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Emerging sampling algorithms based on normalizing flows have the potential to solve ergodicity
problems in lattice calculations. Furthermore, it has been noted that flows can be used to compute
thermodynamic quantities which are difficult to access with traditional methods. This suggests that they are
also applicable to the density-of-states approach to complex action problems. In particular, flow-based
sampling may be used to compute the density directly, in contradistinction to the conventional strategy of
reconstructing it via measuring and integrating the derivative of its logarithm. By circumventing this
procedure, the accumulation of errors from the numerical integration is avoided completely and the overall
normalization factor can be determined explicitly. In this proof-of-principle study, we demonstrate our
method in the context of two-component scalar field theory where the internal Oð2Þ symmetry is explicitly
broken by an imaginary external field. First, we concentrate on the zero-dimensional case which can be
solved exactly. We show that with our method, the Lee-Yang zeroes of the associated partition function can
be successfully located. Subsequently, we confirm that the flow-based approach correctly reproduces the
density computed with conventional methods in one- and two-dimensional models.

DOI: 10.1103/PhysRevD.108.054511

I. INTRODUCTION

Lattice calculations are a powerful approach to study
quantum field theories nonperturbatively by applying
Markov Chain Monte Carlo (MCMC) sampling [1], see
[2–9] for recent reviews. However, for many physically
interesting cases, the associated Euclidean lattice action is
complex valued. This prohibits the application of standard
importance sampling, the most prominent example being
the notorious sign problem in lattice QCD at finite chemical
potential [10,11]. In this context, it has been shown that with
the density-of-states (DoS) approach [12–22], certain com-
plex action problems can be successfully treated [23–29].
However, directly computing the DoS is generally not
possible due to the intrinsically high variance of the
associated observables. Instead, the usual approach is to
measure the derivative of its logarithm with restricted
MCMC calculations, followed by reconstructing the DoS
itself via numerical integration. The high precision required
to control the accumulation of errors from the approxima-
tion of the integral can be computationally expensive.
Recently, it has been noted that similar thermodynamic

quantities in lattice field theory can be computed directly

using generative machine learning models with tractable
probability densities [30–32], thereby completely avoiding
the aforementioned numerical reconstruction of the quan-
tity of interest. Normalizing flows are one such class of
probabilistic models for which both efficient sampling and
density estimation are made possible using a change of
variables formula [33–37]. They have been successfully
applied to model real scalar field theory [38–42], Uð1Þ and
SUðNÞ gauge theories [43–47], as well as theories with
dynamical fermions [48–50]. For their application to sign
problems, flows have been studied in the context of contour
deformations [51,52].
In this work, we apply flow-based sampling to the direct

computation of the DoS for lattice field theories with
complex actions. Specifically, we investigate scalar ϕ4-
theory with two real-valued components where one is
coupled to an imaginary external field, thereby explicitly
breaking the internal Oð2Þ symmetry. We first consider the
exactly solvable, zero-dimensional case as a toy model for a
proof-of-principle demonstration, showing that the DoS as
well as the partition function and magnetization as func-
tions of the external field are computed correctly with our
approach. In particular, we can locate Lee-Yang zeros [53]
of the partition function together with the associated
discontinuities in the magnetization. We then apply the
approach to actual lattice models in one and two dimen-
sions, accurately reproducing the densities obtained with
conventional MCMC methods.
This paper is organized as follows. In Sec. II, we briefly

review the DoS approach pertinent to the type of complex
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action problem considered here. Section III serves to
introduce the basic concepts of normalizing flows that
are relevant to this work. We explain our approach in
Sec. IV and present numerical results in Sec. V. We
summarize our contributions and provide an outlook
in Sec. VI.

II. DENSITY OF STATES

We consider lattice field theories with complex-valued
actions of the form

SðϕÞ ¼ SrðϕÞ þ ihXðϕÞ; ð1Þ

where Sr; X; h∈R. The partition function and expectation
values of observables are defined as

Z ¼
Z

Dϕ e−SrðϕÞ−ihXðϕÞ; ð2Þ

hOi ¼ 1

Z

Z
Dϕ e−SrðϕÞ−ihXðϕÞOðϕÞ: ð3Þ

Since the action is complex, standard importance sampling
is not directly applicable and reweighting often becomes
prohibitively expensive when increasing h due to the
average phase factor being close to zero.
One ansatz to make the computation more tractable is to

consider the DoS as a function of the quantity that
generates the imaginary part of the action, i.e.

ρðcÞ ¼
Z

Dϕ e−SrðϕÞδðXðϕÞ − cÞ: ð4Þ

Essentially, ρðcÞ corresponds to slices of the partition
function for the real part of the action, with the configu-
ration space restricted to hypersurfaces of constant
XðϕÞ ¼ c. In MCMC calculations, this restriction can be
achieved e.g. by confining the dynamics through additional
rejections, or by replacing the δ-distribution with a
Gaussian of finite width, which is the approach used in
the present work (see Sec. IV for details).
If ρðcÞ is known, the partition function for the full action

as well as expectation values of observables (that are
functions of c only) can be computed in terms of one-
dimensional integrals with a residual phase,

Z ¼
Z

dc ρðcÞe−ihc; ð5Þ

hOi ¼ 1

Z

Z
dc ρðcÞe−ihcOðcÞ: ð6Þ

However, similar to partition functions themselves and
thermodynamic quantities in general, a direct computation
of ρðcÞ is often infeasible with conventional MCMC

algorithms due to the high variance associated with the
required observables. Instead, it is usually reconstructed
from measurements of ∂c log ρðcÞ, as detailed below.

III. NORMALIZING FLOWS

Starting with a prior distribution over a continuous space
X with a known probability density rðξÞ, an invertible
transport map (flow) f∶ X → X ; ξ ↦ ϕ can be used to
redistribute samples under r to samples under a new density
qðϕÞ. We only require that the map be diffeomorphic, i.e.
that both f and its inverse are differentiable. The resulting
density qðϕÞ is fixed by the choice of prior distribution and
map, and it can be evaluated explicitly as

qðϕÞ ¼ rðξÞ
����det

�
∂f
∂ξ

�����
−1
; ð7Þ

where ϕ ¼ fðξÞ and detð∂f=∂ξÞ is the Jacobian determi-
nant of f. Because the density after the transformation can
be computed explicitly, flows provide a mechanism for
both sampling and density estimation.
By choosing a sufficiently expressive parametrization of

f, the space of associated transformations—corresponding
to a large variational family of model densities q—can be
explored through numerical optimization in order to find an
instance that best approximates some target density p. In
particular, the parameters of f may be optimized by
performing stochastic gradient descent on a measure of
the discrepancy between the two densities q and p, i.e. an
appropriate loss function.
A common choice is the Kullback-Leibler (KL) diver-

gence, which is a measure of the relative entropy between
distributions. It is defined as

DKLðqjjpÞ ¼
Z

Dϕ qðϕÞðlog qðϕÞ − logpðϕÞÞ

¼ hlog qðϕÞ − logpðϕÞiϕ∼qðϕÞ ≥ 0; ð8Þ

and takes the minimum value DKLðqkpÞ ¼ 0 if and only if
q ¼ p. With expectation values measured using samples
from the model distribution q, DKLðqkpÞ can be stochas-
tically estimated without requiring samples from the target
distribution p.
For targets of the form pðϕÞ ¼ e−SðϕÞ=Z, the KL

divergence takes the form

DKLðqkpÞ ¼ hlog qðϕÞ þ SðϕÞiϕ∼qðϕÞ þ logZ: ð9Þ

Since the partition function Z is usually not known a priori,
DKL can only be estimated up to the constant logZ.
However, this does not affect gradients and one may freely
use (DKL − logZ) as the loss function for optimization,
which then provides a bound on logZ. Writing the partition
function as
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Z ¼
Z

Dϕ qðϕÞ e
−SðϕÞ

qðϕÞ ¼ he−SðϕÞ−log qðϕÞiϕ∼qðϕÞ; ð10Þ

it follows that any model giving good agreement to the
target distribution necessarily provides a precise, unbiased
estimate of Z at low cost through model samples alone,
without the need to ever sample from the target.
A common building block for the construction of

invertible flow transformations is the affine coupling layer.
In each such layer, the input ξ is split into two equal-sized
subsets ξa, ξb which are transformed according to

ξ0a ¼ ξa;

ξ0b ¼ ξb ⊙ esðξaÞ þ tðξaÞ; ð11Þ

i.e. ξa remains unchanged (frozen) while ξb is updated
(active); see Fig. 1 for an illustration. Here, the symbol ⊙
denotes elementwise multiplication. Each affine coupling
layer is trivially invertible and has a triangular Jacobian
matrix, thereby making the computation of its determinant
and thus themodel density q tractable. The context functions
s, t that take the frozen variables as inputs and are used to
update the active ones can be arbitrary functions. They are
commonly parametrized by deep, feedforward neural
networks, with are then trained during optimization.
Importantly, they are not required to be invertible themselves,
thereby providing much freedom in choosing a particular
parametrization. Expressive flow transformations are built by
chaining together many such affine coupling layers with
alternating frozen and active subsets.

IV. FLOW-BASED DENSITY OF STATES

As already mentioned in Sec. II, we employ a formu-
lation of the DoS approach where the δ-distribution in
Eq. (4) is replaced by a Gaussian of finite width, following
e.g. [18,22]. This enables the straightforward application of
both standard sampling algorithms like hybrid/Hamiltonian
Monte Carlo (HMC) as well as our flow-based approach.
Exactness of all expressions can be retained at the cost of a
residual sign problem (which is tractable for sufficiently
small width) or by extrapolating to the limit of vanish-
ing width.
First, we note that the result of the Gaussian integral

Z
dc e−

P
2
ðc−aÞ2 ¼

ffiffiffiffiffiffi
2π

P

r
≡N ð12Þ

is independent of a. Hence, we can rewrite Eq. (2) as

Z ¼
Z

Dϕ

Z
dc e−

P
2
ðc−XðϕÞÞ2−logN−SrðϕÞ−ihXðϕÞ: ð13Þ

We then define the P-dependent DoS as

ρPðcÞ ¼
Z

Dϕ e−Sc;PðϕÞ; ð14Þ

where

Sc;PðϕÞ ¼ SrðϕÞ þ
P
2
ðc − XðϕÞÞ2 þ logN : ð15Þ

The “true” DoS as defined in Eq. (4) is recovered in the
limit P → ∞.
Assuming continuity and convergence of the integrals,

the partition function can be expressed in terms of ρP as

Z ¼
Z

dc
Z

Dϕ e−Sc;PðϕÞ−ihXðϕÞ

¼
Z

dc ρPðcÞ
R
Dϕ e−Sc;PðϕÞ−ihXðϕÞR

Dϕ e−Sc;PðϕÞ

¼
Z

dc ρPðcÞhe−ihXðϕÞiϕ∼e−Sc;PðϕÞ ; ð16Þ

Hence, in this formulation, the partition function is still a one-
dimensional integral over the P-dependent DoS, but with an
additional average phase factor computed on ensembles
sampled with Sc;PðϕÞ. The fluctuations of this phase factor
are tractable as long as the parameterP is large enough, such
thatXðϕÞ does not deviate too strongly from c. Accordingly,
expectation values of observables can be written as

FIG. 1. Illustration of the affine coupling layer defined in
Eq. (11). The blue boxes depict elementwise operations.
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hOi ¼
R
dc ρPðcÞhe−ihXðϕÞOðϕÞiϕ∼e−Sc;PðϕÞR

dc ρPðcÞhe−ihXðϕÞiϕ∼e−Sc;PðϕÞ
: ð17Þ

As mentioned previously, a direct computation of ρPðcÞ
with traditional MCMC methods is often infeasible for
problems of interest. Instead, the usual strategy is to
compute

∂ log ρPðcÞ
∂c

¼
R
Dϕ e−Sc;PðϕÞð−Pðc − XðϕÞÞÞR

Dϕ e−Sc;PðϕÞ

¼ h−Pðc − XðϕÞÞiϕ∼e−Sc;PðϕÞ ; ð18Þ

and then to reconstruct logðρPðcÞ=ρPð0ÞÞ by numerical
integration, e.g. with the trapezoidal rule. In contrast,
normalizing flows trained with Sc;PðϕÞ as the target action
allow for a direct computation of ρPðcÞ [including the
overall factor ρPð0Þ] using configurations sampled from
qðϕÞ, as long as the overlap of the target and model
distributions is sufficient. This can be seen by rewriting
Eq. (14) as

ρPðcÞ ¼
Z

Dϕ qðϕÞ e
−Sc;PðϕÞ

qðϕÞ
¼ he−Sc;PðϕÞ−log qðϕÞiϕ∼qðϕÞ; ð19Þ

similar to Eq. (10). A successfully trained flow minimizes
the fluctuations of the exponent in the last expression, such
that the variance of the expectation value remains tractable.
This is precisely the crucial advantage of flow-based
sampling over conventional MCMC methods that allows
the computation of thermodynamic quantities via varia-
tionally optimized reweighting [31,32].
In order to compute ρP across a wide range, one could

train independent flows for each value of c. Alternatively, a
more efficient approach would be to start by training one
flow at some given point (e.g. c ¼ 0) and then perform
retraining for each additional point. However, since high
precision in c is desired, these strategies seem impractical.
Apart from such a training procedure already being
computationally expensive, a large number of different
parameter sets for all the individual flow transformations
would then have to be stored and loaded into memory for
evaluation. Instead, we propose to encode the full infor-
mation about ρP for all c in a single-flow model. This is
achieved by promoting the transport map fðξÞ to a condi-
tional transformation fcðξÞ, which additionally depends on
c. In particular, the context functions s, t of all affine
couplings as defined in Eq. (11) are modified to take c as an
additional input. This only marginally increases the com-
putational effort of evaluating the transformation, although
it may be necessary to make the flow more expressive
overall in order to properly model the dependence on c.

Furthermore, we introduce an additional c-dependent
offset at the last layer, such that the conditional generation
of field configurations ϕ from prior samples ξ takes the
form

ϕðξjcÞ ¼ fcðξÞ þ ϕ̄ðcÞ; ð20Þ

with ϕ̄ðcÞ chosen such that Xðϕ̄ðcÞÞ ¼ c. This offset
already provides the correct mean field configuration for
each c and thereby greatly simplifies training from the start,
because the flow only has to model the distribution around
the given ϕ̄ðcÞ. Since this amounts to just a constant shift,
the Jacobian of the transformation remains unchanged.
It should be stressed that for the simple architecture

utilized in the present work, outputs of intermediate layers
are not necessarily meaningful since we do not specify a
particular flow trajectory in the space of probability
distributions. Only the field variables at the prior and
target endpoints of the transformation carry definite mean-
ing. Nevertheless, enforcing such a particular sequence of
intermediate densities by appropriate loss functions—e.g.,
by interpolating the coupling constants of nonquadratic
action terms as well as the parameter P from 0 to their target
values, thereby resulting in a Gaussian prior on one side
and the desired target density on the other side—could have
several advantages, and will be considered in future work.
Most importantly, such an approach makes the relation of
the present approach to thermodynamic integration and
the Jarzynski equality [54] more concrete. This, in turn,
enables the application of stochastic normalizing flow
approaches [41,42,55], which may be particularly effective
at determining the types of thermodynamic quantities
considered here. Furthermore, explicitly determining the
precise P-dependence of the DoS in this manner may allow
a direct extrapolation to the vanishing-width limit without
the need to optimize several flow instances for different
target parameters.
Taken together, the full transformation defined in

Eq. (20) consisting of a conditional transport map and
an additional offset induces a conditional model distribu-
tion qc for each c, such that the P-dependent DoS may be
computed as

ρPðcÞ ¼ he−Sc;PðϕÞ−log qcðϕÞiϕ∼qcðϕÞ: ð21Þ

During training, one may estimate the conditional KL
divergence DKLðqcke−Sc;PÞ at random points c, distributed
uniformly across a sufficiently large interval, in order to
enforce optimal generalization for arbitrary c.
At this point we emphasize again that in order to evaluate

the above expression for ρP, only samples from the model
distribution are required. Importantly, this implies that once
the flow has been trained, the remaining computations can
be performed extremely efficiently in a manner that has
been fittingly described as “embarrassingly parallel”.
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In particular, field configurations do not need to be arranged
in a Markov chain and no accept/reject steps are necessary.
This constitutes a further potential advantage of our proposed
approach over conventional MCMC calculations.

V. NUMERICAL RESULTS

A. Zero-dimensional model

For a first demonstration of our approach, we consider a
zero-dimensional model of a single two-component scalar
field ϕ ¼ ðϕ1;ϕ2Þ with quartic self-interaction in an
imaginary external field. The simplicity of this model
facilitates a comparison to exact results. The action is

SðϕÞ ¼ m2

2
ðϕ2

1 þ ϕ2
2Þ þ

λ

4
ðϕ2

1 þ ϕ2
2Þ2 þ ihϕ1; ð22Þ

where ϕ1;ϕ2; m2; λ; h∈R. Accordingly, we can identify
XðϕÞ≡ ϕ1 and

Sc;PðϕÞ≡m2

2
ðϕ2

1 þ ϕ2
2Þ þ

λ

4
ðϕ2

1 þ ϕ2
2Þ2

þ P
2
ðc − ϕ1Þ2 þ logN : ð23Þ

We train a normalizing flow using this target action with
m2 ¼ 1, λ ¼ 1, P ¼ 1000. The context functions s, t are
implemented as fully connected networks where the con-
dition c is provided as an additional input dimension; see
Appendix A 1 for further model and training details. The
offset in this case is simply ϕ̄ðcÞ ¼ ðc; 0Þ such that
Xðϕ̄ðcÞÞ≡ ϕ̄1ðcÞ ¼ c, as required by the construction of
Sec. IV.
For the purpose of this proof-of-principle study, we

simply assume for the remainder of this work that ρP ≈ ρ
for sufficiently large P and use Eqs. (5) and (6) instead of
Eqs. (16) and (17). While the accuracy in reproducing the
exact results in this case completely justifies this
assumption, we emphasize that this is an approximation
and one should generally extrapolate P ⟶ ∞ more care-
fully. The particular value of P used here has been adopted
from [22] for simplicity, and is observed to lead to
reasonable results in the present setting. However, in
general, it should be determined from a careful analysis
of the trade-off between the accuracy of the DoS and the
required computational effort, as larger values can lead to
increasing autocorrelations in the case of HMC by forcing a
reduction of the step size, as well as a degradation of the
estimator variance in the case of our flow-based approach.
The DoS computed with flow-based sampling is com-

pared against the exact result in Fig. 2, conclusively
demonstrating the correctness of our approach across several
orders of magnitude. Furthermore, the partition function
ZðhÞ is accurately reproduced, as shown in Fig. 3(a). In
particular, the locations of the first two Lee-Yang zeroes can
be clearly identified. They are associatedwith discontinuities

FIG. 2. Comparison of the DoS computed with flow-based
sampling to the exact solution for the zero-dimensional model.

FIG. 3. Comparison of the flow results to the exact solution for the zero-dimensional model: partition function (a) and average
imaginary part of ϕ1; (b) as functions of h. The locations of the Lee-Yang zeros in (a) are associated with the discontinuities of the
observable in (b).
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in the average imaginary part of ϕ1, which is also accurately
determined with our method as shown in Fig. 3(b).

B. One- and two-dimensional models

In order to verify that our approach alsoworks beyond the
rather trivial zero-dimensional setting, we consider actual
low-dimensional latticemodels of the two-component scalar
field theory described above. Working in lattice units, the
associated action in d dimensions is defined as

SðϕÞ ¼
X
n∈Λ

�
1

2

Xd
μ¼1

jϕðnÞ − ϕðnþ μ̂Þj2

þm2

2
jϕðnÞj2 þ λ

4
jϕðnÞj4 þ ihϕ1ðnÞ

�
; ð24Þ

where ϕðnÞ ¼ ðϕ1ðnÞ;ϕ2ðnÞÞ, Λ is the set of all lattice sites
given by integer-valued coordinates n, μ̂ denotes the unit
vector in direction μ, and we assume periodic boundary
conditions in all directions. The action for each individual
site is essentially equivalent to the zero-dimensional model,
differing only in the additional kinetic term.Accordingly,we
can identify

XðϕÞ≡ X
n∈Λ

ϕ1ðnÞ ð25Þ

as well as

Sc;PðϕÞ≡
X
n∈Λ

�
1

2

Xd
μ¼1

jϕðnÞ − ϕðnþ μ̂Þj2

þm2

2
jϕðnÞj2 þ λ

4
jϕðnÞj4

�

þ P
2

�
c −

X
n∈Λ

ϕ1ðnÞ
�

2

þ logN : ð26Þ

We train flows using this target actionwithm2 ¼ 1, λ ¼ 1,
P ¼ 1000 for one- and two-dimensional lattices of size 8 and
4 × 4, respectively. To enforce equivariance under trans-
lations, the context functions s, t are implemented as
convolutional neural networks with the condition c provided
as an additional input channel. The offset in this case is
ϕ̄ðcÞ ¼ ðc=jΛj; 0Þ, where jΛj denotes the total number of
lattice sites, such that Xðϕ̄ðcÞÞ ¼ c. In order to provide
conventional baseline results, we employ HMC with the
same target action and value forP, subsequently reconstruct-
ing ρP up to an overall factor using the numerical integration
method described in Sec. IV; see Appendix A 2 for further
details on model, training, and simulation.
Figure 4 compares ρPðcÞ=ρPð0Þ (i.e. normalized to 1 at

c ¼ 0) obtained with flow-based sampling to the MCMC
baseline. Similar to the zero-dimensional case, the results
accurately reproduce the conventional computation,
thereby confirming that our approach also works here as
intended. We emphasize again that for the MCMC baseline,
the reconstruction of the DoS at some point c ≠ 0 by
numerical integration requires precise knowledge of
∂c log ρPðcÞ from 0 to c. In contrast, with the flow-based
approach, the DoS can be independently probed at arbitrary
points because it is computed directly.

VI. SUMMARY AND OUTLOOK

In this paper, we apply flow-based sampling to the DoS
approach to complex action problems. Specifically, we
show that normalizing flows can be used to compute the
DoS directly, thereby disposing of the need to reconstruct it
from measurements of a derivative quantity through
MCMC calculations. We demonstrate this method in the
context of simple models with imaginary external fields,
confirming the correctness and accuracy of our approach.
Due to the conceptual and practical differences between

the flow-based and conventional strategies, an in-depth
comparison of the computational cost is not straightforward

FIG. 4. Comparison of the flow results for the normalized DoS to the reconstructions from MCMC calculations for the one- (a) and
two-dimensional (b) models with P ¼ 1000.
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and beyond the scope of this proof-of-principle study. We
note that reaching the same level of accuracy in the final
result using the flow-based approach is significantly
cheaper in practice on the same hardware for the particular
problem setting investigated in this work. This is likely due
to the embarrassingly parallel sampling instead of the
sequential evaluation of Markov chains. Furthermore,
because of the numerical integration, the conventional
ansatz may generally require higher precision in order to
achieve an accurate reconstruction, whereas with the flow-
based method the DoS can be directly probed at arbitrary
points. However, it is unclear a priori how the upfront cost
of training the flow compares against thermalizing the
Markov chains. In general, the overall scaling of the
computational cost required to achieve constant perfor-
mance at different lattice volumes and action parameters
depends strongly on the particular target and flow archi-
tecture, as well as the anticipated number of generated field
configurations. Disentangling the various contributions to
the total cost and defining thresholds for performance gains
is a highly nontrivial task; see also [56] for a detailed
discussion of this issue. For DoS calculations as considered
in the present work, the strong localization of the target
density with increasing values of the parameter P is
expected to further increase the difficulty of the modeling
task, thereby compounding the typically already poor
volume scaling. Nevertheless—independently of how the
cost actually scales in practice—depending on the particu-
lar scientific goals of such a calculation, the intrinsic
advantages of the flow-based approach described in this
work may well justify any additional expenses, and
motivate further exploration in this direction.
In the future, we are interested in extending the present

approach to higher dimensions, larger volumes, and fields
withmore components. Thismay be informative for the study
of an approximatemodel ofQCDnear the second order phase
transition where the external field plays the role of the quark
mass [57]. In particular, computing the DoS could help to
constrain the locationof theLee-Yangedge singularity. In this
context, it may also beworthwhile to implement equivariance
of the flow under the residualOðN − 1Þ symmetry in order to
bettermatch the symmetries of the target distribution. Further
interesting avenues include the relativistic Bose gas at finite
chemical potential [58–60] aswell as the application to gauge
theories via gauge-equivariant flows [43,44], such as e.g.
Uð1Þ gauge theorywith a topological term [25] orQCD in the
heavy-dense limit [27].
Beyond the aim to resolve complex action problems, the

DoS can of course also be employed to compute observ-
ables for theories with purely real actions. While (unless
one is interested in certain thermodynamic quantities) there
is typically no reason to replace a standard MCMC
algorithm with a generically much more expensive method,
such an approach may be particularly useful for the
treatment of ergodicity problems [61], since the target

distribution can be mapped out explicitly in regions of
configuration space that are otherwise pathologically
undersampled. Hence, the approach presented in this work
also constitutes a promising ansatz for circumventing issues
such as topological freezing and critical slowing down via
flow-based methods, complementary to the more com-
monly investigated independence as well as hybrid sam-
pling strategies.
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APPENDIX: IMPLEMENTATION DETAILS

1. Zero-dimensional model

The flow for the zero-dimensional model consists of 16
affine coupling layers with context functions being
fully connected networks featuring three hidden layers
with 64 neurons each. As activation functions we choose
LeakyReLU [64] between layers together with a tanh
activation after the final layer. Each network has two input
neurons, one for the frozen variable (either ϕ1 or ϕ2

depending on the layer) and the other one for the condition
c; as well as two output neurons providing the values for s, t
in Eq. (11). For the training, we apply the Adam optimizer
with a learning rate of 1e–3 and a batch size of 10k, with a
total of 5k gradient updates. In order to compute ρðcÞ, 10k
samples are drawn for each value of c, with a spacing
of Δc ¼ 0.01.

2. One- and two-dimensional models

For the one- and two-dimensional models, the flow also
consists of 16 affine coupling layers. Here, the context
functions are convolutional neural networks featuring two
hidden layers with eight channels each, using intermediate
LeakyReLU activations and a final tanh activation as in the
zero-dimensional case. Each network has three input
channels, two for the frozen subsets of ϕ1;ϕ2 (determined
by alternating checkerboard masking, see e.g. [63]) and one
for the condition c; as well as two output channels
providing the values for s, t in Eq. (11). The conditional
input is constructed with the same dimensions as a single
component of ϕ with c evenly distributed across all sites,
i.e. with values of c=jΛj on each site where jΛj is the total
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number of lattice points. For the training, we apply the
Adam optimizer with a learning rate of 1e–3 and a batch
size of 1k, with a total of 50k gradient updates. In order to
compute ρPðcÞ, 1 × 107 samples are drawn for each value
of c, again with a spacing of Δc ¼ 0.01.
For the conventional MCMC calculations, we use HMC

with a step size of 0.02 and 50 steps per trajectory for the
one-dimensional as well as a step size of 0.01 and 100 steps
for the two-dimensional case. This results in acceptance
rates of roughly 60–90%, with the highest values generally

observed around c ¼ 0 and decreasing rates for larger c.
For each c, we run 10k Markov chains in parallel, where in
each chain the first 1k steps are discarded for equilibration.
Subsequently, the chains are evaluated for 100k steps and
every 10th configuration is recorded, resulting in a total of
1 × 108 configurations for each value of c, using a spacing
of Δc ¼ 0.01 as before. As described in the main text,
ρPðcÞ=ρPð0Þ is reconstructed from ∂c logðρPðcÞ=ρPð0ÞÞ
using the trapezoidal rule and exponentiating the resulting
values for logðρPðcÞ=ρPð0ÞÞ.
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