
ΔS = 2 nonleptonic hyperon decays as probes of new physics

Xiao-Gang He,1,2 Jusak Tandean ,3 and German Valencia 4

1Tsung-Dao Lee Institute, KLPAC and SKLPPC Laboratories, School of Physics and Astronomy,
Shanghai Jiao Tong University, Shanghai 201210, China

2Department of Physics, National Taiwan University, Taipei 10617, Taiwan
3Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China

4School of Physics and Astronomy, Monash University, Wellington Road,
Clayton, Victoria-3800, Australia

(Received 11 April 2023; accepted 13 August 2023; published 11 September 2023)

Hyperon nonleptonic decays that change strangeness by two units, such as Ξ → Nπ and
Ω− → nK−;Λπ−;Σð�Þπ, are highly suppressed in the standard model. Only a few of them have been
searched for to date, leading to experimental upper bounds that are many orders of magnitude above the
expectations of the standard model. This leaves ample opportunity to look for indications of new physics in
these processes. At the same time, most, but not all, ΔS ¼ 2 interactions beyond the standard model are
severely constrained by kaon-mixing data. We present two scenarios where new physics satisfying the
kaon-mixing constraints can enhance the hyperon decay rates to levels that can be probed in future searches
by BESIII and LHCb and at the proposed Super Tau-Charm Factory. Both scenarios require significant
fine-tuning.
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I. INTRODUCTION

The nonleptonic decays of light hyperons that modify the
strangeness quantum number by two units have very small
rates in the standard model (SM). Hence, such ΔS ¼ 2
processes could serve as an environment in which to search
for hints of new physics beyond the SM. This was first
investigated in Ref. [1], focusing on the Ξ, which has spin
1=2, turning into a nucleon N and a pion π. In the spin-3=2
sector, the Ω− hyperon can also be used to test for new
physics in ΔS ¼ 2 interactions via the decays Ω− → nK−;
Λπ−;Σπ;Σ�π.
The latest searches for Ξ → Nπ were conducted decades

ago [2,3] and came up empty, implying the branching-
fraction bounds BðΞ0 → pπ−Þexp < 8 × 10−6 and BðΞ− →
nπ−Þexp < 1.9 × 10−5 [4] both at the 90% confidence level
(CL). In the Ω− case, only Ω− → Λπ− has been searched
for [3], also with a null outcome, which translated into
BðΩ− → Λπ−Þexp < 2.9 × 10−6 at 90% CL [4]. As these
results are above the SM expectations by up to 10 orders of
magnitude, the window to discover new physics in such
ΔS ¼ 2 decays is wide open. Efforts to pursue this may be
made in ongoing experiments, such as LHCb and BESIII.

The former, short of discovery, could improve the preced-
ing limits by 3 to 4 orders of magnitude after upcoming
upgrades [5]. At eþe− facilities, BESIII [6] might be able to
improve on the Ξ bounds, and farther in the future the Super
Tau-Charm Factory [7] would expectedly have much
enhanced sensitivity to both the Ξ and Ω− channels [8].
All of this has prompted us to revisit these rare processes in
hopes of learning new information about them.
There are relations among several of them, and we

identify the independent ones here. For the hyperons in the
octet of ground-state spin-1=2 baryons, the ΔS ¼ 2 non-
leptonic decays into two-body final states that are kine-
matically allowed are Ξ0 → pπ−; nπ0, and Ξ− → nπ−.
Within or beyond the SM, the leading operators contrib-
uting to these flavor-changing neutral-current processes are
of dimension six and consist of four light-quark fields,
which can only be the down-type ones. Thus, the operators
entail the conversion of two s-quarks into two d-quarks,
altering isospin by ΔI ¼ 1. It follows that, in light of
isospin symmetry of the strong interactions, the invariant
amplitudes for Ξ → Nπ satisfy

ffiffiffi
2

p
MΞ0→nπ0 þMΞ0→pπ− þMΞ−→nπ− ¼ 0: ð1Þ

As a consequence, it suffices to examine the amplitudes for
just two of them, which we choose to be Ξ0 → pπ−

and Ξ− → nπ−.
In the decuplet of ground-state spin-3=2 baryons, only

the Ω− undergoes predominantly weak decay. The final
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states of its ΔS ¼ 2 nonleptonic two-body modes are
nK−;Λπ−;Σ0π−, and Σ−π0, as well as Σ�0π− and
Σ�−π0, the Σ� ≡ Σð1385Þ resonances being also members
of the decuplet. The amplitudes forΩ− → Σ0π−;Σ−π0 obey
the isospin relation

MΩ−→Σ0π− þMΩ−→Σ−π0 ¼ 0; ð2Þ

and so we need not discuss the latter. The same can be said
of Ω− → Σ�0π−;Σ�−π0.
The structure of the paper is as follows. In Sec. II we

address the ΔS ¼ 2 nonleptonic hyperon decays (NLHD)
within the SM. Specifically, we start by updating the short-
distance predictions for Ξ → Nπ and subsequently treat
theirΩ− counterparts. Moreover, we explicitly look at long-
distance effects brought about by ΔS ¼ 1 operators acting
twice, which turn out to be numerically important. Since
these processes have relatively low rates already, we do not
consider modes with three or more particles in the final
states, which have less phase space. Beyond the SM, in
Secs. III A and III B we explore how a Z0 boson and
leptoquarks, respectively, may give rise to substantially
amplified contributions to the ΔS ¼ 2 NLHD. We present
our conclusions in Sec. IV. In three appendices we
summarize the numerical values we use for input para-
meters, collect the rate formulas for the Ω− modes, and
provide further details of the Z0 model.

II. ΔS= 2 NONLEPTONIC HYPERON DECAYS
IN THE STANDARD MODEL

A. Short-distance contributions

In the SM the effective Hamiltonian for ΔS ¼ 2 tran-
sitions among light quarks is approximately given by [9]

HSM
ΔS¼2 ¼

ηccG2
Fm

2
c

4π2
ðV�

cdVcsÞ2QLL; ð3Þ

which involves a QCD-correction factor ηcc, the Fermi
constant GF, the charm-quark mass mc, the elements Vmn
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and

QLL ¼ d̄γαPLsd̄γαPLs ¼ tkl;noψkγ
αPLψnψ lγαPLψo; ð4Þ

with PL ¼ ð1 − γ5Þ=2, the subscripts k, l, n, o ¼ 1, 2, 3
being implicitly summed over, tkl;no ¼ 0 except for

t22;33 ¼ 1, and the light-quark fields ψ1;2;3 ¼ u, d, s. In
Eq. (3) we have retained only the charm-quark portion, as it
dominates the SM short-distance (SD) predictions for the
hyperon decays of interest and the neutral-kaon mass
difference ΔMK ¼ RehK0jHΔS¼2jK0i=mK0 , the correction
from the top and charm-top contributions being merely at
the percent level [9,10].
To deal with the hyperon amplitudes generated byHSM

ΔS¼2

requires the hadronized form of QLL. It transforms like
ð27L; 1RÞ under the chiral-symmetry group SUð3ÞL ×
SUð3ÞR and has a leading-order hadronic realization
[1,11] expressible as

OLL ¼ Λχf2πtkl;no½β̂27ðξB̄ξ†ÞnkðξBξ†Þol
þ δ̂27ξnxξozξ

†
vkξ

†
wlðT̄rvwÞαðTrxzÞα�; ð5Þ

where Λχ is the scale of chiral-symmetry breaking, fπ
denotes the pion decay constant, β̂27 and δ̂27 are parameters
to be fixed below, B and ξ stand for 3 × 3 matrices
incorporating the fields of the lowest-mass octet baryons
and mesons, respectively, r, v, w, x, z ¼ 1, 2, 3 are also
summed over, and ðTrvwÞα is a Rarita-Schwinger field [12]
for the spin-3=2 decuplet baryons and has completely
symmetric SU(3) indices ðr; v; wÞ, the components being
explicitly listed in Ref. [11]. Under SUð3ÞL × SUð3ÞR
rotations B → ÛBÛ†, ξ → L̂ξÛ† ¼ ÛξR̂†, and ðTrvwÞα →
ÛrnÛvxÛwzðTnxzÞα, where Û∈SUð3Þ is implicitly defined
by the ξ equation, L̂∈SUð3ÞL, and R̂∈SUð3ÞR. We take
Λχ ¼ 4πfπ , in line with naive dimensional analysis argu-
ments [13,14]. Note that Eq. (5) does not contain a term
directly connecting the decuplet and octet baryons because it
is necessarily of higher order in the chiral expansion, needing
one derivative of the ξ or ξ† matrix to contract the Lorentz
index in Tα [15], as γαTα ¼ ∂αTα ¼ 0 [12,16].
The amplitude for a spin-1=2 baryon, B, converting

into another one, B0, and a pion can be put in the general
form iMB→B0π ¼ ūB0 ðABB0 − γ5BBB0 ÞuB comprising, in
succession, parity-odd S-wave and parity-even P-wave
portions [4]. For the former in the ΔS ¼ 2 case, HSM

ΔS¼2

in Eq. (3) with QLL changed to OLL brings about the
diagram depicted in Fig. 1(a), leading to [1]

AðSM;SDÞ
Ξ0p

¼ AðSM;SDÞ
Ξ−n ¼ CSMffiffiffi

2
p ; ð6Þ

(a) (b) (c) (d) (e)

FIG. 1. Feynman diagrams for the SM short-distance contributions to (a) S-wave and (b) P-wave Ξ → Nπ, (c) P-waveΩ− → Bϕ, and
(d) S-wave and (e) P-wave Ω− → Σ�π. Each hollow square symbolizes a coupling induced by HSM

ΔS¼2 in Eq. (3). Here and in Fig. 2, a
dashed line represents a pseudoscalar meson, a single (double) solid line represents a spin-1=2 (spin-3=2) baryon, and a thick dot
represents a strong vertex from Ls in Eq. (7).
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where CSM ¼ ηccG2
Fm

2
cðV�

cdVcsÞ2f2πβ̂27=π. The correspond-
ing B pieces are calculated from pole diagrams, displayed
in Fig. 1(b), which depend on CSM and also have a vertex
furnished by the leading-order strong-interaction chiral
Lagrangian [16,17]

Ls ⊃ TrðDB̄γαγ5fAα; Bg þ FB̄γαγ5½Aα; B�Þ
þHðT̄klvÞαγμγ5ðAvwÞμðTklwÞα
þ ϵklnC½ðB̄ÞkvðAlwÞαðTnvwÞα þ ðT̄nvwÞαðAwlÞαBvk�;

ð7Þ

where D, F, H, and C are constants and Aα ¼
iðξ∂αξ† − ξ†∂αξÞ=2. The results are [1]

BðSM;SDÞ
Ξ0p

¼ Dþ Fffiffiffi
2

p
�
mN þmΞ

mΞ −mN

�
CSM;

BðSM;SDÞ
Ξ−n ¼ D − Fffiffiffi

2
p

�
mN þmΞ

mN −mΞ

�
CSM; ð8Þ

where mN and mΞ are isospin-averaged nucleon and Ξ−;0

masses, respectively.
The mode Ω− → Bϕ, with ϕ being a pseudoscalar

meson, is made up of P-wave and D-wave transitions.
In the SM, the SD contribution to the former proceeds from
the pole diagrams exhibited in Fig. 1(c) which include not
only a weak coupling produced by HSM

ΔS¼2 but also a
strong vertex from the C term of Eq. (7). The D-wave piece
arises from a higher order in the chiral expansion and
hence will be neglected. Writing the amplitude accordingly
as iMΩ−→Bϕ ¼ CBϕūBuαΩp̃α, with p̃ being the four-
momentum of ϕ, we then have

CðSM;SDÞ
nK− ¼ Cffiffiffi

2
p

�
CSM

mΞ −mN
−

C̃SM

3ðmΩ −mΣ� Þ
�
;

CðSM;SDÞ
Λπ− ¼ CC̃SM

2
ffiffiffi
3

p ðmΩ −mΣ� Þ ; CðSM;SDÞ
Σ0π−

¼ −CC̃SM

6ðmΩ −mΣ�Þ ;

ð9Þ

where C̃SM ¼ ηccG2
Fm

2
cðV�

cdVcsÞ2f2πδ̂27=π and mΣ� is the
isospin-averaged mass of the Σð1385Þ resonances.
As for Ω− → Σ�0π−, it is described by S-, P-, D-, and

F-wave amplitudes. The first two of them can be expressed
as iMΩ−→Σ�0π− ¼ ūαΣ� ðÃΣ�π − γ5B̃Σ�πÞuΩ;α, and in the SM
the SD ones are determined from the leading-order dia-
grams in Figs. 1(d) and 1(e), respectively. Thus, we find

ÃðSM;SDÞ
Σ�π ¼ C̃SMffiffiffi

3
p ; B̃ðSM;SDÞ

Σ�π ¼ −H
3

ffiffiffi
3

p
�
mΩ þmΣ�

mΩ −mΣ�

�
C̃SM:

ð10Þ

TheD-wave and F-wave terms occur at higher chiral orders
and will therefore be ignored.
The value of β̂27 can be inferred, with the aid of flavor-

SU(3) symmetry, from the ΔI ¼ 3=2 amplitudes for the
measured ΔS ¼ 1 NLHD. This is in analogy to linking the
matrix elements for K0-K̄0 mixing and the ΔI ¼ 3=2
component of K → 2π decay [18]. In the SM the pertinent
ΔS ¼ 1 Hamiltonian at short distance is

HSM
ΔI¼3=2;ΔS¼1 ¼

ffiffiffi
8

p
ðĈ1 þ Ĉ2ÞGFV�

udVusQ
ΔI¼3=2
ΔS¼1 ; ð11Þ

where Ĉ1;2 designate the main Wilson coefficients

and QΔI¼3=2
ΔS¼1 ¼ t̃kl;noψkγ

αPLψnψ lγαPLψo, with t̃kl;no ¼ 0

except for t̃12;13 ¼ t̃12;31 ¼ t̃21;13 ¼ t̃21;31 ¼ −t̃22;23 ¼
−t̃22;32 ¼ 1=6. This operator also transforms as ð27L; 1RÞ
under SUð3ÞL × SUð3ÞR. Accordingly, the hadronic reali-
zation of QΔI¼3=2

ΔS¼1 at lowest order in the chiral expansion
is [1,11]

OΔI¼3=2
ΔS¼1 ¼ Λχf2π t̃kl;no½β̂27ðξBξ†ÞnkðξBξ†Þol

þ δ̂27ξnxξozξ
†
vkξ

†
wlðT̄rvwÞηðTrxzÞη�: ð12Þ

Since experiments reveal that the ΔS ¼ 1 NLHD are
dominated by their ð8L; 1RÞ amplitudes, which are ∼20
times bigger in size than their ð27L; 1RÞ counterparts,
theoretical examination of the latter suffers from large
uncertainties because of complications due to isospin-
mixing effects plus the ambiguity associated with the
S-wave/P-wave problem for the spin-1=2 hyperons
[19,20]. Nevertheless, there is one exception, namely, that
the S-wave amplitude for Σþ → nπþ receives no ð8L; 1RÞ
contribution in chiral perturbation theory up to second
order in external momentum or meson mass [17,21] and
therefore offers possibly the cleanest way to assess β̂27.

From Σþ → nπþ measurements [4], we get AðexpÞ
Σþn ¼

1.40ð27Þ × 10−8. From Eq. (11) with QΔI¼3=2
ΔS¼1 replaced by

OΔI¼3=2
ΔS¼1 , we deriveAðtheoryÞ

Σþn ¼ðĈ1þ Ĉ2ÞGFV�
udVusΛχfπβ̂27.

Equating these A’s, assuming that higher chiral orders
can be neglected, and using 0.64 ≤ Ĉ1 þ Ĉ2 ≤ 0.72 com-
puted in Ref. [9] at leading order (for the renormalization
scale of 1GeVandQCD scales of 215–435MeV) and the fπ ,
GF, and V�

udVus values collected in Appendix A, we then
extract

β̂27 ¼ 0.076ð15Þ: ð13Þ

As for δ̂27, at the moment it cannot be estimated
unambiguously from experiment because its role in the
observed Ω− transitions is minor compared to those of the
ð8L; 1RÞ parameters. Since, like β̂27, it belongs to ð27L; 1RÞ
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interactions, to illustrate how δ̂27 may influence the
Ω− channels of interest we set δ̂27 ¼ β̂27 or −β̂27.
FromMB→B0π follows the rate ΓB→B0π ¼ jp0j½jABB0 j2 ×

ðE0 þmB0 Þ þ jBBB0 j2ðE0 −mB0 Þ�=ð4πmBÞ, where p0 (E0) is
the three-momentum (energy) of B0 in the rest frame of B.
We can employ this to evaluate the contributions of Eqs. (6)
and (8) to Ξ → Nπ, with the central values of β̂27 above and
of ηcc, mc, jVcdVcsj, D, and F quoted in Appendix A,
leading to the branching fractions

BðΞ0 → pπ−ÞSDSM ¼ 3.0 × 10−16;

BðΞ0 → nπ0ÞSDSM ¼ 3.0 × 10−16;

BðΞ− → nπ−ÞSDSM ¼ 7.9 × 10−17: ð14Þ

For the Ω− transitions, from the aforementioned ampli-
tudes it is straightforward to obtain the rates written in
Eqs. (B3)–(B4). With Eqs. (9)–(10) and the central
values of the input parameters, including C and H from
Appendix A, we then find

BðΩ− → nK−ÞSDSM ¼ ð1.4; 9.4Þ × 10−17; BðΩ− → Λπ−ÞSDSM ¼ 2.0 × 10−17;

BðΩ− → Σ0π−ÞSDSM ¼ 4.6 × 10−18; BðΩ− → Σ�0π−ÞSDSM ¼ 2.8 × 10−17; ð15Þ

where the two entries for Ω− → nK− correspond to δ̂27 ¼ ð1;−1Þβ̂27, respectively.

B. Long-distance contributions

These Ξ and Ω− modes are also affected by the pole diagrams depicted in Fig. 2, with two couplings from the lowest-
order ΔS ¼ 1 chiral Lagrangian [17,22]

LSM
ΔS¼1 ¼ TrðhDB̄fξ†κ̂ξ; Bg þ hFB̄½ξ†κ̂ξ; B�Þ þ hCðT̄klnÞηðξ†κ̂ξÞnoðTkloÞη; ð16Þ

which transforms as ð8L; 1RÞ under SUð3ÞL × SUð3ÞR and contains parameters hD;F;C and a 3 × 3 matrix κ̂ with elements
κ̂kl ¼ δ2kδ3l. The diagrams for the B’s andC’s in Figs. 2(b), 2(c), and 2(e) again include a strong vertex from Eq. (7) as well.
Accordingly, for Ξ → Nπ we derive the long-distance (LD) contributions

AðSM;LDÞ
Ξ0p

¼ 1ffiffiffi
2

p
fπ

�
h2D − h2F
mN −mΣ

þ h2D − h2F
2ðmΣ −mΞÞ

þ h2D − 9h2F
6ðmΞ −mΛÞ

�
;

AðSM;LDÞ
Ξ−n ¼ 1ffiffiffi

2
p

fπ

�
h2D − h2F
mΞ −mΣ

þ h2D − h2F
2ðmΣ −mNÞ

þ h2D − 9h2F
6ðmN −mΛÞ

�
; ð17Þ

BðSM;LDÞ
Ξ0p

¼ hD − hFffiffiffi
2

p
fπ

�
mΞ þmN

mΣ −mN

��
DðhD − 3hFÞ
3ðmΞ −mΛÞ

−F
hD þ hF
mΞ −mΣ

�
þ DþF

2
ffiffiffi
2

p
fπ

�
mΞ þmN

mΞ −mN

��
h2D − 9h2F

3ðmΞ −mΛÞ
þ h2D − h2F
mΞ −mΣ

�
;

BðSM;LDÞ
Ξ−n ¼ hD þ hFffiffiffi

2
p

fπ

�
mN þmΞ

mΣ −mΞ

��
DðhD þ 3hFÞ
3ðmN −mΛÞ

þF
hD − hF
mN −mΣ

�
þ D−F

2
ffiffiffi
2

p
fπ

�
mN þmΞ

mN −mΞ

��
h2D − 9h2F

3ðmN −mΛÞ
þ h2D − h2F
mN −mΣ

�
; ð18Þ

where mΣ is the average of the Σþ;0;− masses, and for the Ω− channels

(a) (b)

(c)

(d) (e)

FIG. 2. Feynman diagrams for the SM long-distance contributions to (a) S-wave and (b) P-wave Ξ → Nπ, (c) P-wave Ω− → Bϕ, and
(d) S-wave and (e) P-wave Ω− → Σ�π. Each hollow square symbolizes a weak coupling supplied by LSM

ΔS¼1 in Eq. (16).
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CðSM;LDÞ
nK− ¼ ChC

6
ffiffiffi
2

p
fπðmΩ −mΞ� Þ

�
hD þ 3hF
mΛ −mN

−
hD − hF
mΣ −mN

þ 4hC
3ðmΩ −mΣ�Þ

�
−

C

2
ffiffiffi
2

p
fπðmΞ −mNÞ

�
h2D − 9h2F

3ðmΛ −mNÞ
þ h2D − h2F
mΣ −mN

�
;

CðSM;LDÞ
Λπ− ¼ ChC

6
ffiffiffi
3

p
fπðmΩ −mΞ� Þ

�
hD − 3hF
mΞ −mΛ

−
2hC

mΩ −mΣ�

�
;

CðSM;LDÞ
Σ0π−

¼ ChC
6fπðmΩ −mΞ� Þ

�
hD þ hF
mΞ −mΣ

þ 2hC
3ðmΩ −mΣ�Þ

�
; ð19Þ

ÃðSM;LDÞ
Σ�π ¼ h2C

3
ffiffiffi
3

p
fπ

�
1

mΞ� −mΣ�
−

1

mΩ −mΞ�

�
;

B̃ðSM;LDÞ
Σ�π ¼ Hh2C

9
ffiffiffi
3

p
fπ

�
mΩ þmΣ�

mΩ −mΞ�

��
1

mΞ� −mΣ�
−

2

mΩ −mΣ�

�
; ð20Þ

where mΞ� is the isospin-averaged mass of the Ξð1530Þ
resonances, which are of spin 3=2 and also members of the
baryon decuplet.
The unknowns here are hD;F;C, but they can be evaluated

from the available data on the ΔS ¼ 1 processes Λ → Nπ,
Σ → Nπ, Ξ → Λπ, and Ω− → ΛK−;Ξπ [17,22]. Thus,
performing a least-squares fit of the octet-hyperon S-wave
and Ω− P-wave decay amplitudes at leading order to their
empirical values [4] yields the numbers in Eq. (A2).
Subsequently, combining the central values of hD;F

with Eqs. (17)–(18), we arrive at BðΞ0 → pπ−ÞLDSM ¼
2.7 × 10−15, BðΞ0 → nπ0ÞLDSM ¼ 4.8 × 10−16, and BðΞ− →
nπ−ÞLDSM ¼ 1.5 × 10−15, which exceed their SD counterparts
in Eq. (14) by up to∼20 times, implying that we need to put
together the LD and SD amplitudes. Since the relative
phase between the two is undetermined, we simply subtract
one from the other or add them up to find

BðΞ0 → pπ−ÞSM ¼ ð2.8; 3.1Þ × 10−15;

BðΞ0 → nπ0ÞSM ¼ ð1.5; 0.02Þ × 10−15;

BðΞ− → nπ−ÞSM ¼ ð1.2; 1.8Þ × 10−15: ð21Þ

In the case of Ω− → Bϕ, the LD contributions turn out to
be significantly bigger than the SD ones, but the two are
not highly disparate in Ω− → Σ�π, similarly to Ξ → Nπ.
Explicitly, neglecting the SD ones in Ω− → Bϕ, with the
central values of hD;F;C in Eq. (A2) we have

BðΩ− → nK−ÞSM ¼ 3.4 × 10−13;

BðΩ− → Λπ−ÞSM ¼ 8.2 × 10−14;

BðΩ− → Σ0π−ÞSM ¼ 1.5 × 10−14;

BðΩ− → Σ�0π−ÞSM ¼ ð2.0; 5.4Þ × 10−17; ð22Þ

where the first three results surpass the ones in Eq. (15) by
over 3 orders of magnitude.
Although the preceding hD;F numbers give rise to a good

fit to the S-wave ΔS ¼ 1 NLHD, they translate into a poor

representation of the P waves. On the other hand, it is
possible to come up with a satisfactory account of the
P waves but end up with a disappointing description of the
S waves. This is a well-known, longstanding problem
[17,20–22], which lies beyond the scope of our analysis.
Here we would merely like to see how different possi-
ble picks of hD;F;C might alter the ΔS ¼ 2 predictions.
In particular, fitting to the ΔS ¼ 1 octet-hyperon and
Ω− P waves produces the entries in Eq. (A3). These cause
the LD components in Ξ → Nπ to be much greater than the
SD ones, which now impact the branching fractions by no
more than 15%,

BðΞ0 → pπ−ÞSM ¼ ð2.85; 2.91Þ × 10−13;

BðΞ0 → nπ0ÞSM ¼ ð1.0; 1.4Þ × 10−14;

BðΞ− → nπ−ÞSM ¼ ð1.1; 1.2Þ × 10−13; ð23Þ

whereas the Ω− outcomes,

BðΩ− → nK−ÞSM ¼ 7.5 × 10−13;

BðΩ− → Λπ−ÞSM ¼ 1.3 × 10−13;

BðΩ− → Σ0π−ÞSM ¼ 5.7 × 10−15;

BðΩ− → Σ�0π−ÞSM ¼ ð2.0; 4.8Þ × 10−17; ð24Þ

are roughly comparable to those in Eq. (22).
To understand the parametric uncertainty of these SM

predictions and their correlations, we quote the 90% CL
intervals for each observable at a time in Table I, after
implementing the steps outlined in Appendix A. The
second column of the table lists only the SD contributions,
with δ̂27 selected to have the same sign as β̂27. For the third
column (labeled S̃), we incorporate the LD components,
taking them to have the same phase as the SD ones and
including the correlations between the values of hD;F;C as
obtained from fitting the S waves of octet-hyperon non-
leptonic decays and P waves of Ω− → Bϕ in the ΔS ¼ 1

sector. For the fourth column (labeled P̃), we repeat this
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exercise but with δ̂27 and β̂27 having different signs, the SD
and LD parts being opposite in phase, and hD;F;C from
fitting the P waves of both the ΔS ¼ 1 octet-hyperon and
Ω− decays. As anticipated, for the last column the SD terms
are, on the whole, numerically insignificant relative to the
LD ones.

We complementarily show a number of pairwise
90% CL regions of quantities induced by the SM SD
contributions alone in Fig. 3, with δ̂27 and β̂27 having the
same sign, and of the total SM branching fractions in Fig. 4,
after applying the procedure delineated at the end of
Appendix A. For the top (bottom) plots in Fig. 4 the

FIG. 3. Distributions (top) of BðΞ0 → pπ−Þ and BðΩ− → Λπ−Þ versus ΔMK and (bottom) of the branching fractions of three pairs of
ΔS ¼ 2 nonleptonic hyperon decays, all arising solely from the SD interactions in the SM. The blue thick vertical lines in the top graphs
indicate the experimental value, ΔMexp

K . The large black dots mark the central values of our estimates.

TABLE I. The 90% CL intervals of branching fractions of ΔS ¼ 2 nonleptonic hyperon decays from the SD and
complete contributions of the SM, as explained in the text.

Branching fractions

Mode SD SDþ LD (S̃) SDþ LD (P̃)

Ξ0 → pπ− ð0.03; 1Þ × 10−15 ð0.01; 2.6Þ × 10−14 ð0.7; 8.2Þ × 10−13

Ξ0 → nπ0 ð0.03; 1Þ × 10−15 ð0.; 0.9Þ × 10−15 ð0.03; 0.4Þ × 10−13

Ξ− → nπ− ð0.07; 2.6Þ × 10−16 ð0.01; 1.3Þ × 10−14 ð0.03; 0.3Þ × 10−12

Ω− → nK− ð0.1; 6.5Þ × 10−17 ð0.2; 0.6Þ × 10−12 ð0.2; 2.1Þ × 10−12

Ω− → Λπ− ð0.2; 7.1Þ × 10−17 ð0.4; 1.5Þ × 10−13 ð0.2; 4.2Þ × 10−13

Ω− → Σ0π− ð0.04; 1.7Þ × 10−17 ð0.5; 3.1Þ × 10−14 ð0.05; 2.2Þ × 10−14

Ω− → Σ�0π− ð0.3; 9Þ × 10−17 ð0.6; 7.5Þ × 10−17 ð1; 14Þ × 10−17
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parameter choices are the same as those for the S̃ (P̃)
column in Table I specified in the previous paragraph.
In view of the smallness of the SM predictions in Table I,

it is unlikely that they will be testable any time soon. On the
upside, the striking dissimilarity between Eqs. (21) and
(23), and between the corresponding entries in the third and
fourth columns of Table I, implies that future observations
of Ξ → Nπ with branching fractions at the level of 10−12 or
below could offer extra insight for dealing with the S-wave/
P-wave problem in the ΔS ¼ 1 nonleptonic decays of the
octet hyperons. Furthermore, given that the measured
bounds on these ΔS ¼ 2 decays are scanty and fairly weak
at the moment, the room for potential new physics hiding in
them is still substantial.
It is unfortunate that hadronic uncertainty plagues a good

number of hyperon decay modes, making it difficult to
tease out new-physics effects even in supposedly simpler
semileptonic modes such as Σþ → pμþμ− [23–26] or weak
radiative modes [27,28]. This implies that it is essential to
keep pursuing processes which in the SM are either
forbidden, such as those not conserving lepton flavor/
number [29–31] and decays into a final state containing
a dark boson/fermion [31–34], or very rare, such as the
ΔS ¼ 2 ones investigated here and flavor-changing

neutral-current decays with missing energy carried away
by a pair of invisibles [26,29,31,35–38]. It is therefore
exciting that there are ongoing and proposed quests for
some of them at running facilities [5,29,31]. It is also
encouraging that a couple of channels that have been
searched for experimentally [39–41] are now under consid-
eration by the lattice community [42]. In addition, the
aforementionedproblemofΔS ¼ 1NLHDandother aspects
of them continue to receive theoretical attention [43–46].

III. ΔS= 2 NONLEPTONIC HYPERON DECAYS
FROM NEW PHYSICS

The study ofΔS ¼ 2 processeswithin theSMpresented in
the last section serves to guide us about what can be expected
with new physics (NP). An effective theory at the weak scale
required to satisfy the gauge symmetries of the SM will in
general contain four-quark operators of definite chiral
structure. The ΔS ¼ 2 ones will then contribute to both
K0-K̄0 mixing and hyperon decays, and if the Wilson
coefficients are constrained by the former, the latter can
generally be anticipated to occur at most near SM levels.
Nevertheless, the currently huge window between the

SM predictions for the hyperon modes and their empirical
upper limits invites an exploration of NP scenarios that

FIG. 4. Distributions of the SM branching fractions of different pairs ofΔS ¼ 2 nonleptonic hyperon decays from the summed SD and
LD amplitudes, as explained in the text. The large black dots mark the central values.
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could populate it. It should be clear that, in order to achieve
this, fine-tuning will be necessary.
We have found two ways in which NP can avoid the

restriction from K0-K̄0 mixing. The first one relies on fine-
tuning of model parameters that results in a cancellation
among different contributions to the mixing. This is
feasible because a four-quark operator comprising purely
left- or right-handed fields leads to a K0-K̄0 matrix element
which is different than that of an operator consisting of
chirally mixed fields. In Sec. III A we sketch a model
exemplifying how this could happen.
The second scenario was already pointed out in Ref. [1]

and involves NP which gives rise to jΔSj ¼ 2 four-quark
operators that exclusively violate parity and therefore do
not contribute to K0 ↔ K̄0 transitions. This also entails
fine-tuning because SM gauge symmetries force any new
particles to have chiral couplings to quarks at the weak
scale. Cancellations between different operators are
then needed to eliminate the parity-conserving ones. In
Sec. III B we illustrate how this can be accomplished with
two leptoquarks.

A. Z0 contributions

We entertain the possibility that there exists a spin-1
massive gauge field Z0 which is associated with a new
Abelian gauge group Uð1Þ0 and couples to SM quarks in a
family-nonuniversal manner, but has negligible mixing
with SM gauge bosons. After the quark fields are rotated
to the mass eigenstates, the Z0 gains flavor-changing
interactions at tree level with generally unequal left- and
right-handed couplings [47]. Here we focus on the dsZ0
sector specified by the Lagrangian

LdsZ0 ¼ −d̄γβðgLPL þ gRPRÞsZ0
β þ H:c:; ð25Þ

with gL and gR being constants and PR ¼ ð1þ γ5Þ=2. We
suppose that additional fermionic interactions that the Z0
may possess already fulfill the empirical restraints to which
they are subject, but on which we do not dwell in this paper.
With the Z0 mass, mZ0 , assumed to be big, from Eq. (25)

one can come up with tree-level Z0-mediated diagrams
contributing to the sd̄ → s̄d reaction and described by

HZ0
ΔS¼2 ¼

g2LQLL þ g2RQRR

2m2
Z0

þ gLgRQLR

m2
Z0

ð26Þ

at an energy scale μ≲mZ0 , with

QRR ¼ d̄γαPRsd̄γαPRs; QLR ¼ d̄γαPLsd̄γαPRs: ð27Þ

To examine the effects of HZ0
ΔS¼2 on hadronic transitions,

we need to take into account the QCD renormalization-
group running from the mZ0 scale down to hadronic scales.
This modifies Eq. (26) into [48,49]

HZ0
ΔS¼2 ¼

ηLLg2LQLL þ ηRRg2RQRR

2m2
Z0

þ gLgRðηLRQLR þ η0LRQ
0
LRÞ

m2
Z0

; ð28Þ

where ηLL ¼ ηRR and ηð0ÞLR are QCD-correction factors
and Q0

LR ¼ d̄PLsd̄PRs.
The chiral realization of QLL for hyperons is already

given in Eq. (5). Hence, since QRR transforms like
ð1L; 27RÞ under SUð3ÞL × SUð3ÞR rotations and the strong
interaction is invariant under a parity operation, the lowest-
order chiral realization of QRR is

ORR ¼ Λχf2πtkl;no½β̂27ðξ†B̄ξÞnkðξ†BξÞol
þ δ̂27ξ

†
nxξ

†
ozξvkξwlðT̄rvwÞηðTrxzÞη�: ð29Þ

For Qð0Þ
LR, which belongs to ð8L; 8RÞ and is even under

parity, the leading-order baryonic chiral realization relevant
to the decays of interest is

Oð0Þ
LR ¼ 1

2
Λχf2πt kl;nofβ̂ð0Þ88½ðξB̄ξ†Þnkðξ†BξÞol

þ ðξ†B̄ξÞnkðξBξ†Þol� þ δ̂ð0Þ88ðξnxξ†ozξ†vkξwl
þ ξ†nxξozξvkξ

†
wlÞðT̄rvwÞηðTrxzÞηg; ð30Þ

where β̂ð0Þ88 and δ̂ð0Þ88 will be estimated shortly. Being parity

even, Oð0Þ
LR at tree level impacts only the P waves of

Ξ → Nπ and Ω− → Bϕ;Σ�π.
It is worth commenting that the β̂ð0Þ88 portion of

Eq. (30) can alternatively be expressed in terms of
traces, in light of the relation tkl;noðξB̄ξ†Þnkðξ†BξÞol ¼
Trðκ̂ξB̄ξ†κ̂ξ†BξÞ ¼ Trðκ̂ξB̄ξ†ÞTrðκ̂ξ†BξÞ and the same
expression but with ξ and ξ† interchanged.1 We further
note that QLL;RR;LR and Q0

LR are all invariant under the
CPS transformation [50], which is the ordinary CP
operation followed by switching the d and s quarks, as
are their chiral realizations OLL;RR;LR and O0

LR.
With these operators, we can produce diagrams like

those in Fig. 1 but with the weak couplings (hollow squares)
now induced by HZ0

ΔS¼2 in Eq. (28). Subsequently, for
Ξ → Nπ we arrive at

1One could construct other parity-even ð8L; 8RÞ combinations:
Trðκ̂Σκ̂Σ†ÞTrðB̄BÞ, Tr½B̄ðξ†κ̂Σκ̂ξ† þ ξκ̂Σ†κ̂ξÞB�, Tr½ðξ†κ̂Σκ̂ξ† þ
ξκ̂Σ†κ̂ξÞB̄B�, and Trðκ̂ξB̄ξκ̂ξ†Bξ† þ κ̂ξ†B̄ξ†κ̂ξBξÞ. However,
the Ξ0 → n matrix elements of the first three vanish, whereas
that of the fourth is not independent from hnjOð0Þ

LRjΞ0i because
of the equation Tr½κ̂ξB̄ξκ̂ξ†Bξ† þ κ̂ξ†B̄ξ†κ̂ξBξ þ B̄fξ†κ̂Σκ̂ξ† þ
ξκ̂Σ†κ̂ξ; Bg� ¼ Trðκ̂ξB̄ξ†κ̂ξ†Bξ þ κ̂ξ†B̄ξκ̂ξBξ†Þ þ Trðκ̂Σκ̂Σ†Þ×
TrðB̄BÞ.

HE, TANDEAN, and VALENCIA PHYS. REV. D 108, 055012 (2023)

055012-8



AðZ0Þ
Ξ0p

¼ AðZ0Þ
Ξ−n ¼

cLL − cRR

2
ffiffiffi
2

p ;

BðZ0Þ
Ξ0p

¼ ðcLL þ cRR þ 2cLR þ 2c0
LRÞ

Dþ F

2
ffiffiffi
2

p
�
mN þmΞ

mΞ −mN

�
;

BðZ0Þ
Ξ−n ¼ ðcLL þ cRR þ 2cLR þ 2c0

LRÞ
D − F

2
ffiffiffi
2

p
�
mN þmΞ

mN −mΞ

�
;

ð31Þ

where

cLLðRRÞ ¼
4πηLLg2LðRÞ

m2
Z0

f2πβ̂27; cð0Þ
LR ¼ 4πηð0ÞLRgLgR

m2
Z0

f2πβ̂
ð0Þ
88:

ð32Þ
As for the Ω− channels, we find

CðZ0Þ
nK− ¼ C

cLL þ cRR þ 2cLR þ 2c0
LR

2
ffiffiffi
2

p ðmΞ −mNÞ
− C

c̃LL þ c̃RR þ 2c̃LR þ 2c̃0LR
6

ffiffiffi
2

p ðmΩ −mΣ� Þ ;

CðZ0Þ
Λπ− ¼ C

c̃LL þ c̃RR þ 2c̃LR þ 2c̃0LR
4

ffiffiffi
3

p ðmΩ −mΣ�Þ ;

CðZ0Þ
Σ0π−

¼ −C
c̃LL þ c̃RR þ 2c̃LR þ 2c̃0LR

12ðmΩ −mΣ� Þ ; ð33Þ

ÃðZ0Þ
Σ�π ¼ c̃LL − c̃RR

2
ffiffiffi
2

p ;

B̃ðZ0Þ
Σ�π ¼ −H

6
ffiffiffi
3

p
�
mΩ þmΣ�

mΩ −mΣ�

�
ðc̃LL þ c̃RR þ 2c̃LR þ 2c̃0LRÞ;

ð34Þ

where

c̃LLðRRÞ ¼
4πηLLg2LðRÞ

m2
Z0

f2πδ̂27; c̃ð0ÞLR ¼ 4πηð0ÞLRgLgR
m2

Z0
f2πδ̂

ð0Þ
88:

ð35Þ
For the coefficients in Eqs. (32) and (35), numerically we

utilize ηLL ¼ 0.65, ηLR ¼ 0.99, and η0LR ¼ −5.08 evaluated
at the scale μ ¼ 1 GeV, which is compatible with the fact
that we implemented the techniques of chiral perturbation
theory to determine the baryonic matrix elements, upon
setting mZ0 ¼ 5 TeV and employing the formulas pro-
vided by Ref. [48]. This mZ0 choice escapes the limitations
from Z0 searches in hadronic final states at colliders [4]. As
regards β̂ð0Þ88 and δ̂ð0Þ88, first we remark that the bag model2

predicts β̂27 ¼ δ̂27 ¼ 0 but β̂88 ¼ 2β̂88 ¼ −0.15 and

δ̂88 ¼ 2δ̂88 ¼ −0.11. These and Eq. (13), along with the
expectation of naive dimensional analysis [13,14] that they
equal unity, then suggest that we may adopt

β̂88 ¼ 2β̂088 ¼ δ̂88 ¼ 2δ̂088 ¼ 1 or − 1 ð36Þ

for our numerical work.
Before calculating the hyperon rates, we also need to pay

attention to potential restrictions implied by kaon-mixing
data. This is because the interactions in Eq. (28) affect
the neutral-kaon mass difference ΔMK ¼ 2ReMKK̄ and
theCP-violation parameter jϵj ≃ jImMKK̄j=ð

ffiffiffi
2

p
ΔMexp

K Þ via
2mK0MZ0

KK̄ ¼ hK0jHZ0
ΔS¼2jK̄0i. Thus, the Z0 contribution is

MZ0
KK̄

¼ ηLLðg2L þ g2RÞhQLLi þ 2gLgRðηLRhQLRi þ η0LRhQ0
LRiÞ

4mK0m2
Z0

;

ð37Þ
where hQi≡ hK0jQjK̄0i. Numerically hQLLi ¼
0.002156ð34Þ GeV4, hQLRi ¼ −0.0482ð28Þ GeV4, and
hQLR

0i ¼ 0.0930ð30Þ GeV4 computed at μ ¼ 3 GeV in
Ref. [52]. In Eq. (37) we additionally use ηLL ¼ 0.74,
ηLR ¼ 0.89, and η0LR ¼ −2.07, all at μ ¼ 3 GeV as well.
With these numbers, it turns out that MZ0

KK̄ goes to zero for
certain values of gL=gR where one of the two couplings is
small relative to the other. In Appendix C we look at an
illustrative Z0 model that shows in some detail how this can
be realized.
More generally, we may let gL and gR vary freely under

the experimental requisites. In the instance that these
couplings are real, since the latest SM estimate ΔMSM

K ¼
5.8ð2.4Þ × 10−12 MeV from lattice-QCD studies [53]
is still much less precise than its measurement
ΔMexp

K ¼ 3.484ð6Þ × 10−12 MeV [4], we may impose
−1 < ΔMZ0

K =ΔM
exp
K < 0.5, which is consistent with the

2σ range ofΔMexp
K − ΔMSM

K , but there is no constraint from
ϵ. For an example of this case, we pick the first option in
Eq. (36) and δ̂27 ¼ −β̂27, as well as mZ0=gL ≥ 5 TeV,
which reflects our assuming jgLj ≤ 1 to guarantee pertur-
bativity, with mZ0 ¼ 5 TeV. This results in the allowed
(blue and red) regions of mZ0=gL versus gR=gL displayed in
Fig. 5.3 The vertical span of the red area in this figure
corresponds to

1.0 × 10−8 ≤ BðΞ0 → pπ−ÞZ0 ≤ 1.6 × 10−7;

1.2 × 10−8 ≤ BðΞ0 → nπ0ÞZ0 ≤ 1.9 × 10−7;

3.3 × 10−9 ≤ BðΞ− → nπ−ÞZ0 ≤ 5.2 × 10−8; ð38Þ

2A textbook treatment of the bag model can be found in
Ref. [51].

3By interchanging gL and gR, one could have another allowed
region, which has the same shape and size. For gL;R < 0 there are
also two regions fulfilling the ΔMK requirement.
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3.4 × 10−9 ≤ BðΩ− → nK−ÞZ0 ≤ 5.4 × 10−8;

1.2 × 10−9 ≤ BðΩ− → Λπ−ÞZ0 ≤ 2.0 × 10−8;

4.1 × 10−10 ≤ BðΩ− → Σ0π−ÞZ0 ≤ 6.5 × 10−9;

1.8 × 10−9 ≤ BðΩ− → Σ�0π−ÞZ0 ≤ 2.8 × 10−8: ð39Þ

These are far greater than their SM counterparts in Eqs. (23)
and (24) and might be sufficiently sizable to be within
reach of LHCb [5] and BESIII [8] in their future searches
and of the proposed Super Tau-Charm Factory [8]. It should
be pointed out, however, that in specific Z0 models the
hyperon rates may be comparatively less enhanced due to
various restraints on the Z0 couplings, such as the model
discussed in Appendix C, which yields BðΞ0 → pπ−ÞZ0 ∼
4 × 10−10.

B. Leptoquark contributions

By introducing more than one leptoquark (LQ) it is
possible to generate an effective four-quark ΔS ¼ 2 inter-
action that is parity violating and hence eludes the kaon-
mixing requirement. The LQs of interest here, with their
SM gauge-group assignments ðSUð3ÞC; SUð2ÞL;Uð1ÞYÞ,
are S̃1 ∼ ð3̄; 1; 4=3Þ and R2 ∼ ð3̄; 2; 7=6Þ in the nomencla-
ture of Ref. [54]. They can have renormalizable interactions
with SM fermions according to

LLQ ¼ ỸRR
jx d

c
jexS̃1 þ YLR

jx qjR2ex þ H:c:; ð40Þ

where Ỹ and Y are Yukawa coupling matrices, qj and dj
represent a left-handed quark doublet and right-handed
down-type-quark singlet, respectively, and ex is a right-
handed charged-lepton singlet. Working in the mass basis
of the down-type fermions, we rewrite Eq. (40) as

LLQ ¼ ỸRR
jx ðDjÞcPRlxS̃

4=3
1 þ YLR

jx ððVCKMÞkjUkR
5=3
2

þ DjR
2=3
2 ÞPRlx þ H:c:; ð41Þ

where j, k, x ¼ 1, 2, 3 here denote family indices and are
summed over, the superscripts of S̃1 and R2 indicate the
electric charges of their components, and U1;2;3 ¼ u, c, t,
D1;2;3 ¼ d, s, b, and l1;2;3 ¼ e, μ, τ refer to the mass
eigenstates. Although these LQs could have other cou-
plings with SM fermions or engage in scalar interactions
[54], for our purposes we do not entertain such possibilities,
considering only the minimal ingredients already specified
in LLQ above.
From Eq. (41), with the LQs taken to be heavy,

we can derive box diagrams which lead to the effective
Hamiltonians

HLQ
ΔS¼2¼

ðPxỸ
RR�
1x ỸRR

2x Þ2
128π2m2

S̃1

QRRþ
ðPxY

LR
1x Y

LR�
2x Þ2

128π2m2
R2

QLL;

HLQ
ΔC¼2¼

½PxðVCKMYLRÞ1xðV�
CKMY

LR�Þ2x�2
128π2m2

R2

ūγηPLcūγηPLc;

ð42Þ
whereQLL;RR have been written down in Eqs. (4) and (27).

Evidently LLQ affects not only ΔMK via ΔMðLQÞ
K ¼

RehK0jHLQ
ΔS¼2jK̄0i=mK0 but also its charmed-meson ana-

log, ΔMD.
It is interesting to notice that, since ỸRR

ix and YLR
ix besides

the LQ masses are free parameters, the model parameter
space contains regions in which ðPx Ỹ

RR�
1x ỸRR

2x Þ2=m2
S̃1
þ

ðPx Y
LR
1x Y

LR�
2x Þ2=m2

R2
is highly suppressed or vanishes,

rendering HLQ
ΔS¼2 mostly or purely parity odd and therefore

ΔMðLQÞ
K is also suppressed or vanishing. In such instances

the ΔMK limitation can be evaded.4 In the remainder of this
section, we explore this scenario and for simplicity set
mS̃1

¼ mR2
≡mLQ and

ỸRR ¼

0
B@

0 0 ydτ
0 0 iysτ
0 0 0

1
CA; YLR ¼

0
B@

0 0 ydτ
0 0 ysτ
0 0 0

1
CA; ð43Þ

with ydτ and ysτ being real constants, ensuring that
ðPx Ỹ

RR�
1x ỸRR

2x Þ2 þ ðP xYLR
1x Y

LR�
2x Þ2 ¼ 0. Hence,

VCKMYLR ¼

0
B@

0 0 Vudydτ þ Vusysτ
0 0 Vcdydτ þ Vcsysτ
0 0 Vtdydτ þ Vtsysτ

1
CA: ð44Þ

FIG. 5. Sample region of mZ0=gL versus gR=gL which can
yield BðΞ0 → pπ−ÞZ0 between 10−10 (blue) or 10−8 (red) and
1.6 × 10−7 and simultaneously satisfy the ΔMK requirement
described in the text.

4Invoking two scalar LQs to decrease certain quantities
and increase others has previously been applied to other con-
texts [38,55].
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It follows that now

HLQ
ΔS¼2 ¼

y2dτy
2
sτ

128π2m2
LQ

ðQLL −QRRÞ; ð45Þ

HLQ
ΔC¼2 ¼

ðVudydτ þ VusysτÞ2ðV�
cdydτ þ V�

csysτÞ2
128π2m2

LQ

× ūγαPLcūγαPLc: ð46Þ

Since QLL −QRR ¼ −d̄γαsd̄γαγ5s is parity odd, HLQ
ΔS¼2 no

longer influences K0-K̄0 mixing. On the other hand, the
contribution toΔMD is still present, but this will be avoided
if one of the brackets in HLQ

ΔC¼2 is zero. Thus, we opt for
Vudydτ þ Vusysτ ¼ 0, which causes HLQ

ΔC¼2 ¼ 0 and

HLQ
ΔS¼2 ¼

V2
udy

4
dτ

128π2m2
LQV

2
us
ðQLL −QRRÞ ð47Þ

at a scale μ≲mLQ. Moreover, given that Vud and Vus

are real in the standard parametrization, ydτ and ysτ stay real
as well, and with Vud=Vus ¼ 4.33 from Ref. [4] the
perturbativity condition jydτ;sτj <

ffiffiffiffiffiffi
4π

p
implies the requisite

jydτj < 0.819.
It is worth remarking that in general, below the high

scale ðμNPÞ at which new physics is integrated out, the
effects of QCD renormalization-group running on the
Wilson coefficients CLL and CRR of QLL and QRR in
the effective Hamiltonian Heff containing them are known
to be the same [48,56,57], which reflects the fact that the
strong interaction conserves parity. This means that the
QCD-evolution factors, ηLL and ηRR, which accompany
these operators in Heff are also the same, ηLL ¼ ηRR.
Then, in the case where CLL ¼ −CRR at μNP, at lower
energies Heff is of the form ηLLCLLQLL þ ηRRCRRQRR ¼
ηLLCLLðQLL −QRRÞ. Accordingly, in our particular LQ
scenario, Eq. (47) translates into hK0jHLQ

ΔS¼2jK̄0i ¼ 0 at
any scale μ < mLQ.
From the last two paragraphs and the chiral realizations

ofQLL;RR in Eqs. (5) and (29), we get the S-wave amplitude
terms for Ξ → Nπ and Ω− → Σ�π,

AðLQÞ
Ξ0p

¼ AðLQÞ
Ξ−n ¼ β̂27ηLLf2πV2

udy
4
dτ

16
ffiffiffi
2

p
πm2

LQV
2
us

;

ÃðLQÞ
Σ�π ¼ δ̂27ηLLf2πV2

udy
4
dτ

16
ffiffiffi
3

p
πm2

LQV
2
us

: ð48Þ

In contrast, being parity odd, HLQ
ΔS¼2 in Eq. (47) does

not modify the P-wave parts, and consequently BðLQÞ
Ξ0p

¼
BðLQÞ
Ξ−n ¼ CðLQÞ

nK− ¼ CðLQÞ
Λπ− ¼ CðLQÞ

Σ0π−
¼ B̃ðLQÞ

Σ�π ¼ 0.

With β̂27 ¼ 0.076 as before, ηLL ¼ 0.68 for mLQ ¼
1 TeV, and jydτj < 0.8, from Eq. (48) we arrive at

BðΞ0 → pπ−ÞLQ < 3.4 × 10−8;

BðΞ0 → nπ0ÞLQ < 6.9 × 10−8;

BðΞ− → nπ−ÞLQ < 2.0 × 10−8;

BðΩ− → Σ�0π−ÞLQ ¼ 5.7 × 10−9; ð49Þ

with the upper values exceeding the corresponding SM
predictions in Eqs. (23)–(24) and Table I by 5 orders of
magnitude or more. Some of these enhanced results might
soon be probed by LHCb [5] and BESIII [8].
Finally, we comment that although the LQs considered

here influence various other low-energy processes, such as
s → dγ; dg and the anomalous magnetic moment of the τ
lepton, we have checked that the effects are not significant
with the parameter choices we made. These include the
special textures of the Yukawa matrices in Eq. (43) which
also help the LQs evade the constraints from collider
searches [4].

IV. CONCLUSIONS

We have explored the ΔS ¼ 2 nonleptonic decays
of the lowest-mass hyperons within and beyond the SM.
Concentrating on two-body channels, we first updated the
SM predictions for Ξ → Nπ and subsequently addressed
those forΩ− → nK−;Λπ−;Σπ;Σ�π. Furthermore, we inves-
tigated the impact on these processes of long-distance
diagrams involving two couplings from the ΔS ¼ 1
Lagrangian in the SM. The LD contributions turned out to
be much bigger than the SD ones on the whole, but they can
raise the branching fractions of the majority of these decay
modes merely to the 10−12 level, making the SM predictions
unlikely to be tested in the near future. Beyond the SM, new
physicsmay bring about substantial amplifications, although
restrictions from kaon mixing play a consequential role.
We showed that a Z0 boson possessing family-nonuniversal
interactions with quarks can give rise to rates of the ΔS ¼ 2
hyperon transitions which greatly surpass the SM expect-
ations and a few of which could be within reach of BESIII
and LHCb. We also demonstrated that a model with two
leptoquarks can achieve similar outcomes. Although these
two cases are very distinct in their details, both require some
degree of fine-tuning to make the hyperon modes potentially
observable not too long from now.
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APPENDIX A: NUMERICAL INPUT

For our SM estimates, we use fπ ¼ ð92.07�
0.85Þ MeV and mc ¼ ð1.27� 0.02Þ GeV, as well as GF ¼
1.1663788ð6Þ × 10−5 GeV−2, from the Particle Data Group
[4], which also supplies the CKM factors V�

udVus ¼
0.21923ð62Þ and jVcdVcsj ¼ 0.21890ð61Þ and the values
of hadron masses and hyperon lifetimes. For other para-
meters relevant to the SD amplitudes, we employ

β27 ¼ 0.076� 0.015; δ27 ¼ �ð0.076� 0.015Þ;
ηcc ¼ 1.87� 0.76;

D ¼ 0.81� 0.01; F ¼ 0.47� 0.01;

C ¼ −1.7� 0.3; H ¼ −2.6� 0.5; ðA1Þ

where ηcc was computed in Ref. [10] and D and F (C) are
inferred at leading order from the data [4] on semileptonic
octet-baryon decays (strong decays T → Bϕ of the dec-
uplet baryons), but we have adopted H ¼ 3C=2 from the
nonrelativistic quark model [16] because it also predicts
2D ¼ 3F and C ¼ −2D which are reasonably fulfilled by
Eq. (A1) and an empirical tree-level value of H is not yet
available.
For hD, hF, and hC, which enter the LD amplitudes,

we use one of two sets of numbers resulting from fitting
to either the S waves or the P waves of ΔS ¼ 1 non-
leptonic octet-hyperon decays and also to the P waves of
ΔS ¼ 1 Ω− → Bϕ. The central values and variance-
covariance matrices for these two cases are, respectively,

ðhD; hF; hCÞ ¼ ð−1.69; 3.96; 3.75Þ × 10−8;

σ ¼

0
B@

0.189 0.023 0.005

0.023 0.050 −0.006
0.005 −0.006 0.121

1
CA × 10−16;

ðA2Þ
ðhD; hF; hCÞ ¼ ð−4.33; 5.67; 3.40Þ × 10−8;

σ ¼

0
B@

0.610 −0.756 0.130

−0.756 0.952 −0.164
0.130 −0.164 1.256

1
CA × 10−16;

ðA3Þ
obtained from weighted least-squares fits, after the exper-
imental errors in the weights were increased to 20% to

account for those errors being far smaller than the expected
theoretical uncertainty [22].
To estimate the ranges in Table I, we first assume that the

errors in the input parameters listed in the previous two
paragraphs are Gaussian. We then combine these errors by
generating a large sample of k observable values and
extracting from them the confidence-level regions. The
90% CL interval range is determined by dropping the
lowest and highest 5% of the simulated values.
For the graphs in Figs. 3 and 4, we define a distance

between each generated pair ðoi; ojÞk and their mean
ðōi; ōjÞ as

d̃ðkÞ ¼ Σ
i;j
ðoi − ōiÞΣ̃−1

ij ðoj − ōjÞ; ðA4Þ

where Σ̃12 is the numerically estimated variance-covariance
matrix for the pair. Then we select the 90% of points closest
to their mean.

APPENDIX B: RATES OF Ω− DECAYS

The amplitudes for Ω− → Bϕ and Ω− → Σ�0π− are

iMΩ−→Bϕ ¼ CBϕūBuαΩp̃α;

iMΩ−→Σ�0π− ¼ ūαΣ�ðÃΣ�π − γ5B̃Σ�πÞuΩ;α; ðB1Þ

where CBϕ, ÃΣ�π , and B̃Σ�π are constants, p̃ stands for the
momentum of ϕ, and the D-wave term inMΩ−→Bϕ and the
D-wave and F-wave ones in MΩ−→Σ�0π− have been
neglected. To calculate the corresponding rates, we need
the sum over polarizations, ς, of a spin-3=2 particle of
momentum k and mass m given by5

X3=2
ς¼−3=2

uμðk; ςÞūνðk; ςÞ ¼ ðkþ mÞ
�
γργω
3

GρμGων − Gμν

�
;

Gμν ¼ gμν −
kμkν

m2
: ðB2Þ

After averaging (summing) the absolute squares of the
amplitudes over the initial (final) spins, we arrive at

ΓΩ−→Bϕ ¼ E þmB

12πmΩ
jPj3jCBϕj2; ðB3Þ

ΓΩ−→Σ�0π− ¼ jPj
72πm2

Ω

��
μ̃6þ þ μ̃2−μ̃

4þ
4m2

Ωm
2
Σ�0

þ 5μ̃2þ

�
jÃΣ�πj2

þ
�
μ̃6− þ μ̃4−μ̃

2þ
4m2

Ωm
2
Σ�0

þ 5μ̃2−

�
jB̃Σ�πj2

�
; ðB4Þ

5This can be found in, e.g., Ref. [58].
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where μ̃2� ¼ ðmΩ �mΣ�0Þ2 −m2
π− and E (P) is the energy

(three-momentum) of the daughter baryon in the Ω−

rest frame.

APPENDIX C: SIMPLE Z0 POSSIBILITY

For a particular example of the Z0 scenario considered in
Sec. III A, we suppose that under the Uð1Þ0 gauge group the
left- and right-handed quarks in the first (second) family
carry charge Q́ ¼ 1ð−1Þ, whereas the other SM fermions
are singlets. It is straightforward to see that with these
charge assignments the model is free of gauge anomalies.
Accordingly, with the covariant derivative of fermion f
having the form Dαf ⊃ ð∂α þ iǵQ́fZ0

αÞf, the Z0 inter-
actions with the quarks are described by

−LqZ0 ¼ ǵðu0Lγηu0L − c0Lγ
ηc0L þ d0Lγ

ηd0L − s0Lγ
ηs0L

þ ðL → RÞÞZ0
η

¼ ǵ½ULγ
ηVu†

L diagð1;−1; 0ÞVu
LUL

þ DLγ
ηVd†

L diagð1;−1; 0ÞVd
LDL þ ðL → RÞ�Z0

η;

ðC1Þ

where ǵ denotes the Uð1Þ0 gauge coupling constant, the
primed quark fields are in the flavor basis, U and D
represent column matrices with elements ðU1;U2;U3Þ ¼
ðu; c; tÞ and ðD1;D2;D3Þ ¼ ðd; s; bÞ in the mass basis, and

Vu
L;R and Vd

L;R are 3 × 3 unitary matrices which connect the
fields in the two bases and also diagonalize the quark-mass
matrices Mu and Md via diagðmu;mc;mtÞ ¼ Vu†

L MuVu
R

and diagðmd;ms;mbÞ ¼ Vd†
L MdVd

R.
Since Vu;d

L are linked to the CKM matrix by
Vd
L ¼ Vu

LVCKM, the expression for Vd
L is fixed once Vu

L
has been specified and vice versa, but this does not apply to
Vu;d
R and there is freedom to pick their elements. This is

becauseMu;d are arbitrary as long as they satisfy the above-
mentioned diagonalization equations and can be arranged
to have the desired textures by introducing the appropriate
Higgs sector. To suppress other effects of the new Higgs
particles, including flavor-changing neutral currents which
might be associated with them, they are assumed to be
sufficiently heavy.
Thus, for our purposes, we can choose

Vu
L;R ¼

0
B@

cos θuL;R sin θuL;R 0

− sin θuL;R cos θuL;R 0

0 0 1

1
CA;

Vd
R ¼

0
B@

cos θdR eiω sin θdR 0

−e−iω sin θdR cos θdR 0

0 0 1

1
CA; ðC2Þ

with which Eq. (C1) becomes

−LqZ0 ¼ ǵfūγηðC u
LPL þ C u

RPRÞu − c̄γηðC u
LPL þ C u

RPRÞcþ ½ūγηðS u
LPL þS u

RPRÞcþ H:c:�gZ0
η

þ ǵf½ðjVudj2 − jVcdj2ÞC u
L þ 2ReðV�

udVcdÞS u
L�dLγηdL þ C d

RdRγ
ηdRgZ0

η

þ ǵf½ðjVusj2 − jVcsj2ÞC u
L þ 2ReðV�

usVcsÞS u
L�sLγηsL − C d

RsRγ
ηsRgZ0

η

þ ǵ½ðjVubj2 − jVcbj2ÞC u
L þ 2ReðV�

ubVcbÞS u
L�bLγηbLZ0

η

þ ǵf½ðV�
udVus − V�

cdVcsÞC u
L þ ðV�

udVcs þ V�
cdVusÞS u

L�dLγηsL þ eiωS d
RdRγ

ηsR þ H:c:gZ0
η

þ ǵf½ðV�
udVub − V�

cdVcbÞC u
L þ ðV�

udVcb þ V�
cdVubÞS u

L�dLγηbL þ H:c:gZ0
η

þ ǵf½ðV�
usVub − V�

csVcbÞC u
L þ ðV�

usVcb þ V�
csVubÞS u

L�sLγηbL þ H:c:gZ0
η; ðC3Þ

where the θ’s and ω are real quantities, C f
X ¼ cosð2θfXÞ, andS f

X ¼ sinð2θfXÞ. Taking θuL and θuR to be tiny or vanishing then
leads to

−LqZ0 ≃ ǵ½uγηu − c̄γηcþ ðjVudj2 − jVcdj2ÞdLγηdL þ C d
RdRγ

ηdR�Z0
η

þ ǵ½ðjVusj2 − jVcsj2ÞsLγηsL − C d
RsRγ

ηsR þ ðjVubj2 − jVcbj2ÞbLγηbL�Z0
η

þ ǵ½ðV�
udVus − V�

cdVcsÞdLγηsL þ eiωS d
RdRγ

ηsR þ H:c:�Z0
η

þ ǵ½ðV�
udVub − V�

cdVcbÞdLγηbL þ ðV�
usVub − V�

csVcbÞsLγηbL þ H:c:�Z0
η; ðC4Þ

where the ucZ0 part has dropped out, avoiding the limitation from D0‐D0 mixing. Comparing the dsZ0 portion of Eq. (C4)
with Eq. (25), we identify gL ¼ ǵðV�

udVus − V�
cdVcsÞ and gR ¼ eiωǵS d

R. Selecting ω ¼ ArgðV�
udVus − V�

cdVcsÞ and a
suitable θdR, we can then acquire the special gL=gR ratio which renders MZ0

KK̄ in Eq. (37) vanishing.
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It is interesting to point out that, after the CKM
parameters from Ref. [4] are incorporated, the terms LqZ0 ⊃
−ǵð0.011− 0.003iÞdL=Z0bL þ ǵð0.040þ 0.0008iÞsL=Z0bL þ
H:c: can be shown to elude Bd;s-Bd;s mixing constraints if
ǵ=mZ0 ≲ 0.1=TeV, as new-physics effects of order ∼10% in
the mass differences ΔMd;s are still permitted [59].
Moreover, although a flavor-changing coupling and a
flavor-diagonal one from Eq. (C4) can translate into
operators contributing to four-quark penguin interactions
[9], the impact can be demonstrated to be weaker than

that of the SM by at least an order of magnitude if
ǵ=mZ0 ≲ 0.1=TeV. In addition, the flavor-conserving cou-
plings in Eq. (C4) can escape the restraints from Z0 searches
in hadronic final states at colliders provided that the
Z0 mass is around 5 TeV or more [4].
Last, from Eq. (C4) one can derive long-distance

contributions to ΔS ¼ 2 transitions involving two ΔS¼1
Z0-mediated couplings or one of them and one ΔS ¼ 1
coupling from the SM. One can deduce from the preceding
two paragraphs, however, that such LD effects are unim-
portant relative to the SD interactions in Eq. (28).
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