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It is likely that the Higgs potential of the Standard Model is unstable, turning negative at
ϕ < Λ ∼ 1010 GeV. Here we consider whether it is possible to have Higgs inflation on the
positive stable region of the potential at ϕ < Λ. To do this we add a nonminimally coupled induced
gravity sector with scalar χ to the Standard Model. For an appropriate form for the nonminimal
coupling of χ, we show that it is possible to have conventional Higgs inflation at small ϕ < Λ if the
effective Planck mass in the Jordan frame during inflation is sufficiently small, with a phase transition to
χ ≠ 0 at the end of Higgs inflation which increases the Jordan frame Planck mass to its presently
observed value. In the Einstein frame this corresponds to a suppression of the Higgs kinetic and potential
term at the end of inflation. We show that the predictions of Higgs inflation at tree level are unaltered
from conventional Higgs inflation, with the exception of the magnitude of the Higgs field
during inflation. Hence, Higgs inflation can be achieved using the potential of the unmodified Standard
Model.

DOI: 10.1103/PhysRevD.108.055016

I. INTRODUCTION

It is believed that the electroweak vacuum of the Standard
Model (SM) is metastable, due to quantum corrections
which cause the Higgs effective potential to become
negative at an instability scale ϕ ¼ Λ ∼ 1010 GeV [1–3].
(The metastability of the SM Higgs potential has a long
history; see [4] for an early discussion of the issue and [5] for
a review.) Such a potential, if unmodified at large ϕ, could
not serve as a basis for nonminimally coupled Higgs
inflation [6].
It is possible that the potential could be modified to

overcome this; for example by adding particles to the
Standard Model to modify the quantum corrections, such as
TeV scalars with a sufficiently strong portal coupling to the
Higgs [7–11]. (For a recent review of stabilization mech-
anisms, see [12].) However, it may be the SM Higgs
potential is indeed unstable, as would be the case if such
new particles either do not exist or are too weakly coupled
to the Standard Model to sufficiently modify the potential.
Here we propose that it may be possible to use the
“healthy” positive part of the unmodified Standard
Model Higgs potential at ϕ≲ Λ to support Higgs inflation,

if the effective Planck mass in the Jordan frame, MPleff , is
much smaller during inflation than it is at present. As a
specific example, we will show that this can be achieved in
a model with an induced gravity1 scalar χ that is non-
minimally coupled to gravity and whose vacuum expect-
ation value determines the present value of the Planck mass.
With an appropriate form for the nonminimal coupling of χ,
it is possible for the induced gravity phase transition from
χ ¼ 0 to occur at the end of Higgs inflation, increasing
the effective Planck mass to its present value. In the
Einstein frame, the Planck mass is fixed to its present
value and the mechanism of the model becomes the
suppression of the Higgs kinetic and potential term by
the increase of χ at the end of inflation. We will show that
the resulting model leaves the classical predictions of Higgs
inflation for the spectral index, ns, the tensor-to-scalar ratio,
r, and the reheating temperature, TR, unchanged, but can
reduce ϕ during inflation to values below the Higgs
instability scale.

II. THE MODEL

We will consider conventional metric Higgs inflation.2

The Higgs potential VðϕÞ at ϕ ≫ v, where v the present
Higgs vacuum expectation value, is a quartic potential with
a running Higgs self-coupling λϕðμÞ, where μ may be*j.mcdonald@lancaster.ac.uk
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1“Induced gravity” in the sense of [13,14], where the
Planck mass is determined by the expectation value of a scalar
field.

2Palatini Higgs inflation is a viable alternative [15].
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chosen to equal3 ϕ. In this discussion we will consider ϕ to
be small compared to the instability scale and so λϕ > 0.
The action of the model in the Jordan frame is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ðM2

0 þ ξϕϕ
2 þ GðχÞÞR

2
−
1

2
∂μϕ∂

μϕ

−
1

2
∂μχ∂

μχ − Vðϕ; χÞ
�
; ð1Þ

where M0 ≪ MPl and

Vðϕ; χÞ ¼ λϕϕ
4

4
þ λχ

4
ðχ2 − v2χÞ2: ð2Þ

In the following we define the effective Planck mass in the
Jordan frame, MPleff , to be

MPleff ¼ ðM2
0 þ ξϕϕ

2 þGðχÞÞ1=2: ð3Þ

Here GðχÞ defines the nonminimal coupling of χ. For the
model to work, GðχÞ should be negative at small χ and
positive at large χ. Assuming that GðχÞ is a function of χ2,
the leading-order term in the expansion of GðχÞ at small χ
should therefore be of the form

GðχÞ ≈ −ξχχ2; ξχ > 0: ð4Þ

In order to analyze inflation, we transform to the Einstein
frame.4 We first write Eq. (1) in the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Ω2R−

1

2
∂μϕ∂

μϕ−
1

2
∂μχ∂

μχ−Vðϕ;χÞ
�
;

ð5Þ

where the conformal factor Ω is defined by

Ω2 ¼ M2
0

M2
Pl

þ ξϕϕ
2

M2
Pl

þ GðχÞ
M2

Pl

: ð6Þ

The Einstein frame action is then

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

Pl

2
R̃ −

3M2
Pl

4Ω4
∂μΩ2

∂
μΩ2

−
1

2Ω2
∂μϕ∂

μϕ −
1

2Ω2
∂μχ∂

μχ −
Vðϕ; χÞ
Ω4

�
; ð7Þ

where the metric is g̃μν ¼ Ω2gμν. After expanding the
second term in Eq. (7), the kinetic terms are

−
1

2Ω2

�
1þ 6ξ2ϕϕ

2

Ω2M2
Pl

�
∂μϕ∂

μϕ −
3ξϕ

Ω4M2
Pl

G0ðχÞϕ∂μχ∂μϕ

−
1

2Ω2

�
1þ 3G0ðχÞ2

2Ω2M2
Pl

�
∂μχ∂

μχ; ð8Þ

where G0ðχÞ ¼ dG=dχ.
We consider inflation in the ϕ direction. We assume that

χ ¼ 0 during inflation and later show that this can be
ensured by the nonminimal coupling Eq. (4). In the limit of
small χ, the conformal factor becomes

Ω2 ¼ M2
0

M2
Pl

þ ξϕϕ
2

M2
Pl

−
ξχχ

2

M2
Pl

: ð9Þ

It will be convenient to define Ω2 in the form Ω2 ¼
ðM0=MPlÞ2Ω̃2, where

Ω̃2 ¼ 1þ ξϕϕ
2

M2
0

−
ξχχ

2

M2
0

: ð10Þ

The ϕ kinetic term with χ ¼ 0 can then be written as

−
1

2Ω̃2

�
1þ 6ξ2ϕϕ̃

2

Ω̃2M2
Pl

�
∂μϕ̃∂

μϕ̃; Ω̃2 ¼ 1þ ξϕϕ̃
2

M2
Pl

; ð11Þ

where we define ϕ̃ ¼ ðMPl=M0Þϕ. The Einstein frame
Higgs potential in terms of ϕ̃ and Ω̃ is then

VEðϕÞ ¼
VðϕÞ
Ω4

¼ λϕϕ
4

4Ω4
¼ λϕϕ̃

4

4Ω̃4
: ð12Þ

Therefore, in terms of ϕ̃, the action is exactly the same
as that of conventional Higgs inflation and therefore will
produce the same predictions as a function of the number
of e-folds N. As a result, if the number of e-foldings
corresponding to the pivot scale at horizon exit, N�, has
the same value as in conventional Higgs inflation, then the
predictions of the model for ns and r will be the same
as conventional Higgs inflation. In addition, as in conven-
tionalHiggs inflation, theHiggs field ϕ̃ atN e-foldings is [6]

ϕ̃ ¼
ffiffiffiffiffiffiffi
4N
3ξϕ

s
MPl ð13Þ

3The renormalization of nonminimally coupled models de-
pends upon the conformal frame in which the renormalization is
performed. Whilst there are proposals for a preferred frame [16],
it has also been proposed that the correct frame can only be
determined from an ultraviolet completion of the model [17].
For values of ϕ for which the conformal factor Ω ≈ 1, the Jordan
and Einstein frames are indistinguishable from the Standard
Model, therefore the quantum corrections are conventional
Standard Model corrections and μ ¼ ϕ is a good choice for
the renormalization scale. For larger field values, the quantum
corrections to the potential and the best choice for μ become
frame dependent [18].

4After inflation Ω ¼ 1, therefore results for observables
calculated in the Jordan and Einstein frames are indistinguish-
able.
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and the curvature power spectrum is

PR ¼ λϕN2

72π2ξ2ϕ
: ð14Þ

The observed curvature power at the pivot scale,
PR ¼ 2.1 × 10−9, then gives

ξϕ ¼ 8.2 × 102
ffiffiffiffiffi
λϕ

q
N�: ð15Þ

At the end of inflation, N ≈ 1 and ϕ̃e ¼ 2MPl=
ffiffiffiffiffiffiffi
3ξϕ

p
.

Since this is only slightly different from the value ϕ̃ ¼
MPl=

ffiffiffiffiffi
ξϕ

p
below which Ω ≈M0=MPl and Ω̃ ≈ 1 when

χ ¼ 0, for convenience in the following we will use
ϕ̃e ≈MPl=

ffiffiffiffiffi
ξϕ

p
, Ω̃ðϕ̃eÞ ≈ 1 and Ωðϕ̃eÞ ≈M0=MPl at the

end of inflation. At this time χ ¼ 0 and the effective Planck
mass in the Jordan frame is MPleff ≈M0. The energy
density at the end of inflation in the Einstein frame is

ρE ≈
λϕM4

Pl

4ξ2ϕ
; ð16Þ

as in conventional Higgs inflation. At the end of inflation,
the ϕ field will enter into oscillations and decay to SM
radiation and ϕ will relax to zero. As shown below, the
χ ¼ 0 minimum will then become unstable and χ will
evolve to its minimum at χ ¼ vχ . The conformal factor with
ϕ ¼ 0 and χ ¼ vχ becomes Ω ¼ 1 and the Jordan frame
effective Planck mass becomes MPl. Assuming that the
contribution to the potential energy at the end of inflation is
dominated by VðϕÞ (we discuss this condition below),
and assuming instant reheating via rapid Higgs field
preheating [19], the reheating temperature will be the same
as in Higgs inflation, TR ≈ ρ1=4E ≈MPl=

ffiffiffiffiffi
ξϕ

p
. Moreover,

since both the reheating temperature and the energy
density, and hence horizon during inflation, are unchanged
from Higgs inflation, it follows that N� is also unchanged.
Therefore, the predictions of the model will be the same as
in Higgs inflation, except for the value of ϕðNÞ, which is
suppressed by a factor M0=MPl relative to its value in
conventional Higgs inflation,

ϕðNÞ ¼
�
M0

MPl

�
ϕ̃ðNÞ ¼

ffiffiffiffiffiffiffi
4N
3ξϕ

s
M0: ð17Þ

At the pivot scale, and using λϕ ≈ 0.1 for the SM Higgs
quartic coupling and Eq. (15) for ξϕ, the value of ϕðN�Þ is
numerically

ϕðN�Þ ¼ 7.2 × 109
�
0.1
λϕ

�
1=4

�
M0

1011 GeV

�
GeV: ð18Þ

Therefore, M0 ≲ 1011 GeV will allow Higgs inflation to
take place on the positive part of the metastable Higgs
potential at ϕ < Λ ≈ 1010 GeV.

III. INDUCED GRAVITY-PHASE TRANSITION

We next consider how the scenario discussed in the
previous section can be realized in practice, by χ becoming
unstable and developing an expectation value once ϕ → 0
at the end of inflation. We first discuss how the χ ¼ 0
minimum can be stable during inflation due to the non-
minimal coupling of χ. We can write the χ potential in the
form

VðχÞ ¼ V0 −
1

2
μ2χχ

2 þ λχ
4
χ4; ð19Þ

where V0 ¼ μ4χ=4λχ and μ2χ ¼ λχv2χ . The full Einstein frame
potential is then

VEðϕ; χÞ ¼
VðϕÞ þ VðχÞ

Ω4
: ð20Þ

For small χ, this can be written as

VEðϕ; χÞ ≈
V0 þ λϕ

4
ϕ4 − μ2χ

2
χ2�

M2
0

M2
Pl
þ ξϕϕ

2

M2
Pl
− ξχχ

2

M2
Pl

�
2
: ð21Þ

We assume that V0 ≪ λϕϕ
4=4 during inflation, in which

case we can neglect V0 (we justify this below). During
inflation, ξϕϕ

2=M2
Pl > M2

0=M
2
Pl and we can therefore

approximate the potential as

VE ≈
M4

Pl

ξ2ϕϕ
4

�
λϕ
4
ϕ4 − 1

2
μ2χχ

2
�

�
1 − ξχχ

2

ξϕϕ
2

�
2

: ð22Þ

For small χ, we expand this as

VE ≈
M4

Pl

ξ2ϕϕ
4

�
λϕ
4
ϕ4 −

1

2
μ2χχ

2

��
1þ 2ξχχ

2

ξϕϕ
2

�
: ð23Þ

Therefore the χ mass term in the inflaton background is

M4
Pl

ξ2ϕϕ
4

�
λϕ
2

ξχ
ξϕ

ϕ2 −
μ2χ
2

�
χ2; ð24Þ

and the nonminimal coupling ξχ will stabilize the χ ¼ 0

minimum if

ξχ >
μ2χ
λϕ

ξϕ
ϕ2

: ð25Þ

Since ϕ > ϕe ¼ M0=
ffiffiffiffiffi
ξϕ

p
during inflation, this will be true

throughout inflation if
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μχ ≲ ðλϕξχÞ1=2
M0

ξϕ

¼ 2.2 × 108
�
ξχ
104

�
1=2

�
M0

1011 GeV

�
GeV; ð26Þ

where we set N� ¼ 55 in all of our numerical expressions,
in which case ξϕ ¼ 4.5 × 104λ1=2ϕ .
This gives the condition for classical stability of the

χ ¼ 0 minimum during inflation. In addition, we need to
check that the minimum is stable with respect to quantum
fluctuations of χ during inflation. This will be true if the
mass of the canonically normalized χ field is large
compared to H during inflation. During inflation, the
kinetic term of the χ field in the inflaton background is

−
1

2Ω2
∂μχ∂

μχ ≡ −
1

2
∂μχ̃∂

μχ̃; ð27Þ

where Ω2 ≈ ξϕϕ
2=M2

Pl and we define the canonically
normalized scalar as χ̃ ¼ χ=Ω. In terms of χ̃, the mass
term during inflation becomes

M4
Pl

ξ2ϕϕ
4

�
λϕξχϕ

2

2ξϕ
−
μ2χ
2

�
Ω2χ̃2¼ M2

Pl

ξϕϕ
2

�
λϕξχϕ

2

2ξϕ
−
μ2χ
2

�
χ̃2: ð28Þ

Therefore, assuming that the positive contribution to the
mass-squared term dominates, the mass of the scalar χ̃ is
given by

m2
χ̃ ≈

λϕξχM2
Pl

ξ2ϕ
: ð29Þ

During inflation in the Einstein frame, H2 ¼ λϕM2
Pl=12ξ

2
ϕ.

Therefore the condition for suppression of χ̃ quantum
fluctuations during inflation, m2

χ̃ ≫ H2, is satisfied if

ξχ ≫
1

12
: ð30Þ

This is easily satisfied. Thus, χ ¼ 0 during inflation can be
both classically stable and safe with respect to χ̃ quantum
fluctuations during inflation.
In the above we have assumed that the potential at the

end of inflation is dominated by VðϕÞ. This requires that

λϕϕ
4
e

4
> V0 ¼

μ4χ
4λχ

⇒ μχ <
ðλϕλχÞ1=4M0ffiffiffiffiffi

ξϕ
p ¼ 2.7 × 108

�
λχ
0.1

�
1=4

×

�
M0

1011 GeV

�
GeV: ð31Þ

SinceM0 ≲ 1011 GeV in order to have ϕ < Λ ≈ 1010 GeV
during inflation, it follows that μχ ≲ 108 GeV in this class
of model.
Finally, we are assuming that χ field can rapidly roll from

the χ ¼ 0 minimum once ϕ ¼ 0. This requires that the
magnitude of the negative mass squared of the canoni-
cally normalized field χ̃ in the χ ¼ ϕ ¼ 0 minimum,
χ̃ ¼ ðMPl=M0Þχ, is greater than H2. From Eq. (21), the
negative mass squared term in this case is

−
�
MPl

M0

�
2 μ2χ
2
χ̃2: ð32Þ

The magnitude of the negative mass squared term is
therefore large compared to H2 at the end of inflation if

μχ ≳
ffiffiffiffiffi
λϕ
12

r
M0

ξϕ
¼ 6.4 × 105

�
M0

1011 GeV

�
GeV: ð33Þ

We note that this constraint it not as essential as the others,
as the χ transition will in any case eventually occur once H
decreases sufficiently due to expansion.
An example of model parameters for which the potential

is dominated by VðϕÞ during inflation, ϕ during inflation is
less thanΛ ∼ 1010 GeV, χ ¼ 0 is stable during inflation, and
the χ transition occurs once ϕ → 0 at the end of inflation, is
given by μχ ¼ 106 GeV, M0 ¼ 1010 GeV, ξχ ¼ 104, and
λχ ¼ λϕ ¼ 0.1, with ϕðN ¼ 55Þ ¼ 7.2 × 108 GeV.

IV. THE χ NONMINIMAL COUPLING

The condition that the potential is dominated by theHiggs
potential during inflation implies that μχ ≲ 108 GeV and so
vχ ¼ μχ=

ffiffiffiffiffi
λχ

p
will be much smaller than MPl for natural

values of λχ . Therefore, in order forGðχÞ to equalM2
Pl once

χ ¼ vχ , GðχÞ must increase very rapidly with χ, with
GðvχÞ ≫ v2χ . It is common for the effective Planck mass
due the nonminimal coupling in Higgs inflation models,
MPleff ¼

ffiffiffiffiffi
ξϕ

p
ϕ, to be much larger than the input field, by a

factor of ∼102 for metric Higgs inflation and ∼104 for
Palatini Higgs inflation. In the present case, the amplifica-
tion is by a larger factor, withMPleff=vχ ≈MPl=vχ ≳ 1010. A
second condition on GðχÞ in this model is that it has to be
negative at small χ but positive at larger χ. Finally, in order to
avoid a pole in the Einstein frame kinetic terms as χ increases
from zero when ϕ ¼ 0 after inflation, we require thatM2

0 þ
GðχÞ is positive throughout. As a simple example, we can
consider a nonminimal coupling GðχÞ which behaves as

GðχÞ¼−ξχχ2; χ< χc; GðχÞ≈M2
Pl; χ> χc: ð34Þ

The Einstein frame potential for χ when ϕ ¼ 0 is then
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VEðχÞ ≈
�
MPl

M0

�
4 λχ
4
ðχ2 − v2χÞ2; χ < χc;

VEðχÞ ¼
λχ
4
ðχ2 − v2χÞ2; χ > χc; ð35Þ

with a sharp decrease in the potential at χ ¼ χc. This
potential has a unique stable minimum at χ ¼ vχ . In order
to avoid a pole in the Einstein frame kinetic terms we also
require that ξχχ2c < M2

0. In the absence of a more funda-
mental theory, the functional form of GðχÞ is unknown.
However, as long as the above conditions on GðχÞ are
satisfied, the specific form of GðχÞ will not significantly
affect the dynamics of inflation.
An example of a relatively simple function of χ that can

satisfy the behavior in Eq. (34) is given by

GðχÞ ¼ M2
Plð1 − e−χ

2=χ2cÞð1 − Ae−χ
2=χ2cÞ

ð1þ Be−χ
2=χ2cÞ2 ; ð36Þ

where A > 1 and B ≫ 1. Then GðχÞ satisfies

GðχÞ ≈ −
M2

PlðA − 1Þ
B2

χ2

χ2c
; χ2 ≪ χ2c; ð37Þ

GðχÞ ≈M2
Pl

B2
e2χ

2=χ2c ; χ2� ≫ χ2 ≫ χ2c ð38Þ

and

GðχÞ ≈M2
Pl; χ2 ≫ χ2�; ð39Þ

where χ� ≈
ffiffiffiffiffiffiffiffi
lnB

p
χc. Comparing with Eq. (34), we have

M2
PlðA − 1Þ=B2 ≈ ξχχ

2
c. For example, χc ¼ 108 GeV, ξχ ¼

104 and A ∼ 1 gives B ≈ 108 and χ� ≈ 4.3χc. Therefore,
GðχÞ ≈ −ξχχ2 until χ ≈ χc, it then turns positive once
χ > χc and rapidly increases to M2

Pl at χ ≈ χ� ≈ 4.3χc,
becoming constant for χ > χ�. The requirement that
ξχχ

2
c < M2

0 is satisfied if M0 ≳ 1010 GeV.

V. CONCLUSIONS

We have shown that it is possible for Higgs inflation to
occur at field values during inflation which are less than the
instability scale of the unmodified Standard Model Higgs
potential, if there is a phase transition at the end of inflation
which increases the effective Planck mass in the Jordan

frame. This is equivalent to a suppression of the Higgs
kinetic and potential term in the Einstein frame at the end of
inflation. The classical predictions of the model are exactly
the same as for conventional Higgs inflation with the
exception of the value of the Higgs field during inflation.
We have presented a specific example of a model with a
nonminimally coupled induced gravity sector which
can account for Higgs inflation with ϕ ¼ 7.2 × 108 GeV
at N ¼ 55, less than the Higgs instability scale
Λ ∼ 1010 GeV. The induced gravity scalar χ is kept at a
χ ¼ 0minimum during inflation by a nonminimal coupling
which is negative at small χ. This minimum becomes
unstable once Higgs inflation ends and ϕ → 0, allowing the
induced gravity phase transition to occur and the Jordan
frame Planck mass to grow to its present value. The model
requires a nonminimal coupling of the induced gravity
scalar χ which is negative at small χ but becomes positive at
large χ. It must also increase very rapidly with increasing χ
in order to reach a value equal to M2

Pl when χ reaches the
minimum of its potential at vχ ≲ 108 GeV.
Whilst the classical predictions of Higgs inflation are

unmodified, the quantum corrections to the Higgs potential
can result in deviations from the classical predictions. Since
the quantum corrections are determined purely by the
Standard Model particle content, the corrections and their
effect on the predictions of the model are well-defined and
are independent of the specific model for the Planck mass
transition. An analysis of quantum corrections, the result-
ing predictions for ns and r, and their dependence on the
renormalization frame, is discussed in a companion
paper [18].
The idea of using the Higgs potential of the unmodified

Standard Model to produce inflation is attractive. It would
allow the only known scalar particle, the Higgs boson, to
serve as the inflaton without requiring the ad hoc addition
of sufficiently strongly coupled new particles to the
Standard Model to stabilize the potential. The Planck mass
phase transition mechanism proposed here would allow
Higgs inflation to be achieved using the unmodified
potential. In the specific model for the phase transition
that we have presented, it requires only the addition of a
scalar that is not coupled to the Standard Model sector to
produce the increase of the Planck mass. It is likely that
the late-time Planck mass phase transition will also lead
to as yet unknown phenomenological and cosmological
possibilities.
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