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Electromagnetic dipole polarizabilities are fundamental properties of a hadron that represent its
resistance to deformation under external fields. For a charged hadron, the presence of acceleration and
Landau levels complicates the isolation of its deformation energy in the conventional background field
method. In this work, we explore a general method based on four-point functions in lattice QCD that
takes into account all photon, quark, and gluon interactions. The electric polarizability (αE) has been
determined from the method in a previous proof-of-principle simulation. Here we focus on the magnetic
polarizability (βM) using the same quenched Wilson action on a 243 × 48 lattice at β ¼ 6.0 with pion
mass from 1100 to 370 MeV. The results from the connected diagrams show a large cancellation between
the elastic and inelastic contributions, leading to a relatively small and negative value for βM consistent
with chiral perturbation theory. We also discuss the mechanism for αE þ βM from combining the two
studies.
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I. INTRODUCTION

Understanding electromagnetic polarizabilities has been
a long-term goal of lattice QCD. The standard approach is
the background field method which introduces classical
static electromagnetic fields to interact with quarks in QCD
[1–32]. The appeal of the method lies in its simplicity: only
two-point correlation functions are needed to measure the
small energy shift with or without the external field, which
amounts to a standard calculation of a hadron’s mass. The
energy shift linear in the applied field is related to dipole
moments, and the quadratic shift to polarizabilities. The
method is fairly robust and has been widely applied to
neutral hadrons.
When it comes to charged hadrons, however, the method

is faced with new challenges. The reason is rather rudi-
mentary: a charged particle accelerates in an electric field
and exhibits Landau levels in a magnetic field. Such

collective motion of the hadron is unrelated to moments
and polarizabilities and must be disentangled from the total
energy shift in order to isolate the deformation energy on
which the polarizabilities are defined. The traditional
method of extracting ground state energy at large times
breaks down since the two-point function no longer has a
single-exponential behavior. Special techniques have to be
developed to analyze such functions. Nonetheless, progress
has been made. For electric field, a continuum relativistic
propagator for a charged scalar is used to demonstrate how
to fit such lattice data for charged pions and kaons [10,11].
It is improved upon by an effective propagator exactly
matching the lattice being used to generate the lattice QCD
data [32]. Furthermore, spatial and time profiles Gðx; tÞ
under Dirichlet boundary conditions with both real and
imaginary parts are used to capture the interactions while
maintaining gauge invariance in the background field. For
magnetic field, various techniques have been tried to deal
with Landau levels, from direct fitting forms [18–23], to
formal studies of Dirac operator [24,25], to a novel
Laplacian-mode projection technique at the quark propa-
gator level [27–31].
Here we advocate an alternative approach based on four-

point functions in lattice QCD. Instead of background
fields, electromagnetic currents couple to quark fields. All
photon-quark, quark-quark, and gluon-quark interactions
are included. It is a general approach that treats neutral and
charged particles on equal footing. The potential of using
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four-point functions to access polarizabilities has been
investigated in the early days of lattice QCD [33–35].
The effort was deemed too computationally demanding at
the time and the results on limited lattices were incon-
clusive. Recently, there is a renewed interest to revive such
efforts, partly spurred by the challenges encountered in the
background field method for charged particles. A re-
examination of the formalism in Ref. [35] is carried out
in Ref. [36] inwhich new formulas are derived inmomentum
space for electric and magnetic polarizabilities of both
charged pion and proton. It is followed by a proof-of-
principle simulation for the electric polarizability of a
charged pion [37]. In this work, we extend the calculation
to magnetic polarizability using the same lattice parameters.
We note there exists other four-point function calculations on
polarizabilities. Ref. [38] employs a position-space formula
for the Compton tensor to calculate charge pion electric
polarizability near the physical point, along with a prelimi-
nary calculation on the proton [39]. A comprehensive review
on pion polarizabilities from other theoretical approaches
and experiment can be found in Ref. [40,41]. We also note
that although Refs. [8,42] are based on the background field
method, they are in fact four-point function calculations. A
perturbative expansion in the background field at the action
level is performed in which two vector current insertions
couple the background field to the hadron correlation
function, leading to the same diagrammatic structures as
in this work.
In Sec. II we outline the methodology to extract magnetic

polarizability of a charged pion from four-point functions.
In Sec. III we show our results from a proof-of-concept
simulation. In particular, we discuss βM and its chiral
extrapolation, αE þ βM, and comparison with ChPT. In
Sec. IV we give concluding remarks. The four-point corre-
lation functions needed in the simulation are given in the
Appendix.

II. METHODOLOGY

In Ref. [36], a formula is derived for electric polar-
izability of a charged pion,

αE ¼ αhr2Ei
3mπ

þ lim
q→0

2α

q2

Z
∞

0

dt
h
Q44ðq; tÞ −Qelas

44 ðq; tÞ
i
; ð1Þ

and for its magnetic polarizability,

βM ¼ −
αhr2Ei
3mπ

þ lim
q→0

2α

q2

Z
∞

0

dt
h
Qinel

11 ðq; tÞ −Qinel
11 ð0; tÞ

i
:

ð2Þ

Here α ¼ 1=137 is the fine structure constant. The formulas
are in discrete Euclidean spacetime but we keep the time axis
continuous for notational convenience. Zero-momentum
Breit frame is employed in the formula to mimic low-energy
Compton scattering, where the initial and final pions are at
rest and the photons have purely spacelike momentum.
The formulas have a similar structure in that they both have
an elastic contribution in terms of the charge radius and pion
mass, and an inelastic contribution in the form of subtracted
time integrals. They differ in two aspects. The Q44 in αE
includes both elastic and inelastic contributions whereas the
Qinel

11 in βM includes only inelastic contributions. In αE, the
elastic Qelas

44 ðq; tÞ is subtracted, whereas in βM it is the zero-
momentum inelastic Qinel

11 ð0; tÞ that is subtracted.
Both αE and βM have the expected physical unit of a3

(fm3). In the elastic term hr2Ei scales like a2 and mπ like
a−1. In the inelastic term 1=q2 scales like a2, t scales like a,
and Q44 and Q11 are dimensionless by definition. The αE
has been studied thoroughly in a previous work [37], from
which we take the results for pion mass mπ and charge
radius hr2Ei and αE. In this work we focus on the βM
in Eq. (2).
The four-point function Q11 is defined as,

Q11ðq; t3; t2; t1; t0Þ≡
P

x3;x2;x1;x0 e
−iq·x2eiq·x1hΩjψðx3Þ∶jL1 ðx2ÞjL1 ðx1Þ∶ψ†ðx0ÞjΩiP

x3;x0hΩjψðx3Þψ†ðx0ÞjΩi
: ð3Þ

In this expression, Ω denotes the vacuum, and normal
ordering is used to include the required subtraction of
vacuum expectation values (VEV) on the lattice. The sums
over x0 and x3 enforce zero-momentum pions at the source
(t0) and sink (t3). The sum over x1 injects momentum q by
the current at t1, whereas sum over x2 takes out q by the
current at t2 to satisfy energy-momentum conservation in
the process. The two possibilities of time ordering are
implied in the normal ordering. The time t in Eqs. (1) and
(2) represents the separation between the two currents t ¼
t2 − t1 with the two fixed ends t0 and t3 implied.

We consider πþ with standard interpolating field,

ψπþðxÞ ¼ d̄ðxÞγ5uðxÞ; ð4Þ

For the lattice version of electromagnetic current density in
the x-direction, we consider two options. One is a local
current (or point current) built from up and down quark
fields,

jðPCÞ1 ≡ iZVκðquūγ1uþ qdd̄γ1dÞ: ð5Þ
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The factor i here is needed to ensure that the spatial

component jðPCÞ1 is Hermitian, in contrast to the time

component jðPCÞ4 in the electric case [37]. The reason is
ðūγ1uÞ† ¼ −ūγ1u whereas ðūγ4uÞ† ¼ ūγ4u (recall
ū≡ u†γ4). The factor κ is to account for the quark-field
rescaling ψ →

ffiffiffiffiffi
2κ

p
ψ in Wilson fermions. The factor 2 is

canceled by the 1=2 factor in the definition of the vector
current 1

2
ψ̄γμψ . The charge factors are qu ¼ 2=3 and qd ¼

−1=3 where the resulting e2 ¼ α in the four-point function
has been absorbed in the definition of βM in Eq. (2).
The advantage of this operator is that it leads to simple
correlation functions. The drawback is that the renormal-
ization constant for the vector current has to be determined.
The other option is the conserved vector current for Wilson
fermions on the lattice (ZV ≡ 1) in point-split form,

jðPSÞ1 ðxÞ≡ iquκu½−ūðxÞð1 − γμÞU1ðxÞuðxþ 1̂Þ
þ ūðxþ μ̂Þð1þ γ1ÞU†

1ðxÞuðxÞ�
þ iqdκd½−d̄ðxÞð1 − γ1ÞU1ðxÞdðxþ 1̂Þ
þ d̄ðxþ 1̂Þð1þ γ1ÞU†

1ðxÞdðxÞ�: ð6Þ

Although conserved current explicitly involves gauge fields
and lead to more complicated correlation functions, it has
the advantage of circumventing the renormalization issue.
All results in this work are based on conserved current.
At the quark level, Wick contractions of quark-antiquark

pairs in Q11 in Eq. (3) lead to topologically distinct quark-
line diagrams shown in Fig. 1. We focus on the connected
contributions in this study. The total connected contribution
is simply the sum of the individual normalized terms,

Q11ðq; t2; t1Þ ¼ QðaÞ
11 þQðbÞ

11 þQðcÞ
11 ; ð7Þ

for either point current or conserved current. The charge
factors and flavor-equivalent contributions have been
included in each diagram. The disconnected contributions
are more challenging and are left for future work.

III. SIMULATION DETAILS AND RESULTS

We use quenched Wilson action with β ¼ 6.0 and
κ ¼ 0.1520, 0.1543, 0.1555, 0.1565 on the lattice
243 × 48. We analyzed 500 configurations for κ ¼
0.1520 and 1000 configurations each for rest of the kappas.
The scale of this action has been determined in Ref. [43],
with inverse lattice spacing 1=a ¼ 2.312 GeV and kappa
critical κc ¼ 0.15708. Dirichlet (or open) boundary con-
dition is imposed in the time direction, while periodic
boundary conditions are used in spatial dimensions. The
pion source is placed at t0 ¼ 7 and sink at t3 ¼ 42 (time is
labeled from 1 to 48). One current is inserted at a fixed
time t1, while the other current t2 is free to vary. We consider
four different combinations of momentum q ¼ f0; 0; 0g;
f0; 0; 1g; f0; 1; 1g; f0; 0; 2g. In lattice units they correspond
to the values q2a2 ¼ 0, 0.068, 0.137, 0.274, or in physical
units to q2 ¼ 0, 0.366, 0.733, 1.465 (GeV2).

A. Raw correlation functions

In Fig. 2 we show the raw normalized four-point
functions, both individually and collectively, at the four
different values of momentum q and atmπ ¼ 600 MeV. All
points are included and displayed on a linear scale for
comparison purposes. The special point of t1 ¼ t2 is regular
in diagram a, but gives irregular results in diagram b and c
at all values of q. The same irregularity is observed in the
electric case. It is an unphysical contact interaction on the
lattice which vanishes in the continuum limit. We treat this
point with special care in our analysis below. The results
about t1 ¼ 18 in diagram b and c are mirror images of each
other, simply due to the fact that they are from the two
different time orderings of the same diagram. In principle,
this property could be exploited to reduce the cost of
simulations by placing t1 in the center of the lattice. In this
study, however, we computed all three diagrams separately,
and add them between t1 ¼ 19 and t3 ¼ 41 as the signal.

FIG. 1. Quark-line diagrams of a four-point function contrib-
uting to polarizabilities of a charged pion. Diagrams a,b,c are
connected contributions whereas diagrams d,e,f are disconnected
contributions. In each diagram, flavor permutations are assumed
as well as gluon lines that connect the quark lines. The zero-
momentum pion interpolating fields are represented by vertical
bars (wall sources).
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To see the structure of the four-point function in Eq. (3), we insert a complete set of intermediate states in the numerator
(trice) and in the denominator (once), and make use of translation invariance and kinematics,

Q11ðq;t3;t2;t1;t0Þ¼
X

x3;x2;x1;x0

N3
s

X
n;ni;nf

hΩjψð0Þjnfð0Þie−amπðt3−t2Þhnfð0ÞjjL1 ð0ÞjnðqÞie−aEnðqÞðt2−t1Þ

×hnðqÞjjL1 ð0Þjnið0Þie−amπðt1−t0Þhnið0Þjψ†ð0ÞjΩi
.�X

x3;x0

Ns

X
n

hΩjψð0Þjnð0Þie−amnðt3−t0Þhnð0Þjψ†ð0ÞjΩi
�

−Ns

X
n

hΩjjL1 ð0ÞjnðqÞie−aEnðqÞðt2−t1ÞhnðqÞjjL1 ð0ÞjΩi

¼−N2
s jhπð0ÞjjL1 ð0ÞjπðqÞij2e−aðEπ−mπÞðt2−t1ÞþNsjhΩjjL1 ð0ÞjπðqÞij2e−aEπðt2−t1Þþ���; ð8Þ

where the leading contributions are isolated in the last step under time limits t3 ≫ t1;2 ≫ t0. The change of sign is due to the
metric factor for spatial components in Eq. (5). The Ns ¼ NxNyNz is the number of spatial sites on the lattice. The normal
ordering in Eq. (3) is formally defined as,
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FIG. 2. Individual and total four-point functions (left) and their effective mass functions (right) from the connected diagrams as a
function of current separation at mπ ¼ 600 MeV. Vertical gridlines indicate the pion walls (t0 ¼ 7 and t3 ¼ 42) and the fixed current

insertion (t1 ¼ 18). Horizontal gridlines in the effective mass functions are Eρ −mπ in lattice units where Eρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

ρ

q
with

measured mπ and mρ. The results in the total between t2 ¼ 19 and t2 ¼ 41 will be the signal for our analysis.
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hΩjψðx3Þ∶jL1 ðx2ÞjL1 ðx1Þ∶ψ†ðx0ÞjΩi
≡ hΩjψðx3ÞT½jL1 ðx2ÞjL1 ðx1Þ�ψ†ðx0ÞjΩi
− hΩjTjL1 ðx2ÞjL1 ðx1ÞjΩihΩjψðx3Þjψ†ðx0ÞjΩi; ð9Þ

where T in the first term means time-ordering and the
second term signifies a subtraction of vacuum expectation
values (VEV) on the lattice in the disconnected diagrams.
In fact, subtraction is only needed for diagram d; it vanishes
for diagrams e and f. The pion two-point function cancels
exactly in the second term in Eq. (8).
Pion form factor is contained in the elastic matrix

element,

hπðp0ÞjjLμ ð0ÞjπðpÞi

¼ ðp0 þ pÞμFπðq2Þ þ qμ
p02 − p2

q2
ð1 − Fπðq2ÞÞ: ð10Þ

It vanishes for jL1 as long as ðp0 þ pÞμ does not have a
μ ¼ 1 component. The condition is indeed satisfied under
the zero-momentum Breit frame and our selection of q
values. This is the reason that q ¼ f1; 1; 1g is excluded
from the set of q values relative to the electric case.
In other words, there is no elastic contribution in the

second term of βM in Eq. (2) as long as transverse
momentum to jL1 is considered. This is evident in the
effective mass functions in Fig. 2 where the intermediate
states are not on-shell pions, but states with different mass
and energy. Possible intermediate states are either vector or
axial mesons in the magnetic channel. For reference, we
draw horizontal lines Eρ −mπ in lattice units where

Eρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

ρ

q
, using measuredmπ andmρ. The effective

mass functions in Fig. 2 are only provided for reference
purposes on the intermediate state. They can become noisy
at large current separations and higher momentum. This is
not a concern since there is no fitting performed at large
times. The signal is the time integral of subtracted four-
point functions, which amounts to evaluating the area
between two curves. And the signal is dominant at small
times.

B. Magnetic polarizability

In Fig. 3 we show the connected contribution Q11ðqÞ at
different q values and zero-momentumQ11ð0Þ as a function
of current separation t ¼ t2 − t1 in lattice units. Only results
for mπ ¼ 600 MeV are shown as an example; the graphs at
the other pionmasses look similar. The time integral required
for βM in the formula, ð1=aÞ R dt½Q11ðq; tÞ −Q11ð0; tÞ�, is
simply the shaded area between the two curves, and it is
positive. One detail to notice is that the curves include the
t ¼ 0 point which has unphysical contributions in Q11

mentioned earlier. We would normally avoid this point
and only start the integral from t ¼ 1. However, the chunk

of area between t ¼ 0 and t ¼ 1 is the largest piece in the
integral. To include this contribution, we linearly extrapo-
lated both Q11ðqÞ and Q11ð0Þ back to t ¼ 0 using the two
points at t ¼ 1 and t ¼ 2. As the continuum limit is
approached, the t ¼ 0 point will become regular and the
chunk will shrink to zero.
The inelastic term can now be constructed by multiply-

ing 2α=q2 and the time integral, and it is a function of
momentum. Since βM is a static property, we extrapolate it
to q2 ¼ 0 smoothly. We consider two fits, a quadratic fit
aþ bxþ cx2 (x ¼ q2) using all three data points, and a
linear fit using the two lowest points. The results are shown
in Fig. 4 for all pion masses. One observes a spread in the
extrapolated values at q2 ¼ 0. We treat the spread as a
systematic effect as follows. We take the average of the two
extrapolated values along with statistical uncertainties, and
half of the difference in their central values as a systematic
uncertainty. The statistical and systematic uncertainties are
then propagated in quadrature to the analysis of βM. For
our data, the statistical uncertainties are relatively small, so
the systematic uncertainties are dominant in the inelastic
contribution.
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FIG. 3. Momentum-carrying Q11ðqÞ and zero-momentum
Q11ð0Þ at different values of q at mπ ¼ 600 MeV. The shaded
area between the two is the dimensionless signal contributing to
magnetic polarizability.
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Finally, we assemble the two terms in the formula in
Eq. (2) to obtain βM in physical units. The results are
summarized in Fig. 5 and in Table I. At each pion mass the
elastic term is negative, whereas the inelastic term is positive.
The total is slightly positive at the two heaviest pion masses,
then turns negative as the pion mass is lowered. To see how
the trend continues to smaller pion masses, we take the total
values for βM at the four pion masses and perform a smooth
extrapolation to the physical point. Since our pion passes are
relatively large, we consider two forms to cover the range of
uncertainties in the extrapolation: a polynomial form aþ
bmπ þ cm3

π and a form with a divergent 1=mπ term a
mπ

þ
bmπ þ cm3

π inspired by ChPT [44,45]. The spread can be
considered as a systematic effect. The extrapolated value of
−3.2� 0.9 to − 1.4� 0.5 at the physical point is compa-
rable to the known value of −2.0� 0.6� 0.7 from PDG
[46] and −2.77ð11Þ from two-loop contribution of ChPT

[41,44]. An interesting feature is a sign change from positive
to negative as pion mass is lowered. It happens around
750 MeV. In contrast, there is no sign change in the
electric case.
To get an overview on how the βM comes about, we show

in Fig. 6 three terms on the same graph: elastic, inelastic,
and their sum. The inelastic curve is taken as the difference
of the total and the elastic curves. This gives a constraint of
10.7� 2.0 to 12.4� 1.9 for the inelastic at the physical
point. It would be interesting to verify this chiral behavior
in the inelastic term directly in future simulations. The
results in this figure point to the following physical picture:
βM is the result of a large cancellation between the elastic
and inelastic contributions. The cancellation is more
significant than in the electric case [37]. This cancellation
appears to continue in the approach to the physical point,
resulting in a total value that is relatively small and
negative, and a relatively mild pion mass dependence
compared to the individual contributions. It is almost the
complete opposite to the electric case [37].

FIG. 4. Momentum dependence of the inelastic term in Eq. (2)
and its extrapolation to q2 ¼ 0 at all pion masses. Red points are
based on the shaded areas in Fig. 3. Black curve is a quadratic
extrapolation using all three points. Green curve is a linear
extrapolation based on the two lowest points. Empty points
indicate the corresponding extrapolated values contributing
to βM.

FIG. 5. Chiral extrapolation of charged pion magnetic polar-
izability. For better viewing, the PDG value (star) and ChPT value
(triangle) are shifted horizontally by 10 MeV.

TABLE I. Summary of results in physical units from two-point and four-point functions. Results for charge radius and αE are taken
from previous work [37]. Elastic βM and total βM are chirally extrapolated to the physical point. Inelastic βM at the physical point is taken
as the difference of the two. Known values from ChPT and PDG are listed for reference. All polarizabilities are in units of 10−4 fm3.

κ ¼ 0.1520 κ ¼ 0.1543 κ ¼ 0.1555 κ ¼ 0.1565 Physical point Known value

mπ (MeV) 1104.7� 1.2 795.0� 1.1 596.8� 1.4 367.7� 2.2 138 138
mρ (MeV) 1273.1� 2.5 1047.3� 3.4 930.� 7. 830.� 17. 770 770

hr2Ei (fm2) 0.1424� 0.0029 0.195� 0.007 0.257� 0.005 0.304� 0.016 0.40� 0.05 0.434� 0.005 (PDG)

αE elastic 0.618� 0.012 1.17� 0.04 2.07� 0.04 3.97� 0.21 13.9� 1.8 15.08� 0.13 (PDG)
αE inelastic −0.299� 0.019 −0.672� 0.030 −0.92� 0.11 −1.27� 0.13 −9.7� 1.9 to −5.1� 2.0
αE total 0.319� 0.023 0.50� 0.05 1.15� 0.11 2.70� 0.25 4.2� 0.5 to 8.8� 0.9 2.93� 0.05 (ChPT)

2.0� 0.6� 0.7 (PDG)

βM elastic −0.618� 0.012 −1.17� 0.04 −2.07� 0.04 −3.97� 0.21 −13.9� 1.8 −15.08� 0.13 (PDG)
βM inelastic 0.705� 0.021 1.24� 0.05 1.91� 0.09 3.10� 0.15 10.7� 2.0 to 12.4� 1.9
βM total 0.087� 0.024 0.07� 0.06 −0.16� 0.09 −0.87� 0.26 −3.2� 0.9 to −1.4� 0.5 −2.77� 0.11 (ChPT)

−2.0� 0.6� 0.7 (PDG)
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A comparison on βM can be made here between the four-
point function method and the background field method. For
the former, our value of −3.2ð9Þ is the only attempt at the
moment. For the latter, there are several calculations. In
Refs. [19,20], βM is studied for both charged and neutral
pions. A fitting form is used that includes Landau levels and
up to B4 contributions in magnetic field for charged pions.
Values of −1.15ð31Þ and −2.06ð76Þ are obtained on two
different lattices. No chiral extrapolation is performed. Since
only bare quarkmasses are givenwe could not ascertainwhat
pion masses they correspond to. In Ref. [31], a Laplacian-
mode projection technique is employed at the quark propa-
gator level to filter out the Landau levels. The same technique
is used on the nucleon [30].A final value of−1.70ð14Þð25Þ is
reported. It also predicts a sign change in βM, but only after
chiral extrapolation. The simulated results are positive at all
the pionmasses considered, down to about 300MeV.A Padé
form is introduced to extrapolate the positive values to the
negative one at the physical point. The sign change happens
at around 225 MeV. This is different from the sign change
observed in Fig. 6, which happens at a heavier pion mass,
before chiral extrapolation. This is an interesting puzzle for
future investigations. The resolution could be in the different
systematics present in the two calculations. For the four-point
function method in this work, it could be the quenched
approximation, disconnected diagrams, and the contact term
in the connected diagrams.

C. αE + βM
Here we take a closer look at the sum of electric and

magnetic polarizabilities. ChPT gives a solid prediction that
αE þ βM ≈ 0 at leading-oder and αE þ βM ≈ 0.16 at the
two-loop order [44] in units of 10−4 fm3. The Baldin sum
rule [41,47] applied to a charged pion gives αE þ βM ≈
0.39ð4Þ in the same units.

In the four-point function formalism, we note first that if
we add Eqs. (1) and (2), the elastic charge radius terms
cancel exactly, leaving only inelastic contributions in the
form of subtracted time integrals,

αE þ βM ¼ lim
q→0

2α

q2

Z
∞

0

dt
h
Q44ðq; tÞ −Qelas

44 ðq; tÞ

þQinel
11 ðq; tÞ −Qinel

11 ð0; tÞ
i
: ð11Þ

This can be regarded as a sum rule for αE þ βM on the
lattice (instead of energy integration over cross sections, it
is a time integration over subtracted four-point functions).
Second, the inelastic terms are opposite in sign so there
is a cancellation in the inelastic contributions as well.
Specifically, αE inelastic is negative whereas βM inelastic is
positive and both are momentum-dependent. In Fig. 7, we
show the momentum dependence separately along with
their sum including the extrapolated q2 ¼ 0 limit. They are
displayed on the same scale at different pion masses to

FIG. 6. Individual and total contributions to charged pion βM
from four-point functions in lattice QCD based on the formula in
Eq. (2). The total is taken from Fig. 5, and the elastic from
Ref. [37]; both are chirally extrapolated to the physical point. The
inelastic is from the difference of the two.

FIG. 7. Momentum dependence of the inelastic terms at differ-
ent pion masses. The values at q2 ¼ 0 are from a linear
extrapolation using the two lowest points. The curves are straight
lines connected all the points. The sum of the two inelastic terms
(red) is a direct measure of the momentum dependence for
αEðqÞ þ βMðqÞ.
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facilitate comparison. The magnetic points are taken from
Fig. 4. The electric points are taken from Ref. [37]. Note
that we leave out the q ¼ f1; 1; 1g point from the electric
case for a one-to-one comparison. The salient feature is that
they are not only opposite in sign, but the magnetic is
consistently larger than the electric in magnitude, over the
entire momentum range. As a result, the cancellation leaves
a relatively small and positive value. The value at q2 ¼ 0
appears to grow with decreasing pion mass, which is
deviating from ChPT expectations.
Finally, we look at pion mass dependence, by adding

inelastic terms at the q2 ¼ 0 limit and elastic terms. We plot
in Fig. 8 βM from this work, αE from the previous work
[37], and their sum on the same graph. We see αE is positive
in the pion mass range studied, and βM is negative except at
the heaviest pion mass of 1100MeV. The cancellation leads
to a positive value for αE αE þ βM at the three lowest pion
masses. It is unclear how the cancellation plays out in the
approach to the physical point due to large uncertainties in
the extrapolations.

IV. CONCLUSION

Building on the study of electric polarizability αE for a
charged pion using four-point functions in lattice QCD
[37], we investigated its magnetic polarizability βM using
the same methodology and simulation parameters. The
extension is relatively straightforward, mainly replacing
charge-charge correlation (Q44) with current-current cor-
relation (Q11). The formula for βM in Eq. (2) has a similar
structure to the one for αE in Eq. (1). They share the same
charge radius hr2Ei and pion mass in the elastic contribution,
but this term appears with an opposite sign in the two
formulas. The inelastic contribution is in the form of a

subtracted time integral. In the electric case, it is the elastic
Qelas

44 ðqÞ at each momentum that is subtracted from the total,
whereas in the magnetic case it is the zero-momentum
inelasticQ11inelð0Þ that is subtracted. OnlyQ44 is needed for
αE, but bothQ44 andQ11 are needed for βM due to coupling
between the two formulas. The methodology requires two-
and four-point functions, but not three-point functions.
The emerging picture in Fig. 6 for βM is similar to that for

αE, but in the reverse sense: it is the result of a cancellation
between a negative elastic contribution and a positive
inelastic contribution. The cancellation is more significant
than in the electric case. Individually, each contribution has
strong pion mass dependence in the approach to the chiral
limit, but the total has a small negative valuewith a relatively
mild pion mass dependence. Combining the results of this
study and those of Ref. [37], we found that αE þ βM is the
consequence of cancellations at three levels to varying
degrees. First, there is an exact cancellation in the elastic
terms. Second, there is a cancellation in the inelastic terms as
a function of momentum, with the magnetic slightly larger
than the electric, leaving a relatively weak momentum
dependence at fixed pion mass. Third, at the static limit
there is a partial cancellation betweenαE andβM at the lowest
three pion masses explored, leaving a positive value.
Although the resulting sign of αE þ βM is consistent with
ChPT, it is unclear quantitatively in the approach to the
physical point since chiral extrapolation of the results suffers
from large uncertainties. These issues point to the importance
of pushing to smaller pion masses.
We caution that the above picture is still subject to a

number of systematic effects at the proof-of-principle stage,
such as the quenched approximation, finite-volume effects,
and disconnected loops. In particular, there is a systematic
effect in the connected diagrams from the contact term
when the two currents overlap on the same quark. This is a
lattice artifact of unknown size that can only be computed
correctly very close to the continuum limit. Additionally,
there is a puzzling difference between the four-point
function method and the background field method that
warrants further study. Although both methods yield
similar negative values at the physical point after chiral
extrapolation, they have different signs at nonphysical pion
masses. The resolution should focus on the different
systematic effects present in the two studies.
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APPENDIX: MAGNETIC CORRELATION FUNCTIONS

A detailed formalism and notation has been laid out in the study of electric polarizability [37]. Here we present essential
equations needed for magnetic polarizability and point out subtle differences.
Equation (3) is a normalized four-point function where the normalization constant is taken as the wall-to-wall two-point

function,

X
x3;x0

hΩjψðx3Þψ†ðx0ÞjΩi ¼ Tr
s;c

h�
WTPðt3ÞVðdÞ

a1 Þ†ðWTPðt3ÞVðuÞ
a1

�i
¼ Tr

s;c

h�
WTPðt0ÞVðuÞ

a2 Þ†ðWTPðt0ÞVðdÞ
a2

�i
: ðA1Þ

Here Va1 and Va2 are zero-momentum quark propagators emanating from the walls at t0 and t3, respectively,

VðqÞ
a1 ≡M−1

q Pðt0ÞTW; VðqÞ
a2 ≡M−1

q Pðt3ÞTW: ðA2Þ

Here M−1
q is the inverse quark matrix, PðtÞ a projector that projects a quark propagator from a given source to time slice t,

and W the wall source.
For diagram a, the unnormalized four-point function with local current (denoted as PC) is written as,

Q̃ða;PCÞ
11 ðq; t1; t2Þ ¼ −

4

9
Z2
Vκ

2Tr
s;c

h�
½Pðt2ÞVa2�†γ5γ1eiqPðt2ÞVa1Þ†

�
½Pðt1ÞVa2�†γ5γ1eiqPðt1ÞVa1

�i
: ðA3Þ

Comparing to Q44 in the electric case [37], in addition to replacing γ4 with γ1, there is an overall sign change in Q11 due to
the i factor in jL1 in Eq. (5). For conserved current (denoted as PS),

Q̃ða;PSÞ
11 ðq; t1; t2Þ ¼ −

4

9
κ2Tr

s;c

h�
½Pðt2ÞVa2�†γ5ð1− γ1ÞeiqU1ðt2; t2ÞPðt2ÞVa1 − ½Pðt2ÞVa2�†γ5ð1þ γ1ÞU†

1ðt2; t2ÞeiqPðt2ÞVa1

�†

×
�
½Pðt1ÞVa2�†γ5ð1− γ1ÞeiqU1ðt1; t1ÞPðt1ÞVa1 − ½Pðt1ÞVa2�†γ5ð1þ γ1ÞU†

1ðt1; t1ÞeiqPðt1ÞVa1Þ
i
: ðA4Þ

In our notation, the current split in space is only implicitly carried in the gauge links, not in quark propagators, whereas the
split in time is explicitly carried in both the propagators and gauge links. For example, a split at time slice t2 has the
following meaning in the links,

Uμðt2; t2 þ μ̂4Þ≡
�
U4ðt2; t2 þ 1Þ; if μ ¼ 4

Uμðt2; t2Þ; if μ ≠ 4;

U†
μðt2 þ μ̂4; t2Þ≡

�
U†

4ðt2 þ 1; t2Þ; if μ ¼ 4

U†
μðt2; t2Þ; if μ ≠ 4:

ðA5Þ

Consequently, U1 and U†
1 do not commute with eiq, unlike U4 and U†

4 in the electric case.
For diagram b and local current, we have

Q̃ðb;PCÞ
11 ðq; t2Þ ¼

5

9
Z2
Vκ

2Tr
s;c

h�
Pðt2Þγ5Vð1;PCÞ

a3 ðqÞ	†γ1e−iqPðt2ÞVa2WTPðt3Þγ5Va1

i
; ðA6Þ

where Vð1;PCÞ
a3 is a SST quark propagator built from Va1,

Vð1;PCÞ
a3 ðqÞ≡M−1

q Pðt1ÞT ½γ1e−iqPðt1ÞVa1�: ðA7Þ

Here SST stands for Sequential Source Technique which takes an existing quark propagator as the source for a new quark
propagator.
For diagram b and conserved current,

Q̃ðb;PSÞ
11 ðq; t2Þ¼

5

9
κ2Tr

s;c

h
½Pðt2Þγ5Vð1;PSÞ

a3 ðqÞ�†½ð1− γ1Þe−iqU1ðt2; t2Þ− ð1þ γ1ÞU†
1ðt2; t2Þe−iq�Pðt2ÞVa2WTPðt3Þγ5Va1

i
; ðA8Þ
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where a new inversion is needed for the SST propagator,

Vð1;PSÞ
a3 ðqÞ≡M−1

q

h
PTðt1Þð1 − γ1Þe−iqU1ðt1; t1ÞPðt1ÞVa1 − PTðt1Þð1þ γ1ÞU†

1ðt1; t1Þe−iqPðt1ÞVa1

i
: ðA9Þ

For diagram c and local current, we have

Q̃ðc;PCÞ
11 ðq; t2Þ ¼ −

5

9
Z2
Vκ

2Tr
s;c

�h
γ1eiqPðt2Þγ5Va1

i†
Pðt2ÞVð1;PCÞ

a4 ðqÞWTPðt3Þγ5Va1

�
: ðA10Þ

where Vð1;PCÞ
a4 a SST quark propagator built from Va2,

Vð1;PCÞ
a4 ðqÞ≡M−1

q Pðt1ÞT ½γ1eiqPðt1ÞVa2�: ðA11Þ

For diagram c and conserved current,

Q̃ðc;PSÞ
11 ðq; t2Þ ¼ −

5

9
κ2Tr

s;c

h
½Pðt2Þγ5Va1ðqÞ�†½ð1 − γ1Þe−iqU1ðt2; t2Þ − ð1þ γ1ÞU†

1ðt2; t2Þe−iq�Pðt2ÞVð1;PSÞ
a4 WTPðt3Þγ5Va1

i
;

ðA12Þ

where

Vð1;PSÞ
a4 ðqÞ≡M−1

q

h
PTðt1Þð1 − γ1ÞeiqU1ðt1; t1ÞPðt1ÞVa2 − Pðt1ÞTð1þ γ1ÞU†

1ðt1; t1ÞeiqPðt1ÞVa2

i
: ðA13Þ
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