT-Odd dimensionful parameter (k,z)? is not generated,
as has been suggested in the literature.

To first order, the CPT-Even sector induces UV divergent
amplitudes proportional to the Weyl-like (lAc r) wip tensor and
Ricci-like (kf),, tensor, as well as a finite contribution
proportional to the usual vacuum polarization tensor struc-
ture P,,. On the other hand, the CPT-0Odd sector induces a
contribution free of UV divergences, which is proportional
to the Lorentz structure introduced at the tree level.

Second-order effects are much more complicated. In the
CPT-Even sector, UV divergent contributions proportional

to the Weyl-like tensor (l%f)

(k%z) )u» @nd to the vacuum polarization tensor are gen-
erated. Contributions free of UV divergences are also
generated by this sector. Contributions free of UV diver-
gences of Ricci type are induced by dimension-six and

)iy the Ricci-like tensor

dimension-eight interactions characterized by the (7(53)) adp

and (I}f)) wipor tensors, Eqs. (3.24) and (3.25), respectively.
Also, finite contributions to the vacuum polarization are
induced by dimension-six and dimension-eight inter-
actions. These contributions are characterized by the
(ki)qp and (k3),s, tensors given in Egs. (3.28) and
(3.29), respectively. These interactions of dimension higher
than four involve products between the Weyl-like (k)
and the Ricci-like (kr),, tensors in diverse combinations.
On the other hand, the CPT-0Odd sector induces contribu-
tions free of UV divergences, but they are IR divergent.
These contributions are proportional to the vacuum polari-
zation P, tensor and an interaction proportional to the
symmetric (kyf),(kaf), tensor, Eq. (3.34).

The interference between the CPT-Even and CPT-Odd
sectors is generated through dimension-five and dimension-
seven interactions, which involve products of the (kAF)M
vector with the Weyl-like (k) uaup OF the Ricci-like (kp),,
tensors. Although this result is free of both UV and IR
divergences, it is gauge dependent.

Second-order corrections to the beta functions arising
from the Weyl-like (kr),,,s and Ricci-like (kp),, tensors
were included. Nevertheless, the beta function (B, ),, is
generated up to second order in the LV parameters. On
another hand, the beta function associated with the cou-
pling constant g was studied in both a mass-independent
and in a mass-dependent renormalization scheme. We

found that, in the MS scheme, the beta function only

uvip

receives contributions from the CPT-Even sector, which
are proportional to the (kr)? and (kz)? scalars. On the other
hand, in the ,u2 scheme, the beta function receives, in
addition, contributions from the CPT-Odd sector, which
arise as a consequence of the fact that the (k, ), coefficient
has units of mass. This result reduces to the one of the MS
scheme in the (kz)? < u? and (kyp)? < (4?)? limits. The
contribution of this dimensional parameter is not surprising,
since the same behavior is observed in conventional theories
when the masses of the particles are not neglected. Although
such contribution is gauge dependent, it agrees with the fact
that the (k4 ), coefficient is a gauge parameter, in the sense
that it is linked to the gauge sector. Actually, the same
behavior is observed in theories with spontaneous symmetry
breaking. In this class of theories, contributions to the beta
function arising from massive gauge bosons are gauge
dependent in a g scheme. All of this is within what is
expected in the context of a conventional quantum field
theory. What is intriguing is the presence of IR divergences, a
phenomenon that, as has been shown in other contexts, seems
to be exclusive to theories with Lorentz violation. In general,
the presence of IR divergences in well-defined observables
in conventional theories, such as, for example, anomalous
magnetic moments, will require considering, in each case, a
more complete process, without a conventional analog, that
allows its cancellation.
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APPENDIX: FORM FACTORS

In this appendix, we list the form factors generated from
loop calculations. These loop amplitudes are exact and
have been obtained in the general BFM gauge, so they
depend on the gauge-parameter &.

1. First-order form factors

The form factors that arise from first-order calculations
are given by

filg.&) = —% {6(A_1°g<_g_§)>

—%(1—5)(7+§)+10}, (A1)
2o SOG4
i) =2 |5 (- e(-3))
—ju-a6+a+ 5] (a2)
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2 The form factors characterizing the dimension-six and
7GG) ([, 2 &
f3(&) = - (42) - (5 — ) (A3)  dimension-eight interactions are given by
¥4
7C(G) (¢ 5
= 4+ — All
g4(§> (4”)2 4 + 12 ’ ( )
2. Second-order form factors
These form factors are organized according to whether gs(&) = 92C2 [ (E+3) - _} (A12)
they emerge from the CPT-Even sector or from the CPT- (47f
Odd sector.
g(e) = LD [E e 3 —} (A13)
a. Form factors of the CPT-Even sector (47)* |4
Form factors associated with the Riemann-like tensor FC>(G)
i no=-C 20 (ern @
phvp:
2 2 2C,(G) [& 41
9°C(G) [3 q ¢, 10 IZ2T) S 12) -2 Al
ll(qz,f):_ (47[)2 B A —log _/? +§+? ) 98() = (ﬂ.)Z 2(§+ ) 61 (A15)
(A4) 2C,(G 11
e e
2 2
g Cy(G) [7 q 1 29
h(q*.£)=— | A-log{——) || &-5 ) |- 2C,(G)3
(47)> |6 2 8 9 51(£) :g<472r()2)§(1 &), (A17)
(A5)
2
g°C(G)[2 &
The total Ricci-like contribution is characterized by the $2() = (47)? 3 + 4 (3-9)] (A18)
following form factors:
2
= —&-——], Al19
> 7G(6) (1 _\) £, 20 =" 312 (AL9)
9(q*.8) = - @ 2 A —log “2)) st
7G(G)1
(A6) s4(&) = () 8(1 - 3¢), (A20)
2 2
9°G(G) [7 q 7C(G) 1
i) ==L 20 | (Ao (- ss(6) =LA 5 1-30) (a21)
1 89
1-3 A7
+gi-30+3). (A7)
b. Form factors of the CPT-Odd sector
5 7C, (G)[7 q° 3 149 The form factors associated with the CPT-Odd sector are
93(q%.§) == (47)? 3 (A_l (1?)) +Z§+¥ : free of UV divergences, but they present IR divergences.
(A8) These functions, which have been regulated with a ficti-
tious mass m of the gauge fields, are given by
The form factors associated with the usual contribution 2 2
G, (G) [1 m 1 5
P,, are given by fl(qz’f):g(éli()z ) [ (&+4) < > £@2 5)_]
) _
9°C,(G) [3 ¢ 7 (A22)
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2 2
g C(G 1 m 1
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2 r 2
g°C(G) [25 q (A23)
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c. Form factors from interference effects

Interference effects between CPT-Even and CPT-Odd
terms induce the following forms factors:

(1]

(2]

(3]

(4]

(5]

2

R (] (425)
2

() =~ L )4, (20

@=L, )
2

na(&) =7 (ifrgf) % (& -5). (A28)

1s(&) =7 (ifrng) % (& =1). (A29)
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