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(Received 3 August 2023; accepted 8 September 2023; published 25 September 2023)

We investigate a separability criterion based on the computable cross-norm (CCNR), and a related
quantity called the CCNR negativity. We introduce a reflected version of the CCNR negativity, and discuss
its connection with other well-established entanglement-related quantities, namely the reflected entropy
and the operator entanglement entropy. For free fermionic and bosonic theories, we derive exact formulas
in terms of two-point correlation functions, which allow for systematic numerical investigations and, in
principle, analytical treatments. For systems with a global Uð1Þ symmetry, we study the symmetry-
resolved reflected entropy and CCNR negativity. We provide conformal field theory results for the charged
moments in the case of adjacent intervals, finding perfect agreement with the numerics. We observe an
equipartition of reflected entropies and CCNR negativities, both for free-fermions and free-boson models.
The first charge-dependent corrections are conjectured for fermions and worked out from the conformal
field theory calculations for bosons.
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I. INTRODUCTION

A fundamental problem [1,2] in quantum information
theory is the detection of entanglement for general quantum
states. Since the pioneering work of Werner [3] concerning
the problem of separability of mixed states, several criteria
have been proposed to decide whether a given quantum
state is entangled or not. Among them stand out the positive
partial transposition (PPT) criterion [4,5] and the comput-
able cross-norm or realignment (CCNR) criterion [6,7],
providing simple necessary conditions for separability.
These two independent criteria are based on permutations
of density matrix elements [8,9], and neither is stronger in
general.
Based on the PPT criterion, the PPT logarithmic neg-

ativity [10–12] is a well-established entanglement measure
for bipartite mixed states, in particular in the context of
quantum many-body systems [13–18]. Recently, a CCNR
negativity based on the CCNR criterion has been discussed
in conformal field theory (CFT) [19], holography [20] and
topological systems [21].

Entanglement plays a prominent role in quantum many-
body systems [22–24], particularly in relation to critical
properties [25–34] and topological order [35–37]. In the
context of quantum many-body systems with a global
conserved charge, an important issue is to understand how
each symmetry sector contributes to the total entanglement.
This symmetry resolution of entanglement is the object
of intense research, both theoretical and experimental
[38–45]. Symmetry-resolved entanglement entropies have
notably been investigated in the context of critical systems
[39–41,46–53], integrable field theories and lattice models
[54–59], topological phases [60–65] and quantum many-
body systems out of equilibrium [66–74]. In addition, other
entanglement-related quantities possess a meaningful sym-
metry resolution [45,75–82]. In this paper, we investigate
the symmetry resolution of two related quantities, the
CCNR negativity and reflected entropies, in the context
of CFT and free theories.
This paper is organized as follows. We begin in Sec. II

with the definition of the (Rényi) CCNR negativity, and its
reflected generalization that we introduce. We discuss the
relations between the Rényi CCNR negativities and two
other important quantities, namely the reflected entropy
and the operator entanglement entropy. In Sec. III, we
derive general formulas for the Rényi reflected entropies
and CCNR negativities, valid for free fermionic and
bosonic fields in arbitrary dimensions. The resulting
expressions are fully determined in terms of the two-point
correlation functions, making them suitable for lattice
calculations. We study the symmetry resolution of reflected
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entropy and CCNR negativity in Sec. IV. We present CFT
results for two adjacent regions, which we verify against
numerical calculations for free fermions and bosons. We
conclude in Sec. V with a summary of our main results, and
give an outlook on future study. Finally, some technical
details can be found in the three appendices that complete
this work.

II. QUANTITIES OF INTEREST

In this section we define the CCNR negativity, the
reflected entropy and the operator entanglement entropy.
We discuss various connections between these quantities
and their important properties.

A. Definition of the CCNR negativity

Let ρAB be the density matrix of a bipartite system A ∪ B
in a general state. By definition, ρAB is a positive semi-
definite Hermitian operator with trace one. We assume that
the total Hilbert space factorizes as the product of local
Hilbert spacesHA ⊗ HB, and define fjaig and fjbig to be
orthonormal basis states of HA and HB, respectively. With
this choice of bases, the density matrix reads

ρAB ¼
X
a;a0

X
b;b0

habjρABja0b0ijabiha0b0j; ð1Þ

where jabi≡ jai ⊗ jbi. We introduce the realignment
matrix of ρAB, denoted R≡ RðρABÞ as

R ¼
X
a;a0

X
b;b0

habjρABja0b0ijaa0ihbb0j ð2Þ

by swapping basis elements jbi and ja0i of ρAB. By
definition, R is not necessarily a square matrix, though
the product RR† is. The latter operator acts on HA ⊗ HA,

RR† ¼
X
a;a0

X
ã;ã0

TrHB
ðhajρABja0ihã0jρABjãiÞjaa0ihãã0j: ð3Þ

For separable states, jjRjj ¼ Trð
ffiffiffiffiffiffiffiffiffi
RR†

p
Þ ≤ 1, which con-

stitutes the CCNR separability criterion [6,7]. A state is
thus guaranteed to be entangled if jjRjj > 1.
Analogously to the PPT logarithmic negativity, the

CCNR negativity is defined as

E ¼ log Trð
ffiffiffiffiffiffiffiffiffi
RR†

p
Þ: ð4Þ

The trace norm jjRjj is challenging to compute in practice.
Fortunately, a replica formulation of (4) can be imple-
mented [19]. The replica method relates the trace norm of R
to the moments of RR†,

Zn ¼ TrðRR†Þn; ð5Þ

where jjRjj is obtained by analytic continuation from
integer values n to 1=2. A Rényi generalization of (4)
can be defined as

En ¼ log TrðRR†Þn; ð6Þ

such that E ¼ limn→1=2 En. For n ¼ 1 we retrieve the purity
TrðRR†Þ ¼ Trρ2AB such that E1 ¼ −S2ðρABÞwhere SnðρÞ ¼
ð1 − nÞ−1 log Trρn is the Rényi entropy of ρ.
For pure states, it is straightforward to show that

En ¼ 2 log TrρnA ¼ 2ð1 − nÞSnðρAÞ; ð7Þ

where ρA ¼ TrHB
ρAB, such that the CCNR negativity is the

Rényi entropy of order 1=2, E ¼ S1=2ðρAÞ. For simple

separable states, ρAB ¼ P
k pkρ

ðkÞ
A ⊗ ρðkÞB where ρðkÞB are

projectors with orthogonal support, we have

En ¼ log

�X
k

p2n
k

�
; ð8Þ

which yields a vanishing CCNR negativity for n ¼ 1=2
since

P
k pk ¼ 1, in accordance with the criterion E ≤ 0 for

separable states.

B. A generalization of the realignment matrix

We may generalize the realignment matrix of ρAB to that
of ρm=2

AB with m∈Zþ as

Rm ¼
X
a;a0

X
b;b0

habjρm=2
AB ja0b0ijaa0ihbb0j: ð9Þ

For m ¼ 2 it reduces to R. Similarly to the special case
m ¼ 2 discussed above, we introduce the moments

Zm;n ¼ TrðRmR
†
mÞn; ð10Þ

and define the ðm; nÞ-Rényi CCNR negativity as

Em;n ¼ log TrðRmR
†
mÞn; ð11Þ

such that E2;n ≡ En. For pure states, it still holds that
Em;n ¼ 2ð1 − nÞSnðρAÞ, irrespective of m. Moreover, we
have the relation TrðRmR

†
mÞ ¼ TrρmAB such that Em;1 ¼

ð1 −mÞSmðρABÞ.

C. Relation to reflected entropy and operator
entanglement entropy

In this subsection, we discuss the relations between
three information theoretic quantities of recent interest: the
CCNR negativity, the reflected entropy and the operator
entanglement entropy.
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The reflected entropy [83] has attracted much attention
[84–96] since its introduction as a correlation measure for
mixed states in the holographic context. However, it has
recently been shown that the reflected entropy is not a
measure of physical correlations in general, since it is not
monotonically nonincreasing under partial trace [97].
Nevertheless, this quantity has a meaningful relationship
to entanglement, in particular with tripartite entanglement
[98,99] (see also Appendix C), and with mutual informa-
tion [88,100]. To define the reflected entropy, we consider a
purification of ρmAB with m∈ 2Zþ, denoted jΩmi, such that
TrHA⊗HB

ðjΩmihΩmjÞ ¼ 1
TrρmAB

ρmAB. It can be constructed

using the Choi-Jamiołkowski isomorphism [101,102] as

jΩmi¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
TrρmAB

p X
a;a0

X
b;b0

habjρm=2
AB ja0b0ijabi⊗ ja0b0i; ð12Þ

by doubling the original Hilbert space. A replica formulation
of the reflected entropy gives a practical handle for compu-
tations. This replica trick involves two replica indices,m and
n. The latter represents the usual Rényi index while the
former is related to the purification. One then defines the

reflected density matrix ρðmÞ
AA ¼ TrHB⊗HB

ðjΩmihΩmjÞ, and
introduces the ðm; nÞ-Rényi reflected entropy as

SRm;n ¼
1

1 − n
log TrðρðmÞ

AA Þn: ð13Þ

The n-Rényi reflected entropy is recovered by analytic
continuation m → 1, and the reflected entropy by further
taking the limit n → 1.
The reflected density matrix ρðmÞ

AA , constructed using the
Choi-Jamiołkowski isomorphism as described above, can
also be defined using the realignment matrix of ρm=2

AB
[see (9)] as

ρðmÞ
AA ¼ 1

TrρmAB
RmR

†
m: ð14Þ

Comparing the ðm; nÞ-Rényi CCNR negativity in (11) with
the ðm; nÞ-Rényi reflected entropy in (13), we have

Em;n ¼ ð1 − nÞSRm;n þ nð1 −mÞSmðρABÞ; ð15Þ

such that setting m ¼ 2 we get the Rényi CCNR negativity
En. The ðm; nÞ-Rényi CCNR negativity can be viewed as
the unnormalized ðm; nÞ-Rényi reflected entropy. With
expression (15), it can be checked that, for topological
systems, the results of [21] on CCNR negativity match
earlier work on reflected entropy [87].
The operator entanglement entropy of a density matrix

[45,103–105], denoted En (for its Rényi generalization), is
the (Rényi) Shannon entropy of the squared probability
distribution values of the operator Schmidt decomposition

of that density matrix. It is direct to realize that the reflected
entropy is the operator entanglement entropy of

ffiffiffiffiffiffiffi
ρAB

p
,

that is

En ¼
1

1 − n
log Trðρð2ÞAAÞn ¼ SR2;n; ð16Þ

implying that En ¼ ð1 − nÞEn − nS2ðρABÞ.

D. CCNR negativity is not a correlation measure

Here we point out that, contrary to what has been
commonly stated in the recent literature, the CCNR
negativity, similarly to the reflected entropy [97], is not
a correlation measure.
Beside the nonnegativeness required of a bipartite

correlation measure CðA∶BÞ, which is clearly not satisfied
by the (Rényi) CCNR negativity, one fundamental require-
ment is that correlation cannot increase under local oper-
ations. This means that a correlation measure should not
increase under the local discarding of information, i.e. the
following inequality must hold

CðA∶B ∪ CÞ ≥ CðA∶BÞ: ð17Þ

A quantity satisfying this inequality is said to be mono-
tonically nonincreasing under partial trace. We prove in
Appendix A that the Rényi CCNR negativity is not
monotonically nonincreasing under partial trace in the
range n∈ ð0; 1Þ ∪ ð1;∞Þ, by providing counterexamples
to inequality (17). As a byproduct, we prove that the ðm; nÞ-
Rényi reflected entropy SRm;n, which reduces to the Rényi
operator entanglement entropy En for m ¼ 2, is not
monotonically nonincreasing under partial trace in the
range m > 0 and n∈ ð0; 2Þ. We thus conclude that the
CCNR negativity and operator entanglement entropies are
not correlation measures.
Nevertheless, the CCNR negativity provides a useful

entanglement witness, which is computable for quantum
many-body states and exhibits new universal features [19].
Moreover, the operator entanglement entropy is a key
quantifier of the complexity of a reduced density matrix,
notably in out-of-equilibrium situations, and it can be
measured experimentally [45].

III. REFLECTED ENTROPIES AND CCNR
NEGATIVITY FOR FREE THEORIES

In this section, we compute the ðm; nÞ-Rényi reflected
entropies and CCNR negativities for Gaussian (free)
fermionic and bosonic systems in any dimension from
the two-point correlation functions of the theory. Doing so,
we generalize the results of [85,88] for the m ¼ 1 reflected
entropy to arbitrary m.
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A. Free fermions

Consider the (diagonalized) fermionic Gaussian state

ρAB ¼ ⨂
k

e−ϵkc
†
kck

1þ e−ϵk
;

¼ ⨂
k
½ð1 − nkÞj0kih0kj þ nkj1kih1kj�; ð18Þ

where e−ϵk ¼ nk=ð1 − nkÞ with nk being the occupation
number at a given wave vector k, and the cks are fermionic
operators satisfying fci; c†jg ¼ δij. The generalized purifi-
cation jΩmi, see (12), can be constructed as

jΩmi¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
TrρmAB

p ⊗
k
½ð1−nkÞm=2þnm=2

k c†kc̃
†
k�j0kij0̃ki; ð19Þ

where c̃k are copies of ck introduced in the vectorization
process. The correlation matrix of the state jΩmi reads

CðmÞ
kk0 ¼ hΩmj

�
c†k
c̃k

�
ðck0 c̃†k0 ÞjΩmi;

¼ δkk0

nmk þð1−nkÞm
�

nmk ðnkð1−nkÞÞm=2

ðnkð1−nkÞÞm=2 ð1−nkÞm
�
:

ð20Þ

Performing a Fourier transform leads to the correlation
matrix in the spatial basis

CðmÞ ¼

0
B@

Cm
AB

Cm
ABþð1−CABÞm

ðCABð1−CABÞÞm=2

Cm
ABþð1−CABÞm

ðCABð1−CABÞÞm=2

Cm
ABþð1−CABÞm

ð1−CABÞm
Cm
ABþð1−CABÞm

1
CA; ð21Þ

where CAB is the two-point correlation matrix for ρAB.

Introducing CðmÞ
A as the restriction of CðmÞ to subsystem A,

the Rényi reflected entropy SRm;n is obtained as

SRm;n ¼
1

1 − n
Tr log ½ðCðmÞ

A Þn þ ð1 −CðmÞ
A Þn�: ð22Þ

For m ¼ 1, this formula reduces to that for the n-Rényi
reflected entropy derived in [85], while we recover the
operator entanglement entropy [45] for m ¼ 2. The ðm; nÞ-
Rényi CCNR is obtained using (15), explicitly

Em;n ¼ Tr log ½ðCðmÞ
A Þn þ ð1 − CðmÞ

A Þn�
þ nTr log ½Cm

AB þ ð1 − CABÞm�: ð23Þ

For n ¼ 1, we recover Em;1 ¼ log TrρmAB. Moreover, for ρAB
pure we get Em;n ¼ 2 log TrρnA, in agreement with (7).
Indeed, in that case we have C2

AB ¼ CAB such that

CðmÞ
A ¼ CA ⊕ ð1 − CAÞ, where CA is the correlation matrix

CAB restricted to region A.

B. Free bosons

For Gaussian scalar theories invariant under time reflec-
tion, the relevant two-point functions to consider are that of
the scalar and the conjugate momentum. Let ϕi and πi,
i ¼ 1;…; N, be a system of scalars and conjugate momenta
acting on the Hilbert space HA ⊗ HB. These Hermitian
operators satisfy the canonical commutation relations
½ϕi; πj� ¼ iδij and ½ϕi;ϕj� ¼ ½πi; πj� ¼ 0.
Given a density matrix ρAB acting on HA ⊗ HB, a

purification jΩmi of ρmAB can be constructed using the
Choi-Jamiolkowski isomorphism by doubling the original
Hilbert space of ρAB and extending accordingly the bosonic
algebra with additional operators ϕ̃i and π̃i acting on the
second copy of HA ⊗ HB. We refer the reader to [88] for
details on the doubling of Hilbert space for scalar fields. As
conveniently done in [88], let us define Ψ0

i ≡ ϕi, Ψ1
i ≡ πi,

and similarly for Ψ̃a
i , a ¼ 0, 1. We find that the correlators

for jΩmi read

hΩmjΨa1
i1
� � �Ψap

ip
Ψ̃b1

j1
� � �Ψ̃bq

jq
jΩmi

¼ ð−1Þ
P

q
bq

TrρmAB
Trðρm=2

AB Ψa1
i1
� � �Ψap

ip
ρm=2
AB Ψ̃bq

jq
� � �Ψ̃b1

j1
Þ: ð24Þ

Organizing the scalars in a single field Φ where Φi ≡ ϕi

and ΦiþN ≡ ϕ̃i with i ¼ 1;…; N, and similarly for the
momenta Πi, we are interested in the following two-point
correlation functions:

ΦðmÞ
kl ¼hΩmjΦkΦljΩmi; ΠðmÞ

kl ¼hΩmjΠkΠljΩmi; ð25Þ

with k; l ¼ 1;…; 2N. These two-point functions have been
computed in [88] using (24) derived for m ¼ 1. They
depend on the density matrix ρAB for the first N scalars
only. Performing the traces, we obtain

ΦðmÞ ¼
�
fmðXPÞX gmðXPÞX
gmðXPÞX fmðXPÞX

�
; ð26Þ

ΠðmÞ ¼
�

PfmðXPÞ −PgmðXPÞ
−PgmðXPÞ PfmðXPÞ

�
; ð27Þ

where we defined

fmðMÞ ¼ 1

2

ð ffiffiffiffiffi
M

p þ 1=2Þm þ ð ffiffiffiffiffi
M

p
− 1=2Þm

ð ffiffiffiffiffi
M

p þ 1=2Þm − ð ffiffiffiffiffi
M

p
− 1=2Þm

ffiffiffiffiffi
M

p −1;

gmðMÞ ¼ ðM − 1=4Þm=2

ð ffiffiffiffiffi
M

p þ 1=2Þm − ð ffiffiffiffiffi
M

p
− 1=2Þm

ffiffiffiffiffi
M

p −1; ð28Þ
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and Xij ¼ TrðρABϕiϕjÞ and Pij ¼ TrðρABπiπjÞ are the
usual two-point correlation functions. The ðm; nÞ-Rényi
reflected entropy follows from the correlation matrix

CðmÞ
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦðmÞ

A ΠðmÞ
A

q
, i.e.

SRm;n¼
1

n−1
Tr log ½ðCðmÞ

A þ1=2Þn− ðCðmÞ
A −1=2Þn�: ð29Þ

For m ¼ 1, this formula reduces to that for the n-Rényi
reflected entropy derived in [88]. For m ¼ 2, we have the
operator entanglement entropy which was considered for
free fermions only in [45]. The ðm; nÞ-Rényi CCNR is
obtained using (15), explicitly

Em;n ¼ −Tr log ½ðCðmÞ
A þ 1=2Þn − ðCðmÞ

A − 1=2Þn�
− nTr log ½ðCAB þ 1=2Þm − ðCAB − 1=2Þm�; ð30Þ

where CAB ¼ ffiffiffiffiffiffiffi
XP

p
. For ρAB pure, we recover Em;n ¼

2 log TrρnA since CAB ¼ 1=2 such that CðmÞ
A ¼ CA ⊕ CA,

with CA ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
.

IV. SYMMETRY RESOLUTION

In this section we investigate the symmetry resolution of
the reflected entropies and the CCNR negativity in the
context of quantum many-body systems with a global
conserved Uð1Þ charge Q.

A. Definitions

Let us consider a state ρAB which commutes with a
global charge Q ¼ QA þQB, and we further assume
Q ¼ QT . Here, QA and QB are the local charges for each
subsystem. As we show in Appendix B (see also [20,45]),

the reflected density matrix ρðmÞ
AA commutes with the charge

imbalance operators of the two copies of HA,

½QA; ρ
ðmÞ
AA � ¼ 0; ð31Þ

where

QA ¼ QA ⊗ IA − IA ⊗ QA: ð32Þ

The commutation relation (31) implies that ρðmÞ
AA has a

block-diagonal structure where the blocks pertain to differ-
ent eigenvalues q of QA. We have

ρðmÞ
AA ¼ ⨁

q
ðpðmÞ

q ρðmÞ
AA ðqÞÞ ð33Þ

with
P

q p
ðmÞ
q ¼ 1 and TrðρðmÞ

AA ðqÞÞ ¼ 1. Here pðmÞ
q is the

probability of measuring the eigenvalue q of the chargeQA

in the state ρðmÞ
AA and ρðmÞ

AA ðqÞ is the reflected density matrix
of the charge sector q.

The symmetry-resolved ðm; nÞ-Rényi reflected entropies
are defined as

SRm;nðqÞ ¼
1

1 − n
log TrðρðmÞ

AA ðqÞÞn: ð34Þ

Using (16), the symmetry-resolved operator entangle-
ment entropies read

EnðqÞ ¼ SR2;nðqÞ; ð35Þ

and this definition corresponds to that introduced in [45].
Similarly as for the standard entanglement entropy, there

is a simple relation between the total reflected entanglement
entropy and the symmetry-resolved ones,

SRm;1 ¼
X
q

pðmÞ
q SRm;1ðqÞ −

X
q

pðmÞ
q logpðmÞ

q : ð36Þ

By analogy with entanglement entropy [42], we call the
first term the configurational reflected entropy, and the
second one the number reflected entropy. There is a similar,
but more cumbersome, relation for reflected entropies with
Rényi index n ≠ 1 that we do not reproduce here.
Combining the relation (14) and the commutation

relation (31), it follows that ½QA; RmR
†
m� ¼ 0, and hence

RmR
†
m also has a block-diagonal structure. However, since

the matrix RmR
†
m does not have unit trace, there is no

natural (normalized) definition for the symmetry-resolved
ðm; nÞ-CCNR negativity. By analogy with (15), we choose
to define it as

Em;nðqÞ ¼ ð1 − nÞSRm;nðqÞ þ nð1 −mÞSmðρABÞ; ð37Þ

and the symmetry-resolved CCNR negativity is obtained
by settingm ¼ 2 and taking the limit n → 1=2. The relation
between total and symmetry-resolved CCNR negativities
reads

eEm;n ¼
X
q

ðpðmÞ
q ÞneEm;nðqÞ; ð38Þ

similarly to the charge-imbalance-resolved PPT logarith-
mic negativity [70,75,76].

B. Charged moments

Extracting the contribution of each charge sector to the
total entanglement is a challenging task, since, in principle,
it requires the knowledge of the total density matrix.
Fortunately, a way to circumvent this issue was proposed
in [39], where the idea is to compute so-called charged
moments and their Fourier transform. We adapt these ideas
to the reflected density matrix and define the corresponding
charged moments as
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ZR
m;nðαÞ ¼ TrððρðmÞ

AA ÞneiαQAÞ: ð39Þ

Taking the Fourier transform yields the symmetry-resolved
moments,

ZR
m;nðqÞ¼

Z
π

−π

dα
2π

e−iqαZR
m;nðαÞ; pðmÞ

q ¼ZR
m;1ðqÞ; ð40Þ

and the symmetry-resolved Rényi reflected entropies are

SRm;nðqÞ ¼
1

1 − n
log

�
ZR

m;nðqÞ
ðZR

m;1ðqÞÞn
�
: ð41Þ

Taking m ¼ 2 in (41) yields the symmetry-resolved oper-
ator entanglement entropies [45], while taking the limit
m → 1 yields the symmetry-resolved reflected entropies.
For the CCNR Rényi negativity, the natural charged

moments to consider are [20]

Zm;nðαÞ ¼ TrððRmR
†
mÞneiαQAÞ;

¼ ZR
m;nðαÞðTrρmABÞn; ð42Þ

and their Fourier transform yields the symmetry-resolved
CCNR moments

Zm;nðqÞ ¼
Z

π

−π

dα
2π

e−iqαZm;nðαÞ: ð43Þ

We have

Em;nðqÞ ¼ log

�
Zm;nðqÞ
ðpðmÞ

q Þn
�
;

¼ ð1 − nÞSRm;nðqÞ þ nð1 −mÞSmðρABÞ: ð44Þ

C. Conformal field theory results

In the context of one-dimensional quantum critical
system described by a CFT, a large body of results
regarding entanglement measures can be obtained by
means of the replica trick [13,23,26] and twist fields
correlation functions [106]. Reflected entropies and the
CCNR partition functions Zm;n, see (10), can also be
computed using similar methods [19,83].
We take the regions A and B to be adjacent segments of

respective lengths la and lb, see Fig. 1. Introducing the
relevant twist operator conformal weights [83,106]

hn ¼
c
24

�
n −

1

n

�
;

h0m;n ¼ nhm ¼ n
c
24

�
m −

1

m

�
; ð45Þ

where c is the central charge of the CFT, the partition
function Z2;n for two adjacent intervals can be expressed
as [19]

Z2;n ∝ ðlalbÞ−4hnðla þ lbÞ4hn−4h
0
2;n ; ð46Þ

and for the more generic reflected case we find

Zm;n ∝ ðlalbÞ−4hnðla þ lbÞ4hn−4h0m;n : ð47Þ

To investigate charged CCNR moments, we follow the
approach developed in the context of charged [107–109]
and symmetry-resolved Rényi entropies [39,41,55], where
charged moments correspond to partition functions on
multisheeted Riemann surfaces with twisted boundary
conditions, such that the total phase accumulated upon
going through the entire surface is α. Entanglement-related
quantities are then obtained as correlation functions of
modified twist fields. In particular, the partition function
Z2;nðαÞ corresponds to a correlation function of modified
twist fields in 2n copies of the original theory. These are
operators obtained by the fusion of standard twist fields of
weight hn with operators generating the flux α, with weight
hα. The resulting composite twist fields behave as primaries
with weight

hnðαÞ ¼ hn þ
hα
n
: ð48Þ

As an example, for the ground state of a Luttinger liquid
with parameter K, the weight hα reads [39,41]

hα ¼
K
2

�
α

2π

�
2

: ð49Þ

To maintain charge neutrality in the correlation function
corresponding to Z2;nðαÞ, fields with charge α are inserted
on odd copies, and fields with opposite charge are inserted
on even copies. In the case of adjacent intervals, twist fields
at the ends of the interval A ∪ B connect copies of different
parities, and therefore fields with opposite charge cancel.
However, at the interface between A and B, odd and even
copies are decoupled [19] and hence the only charge
dependence arises from that part. Generalizing the argu-
ment to arbitrary reflected index m, we find

Zm;nðαÞ ∝
�

lalb

la þ lb

�
−4hnðαÞðla þ lbÞ−4nhmð0Þ; ð50Þ

where we assumed hα ¼ h̄α and hmð0Þ ¼ hm. We note that
the reflected moments ZR

m;nðαÞ are simply obtained by

FIG. 1. Two adjacent intervals A and B of length la and lb,
respectively, in an infinite system.
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setting h0m;n → 0 in (47), and the charged reflected
moments are by retaining the first factor only in (50),

ZR
m;nðαÞ ∝

�
lalb

la þ lb

�
−4hnðαÞ

: ð51Þ

For α ¼ 0, we recover the known result for the reflected
moments [83]. In particular, the reflected entropies do not
depend on m at leading order for adjacent regions.

D. Symmetry resolution for fermions

For critical free fermions (c ¼ 1, K ¼ 1) in one dimen-
sion, we have [39,41]

hα ¼
1

2

�
α

2π

�
2

; ð52Þ

finding

Zm;nðαÞ ∝
�

lalb

la þ lb

�
−4hfnðαÞðla þ lbÞ−4nhfmð0Þ ð53Þ

with

hfnðαÞ ¼
1

24

�
n −

1

n

�
þ 1

2n

�
α

2π

�
2

: ð54Þ

To check our CFT predictions, we consider the one-
dimensional tight-binding model with Hamiltonian

H ¼ −
XL
j¼1

ðc†jþ1cj þ H:c:Þ: ð55Þ

Here, c†j ; cj are fermion creation and annihilation operators,
L is the length of the chain and we assume periodic
boundary conditions. This model has a Uð1Þ symmetry
generated by the charge operator Q ¼ P

j c
†
jcj, and its

diagonalization is standard. The ground-state two-point
correlation functions in the large-L limit reads

Cij ¼
sinðπ

2
ði − jÞÞ

πði − jÞ : ð56Þ

Using results from Sec. III A and standard free-fermion
techniques [39,110,111], we express the charged moments
Zm;nðαÞ defined in (42) in terms of the two-point correla-
tion matrix as

logZm;nðαÞ ¼ Tr log ½ðCðmÞ
A Þneiα þ ð1 −CðmÞ

A Þn�
þ nTr log ½Cm

AB þ ð1 − CABÞm�: ð57Þ

We note that the logarithmic charged moments have a
trivial imaginary part, ImðlogZm;nðαÞÞ ¼ αla. We thus
redefine the fermionic charged moments as

Zm;nðαÞ → e−iαlaZm;nðαÞ ð58Þ

so that logZm;nðαÞ is real. This redefinition is merely a
convention which sets the average value of the charge
imbalance to zero.
With all this in hand, we now investigate the charged

CCNR moments Zm;nðαÞ for adjacent intervals of equal
length l embedded in an infinite chain. In the limit of large
l we expect

logZm;nðαÞ ¼ −4ðhfnðαÞ þ nhfmð0ÞÞ loglþ � � � ð59Þ

where hfnðαÞ is given in (54). We compare this CFT
prediction with exact numerical diagonalization in Fig. 2
and find a perfect agreement. Each numerical point is
obtained by fitting the leading coefficient of logZm;nðαÞ for
increasing values of l and fixed m, n, α.
Computing the Fourier transform of (53) yields the

symmetry-resolved CCNR and reflected moments as

ZðRÞ
m;nðqÞ ¼ ZðRÞ

m;nð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nπ

2 logð lalb
laþlb

Þ

s
exp

�
−

nπ2q2

2 logð lalb
laþlb

Þ

�
;

ð60Þ

valid both for Zm;nðqÞ and ZR
m;nðqÞ, since these charged

moments have same α dependence. Expression (60) being
exact at leading order, we do not check it numerically.
As both symmetry-resolved CCNR negativity Em;nðqÞ

and reflected entropies SRm;nðqÞ have the same charge
dependence, see (37), we focus our discussion on the
latter. Combining (41) and (60), we find

FIG. 2. Charged CCNR moments for free critical fermions on
the infinite chain for two adjacent intervals of same length l. The
solid lines correspond to the analytical prediction −4ðhfnðαÞ þ
nhfmð0ÞÞ where hfnðαÞ is given in (54).
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SRm;nðqÞ ¼ SRm;n −
1

2
log log

�
lalb

la þ lb

�

þ 1

2
log

πn1=ð1−nÞ

2
þ � � � ; ð61Þ

where SRm;n is the total ðm; nÞ-Rényi reflected entropy. This
result implies that, at leading order, the symmetry-resolved
reflected entropies do not depend on the charge sector. This
phenomena has been observed for symmetry-resolved
entanglement entropies in numerous physical situations,
and has been dubbed equipartition of entanglement [40].
Of course, (61) is a CFT prediction and thus holds in the
large-l limit. At finite size, we expect a subleading
q-dependent correction. For the entanglement entropies
this correction is of order ðq= loglÞ2, see [41], and we
expect a similar behavior for the reflected entropies. It is an
important open problem to perform exact finite-size cal-
culation of symmetry-resolved reflected entropies to deter-
mine the charge-dependent corrections. We leave this issue
for further investigations.

E. Symmetry resolution for complex bosons

Consider a complex scalar field φ of mass μ with
Lagrangian density L¼ ∂νφ

†
∂
νφ−μ2φ†φ. This Lagrangian

exhibits a Uð1Þ symmetry, i.e. it is invariant under phase
transformations of the field φ → eiθφ. The complex scalar
field can be written in terms of two real ones defining
φ ¼ ðφ1 þ iφ2Þ=

ffiffiffi
2

p
. Its Hamiltonian H is the sum of two

identical Hamiltonians corresponding to each real scalars,
H ¼ P

i¼1;2
1
2

R
dxðπ2i þ ð∂xφiÞ2 þ μ2φ2

i Þ. Introducing the

creation and annihilation operators a†i ðpÞ; aiðpÞ with
momentum p for each real scalars i ¼ 1, 2, the
Hamiltonian and the conserved charge Q associated to the
Uð1Þ symmetry can be written in terms of particles and
antiparticles modes operators ap ¼ ða1ðpÞ þ ia2ðpÞÞ=

ffiffiffi
2

p

and bp ¼ ða†1ðpÞ þ ia†2ðpÞÞ=
ffiffiffi
2

p
:

H ¼
Z

dp
2π

ωpða†pap þ b†pbpÞ; ð62Þ

Q ¼
Z

dp
2π

ða†pap − b†pbpÞ; ð63Þ

where ω2
p ¼ μ2 þ p2. In real space, the value of the con-

served charge in a given subsystem A reads

QA ¼
Z
A
dxðaðxÞ†aðxÞ − bðxÞ†bðxÞÞ≡ Na

A − Nb
A; ð64Þ

which is the difference between the number of particles and
the number of antiparticles.

Using (64), the charge imbalance operators QA of the
two copies of HA that commutes with the reflected density
matrix can be written as QA ¼ N a

A −N b
A, where

N a
A ¼ Na

A ⊗ IA − IA ⊗ Na
A; ð65Þ

and similarly for N b
A. Since the Hamiltonian of a complex

scalar field is identical to that of two decoupled real scalar
fields, the density matrix factorizes accordingly. The
charged moments of the reflected density matrix for the
complex scalar field can be written in terms of those for a
single scalar field, i.e.

ZR
m;nðαÞ ¼ jTrððρðmÞ

AA ÞneiαN AÞj2; ð66Þ

where we used (65), and ρðmÞ
AA corresponds to the reflected

density matrix for a single scalar field.
On the lattice, the (complex) scalar field is realized by

the (complex) harmonic chain. Using the results of Sec. III
for bosonic states, the charged moments for the complex
harmonic chain are obtained as

ZR
m;nðαÞ¼ det jðCðmÞ

A þ1=2Þn− eiαðCðmÞ
A −1=2Þnj−2; ð67Þ

where the correlation matrix CðmÞ
A is defined in terms of the

two-point functions of the real harmonic chain.
Let us now focus on adjacent subsystems A and B, of

respective lengths la and lb. In the critical (massless) limit
μ → 0, the charged reflected moments take the same form
as in CFT, i.e.

ZR
m;nðαÞ ∝

�
lalb

la þ lb

�
−4hbnðαÞ

; ð68Þ

only with a nonstandard weight hbnðαÞ, where a linear term
in α is present (see, e.g., [54,55] for similar findings
concerning the charged entanglement entropies),

hbnðαÞ ¼
1

12

�
n −

1

n

�
þ jαj
4πn

−
1

2n

�
α

2π

�
2

: ð69Þ

Similarly, the charged CCNR moments are given by

Zm;nðαÞ ∝
�

lalb

la þ lb

�
−4hbnðαÞðla þ lbÞ−4nhbmð0Þ: ð70Þ

As a check of our formulas, we have numerically
computed the charged CCNR moments for the complex
boson in the critical regime μ ≪ 1. We take two adjacent
regions of same length l on the infinite chain. From (70),
we expect logZm;nðαÞ ¼ −4ðhbnðαÞ þ nhbmð0ÞÞ loglþ � � �.
We report in Fig. 3 our numerical results for the leading
logarithmic coefficient of logZm;nðαÞ as a function of α for
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differentm and n. We observe a perfect agreement between
(70) and the numerics.
We are interested in the Fourier transform of (68). In the

saddle point approximation, the term in α2 in (69) can be
neglected, yielding

ZR
m;nðqÞ ¼ ZR

m;nð0Þ
n logð lalb

laþlb
Þ

n2π2q2 þ log2ð lalb
laþlb

Þ : ð71Þ

Similarly as for free fermions, we only investigate the
symmetry-resolved reflected entropies since they have the
same charge dependence as the symmetry-resolved CCNR
negativities. Combining (41) and (71) we find

SRm;nðqÞ ¼ SRm;n − log log

�
lalb

la þ lb

�

þ log n
1 − n

þ nπ2q2

log2ð lalb
laþlb

Þ þ � � � ; ð72Þ

where the subleading terms are of order ðloglÞ−3. We thus
observe an equipartition of the reflected entropies for free
bosons. However, as opposed to the free-fermion case, the
CFT prediction yields the first charge-dependent sublead-
ing correction, which is of order ðq= loglÞ2. These results
are very similar to those obtained for the standard sym-
metry-resolved entropies for free bosons [54,55].

V. CONCLUSION

In this paper, we have investigated the ðm; nÞ-Rényi
reflected entropies and CCNR negativities for CFTs and
free theories. We first defined a reflected version of the
CCNR negativity, denoted Em;n, and discussed its con-
nections with other quantities of interest, namely the

reflected entropies and the operator entanglement entro-
pies. On general ground, we have shown that the CCNR
negativity and operator entanglement entropy are not
monotonically nonincreasing under partial trace; hence,
they are not correlation measures for mixed state.
Nevertheless, these quantities present interesting universal
properties. We have derived general formulas for the
ðm; nÞ-Rényi reflected entropies and CCNR negativities,
valid for free fermionic and scalar fields in arbitrary
dimensions. The resulting expressions are fully determined
in terms of the fields’ correlators, making them suitable for
lattice calculations.
The main part of this work concerned the symmetry

resolution of reflected entropies and CCNR negativities in
the context of quantum many-body systems with a global
Uð1Þ conserved charge. For two adjacent regions in an
infinite system described by a (1þ 1)-dimensional CFT,
we have obtained the charged reflected moments and
CCNR moments, see (50) and (51), focusing then on the
former as they share the same charge dependence. Since
the exact form of these charged moments depends on the
details of the underlaying theory, we have considered both a
free fermionic model and a free bosonic model. Using our
general formulas for the reflected entropies and CCNR
negativities in free theories, we have tested our CFT
predictions, finding perfect agreement in both cases. Our
numerical investigations also confirm the CFT results of
[19] for the (uncharged) CCNR negativity, for two new
examples—free fermions and bosons—which were not
considered in [19]. For free fermions, the symmetry-
resolved reflected entropies do not depend on the charge
sector up to subleading terms, which we conjecture to be of
order ðq= loglÞ2, thereby implying equipartition, similarly
to the entanglement entropy. For free bosons, the CFT
prediction yields the first charge-dependent subleading
correction, which is of order ðq= loglÞ2. Note that we
worked with infinite systems for simplicity, but our results
can easily be generalized to periodic systems with finite
size L by replacing each subregion length li by L

π sin
πli
L .

There are several future avenues worth exploring. An
important direction would be to study the symmetry
resolution of reflected entropies and CCNR negativities
for disjoint subsystems. The CFT calculation in this case is
more involved than for adjacent regions, and we expect
would yield new insights on multipartite entanglement.
One could also generalize our findings to finite temperature
states, and to quench dynamics. Note that the symmetry-
resolved operator entanglement entropy was investigated
in [45] in out-of-equilibrium situations, and we expect
similar results for the CCNR negativities and reflected
entropies, in particular the presence of an entanglement
barrier. It would be interesting to derive new exact lattice
results for the reflected entropies and CCNR negativities,
both in and out of equilibrium. In higher dimensions, the
study of skeletal regions [112], i.e. regions A, B that have

FIG. 3. Charged CCNR moments for the free complex boson
on the line in the critical regime μ ≪ 1 for two adjacent intervals
of same length l. The solid lines correspond to the CFT
prediction −4ðhbnðαÞ þ nhbmð0ÞÞ, where hbnðαÞ is given in (69).
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no volume, could lead to new analytical results for reflected
entropies and CCNR negativities. Finally, it is worth
investigating reflected entropies and CCNR negativities
for other mixed quantum states, such as Rokhsar-Kivelson
states [113,114] whose Hilbert space is spanned by the
configurations of an underlying statistical model (see
Refs. [115,116] for recent developments on their entangle-
ment structure).
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APPENDIX A: PROOF OF NONMONOTONICITY
OF CCNR NEGATIVITY AND OPERATOR

ENTANGLEMENT ENTROPY

In this appendix, we show that the CCNR Rényi
negativity and the Rényi operator entanglement entropy
are not monotonically nonincreasing under partial trace. To
do so, it suffices to find counterexamples to the inequality
(17), as was done in [97] for the reflected entropy SR1;n.
Let us consider the Hilbert space HA ⊗ HB ⊗ HC of

two qutrit A and B and one qubit C. The counterexample
states, labeled by a single parameter p, are given by [97]

ρABC ¼ 1

4pþ 2
ðpðj000ih000j þ j110ih110j

þ j200ih200j þ j210ih210jÞ
þ j020ih020j þ j121ih121jÞ; ðA1Þ

and we further define ρAB ¼ TrHC
ρABC. It is straightfor-

ward to obtain the reflected densities ρðmÞ
AAðCÞ and ρðmÞ

AA on

HA ⊗ HA from the purifications of ρmABC and ρmAB, respec-
tively [see (12)]. They are given by

ρðmÞ
AAðCÞ ¼

1

4pm þ 2
ðpmðj00ih00j þ 2j22ih22j þ j00ih22j

þ j22ih00j þ j11ih11j þ j11ih22j þ j22ih11jÞ
þ j00ih00j þ j11ih11jÞ; ðA2Þ

ρðmÞ
AA ¼ ρðmÞ

AAðCÞ þ
1

4pm þ 2
ð00ih11j þ j11ih00jÞ: ðA3Þ

Their corresponding (nonzero) eigenvalues are

SpecðρðmÞ
AAðCÞÞ

¼
�
pm þ 1

4pm þ 2
;
1þ 3pm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2m − 2pm þ 1

p
2ð4pm þ 2Þ

�
; ðA4Þ

SpecðρðmÞ
AA Þ

¼
�

pm

4pm þ 2
;
2þ 3pm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2m − 4pm þ 4

p
2ð4pm þ 2Þ

�
: ðA5Þ

Using these expressions, one can compute SRm;n and Em;n
defined in (13) and (15), respectively, for any value of p
and m, n. For large p we find that

ΔSRm;n ¼

8>>><
>>>:

1
1−n

1−2n
1þ3n

ð2
3
Þn 1

pnm þ � � � ; n < 1

− 1
6
logpm

pm þ � � � ; n ¼ 1

1
1−n

1−3n−2
1þ3n

n
pm þ � � � ; n > 1

; ðA6Þ

where ΔSRm;n ≡ SRm;nðA∶B ∪ CÞ − SRm;nðA∶BÞ and the ellip-
sis denotes terms strictly smaller than 1=pm in the limit
p → ∞. The differenceΔSRm;n is thus negative for large p in
the range 0 < n < 2 and m > 0. It can be shown to be
positive for n ≥ 2 for any p > 0. This implies that the
Rényi reflected entropy SRm;n, which reduces to the Rényi
operator entanglement entropy En for m ¼ 2, is not
monotonically nonincreasing under partial trace.
Since TrρmABC ¼ TrρmAB, we have the difference

EnðA∶B ∪ CÞ − EnðA∶BÞ ¼ log
Trðρð2ÞAAðCÞÞn

Trðρð2ÞAAÞn
; ðA7Þ

where we set m ¼ 2. For n∈ ð0; 1Þ ∪ ð1;∞Þ, there exists a
critical value p0 ≃ 1.284210838876, solution to the equa-

tion ∂nðTrðρð2ÞAAðCÞÞn=Trðρð2ÞAAÞnÞjn¼1 ¼ 0, for which we have

EnðA∶B ∪ CÞ − EnðA∶BÞ < 0, implying that the CCNR
Rényi negativity is not monotonically nonincreasing under
partial trace.

APPENDIX B: COMMUTATION
AND CHARGE IMBALANCE

In this section, following [45], we prove the commuta-
tion relation (31) between the reflected density matrix ρðmÞ

AA
and the charge imbalance QA.
Let us consider an operator O which acts on HA ⊗ HB

and commutes with the charge Q ¼ QA þQB, namely
½Q;O� ¼ 0. It follows that O takes the form

O ¼
X
q

X
j

λðqÞj OðqÞ
A;j ⊗ Oð−qÞ

B;j ; ðB1Þ

where q labels the eigenvalues of Q,
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TrfðOðqÞ
A;jÞ†Oðq0Þ

A;j0 g ¼ δq;q0δj;j0 ; ½QA;O
ðqÞ
A;j� ¼ qOðqÞ

A;j; ðB2Þ

and similarly for OðqÞ
B;j. We recast O in components as

O ¼
X
q;j

X
a;a0

X
b;b0

λðqÞj hajOðqÞ
A;jja0ihbjOð−qÞ

B;j jb0ijabiha0b0j;

ðB3Þ

where fjaig and fjbig are orthonormal basis states of HA
andHB. We choose the basis states to be eigenvectors of the
charges,

QAjai ¼ qajai; QBjbi ¼ qbjbi: ðB4Þ

The commutation relation (B2) together with (B4) implies

hajOðqÞ
A;jja0i ∝ δqa−qa0 ;q; hbjOð−qÞ

B;j jb0i ∝ δqb0−qb;q: ðB5Þ

The vector version of O reads

jOi ¼
X
q;j

X
a;a0

X
b;b0

λðqÞj hajOðqÞ
A;jja0ihbjOð−qÞ

B;j jb0ijabi ⊗ ja0b0i

ðB6Þ

and we have

TrHB⊗HB
ðjOihOjÞ

¼
X
q;j

X
a;a0
A;A

ðλðqÞj Þ2hajOðqÞ
A;jja0ihA0jðOðqÞ

A;jÞ†jAijaa0ihAA0j;

ðB7Þ

where we used the orthogonality relation (B2). Finally, with
(B5) we conclude that each operator jaa0ihAA0j in the sum
commutes with the charge imbalance

QA ¼ QA ⊗ IA − IA ⊗ QA; ðB8Þ

and therefore

½QA;TrHB⊗HB
ðjOihOjÞ� ¼ 0: ðB9Þ

APPENDIX C: THE GENERALIZED
MARKOV GAP

We consider a generalization of the Markov gap [99,117],
defined as the difference of the m-reflected entropy with
mutual information I

Mm ≡ SRm;1 − I; ðC1Þ

where we recall that mutual information between two
subsystems A and B is given by IðA∶BÞ ¼ SðρAÞ þ SðρBÞ−
SðρA∪BÞ. The reflected entropy m ¼ 1 is lower bounded
by mutual information [83], hence the Markov gap is a
nonnegative quantity M ≡M1 ≥ 0. As argued in [117],
anonvanishingM indicates irreducible tripartiteentanglement.
Using our results of Sec. III, we numerically compute

Mm for two adjacent subsystems, both for free fermions and
free bosons. In the thermodynamic limit, we find

Mm ¼
� 1

3
log 2m; fermions

1
3
log 2m − 1

2
logm; bosons

: ðC2Þ

For m ¼ 1, we retrieve the expected universal CFT result
[117] that M ¼ c

3
log 2. However, for m ≠ 1 we observe

discrepancy between fermions and bosons. It would be
interesting to understand if Mm is a meaningful quantity in
general.
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