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Scalar ultralight dark matter (ULDM) interacting with neutrinos can induce, under certain conditions, time
dependent modifications to neutrino oscillation probabilities. The limit in which the ULDM perturbation can
be treated as constant throughout the neutrino propagation time has been addressed by several previous
works. We complement these by systematically analyzing the opposite limit—accounting for the temporal
variations of the ULDM field by solving time dependent Schrödinger equations. In particular, we study a
novel two-generations-like CP violating (CPV) signature unique to rapidly oscillating ULDM.We derive the
leading order, time dependent corrections to the oscillation probabilities, for both CP conserving and CPV
couplings, and explain how they can be measured in current and future experiments.
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I. INTRODUCTION

Scalar ultralight dark matter (ULDM) with massmϕ ≲ eV
may leave signatures in neutrino oscillation experiments
that cannot be interpreted within the Standard Model (SM)
supplemented by neutrino masses and lepton mixing.
The scalar can be treated as a classical bosonic field that
oscillates with time,

ϕ ¼ ϕ0 sinðmϕðt − t0ÞÞ; ð1Þ

with an arbitrary initial time t0 and amplitude

ϕ0 ¼
ffiffiffiffiffiffiffiffi
2ρ⊕ϕ

q
mϕ

∼ 2 GeV

�
10−12 eV

mϕ

�
; ð2Þ

where ρ⊕ϕ is the local ULDM density. Consider the effective
mass and ϕ-Yukawa terms for the neutrinos, arising from
dimension-five and dimension-six terms in the Lagrangian,
respectively. In the basis in which the ULDM-independent
mass matrix is diagonal, they read

Lmν
¼ miν

T
i νi þ ŷijϕνTi νj þ H:c: ð3Þ

Treating ϕ as a classical field, it modifies the neutrino mass
matrix as

ðm̂νÞij ¼ miδij þ ŷijϕ; ð4Þ

thus inducing a time dependent component to the neutrino
propagation Hamiltonian.
Some of the implications of the ULDM contribution to

the neutrino mass matrix have been studied in previous
works [1–12]. Most previous analyses focused on ULDM
candidates with typical oscillation times, τϕ ≡ 2π=mϕ,
much larger than the neutrino propagation time, τd, but
smaller than the total run-time of the experiment, τe [1,4–6].
In this limit, the effective neutrino masses and mixing do not
change during the propagation from the source to the
detector, but do change between neutrino events over the
duration of the experiment. Depending on the value of
mϕ, the experiment time resolution τr, and the way one
analyzes the data, the ULDM effect can be either time-
resolved or time-averaged. In the former case, the temporal
modulation could be directly observed in some spectral
analysis of the data [5,6]. In the latter case, the oscillatory
contributions are averaged out, and one must use indirect
methods for recovering evidence of the time dependence,
e.g., via the distortion of the dynamical range of the neutrino
oscillation parameters or of relations between oscillation
amplitudes at different L=E frequencies [1,5–7] (L is the
source to detector distance and E is the neutrino energy).
However, the experimental signatures of heavier ULDM,

with τϕ ≲ τd, require a dedicated analysis. In the limit of
rapid oscillations, one must solve time dependent equations
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of motion to correctly account for the ULDM effects on
neutrino oscillation probabilities, and the picture of slowly
varying oscillation parameters is no longer valid [5,13]. In
addition, thus far, the majority of previous works discus-
sing ULDM-modified neutrino oscillations have only
considered CP conserving (CPC) couplings. CP violating
(CPV) effects in neutrino oscillations induced by ULDM-
neutrino interactions have been analyzed by authors of this
manuscript in Ref. [6], for the case of slow oscillations.
Furthermore, past works have either studied specific
flavor structures for the ULDM couplings [2,6,7] or
studied the “model-agnostic” temporal modulations of
the mixing angles, mass differences, and the CPV phase
of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix [1,5,6]. To the best of our knowledge, the relations
between the ULDM couplings and these variations of
oscillation parameters have not been explicitly discussed
and could be nontrivial (both mathematically and phe-
nomenologically). Therefore, translating the conclusions
of the existing analyses to generic ULDMmodels could be
challenging.
In this work, we fill in those gaps and provide a more

complete description of the phenomenology of ULDM-
neutrino couplings. We are interested in mapping those
couplings onto their signatures in neutrino oscillation
experiments, for a wide range of ULDM masses, covering
both the slow oscillations and the rapid oscillations limits.
We present a generic prescription for estimating the first-
order, time dependent modifications to neutrino oscillations
from ULDM couplings to neutrinos, and the resulting
bounds on them from current and future experiments.
While we study both CPC and CPV phenomena, we give
special attention to the implications of the CPV ULDM
couplings. In particular, we describe new CPV effects
generated by them that can be observable even in two-
generation neutrino systems and cannot be addressed by
analyses assuming a constant neutrino Hamiltonian through
propagation.
The paper is organized as follows. In Sec. II, we describe

the new CPVeffect in the two neutrino generations picture—
which we refer to as the “2-ν CPV.” In Sec. III, we derive
the full analytical expressions for the leading order mod-
ifications to neutrino oscillation probabilities induced by the
ULDM, for both CPC and CPV phenomena. In Sec. IV, we
describe the method for detecting such time dependent
modifications in neutrino oscillations data. In Sec. V, we
show the current bounds, and the future-projected sensitiv-
ities, for theULDMparameter space.We conclude inSec.VI.

II. 2-ν CP VIOLATION

We are interested in the possibility of observing CPV in
neutrino oscillations induced by the time dependent
vacuum expectation value (VEV) of ϕ. In the usual
two-generation picture, one can show that by field rede-
finitions, the mass matrix m̂ν can always be brought to a

form in which it has no physical phases affecting neutrino
oscillations (see, e.g., [14,15]), and thus CPV cannot be
observed in these processes. This can be seen by the
following simple argument. In the two-neutrino picture,
the equation of motion (EOM) is given by1

i∂t

�
να

νβ

�
¼HðtÞ

�
να

νβ

�
¼
�

H11 H12eiφ

H12e−iφ H22

��
να

νβ

�
: ð5Þ

Since the Hamiltonian H is Hermitian, Hij and φ above
must be real. Let νiðtÞ be the time-evolved state, according
to Eq. (5), which was νi at t ¼ 0. If να;β are interaction
eigenstates, then the initial conditions at t ¼ 0 are zero for
one of them, and one for the other, and the probability for
detecting the states να;β at some later time t is given by
solving the EOM and calculating

Pνi→νf ¼ jhνfjνiðtÞij2: ð6Þ

While H carries a CPV Majorana phase φ, it can be
absorbed in the redefinition of the field ν0β ¼ eiφνβ, which
makes the EOM real

i∂t

�
να

ν0β

�
¼ H0ðtÞ

�
να

ν0β

�
¼
�
H11 H12

H12 H22

��
να

ν0β

�
: ð7Þ

In the context of neutrino oscillations, this field redefini-
tion has no physical significance, since ν0β is still a flavor
eigenstate, and the oscillation probabilities for any ν0 and ν
states that are related by arbitrary phases ν0α;β ¼ eiφα;βνα;β
are the same, since

Pν0i→ν0f
¼ jhν0fjν0iðtÞij2 ¼ jhνfjeiðφi−φfÞjνiðtÞij2 ¼ Pνi→νf :

ð8Þ

For antineutrinos, which are the CP conjugates of ν, i.e.,
ν̄ ¼ iσ2ν�, the EOM is given by

i∂t

�
ν̄α

ν̄β

�
¼ H�ðtÞ

�
ν̄α

ν̄β

�
; ð9Þ

and thus we may again redefine our fields as ν0β ¼ e−iφν̄β
and obtain

i∂t

�
ν̄α

ν0β

�
¼ H0ðtÞ

�
ν̄α

ν0β

�
: ð10Þ

We then learn that, since H0 does not depend on φ,
antineutrinos propagate like neutrinos.

1A similar Hamiltonian was studied in [16,17], exploring the
possibility of magnetic interactions of neutrinos.
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In the presence of the oscillating ULDM background,
ϕðtÞ, the CPV phase, φ, could become time dependent.
Then, the field redefinition ν0β ¼ eiφðtÞνβ yields

i∂t

�
να

ν0β

�
¼
�
H11 H12

H12 H22 − φ̇

��
να

ν0β

�
; ð11Þ

for neutrinos, and

i∂t

�
ν̄α

ν0β

�
¼
�
H11 H12

H12 H22 þ φ̇

��
ν̄α

ν0β

�
; ð12Þ

for antineutrinos. Note that the oscillation probabilities for
ν and ν0 are still identical, since Eq. (8) still holds even
when promoting φ to be time dependent. Thus, neutrinos
and antineutrinos would evolve differently in time, as a
result of the time dependent Majorana phase.
While the instantaneous phase of the fields is not

physically observable, its derivative—which can be thought
of as an instantaneous frequency—shifts the energy of the
system and is thus observable. Indeed, the Hamiltonians in
Eqs. (11) and (12) are very similar to those resulting from
charged current matter effects, identifying −φ̇ with the
matter potential VC [18]. Note that in our case −φ̇ is a
periodic function of time, which will ultimately result in a
time periodic CP asymmetry.
For concreteness, let us explicitly examine this effect in a

two-generation system. Consider the following Yukawa
matrix ŷ describing the ULDM coupling to the unperturbed
mass eigenstates in two generations:

ŷ ¼ iyI

�
0 1

1 0

�
; ð13Þ

with real yI . Given the Yukawa interaction in Eq. (3) is
Majorana-like, the most general form of ŷ is ŷ ¼ aμσμ,
with μ ¼ 0, 1, 3, σ0 ¼ 12, σ1;3 are the corresponding
symmetric Pauli matrices, and the aμ’s are complex
numbers. Note that within the two-generation framework,
at any given time the unperturbed instantaneous PMNS
matrix can be brought to be real, and so it is straightfor-
ward to show that the form of ŷ written above uniquely
leads to two-generation CPV. In the interaction basis, in the
ultrarelativistic limit, the Hamiltonian can be written as

H ¼ 1

2E
m̂†

νm̂ν ∼
Δm2

4E

�− cos 2θ sin 2θ

sin 2θ cos 2θ

�

þ ϕ0

2E

�
0 −iyIΔm

iyIΔm 0

�
sinðmϕðt − t0ÞÞ

þO
�
y2Iϕ

2
0

E

�
; ð14Þ

where θ is the mixing angle between the interaction
eigenstates in the unperturbed mass eigenstates, Δm ¼
m2 −m1, Δm2 ¼ m2

2 −m2
1, and a part ofH proportional to

the unit matrix was omitted as it does not contribute to
neutrino oscillations. To leading order in the ULDM
perturbation, we identify

φ̇ ≈ −
2mϕϕ0yI

ðm1 þm2Þ sin 2θ
cosðmϕðt − t0ÞÞ: ð15Þ

Following the prescription presented in the next section,
the leading order difference between the survival proba-
bility of neutrinos Pαα and the survival probability of
antineutrinos Pᾱ ᾱ is given by

ΔPð1Þ
αα ¼ 2ϕ0 sin 4θyIðm1 −m2Þ

E
��

Δm2

2E

�
2
−m2

ϕ

�
×

�
cos

�
mϕ

�
ðt − L − t0Þ þ

L
2

��

×

�
Δm2

4E
sin

Δm2L
2E

sin
mϕL

2

−mϕsin2
Δm2L
4E

cos
mϕL

2

��
; ð16Þ

where L is the distance that the neutrinos traveled between
production and detection. In the following sections, we
discuss the implications of this “2-ν CPV” effect, and how
it can be searched for in neutrino oscillation experiments.

III. ANALYTIC APPROXIMATION FOR SMALL
PERTURBATIONS

A. Generic prescription

The neutrino Schrödinger EOMs can be written as

i∂tνðtÞ ¼
1

2E
ðm̂†m̂ÞνðtÞ

¼ 1

2E
ðm†mþ ðm†yþ y†mÞϕðtÞ þ y†yϕ2ðtÞÞνðtÞ:

ð17Þ

The solutions of systems with time dependent
Hamiltonians HðtÞ ¼ H0 þ VðtÞ can be found using the
Dyson series. A neutrino state at any final time point tf is
evolved from an initial neutrino state at time ti as jνðtfÞi ¼
Uðtf; tiÞjνðtiÞi with
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Uðtf; tiÞ ¼
X∞
n¼0

UðnÞðtf; tiÞ

≡ e−iH0ðtf−tiÞ þ
X∞
n¼1

ð−iÞn
Z

tf≥t1…≥tn≥ti

dt1…dtne−iH0ðtf−t1ÞVðt1Þe−iH0ðt1−t2Þ…VðtnÞe−iH0ðtn−tiÞ: ð18Þ

The probability for a neutrino produced in a state να at time
ti to be measured as neutrino state νβ at a later time tf is

PαβðtfÞ ¼ jhνβjUðtf; tiÞjναij2 ≡ jUβαðtf; tiÞj2: ð19Þ

In our case, we identify H0 with the ULDM-independent
contribution to Eq. (17), and denote VðtÞ ¼ Vð1ÞðtÞ þ
Vð2ÞðtÞ with

Vð1ÞðtÞ≡ ϕ0

2E
m̃ sinðmϕðt − t0ÞÞ; ð20Þ

Vð2ÞðtÞ≡ ϕ2
0

2E
y†ysin2ðmϕðt − t0ÞÞ; ð21Þ

where we define m̃≡m†
νŷþ ŷ†mν. Then, the ULDM-

independent probabilities Pð0Þ
αβ are given by

Pð0Þ
αβ ¼ jUð0Þ

βα ðtf; tiÞj2; ð22Þ

where

Uð0Þðtf; tiÞ ¼ e−iH0ðtf−tiÞ: ð23Þ

As expected Uð0Þðtf; tiÞ ¼ Uð0Þðtf − tiÞ. From this point
onwards, we assume tf − ti corresponds to the propagation
time over a distance L, i.e., tf − ti ≈ L. Thus Uð0Þ and Pð0Þ

are functions of L alone, and do not vary with time. For the
sake of brevity, moving forward we keep the L dependence
implicit, and only explicitly note time dependencies. In
addition, in the following we assume α and β are interaction
eigenstates.
The leading order perturbation to the transition/survival

probabilities is given by (no summation is implied on α, β)

Pð1Þ
αβ ðtÞ ¼ 2ReðUð0Þ

βα U
ð1Þ
βα ðtÞ�Þ; ð24Þ

where

Uð1ÞðtÞ ¼−i
Zt
t−L

dt1e−iH0ðt−t1ÞVð1Þðt1Þe−iH0ðt1−tþLÞ

¼−i
ZL
0

dt1e−iH0ðL−t1ÞVð1Þðt1þ t−LÞe−iH0t1 : ð25Þ

Since Vð1Þ given in Eq. (20) is sinusoidal, the integral is
easily solved analytically, and we obtain

Pð1Þ
αβ ðtÞ ¼

2ϕ0

E
Im

 
UβkU�

αkU
�
βiUαjm̃�

ije
i
ðΔm2

jk
þΔm2

ik
ÞL

4E κ�ðtÞij
!
;

ð26Þ
where the i, j, k indices correspond to the eigenstates of the
ULDM-independent HamiltonianH0 and U is the ULDM-
independent PMNS matrix, namely, the transition matrix
between the interaction eigenstates and the eigenstates of
H0. Specifying the form of the ULDM couplings ŷij in the
basis in which H0 is diagonal,

m̃ij ¼ ðm†ŷþ ŷ†mÞij ¼ miŷij þ ŷ�ijmj

¼ ReðŷijÞðmi þmjÞ þ iImðŷijÞðmi −mjÞ: ð27Þ

Last, κijðtÞ is complex, with phases that are only dynamical
(CPC). Its real and imaginary parts are given by

ReðκijÞ ¼
sinðmϕðt − L

2
− t0ÞÞ�

Δm2
ij

2E

�
2
−m2

ϕ

 
mϕ cos

Δm2
ijL

4E
sin

mϕL

2

−
Δm2

ij

2E
sin

Δm2
ijL

4E
cos

mϕL

2

!
; ð28Þ

ImðκijÞ ¼
cosðmϕðt − L

2
− t0ÞÞ�

Δm2
ij

2E

�
2
−m2

ϕ

 
Δm2

ij

2E
cos

Δm2
ijL

4E
sin

mϕL

2

−mϕ sin
Δm2

ijL

4E
cos

mϕL

2

!
: ð29Þ

From the temporal dependence of κ, and thus also of the
neutrino probabilities, we see that simply adding up data
points gathered over times larger than m−1

ϕ would suppress
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the effect due to averaging over different neutrino arrival
times t. We therefore require time stamping the events with
a minimal temporal resolution corresponding to ∼1=mϕ.
While most previous analyses assumed the ULDM field to
be constant during the propagation time L, we are inter-
ested in extending these results into the mϕL≳ 1 region.
For long baseline neutrino experiments, this is equivalent to

mϕ ≳ 10−12 eV; ð30Þ

or

τϕ ≡ 2π

mϕ
≲ 1 ms: ð31Þ

This timescale is much shorter than the typical time between
events in any neutrino experiment. To study how to probe
these time variations, we will use the unbinned Rayleigh
periodogram, as will be explained in Sec. IV.
Note that in the limit mϕL → 0, 2Emϕ=Δm2

ij → 0,
we have ImðκijÞ=ReðκijÞ → 0 [ReðκijÞ remains finite as
VðtÞ ∝ sinmϕðt − t0Þ]. Therefore, previous analyses that
assumed the ULDM potential to be constant within the
propagation time have effectively only taken into account
effects that are associated with the real part of κ, which in
that limit reduces to

ReðκijÞ ≈ −
sinðmϕðt − t0ÞÞ

Δm2
ij

2E

sin
Δm2

ijL

4E
: ð32Þ

In this limit, for ULDM couplings that are off-diagonal in
the unperturbed mass basis, the result can be interpreted as
following from the first-order correction to the diagonal-
izing matrix of the neutrino Hamiltonian in the interaction
basis. Namely,

Uαk → ŨαkðtÞ ¼ ðUT†ðtÞÞαk; ð33Þ

where

TðtÞij ¼ δij þ ð1 − δijÞ
ϕ0m̃ij

Δm2
ij
sinðmϕðt − t0ÞÞ: ð34Þ

Note that in this limit, the new diagonalizing matrix Ũ is
treated as constant within propagation, but changes its
value for each measurement at time t.
To understand what happens when going beyond

the constant potential limit, let us rewrite the EOM in
the interaction basis as

i∂tνIðtÞ¼UT†ðtÞHDTðtÞU†νIðtÞ≈UT†ðtÞH0TðtÞU†νIðtÞ;
ð35Þ

where νI is given in the interaction basis and HD is the
instantaneously diagonal Hamiltonian, which to linear
order in the ULDM perturbation is just H0. To solve the
EOM, one may define

ν̃ðtÞ ¼ ŨðtÞ†νIðtÞ ð36Þ

and obtain

i∂tν̃ðtÞ ¼ ðH0 − iŨðtÞ†∂tŨðtÞÞν̃ðtÞ
¼ ðH0 − iTðtÞ∂tTðtÞ†Þν̃ðtÞ: ð37Þ

As the EOM is not diagonal due to the contributions coming
from the time derivative of the Hamiltonian, one should in
principle diagonalize the new effective Hamiltonian by
another time dependent matrix, the derivative of which
will again contribute to the Hamiltonian which should again
be diagonalized, and so on. Keeping only the linear terms
in the ULDM perturbation, this procedure will yield an

infinite series in ∂
ðnÞ
t Vð1Þ

ij =ðΔm2
ijÞn, where i ≠ j and Vð1Þ is

defined in Eq. (20). The result of this series is the effective
diagonalizing matrix

ŨðtÞ ¼ UT̃†ðtÞ; ð38Þ

with

T̃ijðtÞ ¼ δij þ ð1 − δijÞ
ϕ0m̃ij

Δm2
ij

×
X∞
n¼0

in
�

2E
Δm2

ij

�
n
∂
ðnÞ
t sinðmϕðt − t0ÞÞ: ð39Þ

Since our potential is harmonic, we can easily sum all the
contributions up to infinity and obtain

T̃ijðtÞ ¼ δij þ ð1 − δijÞ
ϕ0m̃ij

Δm2
ij

1

1 −
�
2Emϕ

Δm2
ij

�
2

×

�
sinðmϕðt − t0ÞÞ þ i

2Emϕ

Δm2
ij
cosðmϕðt − t0ÞÞ

�
:

ð40Þ

Therefore, the neutrino flavor probabilities are given by
taking the zeroth and first-order terms in ϕ0m̃ij=Δm2

ij of

PαβðtÞ ≈ ŨβkðtÞŨ�
αkðt − LÞŨ�

βiðtÞŨαiðt − LÞe−i
Δm2

ki
L

2E : ð41Þ

In the next subsections, we describe the full ULDM
effects in three generations, first considering CPC observ-
ables in Sec. III B, and then CPV phenomena in Sec. III C.
Note, however, that the expressions above are completely
generic for any number of generations, provided the indices
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are appropriately summed. The probabilities for the two-
generation case are presented in Appendix A.

B. CPC effects

In the standard case with three neutrino generations, the
neutrino probabilities in three generations are given by

Pð0Þ
αβ ¼ UβkU�

αkU
�
βiUαie−i

Δm2
ki
L

2E : ð42Þ

The CPC part of this probability is given by averaging over
neutrinos and antineutrinos:

ΣPð0Þ
αβ ≡1

2
ðPð0Þ

αβ þPð0Þ
ᾱ β̄
Þ¼ReðUβkU�

αkU
�
βiUαiÞcos

�
Δm2

kiL
2E

�
:

ð43Þ

We now discuss the first-order corrections from ULDM to
CPC neutrino probabilities. From Eq. (26), we find CPC
contributions to be associated with the real parts of the
complex matrices U and ŷ. Let us denote these contribu-

tions by ΣPð1Þ
αβ :

ΣPð1Þ
αβ ≡ 1

2
ðPð1Þ

αβ þ Pð1Þ
ᾱ β̄
Þ

¼ 2ϕ0

E
ReðUβkU�

αkU
�
βiUαjm̃�

ijÞ

× Im

 
ei

ðΔm2
jk
þΔm2

ik
ÞL

4E κ�ðtÞij
!
: ð44Þ

In three generations, for diagonal couplings ŷii, both m̃ii
and κii are real, and thus for a specific i, specific j ≠ k ≠ i
and any α, β,

ΣPð1Þ
αβ ðtÞ ¼ − sin

�
mϕ

�
t −

L
2
− t0

��
sin

�
mϕL

2

�
2m̃iiϕ0

Emϕ

×
�
ReðUβkU�

αkU
�
βiUαiÞ sin

�
Δm2

ikL
2E

�

þ ReðUβjU�
αjU

�
βiUαiÞ sin

�Δm2
ijL

2E

��
: ð45Þ

This result is nothing but an effective, time dependent shift
of the neutrino mass differences Δm2

ij,

Δm2
ij → Δm2

ij þ
2miϕ0ŷii

L

Z
t

t−L
sinðmϕðt1 − t0ÞÞdt1: ð46Þ

Effects of this sort have already been quite thoroughly
discussed in previous works such as [1,2,6,7].
For off-diagonal couplings ŷij, with i ≠ j ≠ k transition

probabilities (α ≠ β) are modified by

ΣPð1Þ
αβ ¼ 4ϕ0

E
Imðκ�ðtÞijÞReðUβkU�

αkðU�
βiUαjm̃�

ij −U�
βjUαim̃ijÞÞ sin

Δm2
ikL

4E
sin

Δm2
kjL

4E

þ 4ϕ0

E
Reðκ�ðtÞijÞ

"
ReðUβjU�

αjðU�
βiUαjm̃�

ij þ U�
βjUαim̃ijÞÞ sin

Δm2
kjL

4E
cos

Δm2
kiL

4E

þ ReðUβiU�
αiðU�

βiUαjm̃�
ij þU�

βjUαim̃ijÞÞ sin
Δm2

kiL
4E

cos
Δm2

kjL

4E

#
; ð47Þ

and survival probabilities (α ¼ β) by

ΣPð1Þ
αα ¼ 4ϕ0

E
ReðκðtÞijÞReðU�

αiUαjm̃�
ijÞ

×

"
ð2jUαjj2 − 1Þ sinΔm

2
kjL

4E
cos

Δm2
kiL

4E

þ ð2jUαij2 − 1Þ sinΔm
2
kiL

4E
cos

Δm2
kjL

4E

#
: ð48Þ

As mentioned, previous analyses considered the constant
ULDM limit, in which κij is strictly real, and given by

Eq. (32). In this case, one may interpret the first-order
corrections as simple modifications to the PMNS matrix
U → Ũ as in Eqs. (33) and (34). However, moving away
from this limit, we may no longer use the constant Ũ
description. This leads to the different energy dependence
of the result associated with ImðκÞ and with the nonzeroth
order terms in 2Emϕ=ðΔm2

ijÞ appearing in ReðκÞ.

C. CPV effects

CPV is realized in vacuum in the three neutrino picture.
The difference between the neutrino and antineutrino
transition probability is given by
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ΔPstandard
αβ ¼ 4

X
i>j

ImðU�
αiUβiUαjU�

βjÞ sin
Δm2

ijL

2E

¼ 16J sin
Δm2

31L
4E

sin
Δm2

21L
4E

sin
Δm2

32L
4E

X
γ

εαβγ;

ð49Þ

where the εαβγ is the three-dimensional Levi-Civita tensor
and J is the Jarlskog invariant:

J ¼ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δCP: ð50Þ

Notice that CPV vanishes if we set any Δm2
ij to be zero,

which will result in an effective two-neutrino picture. We
therefore name this source of CPV the “3-ν CPV.”
Let us now discuss CPV in the presence of ULDM

interactions with neutrinos. From Eq. (26), we find the
CPV part of neutrino probabilities, i.e., the difference

between neutrino and antineutrino probabilities ΔPð1Þ
αβ to be

ΔPð1Þ
αβ ≡ Pð1Þ

αβ − Pð1Þ
ᾱ β̄

¼ −
4ϕ0

E

X
i;j;k

ImðU�
βkUαkUβiU�

αjm̃ijÞ

× Re

 
ei

ðΔm2
jk
þΔm2

ik
ÞL

4E κij
�
!
: ð51Þ

Previous works have assumed the neutrino Hamiltonian to
be constant throughout propagation, and thus the ULDM
effects were thought of as slow temporal modulations of the
standard neutrino oscillation parameters. In this limit, as
mentioned, κij is strictly real, and CPV can be interpreted as
a slow variation of the standard CPV result [6]. Explicitly,
in three generations, the contribution of the real part of κ for
i ≠ j ≠ k and α ≠ β, for a specific ŷij ¼ ŷji ≠ 0 is

ΔPð1Þ
αβ ¼ −8

ϕ0

E
ReðκijÞ sin

Δm2
jkL

4E
sin

Δm2
ikL

4E
× ImðU�

βkUαkðUβiU�
αjm̃ij þ UβjU�

αim̃
�
ijÞÞ; ð52Þ

which yields in the mϕL → 0, 2Emϕ=Δm2
ij → 0, VðtÞ ∝

sinmϕt limit

ΔPð1Þ
αβ ≈ −16

ϕ0

Δm2
ij
sin

�
mϕ

�
t −

L
2
− t0

��
cos

mϕL

2

× sin
Δm2

ijL

4E
sin

Δm2
jkL

4E
sin

Δm2
ikL

4E
× ImðU�

βkUαkðUβiU�
αjm̃ij þ UβjU�

αim̃
�
ijÞÞ: ð53Þ

Since we keep only first-order terms in the ULDM
couplings, which here we assume to be off-diagonal in
the ULDM-independent mass basis, one may interpret this
result as the effect of the first-order correction to the
standard Jarlskog invariant.
For diagonal couplings ŷii, both m̃ii and κii are real,

and thus

ΔPð1Þ
αβ ðtÞ ¼ −

4m̃iiϕ0

Emϕ
sin

�
mϕ

�
t −

L
2
− t0

��
sin

�
mϕL

2

�

× ImðUβjU�
αjU

�
βiUαiÞ sin

�ðΔm2
ik þ Δm2

ijÞL
4E

�

× sin

�Δm2
kjL

4E

�
: ð54Þ

This CPV term is, of course, proportional to J, as only the
real part of diagonal couplings affects the neutrino
Hamiltonian. This term is simply a correction to the mass
differences of the neutrinos coming from the ULDM
coupling, as shown in Eq. (46).
For off-diagonal couplings, stepping away from the

mϕ → 0 limit, we should also consider the contribution
of the imaginary part of κ,

ΔPð1Þ
αβ ¼ 4ImðκijÞ

X
i;j;k

ImðU�
βkUαkUβiU�

αjm̃ijÞ

× sin

 
ðΔm2

jk þ Δm2
ikÞL

4E

!
: ð55Þ

For i ≠ j ≠ k and α ≠ β, for a specific ŷij ¼ ŷji ≠ 0,
it becomes

ΔPð1Þ
αβ ¼ 8ImðκijÞ

�
ImðU�

βiUαiðUβjU�
αim̃

�
ij −UβiU�

αjm̃ijÞÞ sin
Δm2

ikL
4E

cos
Δm2

jkL

4E

þ ImðU�
βjUαjðUβjU�

αim̃
�
ij − UβiU�

αjm̃ijÞÞ cos
Δm2

ikL
4E

sin
Δm2

jkL

4E

�
: ð56Þ

This expression is fundamentally different from the 3-ν CPV effect, as it “contains” the 2-ν CPV effect we discussed in
Sec. II [see Eq. (16)]. This can be seen in three distinct ways, all pointing to cases in which there would be no CPV in the
constant ULDM potential limit.

TIME DEPENDENT CP-EVEN AND CP-ODD SIGNATURES … PHYS. REV. D 108, 055004 (2023)

055004-7



First, note that Eq. (53) vanishes for U�
βkUαk ¼ 0,

namely, when the projection of the mass eigenstate not
coupled to the ULDM on either the outgoing or the
incoming interaction eigenstates vanishes. This case cor-
responds to an effective J ¼ 0. However, taking this limit
for Eq. (56), we obtain

ΔPð1Þ
αβ ¼ 8ImðκijÞImðU�

βiUαiðUβjU�
αim̃

�
ij −UβiU�

αjm̃ijÞÞ

× sin
Δm2

ijL

4E
: ð57Þ

This expression does not vanish generically. Specifically,
if say only Uαk ¼ 0, then unitarity implies jUαij2 þ
jUαjj2 ¼ 1, and we may denote jUαij2 ≡ sin2 θα and obtain

ΔPð1Þ
αβ ¼16cos2θαImðκijÞImðUβiU�

βjm̃ijÞsin
Δm2

ijL

4E
: ð58Þ

This effect is indeed the result of the two-generations-like
effect, and thus does not vanish.
Second, as explained above, we expect the standard CPV

effect in three generations to vanish when any of the mass
differences Δm2

ij vanish. Indeed, the standard CPV in
Eq. (49) vanishes at this limit, as well as the constant-
ULDM CPV in Eq. (53) when considering a specific off-
diagonal ŷij, and setting Δm2

jk ¼ 0, for k ≠ i ≠ j. However,
at this limit, Eq. (56) yields a nonzero result and reads

ΔPð1Þ
αβ ¼ 8ImðκijÞImðU�

βiUαiðUβjU�
αim̃

�
ij −UβiU�

αjm̃ijÞÞ

× sin
Δm2

ijL

4E
; ð59Þ

exactly as in the U�
βkUαk ¼ 0 case (however, here we do not

assume a specific structure for U). Given the known
hierarchy in the neutrino mass differences, Δm2

12 ≪
Δm2

31;Δm2
32, we then expect that the new 2-ν CPV effect

resulting from ŷ31 or ŷ32 would dominate over the constant
ULDM CPV roughly for mϕ ≳ Δm2

12=ð2EÞ. Note that if the
neutrinos coupled to the ULDM are degenerate in the
unperturbed system, i.e., ŷij ≠ 0 for Δm2

ijL=ð4EÞ → 0,
the constant ULDM limit mϕL → 0 yields a nonzero
CPV, as ReðκijÞ → sinðmϕðt − t0ÞÞL=2. This corresponds
to a leading order effective mass difference induced by the
ULDM potential. In this limit, we obtain ImðκijÞ ∝
L3mϕΔm2

ij=ð4EÞ, and thus the 2-ν CPV effect is expected
to be subdominant to the constant ULDM effect.
Finally, note that standard CPV does not affect survival

probabilities. Accordingly, the constant-ULDM CPV in
Eq. (53) is also zero for α ¼ β. The new CPV effect we
found in Eq. (55) for α ¼ β does not vanish generically and
is given for a specific ŷij ¼ ŷji ≠ 0 with i ≠ j ≠ k by

ΔPð1Þ
αα ¼ −8ImðκijÞImðm̃ijUαiU�

αjÞ

×

�
ð2jUαjj2 þ 1Þ sin

�Δm2
jkL

4E

�
cos

�
Δm2

ikL
4E

�

þ ð2jUαij2 þ 1Þ cos
�Δm2

jkL

4E

�
sin

�
Δm2

ikL
4E

��
:

ð60Þ

Therefore, even experiments measuring only survival
probabilities would be sensitive to CPV ULDM-neutrino
couplings. This is a completely new prediction resulting
from our analysis, considering the time variations of the
Hamiltonian within the neutrino propagation time.

IV. EXPERIMENTAL IMPLICATIONS—
RAYLEIGH PERIODOGRAM

In Sec. III, we introduced analytical expressions for the
first-order modifications to neutrino probabilities resulting
from ULDM-neutrino interactions. We are interested in
devising a method for detecting these modifications in
neutrino oscillations experiments. As the effects we found
are time dependent, characterized by simple oscillatory
functions with periods τϕ ¼ 2π=mϕ, we are essentially
interested in measuring the spectral power of the neutrino
probabilities at an angular frequency corresponding to mϕ.
Consider the following timescales relevant for neutrino

oscillation experiments:
(1) τe: The running time of the experiment.
(2) τs ¼ τe

Nν
: The average spacing between events, where

Nν is the total number of measured events.
(3) τr: The resolution of the event timing. While in

practice the effective resolution could be set by
different sources of temporal uncertainty (e.g., beam
spread), we will refer to it as the “clock” resolution.

We notice the following hierarchy between the timescales:

τr ≪ τs ≪ τe: ð61Þ

Since the frequencies we are interested in are determined
by τϕ, one would naively assume that the experimental
sensitivity to ULDM masses mϕ ≳ 2=τs would be sup-
pressed, as the statistical uncertainty on the neutrino
probability binned over the corresponding τϕ would be
quite large, due to a small number of events expected to
occur within that period. However, as we will now show,
the true limiting factor, in terms of the experimental
sensitivity, is rather the effective clock resolution τr, which
is much smaller than τs.
To understand this, first recall that the events are

inherently binned over times τr, while τs is not associated
with some instrumental resolution, and binning over it is
completely artificial and is done postmeasurement. Let us
then use the full data, given as the number of neutrinos of a
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certain flavor detected at a sequence of Nt ¼ τe=τr clock
ticks, each with short duration τr. Since τr ≪ τs, we ignore
the possibility that two neutrinos might be detected during
τr, and define the following power spectrum:

zðfÞ ¼ 2

Nν

 "XNt

n¼1

hðtnÞ cosð2πftnÞ
#
2

þ
"XNt

n¼1

hðtnÞ sinð2πftnÞ
#
2
!
; ð62Þ

with

hðtiÞ ¼
	
1 event detected;

0 no event detected:
ð63Þ

This definition gives us the well-known Rayleigh power
spectrum

zðfÞ ¼ 2

Nν

 "XNν

n¼1

cos ð2πftnÞ
#
2

þ
"XNν

n¼1

sin ð2πftnÞ
#
2
!
:

ð64Þ

Notice that the summation now is over the neutrino events
instead of over time bins. For a list of events detected in a
time series ftng, we calculate the power spectrum z, which
is an analytic function of the probed frequencies f. For
ftng uniformly random distributed between 0 < tn < τe,
the sum of sines and the sum of cosines in Eq. (64) are each
normally distributed with the mean value of zero and
standard deviation of

ffiffiffiffiffiffiffiffiffiffiffi
Nν=2

p
. Thus zðfÞ, being their

appropriately normalized sum of squares, is Chi-squared
distributed with 2 degrees of freedom, which is simply an
exponential distribution of z. This means, under the
background only hypothesis, that if we consider a specific
frequency f0 and calculate its power zðf0Þ, its probability to
be higher than some value Z is independent of the
frequency f0 (assuming f0 ≳ 1=τe and no other spectral
noise sources) and is given by

pðz > ZÞ ¼
Z∞
Z

1

2
e−z=2dz ¼ e−Z=2: ð65Þ

Let us estimate the signal in case of a temporal
modulation of the neutrino probability. The probability
of detecting a neutrino of some flavor at time ti in an energy
bin ½Ej;min; Ej;max� is given by

Pðhðti; EjÞ ¼ 1Þ ¼
ZEj;max

Ej;min

Ztiþτr=2

ti−τr=2

dtdEFðEÞPðE; tÞ; ð66Þ

where F is the unoscillated neutrino flux; i.e., the flux that
would have reached the detector had all the produced
neutrinos oscillated into the flavor in question

FðEÞ ¼ dNunoscillated

dEdt
; ð67Þ

and PðE; tÞ is the oscillation probability given by

PðE; tÞ ¼ Pð0ÞðEÞ þ Pð1ÞðE; tÞ; ð68Þ

with Pð0Þ and Pð1Þ given in Eqs. (22) and (24). The total
number of events collected from different energy bins over
the entire duration of the experiment τe, assuming the
ULDMmodification to the probability is very small, is then

Nν ≈
ZEmax

Emin

Zτe
0

dtdEFðEÞPð0ÞðEÞ ¼ τe

ZEmax

Emin

dEFðEÞPð0ÞðEÞ:

ð69Þ

Similarly, one may define the corresponding number of
events associated with the small ULDM probability

Nð1Þ
ν;s ¼ τe

ZEmax

Emin

dEFðEÞPð1Þ
s ðEÞ; ð70Þ

Nð1Þ
ν;c ¼ τe

ZEmax

Emin

dEFðEÞPð1Þ
c ðEÞ; ð71Þ

where Ps and Pc can be read off from

Pð1ÞðE; tÞ ¼ Pð1Þ
s ðEÞ sin ðmϕtÞ þ Pð1Þ

c ðEÞ cos ðmϕtÞ: ð72Þ

To identify Pð1Þ
s ðEÞ and Pð1Þ

c ðEÞ, note that the imaginary
and real components of κij determine the time dependence
of Pð1Þ, as can be seen in Eqs. (28) and (29). Since ReðκÞ
and ImðκÞ are orthogonal in time, but have the same
frequency, Pð1Þ can be written as

Pð1Þ ¼ a sinðmϕðt−L=2− t0ÞÞ þ bcosðmϕðt−L=2− t0ÞÞ;
ð73Þ

and thus

Pð1Þ
s ¼ acosðmϕðL=2þ t0ÞÞþ b sinðmϕðL=2þ t0ÞÞ; ð74Þ

Pð1Þ
c ¼−asinðmϕðL=2þ t0ÞÞþbcosðmϕðL=2þ t0ÞÞ: ð75Þ
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We may now calculate the expected value of zðfÞ at f ¼
mϕ=ð2πÞ in the presence of a ULDM, with mass mϕ,
interacting with neutrinos.2 One can show (see
Appendix B) that for mϕ ≲ 2=τr,


�XNν

i¼1

sin ð2πtifÞ
�2�

¼ Nν

2
þ ðNð1Þ

s Þ2
4

; ð76Þ


�XNν

i¼1

cos ð2πtifÞ
�2�

¼ Nν

2
þ ðNð1Þ

c Þ2
4

; ð77Þ

and thus

hzðfÞi ¼ 2

Nν

"*"XNν

i¼1

sinð2πtifÞ
#
2
+

þ
*"XNν

i¼1

cosð2πtifÞ
#
2
+#

¼ 2þ ðNð1Þ
s Þ2 þ ðNð1Þ

c Þ2
2Nν

: ð78Þ

Note a few key points regarding the above result:
(i) The expected sensitivity to a ULDM coupling ŷ

improves with the square root of the (unoscillated)
neutrino flux of the experiment

ffiffiffiffi
F

p
, and decreases

as the square root of the expected vacuum oscillation

probability
ffiffiffiffiffiffiffiffi
Pð0Þp

.
(ii) Assuming the ULDM perturbation is coherent

throughout the experimental time, the sensitivity
to ŷ improves as

ffiffiffiffi
τe

p
. For a coherence time τc

satisfying L; τr < τc < τe, the sensitivity to ŷ would

follow
ffiffiffiffi
τe

p �
τc
τe

�1
4. While our results were derived

assuming τc ≳ τr; L, it is possible to derive the
appropriate expressions for τc < L; τr by sta-
tistically averaging over the ULDM phase [either
in determining Pð1Þ from the Dyson integral over L
in Eq. (25) or in the integral over τr in Eq. (66)],
which might significantly suppress the linear con-
tributions to the neutrino probabilities.

(iii) As stated, since the distribution of zðfÞ under the null
hypothesis is frequency independent, the expected
sensitivity of the experiment for different ULDM
masses is completely determined by the mass
dependence of Pð1Þ, assuming mϕ ≲ 2=τr and τc ≳
τe (or mass-independent coherence times). If the
ULDM coherence time is determined by τc ¼
2π=ðmϕβ

2Þ with the viral velocity β ≈ 10−3, then
for mϕ > 2π=ðτeβ2Þ one can think of Pð1Þ as being
effectively suppressed by an additional factor of�

2π
τemϕβ

2

�1
4. For mϕ > 2=τr, the integration over time

τr in Eq. (66) would yield an effective additional
2=ðmϕτrÞ suppression to Pð1Þ. Also note that our
result coincides with the result obtained by previous
analyses assuming τs < τϕ if one sets τr ¼ τs.
Therefore, compared to previous analyses, the Ray-
leigh method would yield bounds on the couplings of
ULDM of masses 2=τr > mϕ > 2=τs that are
stronger by mϕτs, and bounds that are stronger by
τs=τr for mϕ > 2=τr.

(iv) While the ULDM phase (denoted by mϕt0) affects
the sum of cosines and the sum of sines in Eqs. (77)
and (76), respectively, it does not affect zðfÞ, as they
are added in quadrature. Namely, the calculation of
zðfÞ does not require a knowledge of the ULDM
phase, and the phase of the cosines and sines used
for it may be chosen arbitrarily. Consequently, to
calculate the expected bounds, one could treat the
time-independent factors associated with ReðκijÞ
and ImðκijÞ separately, as they will be added in
quadrature. Of course, scanning over the phase and
examining the sum of cosines and sum of sines
independently would allow recovering the ULDM
phase information.

(v) While in our calculation we used the simple
modulation function hðtiÞ in Eq. (63), one may
use other choices for h in order to isolate or amplify
specific properties of the signal. Specifically,
assigning hðtiÞ ¼ hðEÞ would effectively set a
different, energy-dependent, weight for the neu-
trino events, which could be helpful, for example,
in recovering energy-dependent highly oscillatory
components of the signal. Another useful choice
could be made to isolate either the CPC or the CPV
probabilities in an experiment that allows for
detecting both neutrinos and antineutrinos, as

h�ðtiÞ ¼

8><
>:

1=nν ν event detected;

�1=nν̄ ν̄ event detected;

0 no event detected;

ð79Þ

where nν is the total number of neutrinos detected
and nν̄ is the total number of antineutrinos detected.

2We do not specify the range and resolution of frequencies at
which a peak in the Rayleigh spectrum is searched for, as there is
no clear recipe for determining them. One can scan frequencies as
small as∼τ−1e , and as large as τ−1r , since the effect is suppressed for
frequencies higher than that. Typically, the resolution of the scan
would be approximately ∼τ−1e , as this is the width of the features in
zðfÞ. However, the authors of [19], for example, chose to over-
sample with a higher resolution. This comes at the cost of a more
significant look-elsewhere effect [20], which reduces the con-
fidence level of the signal. Since this effect is mainly determined
by the number of frequencies one scans, a number which depends
neither on the experiment nor on the ULDM parameters, we did
not include it in the analyses in this paper.
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Generally speaking, for any choice of a modulation
function hðϕÞ which is time independent (let it be a
function of the neutrino energy, flavor, lepton
number, etc.), we may define

r̃ðfÞ ¼
 "XNν

i¼1

hðϕiÞ sinð2πtifÞ
#
2

þ
"XNν

i¼1

hðϕiÞ cosð2πtifÞ
#
2
!
: ð80Þ

Then, the modified Rayleigh score

z̃ðfÞ ¼ 2

Ñ0
ν

r̃ðfÞ ð81Þ

is χ22 distributed, and in the presence of a signal its
expectation value is

hz̃ðfÞi ¼ 2þ ðÑð1Þ
s Þ2 þ ðÑð1Þ

c Þ2
2Ñ0

ν

; ð82Þ

with

Ñ0
ν ¼


X
bkg

h2
�

¼ τe

ZEmax

Emin

Z
ϕ

dN
dEdtdϕ

Pð0Þh2dϕdE;

ð83Þ

Ñð1Þ
ν;s ¼


X
s

h

�
¼ τe

ZEmax

Emin

Z
ϕ

dN
dEdtdϕ

Pð1Þ
s hdϕdE;

ð84Þ

Ñð1Þ
ν;c ¼


X
c

h
�

¼ τe

ZEmax

Emin

Z
ϕ

dN
dEdtdϕ

Pð1Þ
c hdϕdE:

ð85Þ

Then, concretely, for h� one would obtain

hz̃ðfÞi� ≈ 2þ ðϵ�s Þ2 þ ðϵ�c Þ2
2
�

1
nν
þ 1

nν̄

� ; ð86Þ

with

ϵþs;c ¼
R Emax
Emin

dEFðEÞ2ΣPð1Þ
s;cðEÞR Emax

Emin
dEFðEÞPð0ÞðEÞ ; ð87Þ

ϵ−s;c ¼
R Emax
Emin

dEFðEÞΔPð1Þ
s;cðEÞR Emax

Emin
dEFðEÞPð0ÞðEÞ ; ð88Þ

with ΣPð1Þ and ΔPð1Þ defined in Eqs. (44) and (51),
respectively.

V. CURRENT AND FUTURE-PROJECTED
BOUNDS

In this section we study the sensitivity of various neutrino
oscillation experiments to the ULDMmodulation amplitude
using the Rayleigh periodogram. We derive bounds on the
neutrino-ULDM couplings from existing experiments
which have already looked for time modulations in neutrino
survival and transition probabilities, and projected sensitiv-
ities for future experiments. We do not use Monte Carlo
simulations, but use the scaling that we derived for the
expectation value of the magnitude of the Rayleigh spec-
trum peak at the modulation frequency in Eq. (78), with the
parameters of the experiment and of the model. When
calculating the height of the peak, we assumed that the
ULDM modulation amplitude is predominantly affected by
one entry of the ŷ matrix at a time. We also provide a
separate analysis for the real and imaginary components of
the off-diagonal entries of ŷ, assuming δCP ¼ 0. Note that
in our calculations we assumed a normal hierarchy, and
that m1 ¼ 0. The latter assumption can be relaxed by re-
identifying Imðy1iÞ → ðmi −m1ÞImðy1iÞ=mi, Reðy1iÞ →
ðmi þm1ÞReðy1iÞ=mi for the off-diagonal couplings,
and y22 → y22 −m1y11=m2, y33 → y33 −m1y11=m3 for
the diagonal ones. For the projected sensitivities, we
find the curve in parameter space ŷðmϕÞ for which the
peak is expected to match the 95% percentile of the χ22
distribution, characterizing the background (corresponding
to a CL ¼ 0.95). The corresponding bounds in terms of the
ULDM parameters are shown in Fig. 1.

A. Current bounds

1. Daya-Bay

The Daya Bay experiment collects ν̄e events from nearby
reactors which are approximately 800 meters away from the
detector. The collaboration has searched for time dependent
modulations of the survival probability Pē ē, for frequencies
between 5.9 × 10−5=sidereal hour to 0.5=sidereal hour, and
found no significant evidence [22]. We plot in Fig. 1 the
ULDM couplings corresponding to an expected sensitivity
at CL ¼ 0.95, assuming 621 days of data taking, with a total
of 800 unoscillated events per day [23].

2. Solar experiments—SNO

The Super-K and SNO experiments collect solar νe with
event rates of 15=day [24] and 10=day [25], respectively.
Because of the Mikheyev-Smirnov-Wolfenstein effect,
neutrinos with energy larger than ∼1 MeV leave the sun
as the ν2 mass states. Therefore, their survival probability
does not oscillate with propagation and is given by
P0
2e ¼ jUe2j2 ≈ sin2 θ12. This means that up to day/night
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FIG. 1. Current bounds on the ULDM parameter space from Daya-Bay (DB) and SNO experiments, the projected sensitivities of
JUNO and Hyper-K (HK), and the CMB bound resulting from neutrino self-interactions [21]. We assume normal hierarchy, m1 ¼ 0,
δCP ¼ 0, and that the ULDM modulation amplitude is predominantly affected by a single entry of ŷ at a time. Only statistical
uncertainties are considered, based on the event collecting rate and the running time of each experiment.
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matter effects, the solar neutrino flux should be constant
along the year.
To calculate the first-order correction coming from the

ULDM, we assume thatmϕτ⊙ ≪ 1, where τ⊙ is the longest
timescale for neutrino effects in the sun, such that the
neutrino leaves the sun as an eigenstate of the instantaneous
Hamiltonian,HðtiÞ ≈H0 þ m̃ sinðmϕðti − t0ÞÞ, denoted by
νmðtiÞ. We then turn to our previously obtained expressions
for Pαβ, noting that να ¼ νmðtiÞ with m ¼ 2. Namely, the
PMNS-like matrixUαi should be replaced by the projection

of the instantaneous mass eigenstate at time ti onto
the ULDM-independent mass eigenstates—Uαi → T2iðtiÞ
where TðtiÞ is the diagonalizing matrix of HðtiÞ in the
ULDM-independent mass basis. The deviation of TðtiÞ
from the identity yields a first-order correction in the
ULDM coupling to Uð0Þ. When calculating Uð1Þ, one
may set Uαi ¼ δ2i, since it is already linear in the
ULDM potential. For off-diagonal ULDM couplings ŷi2
with i ≠ 2, the leading ULDM correction in our formalism
is given by

Pð1Þ
2e ¼ 2

ϕ0

E
ReðU�

e2Ueim̃i2Þ
�
−
E sinðmϕðt − L − t0ÞÞ

Δm2
i2

cos
Δm2

i2L
2E

− cos
Δm2

i2L
4E

Imðκi2Þ þ sin
Δm2

i2L
4E

Reðκi2Þ
�

− 2
ϕ0

E
ImðU�

e2Ueim̃i2Þ
�
E sinðmϕðt − L − t0ÞÞ

Δm2
i2

sin
Δm2

i2L
2E

þ cos
Δm2

i2L
4E

Reðκi2Þ þ sin
Δm2

i2L
4E

Imðκi2Þ
�
; ð89Þ

whereas for the diagonal coupling ŷ22 and for all ŷij with
j ≠ 2, there are no first-order contributions to the solar
probability.
The SNO Collaboration looked for a time variation in the

solar neutrino flux with periods between 10 minutes and
1 day, and found a null result with a confidence level of
90% [19]. The search was expected to be sensitive (have a
90% probability of making a CL ¼ 0.99 discovery) to

sinusoidal modulations at these frequencies with an ampli-
tude of 0.12 or greater, compared to the time-averaged flux.
We may then interpret this result as a bound on the ULDM
parameters, assuming mϕ is equal to the modulation

frequency. In the mϕ ≪ Δm2
i2

2E limit, which applies through-
out the frequency range of the analysis of [19], the
correction to the solar probability in Eq. (89) becomes

Pð1Þ
2e ≈

2ϕ0

Δm2
i2
ReðUe2U�

eim̃
�
i2Þ
�
− sinðmϕðt − t0ÞÞ þ

2Emϕ

Δm2
i2
sin

Δm2
i2L

2E
cosðmϕðt − L − t0ÞÞ

�

þ 4
Emϕϕ0

Δm2
i2
2
ImðUe2U�

eim̃
�
i2Þ
�
− cosðmϕðt − t0ÞÞ þ cos

Δm2
i2L

2E
cosðmϕðt − L − t0ÞÞ

�
: ð90Þ

3. Constraints from neutrino self-interactions
and neutrino-DM scattering

Neutrino-scalar interactions result with neutrino self-
interactions. Bounds on such interactions were discussed in
detail in [26]. We include the strongest bound, relevant to
our parameter space, associated with the cosmic microwave
background (CMB) [21] in Fig. 1.
Moreover, for large values of ŷ, neutrino-DM and

neutrino-neutrino scattering may occur. If the timescale
of these scatterings is much shorter than the neutrino
oscillation timescale Δm2=E or propagation time L, the
neutrino oscillations will become incoherent. As such
incoherence was not observed in neutrino oscillation
experiments, we infer that such high values of ŷ are not
realized in nature. For neutrino-neutrino scattering, one can
estimate the scattering rate of oscillating neutrinos with the
neutrino background. The most conservative estimate of
this rate, assuming an MeV oscillating neutrino scattered

off a massless background neutrino with temperature of
10−4 eV yields

Γ ¼ σnβ ≲ y4

EoscillationEbackground
n ≲ y4

EoscillationTbackground

× T3
background ≲ y410−14 eV; ð91Þ

where Eoscillation is the energy of the probed oscillating
neutrino. Therefore, this rate is much slower than all
timescales in question (and in particular the propagation
time). For neutrino-ULDM scattering

Γ ¼ σnβ ≲ y4n
EoscillationEULDM

; ð92Þ

and therefore, considering that neutrino experiments are
typically designed with Δm2L

E ¼ Oð1Þ,
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ΓL≲ y4nL
Eoscillationmϕ

≈
y4ρDM
Δm2m2

ϕ

¼ y4

Δm2

�
2 GeV

10−12 eV
mϕ

�
2

≈
�

y
10−7

�
4
�
10−10 eV

mϕ

�
2

10−9: ð93Þ

Since the experimental sensitivities to y are at least linear
with mϕ and the CMB bound is constant in mϕ, this rate
will not damp neutrino oscillations in the parameter space
relevant for our analysis.

B. Projected sensitivities

1. Reactor experiments

In addition to current bounds from the Daya-Bay experi-
ment, we study the projected sensitivities of ULDM
parameters from other reactor neutrino experiments. We
consider JUNO that measures the survival probability of ν̄e
that travel ∼53 km. The energy resolution and baseline
length of JUNO enable it to be sensitive to both neutrino
mass squared differences Δm2

21 and Δm2
31 and thus to

determine the neutrino mass hierarchy. It has an expected
flux of 83 unoscillated events per day [27], and its projected
sensitivity to ULDM parameters is presented in Fig. 1.
We did not consider the KamLAND experiment in our

analysis, as due to its long baseline of ∼180 km it has a
relatively low flux of 1–2 events per day. As opposed to
accelerator experiments which fire a narrow beam of
neutrinos, reactor experiments fire neutrinos uniformly in
every direction, and therefore their flux decays with L−2. It
also collects events from different reactors with different
distances, which considerably complicates the analysis.

2. Accelerator experiments

Accelerator neutrino experiments fire a beam of protons
toward a target that produces charged pions. These can be
manipulated into a narrow beam and decay mostly into νμ
or ν̄μ, depending if the positive or negative pions are
focused. These experiments therefore measure Pμμ and Pμe

(or Pμ̄ μ̄ and Pμ̄ ē) simultaneously. We studied the DUNE
(far detector), ESS (far and near detectors), and Hyper-K

experiments, out of which the latter has produced overall
slightly better sensitivities to the ULDM parameters, and
only these results are presented in Fig. 1. Hyper-K is
expected to collect approximately 2000 to 4000 signal
events in each mode of neutrinos that travel 295 km, over a
run of 10 years [28].

C. Asymptotic behavior

To qualitatively understand the various plots in Fig. 1,
let us consider the asymptotic behavior following from the
analytical expressions we found in Sec. III. Note that we
only account for the first-order corrections to the neutrino
oscillation probability. Therefore, near the resonance
mϕ ¼ Δm2=2E [13] the result may be inaccurate, as higher
order terms would yield considerable contributions.
Let us first discuss the behavior of the CPC ULDM

effects (corresponding to the plots presenting the real parts
of the couplings, assuming δCP ¼ 0). For couplings that are
diagonal in the unperturbed mass basis, the correction to
the transition or survival probability in Eq. (45) is propor-
tional to

ΣPð1Þ ∝ sin

�
mϕL

2

�
2yiiϕ0

Emϕ
∝

8><
>:

ReðyiiÞ
mϕ

mϕL≪ 1;

sin
�
mϕL
2

�
ReðyiiÞ
m2

ϕ
mϕL≫ 1:

ð94Þ

Therefore, in an experiment sensitive to a certain value of
Pð1Þ, the corresponding diagonal coupling yii that the
experiment will be sensitive to is proportional to

ReðyiiÞ ∝
	mϕ mϕL ≪ 1;

m2
ϕ= sin ðmϕL=2Þ mϕL ≫ 1:

ð95Þ

We can see the transition between the two limits in the two
bottom plots of Fig. 1.
As expected, when the couplings are off-diagonal, the

probability also depends on the neutrino oscillation fre-
quency, and we obtain the following relation:

ReðyijÞ ∝

8>>><
>>>:

mϕ L−1 ≫ mϕ;

mϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2cos2ðmϕL=2Þ þ B2sin2ðmϕL=2Þ

q
L−1 ≪ mϕ ≪ Δm2

ij=2E;

m2
ϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2cos2ðmϕL=2Þ þ B2sin2ðmϕL=2Þ

q
L−1;Δm2

ij=2E ≪ mϕ;

ð96Þ

where A and B are determined by the coefficients of ReðκÞ
and ImðκÞ in Pð1Þ according to Eq. (26), which depend on
PMNS elements. If A and B are of similar magnitude, as is
the case when ReðκÞ and ImðκÞ yield similar contributions

to the probability, we expect the oscillations in mϕ to be
suppressed. However, if one is much larger than the other,
there are approximate poles of “bad sensitivity” around the
nodes of the bigger term, at which the bound follows the
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inverse of the smaller term (for example, if A2=B2 ≫ 1, then
around mϕL=2 ¼ nπ the bound is proportional to 1=A,
while aroundmϕL=2 ¼ π=2þ nπ the bound is proportional
to 1=B). This is the case when either ReðκÞ or ImðκÞ
dominates the probability. In the case of diagonal entries of
ŷ, only ReðκÞ affects the probability, and therefore the
bound oscillates rapidly for larger mϕ. For off-diagonal y
entries, the modification to the CPC survival probability is
affected only by ReðκÞ, while the transition probability is
affected also by ImðκÞ. Therefore, the sensitivity for off-
diagonal CPC couplings from measurements of survival
probabilities will oscillate rapidly for larger mϕ, while these
oscillations are suppressed for transition probabilities.
The two extreme limits of Eq. (96) are similar to

the diagonal couplings case, while we may also obtain an

in-between behavior if Δm2
ijL=ð2EÞ > 1. This region may

be probed due to the neutrino mass hierarchy Δm2
21 ≪

Δm2
31, Δm2

32. The JUNO experiment is designed in a way
such that Δm2

21L=ð2EÞ ¼ Oð1Þ, and Δm2
31L=ð2EÞ ≫ 1.

This allows for the in-between region where L−1 ≪ mϕ ≪
Δm2

31=ð4EÞ. We can indeed see this region in the plots of
y13, y23, but not for y12.
The behavior of the CPV couplings is similar to that of

the CPC couplings, with one exception: the 2-ν CPVeffect.
The 2-ν CPV is the only CPV effect in survival proba-
bilities, and its mass dependence follows that of ImðκijÞ in
Eq. (29), and thus the mϕ dependence of the bounds from
survival probabilities is as follows:

ImðyijÞ ∝

8>>><
>>>:

constðmϕÞ L−1 ≫ mϕ;

mϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2cos2ðmϕL=2Þ þ B2sin2ðmϕL=2Þ

q
L−1 ≪ mϕ ≪ Δm2

ij=2E;

m2
ϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2cos2ðmϕL=2Þ þ B2sin2ðmϕL=2Þ

q
L−1;Δm2

ij=2E ≪ mϕ:

ð97Þ

The main difference from the CPC bounds is in the low
mass region, where the bound flattens. This is a result of the
fact that in the two-generations case, as we discussed in
Sec II, the only observable CPVeffect comes from the time
derivative of the ULDM-induced phase. The 2-ν CPVeffect
occurs also in transition probabilities, but overcomes the 3-ν
CPV effect in the low mass region if Δm2

21=E ≪ mϕ ≪
Δm2

31=E, Δm2
32=E (this effectively sets Δm2

21 ¼ 0 which
gives the two-neutrino picture). We can see this in-between
behavior of the transition probability in Hyper-K for y13
and y23, but not for y12. Since the 2-ν CPVeffect takes over
at larger masses (for all off-diagonal couplings), the CPV
transition probabilities would inherit the behavior of
the CPV survival probabilities, which are solely affected
by ℑðκÞ, and thus they would significantly oscillate as a
function of mϕ.

VI. CONCLUSIONS

The inclusion of a scalar ULDM field that couples to
neutrinos provides new rich phenomenology. In this work,
we have presented a generic analysis of the impact of time
varying ULDM interactions with neutrinos. For the case
when the ULDM rapidly oscillates during neutrino propa-
gation, we have determined the corrections to the survival
and transition probabilities for both CPC and CPV quan-
tities. Some of the novel effects that appear are the following:

(i) A new CPV effect is present even in the two-
neutrino-like case. We have also explicitly checked
that in the three generation case this new effect is
also present. Moreover, for three generations of

neutrinos, the CPV effect does not disappear in
the limit of one of the Δm2

ij → 0, and both survival
and transition probabilities are modified by the new
CPV effect.

(ii) The phenomena we are interested in presents oscil-
latory behavior, and thus we can look at the spectral
power of the neutrino probabilities for angular
frequencies defined by mϕ to determine the param-
eters in the model.

Interestingly, we have identified that several neutrino
oscillation experiments can be sensitive to the fast varia-
tions of the ULDM field. Given this we have determined
the bounds on CPC and CPV couplings from the neutrino
survival probability measurements at Daya Bay and SNO.
Furthermore, we have determined the sensitivity to mea-
sure the couplings at future reactor (JUNO) and long
baseline neutrino oscillation experiments (DUNE, ESS,
and Hyper-K).
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APPENDIX A: TWO GENERATIONS

For diagonal ULDM couplings, ŷii, and k ≠ i, the survival probability is modified by

Pð1Þ
αα ðtÞ ¼ − sin

�
mϕ

�
t −

L
2
− t0

��
sin
�
mϕL

2

�
sin22θŷiimiϕ0

Emϕ
sin
�
Δm2

ikL
2E

�
; ðA1Þ

where θ is the mixing angle between the unperturbed mass eigenstates and interaction eigenstates. For nondiagonal ULDM
couplings ŷij, with i ≠ j

Pð1Þ
αα ¼ ϕ0 sin 4θ

E

��
Δm2

ij

2E

�
2

−m2
ϕ

��Imðŷ12Þðm1 −m2Þ cos
�
mϕ

�
ðt − L − t0Þ þ

L
2

��

×

�
Δm2

21

4E
sin

Δm2
21L

2E
sin

mϕL

2
−mϕsin2

Δm2
21L

4E
cos

mϕL

2

�
þ Reðŷ12Þðm1 þm2Þ sin

�
mϕ

�
ðt − L − t0Þ þ

L
2

��

×

�
mϕ

2
sin

Δm2
21L

2E
sin

mϕL

2
−
Δm2

21

2E
sin2

Δm2
21L

4E
cos

mϕL

2

��
: ðA2Þ

APPENDIX B: MEAN VALUE OF RAYLEIGH
POWER AT THE MODULATION FREQUENCY

Recall the timescales of the problem:
(1) τe: The running time of the experiment.
(2) τs ¼ Nν

τe
: The average spacing between events, where

Nν is the total number of measured events.
(3) τr: The resolution of the clock that times the events.

Therefore, during the experiment running time, there are
Nt ¼ τe

τr
clock ticks, each with small duration τr. At each

clock tick we define the function:

hðtiÞ ¼
	
1 event detected;

0 no event detected:
ðB1Þ

We calculate the expectation value of the Rayleigh power
spectrum, namely,

hzðfÞi ¼ 2

Nν

 *�����
XNt

i¼1

hðtiÞ cosð2πtifÞ
�����
2
+

þ
*�����
XNt

i¼1

hðtiÞ sinð2πtifÞ
�����
2
+!

; ðB2Þ

where f is the modulation frequency of the probability
modulation, corresponding to mϕ=2π. We calculate the
expectation value of a generic function FðhðtiÞ; tiÞ in the
sense that

hFðhðtiÞ; tiÞi ¼ Fð1; tiÞ · PðhðtiÞ ¼ 1Þ
þ Fð0; tiÞ · PðhðtiÞ ¼ 0Þ; ðB3Þ

where the probability that an event is detected is given by

PðhðtiÞ ¼ 1Þ ¼ Nν

Nt
½1þ ϵ sin ð2πtifÞ�

¼ Nν
τr
τe
½1þ ϵ sin ð2πtifÞ�; ðB4Þ

where ϵ is the amplitude of the modulation. We assumed for
simplicity that the phase of the modulation is zero, such that
it appears as a sine, but the final result holds for a generic
phase. Let us start with calculating the expectation value of
the sine term. Notice that

*�����
XNt

i¼1

hðtiÞ sin ð2πtifÞ
�����
2
+

¼ Var

 XNt

i¼1

hðtiÞ sin ð2πtifÞ
!

þ
*�����
XNt

i¼1

hðtiÞ sin ð2πtifÞ
�����
+

2

:

ðB5Þ

Calculating the variance term first,
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Var½hðtiÞ sin ð2πtifÞ� ¼ hh2ðtiÞsin2ð2πtifÞi
− hhðtiÞ sin ð2πtifÞi2

¼ ðPðtiÞ − P2ðtiÞÞsin2ð2πtifÞ
≈
Nν

Nt
½1þ ϵ sin ð2πtifÞ�sin2ð2πtifÞÞ:

ðB6Þ

In the last approximation we assume Nν
Nt

≪ 1, which is
equivalent to the statement that the resolution of the clock
is much better than the typical time between events.
The variance of sum is simply the sum of variances,
since in our case the measurements at different times are
uncorrelated; thus,

Var

 XNt

i¼1

hðtiÞ sin ð2πtifÞ
!

¼
XNt

i¼1

Nν

N
½1þ ϵ sin ð2πtifÞ�sin2ð2πtifÞ: ðB7Þ

Changing variables,

tn → nτres; ðB8Þ

0 < n ≤ Nt; ðB9Þ

we obtain

Var

 XNt

i¼1

hðtiÞ sinð2πtifÞ
!

¼ Nν

Nt

"XNt

n¼1

sin2ð2πnτresfÞ

þ ϵ
XNt

n¼1

sin3ð2πnτresfÞ
#
:

ðB10Þ

The first term yields

XNt

n¼1

sin2ð2πnτresfÞ ≈
Z

Nt

0

dzsin2ð2πzτresfÞ

¼ Nt

2
½1 − sincð4πNtτresfÞ�

≈
Nt

2
; ðB11Þ

where we use the approximation

Ntτresf ¼ τexpf ≫ 1: ðB12Þ

The second term gives

XNt

n¼1

sin3ð2πnτresfÞ ≈
Z

Nt

0

dzsin3ð2πzτresfÞ ¼
2Ntð2þ cos ð2fNtπτresÞÞsin3ðfNtπτresÞ

3
sincðfNtπτresÞ; ðB13Þ

and may therefore be neglected under the approximation in Eq. (B12). The second term in Eq. (B15) is*�����
XNt

i¼1

hðtiÞ sin ð2πtifÞ
�����
+

2

¼
�����
XNt

i¼1

PðtiÞ sin ð2πtifÞ
�����
2

¼
"XNt

i¼1

Nν

Nt
½1þ ϵ sin ð2πtifÞ� sin ð2πtifÞ

#
2

¼ ϵ2

4
N2

ν: ðB14Þ

Finally, we get *�����
XNt

i¼1

hðtiÞ sin ð2πtifÞ
�����
2
+

¼ Nν

2
þ ϵ2

4
N2

ν; ðB15Þ

*�����
XNt

i¼1

hðtiÞ cos ð2πtifÞ
�����
2
+

¼ Nν

2
; ðB16Þ

and thus

hzðfÞi ¼ 2þ ϵ2

2
Nν: ðB17Þ
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