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In this paper, we examine a modification of the Kazakov-Migdal (KM) model with gauge group UðNcÞ,
where the adjoint scalar fields in the conventional KM model are replaced by Nf fundamental scalar fields
(FKM model). After tuning the coupling constants and eliminating the fundamental scalar fields, the
partition function of this model is expressed as an integral of a graph zeta function weighted by unitary
matrices. The FKM model on cycle graphs at large Nc exhibits the Gross-Witten-Wadia (GWW) phase
transition only when Nf > Nc. In the large Nc limit, we evaluate the free energy of the model on a general
graph in two distinct parameter regimes and demonstrate that the FKMmodel generally consists of multiple
phases. The effective action of the FKM model reduces to the standard Wilson action by taking an
appropriate scaling limit when the graph consists of plaquettes (fundamental cycles) of the same size, as in
the square lattice case. We show that, for the FKM model on such a graph, the third-order GWW phase
transition universally occurs in this scaling limit.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the quintessential
theory that describes the dynamics of gluons and quarks.
In general, gauge invariant operators play a pivotal role in
gauge theory, but the Wilson loops are especially important
among them. In fact, the Yang-Mills theory, which char-
acterizes quantum gluodynamics (QGD), can be compre-
hended through the Wilson loops as fundamental degrees of
freedom: The action of lattice QCD, a powerful formulation
that presents QCD in a nonperturbative manner, is given by
the sum of Wilson loops on the plaquettes [1]. The
Schwinger-Dyson equation that the Wilson loops obey
forms a closed equation at large N [2,3], which plays a
major role in understanding the duality between large N
gauge theory and string theory.
The Kazakov-Migdal (KM) model is a gauge

theory defined originally on a D-dimensional square
lattice as [4]

SKM ¼ N
X
x

Tr
�
m2

0Φ2ðxÞ −
XD
μ¼1

ΦðxÞUμðxÞ

×Φðxþ μÞU†
μðxÞ

�
; ð1:1Þ

where UμðxÞ is a unitary variable living on the link
extending from the site (vertex) x to the neighbor sites
along the direction of μ and ΦðxÞ is a scalar field in the
adjoint representation of the gauge group living on x. The
distinctive feature of the KM model is that the effective
action resulting from the integration of the scalar fields is
comprised of the sum of (the square of the absolute value of)
possible Wilson loops on the lattice. Therefore, this simple
model was expected to induce QCD (QGD in precise) in
arbitrary dimensions and was vigorously studied [5–11].
Despite early expectations of the KMmodel inducing QGD,
however, it has become clear that the presence of an extra
local Uð1Þ symmetry

UμðxÞ → eiαμðxÞUμðxÞ; ð1:2Þ

and the absence of the first-order phase transition preclude
its induction of QGD [12–17].
Even though the objective of inducing QGD was not

attained, the KM model, with its capability to be solved
exactly at large N, remains a noteworthy subject of study.
In [18], the correspondence between the largeN KMmodel
and string theory was pointed out. The work of [19,20] has
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demonstrated that the D-dimensional KM model serves
as a description of the high-temperature limit of the
Dþ 1-dimensional Yang-Mills theory. Additional insights
into the relationship between the KMmodel and the Penner
model can be found in [21,22]. More recently, in [23,24],
the authors of this paper generalized the KM model to the
one defined on an arbitrary graph and pointed out a
relation to the graph zeta functions [25–31]. Essentially,
the graph zeta function is a function that enumerates
cycles in a graph, and its compatibility with the Wilson
loop counting provides a powerful tool for the analysis of
KM models. As a result, in the large N limit, the partition
function of the KM model on arbitrary graphs can be
directly evaluated exactly.
Despite the failure of the KM model to induce QGD

being primarily attributed to its extra local symmetry,
it remains a compelling endeavor to modify the model.
The first strategy attempted was to modify the theory so
that the unwanted local symmetry is broken by a first-order
phase transition and to expect QGD to be induced after the
phase transition. In [32], the adjoint scalar of the KMmodel
is replaced by adjoint fermions and it was suggested that
the theory undergoes a first order phase transition. In [33],
heavy fundamental fermions were added to the original KM
model, suggesting that there is a region that induces QGD.
In [34], fundamental scalars were added to the original KM
model, and numerical simulations showed that this model
possesses a rich phase structure.
While these modifications are interesting in the sense that

they leave open the possibility of inducing QGD, in this
paper, we focus on the model proposed in [35] where QGD
is realized directly by a simpler mechanism. The model is
obtained by replacing the adjoint scalar field in the original
FKM model by complex scalar fields in the fundamental
representation, which breaks the unwanted local symmetry
explicitly. In [35], the author considered mainly on the case
with the same number of the scalar fields with the rank of
the gauge group. Therefore, the scalar fields are still N × N
matrices, but the action is modified to

S0 ¼ N
X
x

Tr
�
m2

0Φ†ðxÞΦðxÞ −
XD
μ¼1

½Φ†ðxÞUμðxÞΦðxþ μÞ

þΦ†ðxþ μÞU†
μðxÞΦðxÞ�

�
; ð1:3Þ

which apparently does not have extra local Uð1Þ symmetry
(1.2). After integrating out the fields Φ and Φ† by the
Gaussian integral, we obtain an effective action,

S0eff ¼ N
X
C

1

lðCÞm2lðCÞ
0

TrðUC þU†
CÞ; ð1:4Þ

where C and lðCÞ represent all possible loops (cycles) on
theD-dimensional lattice and the “naive” length of C which
counts also the backtrackings, and UC is the Wilson loop

defined along C. Since the possible loops C on the lattice, of
course, contain the Wilson loop associated with each
plaquette, the effective action (1.4) contains the standard
Wilson action in the leading terms of the shortest loops. In
order to make the model (1.3) equivalent to the Wilson
action, a mechanism to suppress the longer loops is
necessary. In [35], it has been discussed that it is achieved
by introducing the large number of the fundamental scalar
fields with appropriately controlling the mass parameter.
Since the model (1.3) has the same number of the funda-
mental scalar fields with the rank of the gauge group N, it
has been expected to induce QGD by taking the limit of
N → ∞. The author then has mainly considered the model
on a single plaquette in the limit of N → ∞ to investigate a
relation to the Eguchi-Kawai reduction.
However, there is a naive point in this scenario: The

problem is that lðCÞ does not represent the net length of the
Wilson loop because the cycle C contains backtrackings in
general. Since there are infinitely many cycles with different
lðCÞ which reduce to the same Wilson loop, it is nontrivial
if the long Wilson loops are really suppressed by simply
increasing the number of the fundamental scalar fields. We
have to estimate the coefficients of the Wilson loops
accurately to confirm it. One of the purpose of this paper
is to solve this problem by defining the model (1.3) on an
arbitrary graph and consider the number of the fundamental
scalar fields Nf as a parameter independent of the rank of
the gauge group Nc. We call this model the FKM model in
the following. The FKM model does not have the extra
Uð1Þ symmetry that the conventional KM model. A
remarkable consequence of this generalization is that the
effective action is expressed by an analytic function called
the graph zeta function. In the previous papers of the present
authors [23,24], the graph zeta function played a central role
to count the Wilson loops of the original KMmodel, and we
can use the same technology to analyze the FKM model. In
particular, it supplies a way to estimate the coefficients of
the Wilson loops in the effective action. As a result, we can
show that the effective action of the FKM model actually
reduces to the Wilson action in an appropriate limit of the
theory parameters. Furthermore, the FKM model in general
parameters includes higher derivative terms arising from
longer Wilson loops. The use of graph zeta functions is a
great advantage to be able to treat such general lattice gauge
theories analytically.1

1We note that another possible model is obtained by replacing
the fundamental scalars in the FKM model to fundamental
fermions, which leads a sort of the Venetiano model [36]. Of
course, we cannot expect the same mechanism to realize QGD
with the FKM model because the signature of the effective action
becomes opposite to the Wilson action. However, it is still
interesting approach to analyze general gauge theories since the
introduction of the fundamental fermions is expected to produce a
rich phase structure to the model in general [37]. We would like to
thank the reviewer of PRD for pointing out this possibility.
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Another important result of the present paper is that the
FKM model universally undergoes the Gross-Witten-
Wadia (GWW) phase transition in large Nc regardless
of the details of the graph structure. The GWW phase
transition was discovered as a large Nc phase transition in
the one-plaquette model obtained from two-dimensional
lattice gauge theory [38,39], but is now recognized as a
transition between disjoint/connected distribution of the
eigenvalues of the Polyakov loops on the circumference,
which is closely related to the confinement/deconfinement
transition of QCD [40–43]. Interestingly, the original
KM model does not enjoy the GWW phase transition.
This is due to the inability of the attractive force between
eigenvalues of the unitary matrix to surpass the repulsive
force emanating from the measures, as the contribution of
Wilson loops with finite area is suppressed in the limit of
Nc → ∞. The mechanism is the same in the FKM model:
In order for the FKM model to undergo the GWW phase
transition, the condition Nf ≳ Nc must be satisfied for the
attractive force from the action to exceed the repulsive
force from the measure. This is a parameter region that had
not been considered in the [35]. Our analysis using the
graph zeta function employed in [23,24] proves useful
even in this case, allowing us to rigorously evaluate the
partition function of the FKM model on an arbitrary graph
at large Nc. This analysis necessitates the utilization of
different evaluation methods for Nc ≪ Nf and qNf ≪ Nc

with a coupling constant q, leading to dissimilar expres-
sions for the free energy in each region. A close exami-
nation of this result provides evidence that the model
possesses multiple phases in general. Considering that the
FKM model includes the Wilson action as a limit, this
suggests the usefulness of the FKM model (especially in
the region Nf > Nc) as a model for studying QCD.
The organization of this paper is as follows: In Sec. II,

we explain the terms of graph theory and define the FKM
model on an arbitrary graph. We demonstrate that the
partition function of the model can be expressed by the
unitary matrix integrals of a matrix-weighted graph zeta
function. We also show that the effective action of the
FKM model reduces to the Wilson action by taking an
appropriate scaling limit. In Sec. III, we establish that the
FKM model on cycle graphs experiences a third-order
GWW phase transition when Nf > Nc. In Sec. IV, we
calculate the partition function of the FKM model on a
general graph for large Nc and discuss the phase structure
of the FKM model on a general graph. We also show that
the FKM model on the graph which consists of plaquettes
of the same size universally undergoes the third-order
GWW phase transition in an appropriate scaling limit.
Section V is dedicated to the conclusions and discussion.
In Appendix, we summarize the definition and essential
properties of the graph zeta functions to make the paper
self-contained.

II. KAZAKOV-MIGDAL MODEL IN THE
FUNDAMENTAL REPRESENTATION

A. Notations in graph theory

Let us consider a connected simple directed graphG. The
set of vertices and edges are denoted as V and E,
respectively, with cardinalities jVj ¼ nV and jEj ¼ nE. A
directed edge is symbolized as a pair of vertices e ¼ hv; v0i,
where v ¼ sðeÞ and v0 ¼ tðeÞ the “source” and “target” of
the edge arrow of e, respectively. The inverse of an edge e is
defined as a reversed arrow edge, denoted by e−1 ¼ hv0; vi.
The set of edges and their inverses are combined to
form the set ED, defined as ED ¼ feaja ¼ 1;…; 2nEg≡
fe1;…; enE ; e

−1
1 ;…; e−1nE g.

A path P ¼ ðe1;…; ekÞ ðea ∈EDÞ is a sequence of the
edges that satisfies tðeaÞ ¼ sðeaþ1Þ ða ¼ 1;…; k − 1Þ,
where k is called the length of the path P which is
expressed as jPj. If two paths P ¼ ðe1;…; ekÞ and P0 ¼
ðe01;…; e0lÞ satisfy tðekÞ ¼ sðe01Þ, we can construct a new
path of length kþ l by connecting as PP0 ≡ ðe1 � � � ; ek;
e01;…; e0lÞ. A backtracking in P is two consecutive edges in
P such that e−1aþ1 ¼ ea.
When a path C ¼ ðe1;…; ekÞ satisfies sðe1Þ ¼ tðekÞ, C is

referred to as a cycle of length k, which is denoted as jCj. A
cycle C is called primitive when C does not satisfy C ≠ Br

for any cycle B and r ≥ 2. A cycle C ¼ ðe1;…; ekÞ is called
tailless when e−1k ≠ e1, which is equivalent to thatC2 has no
backtracking. Backtracking or tail is also called bump, the
number of bumps in a cycle C is denoted by bðCÞ.
Two cycles C ¼ ðe1;…; ekÞ and C0 ¼ ðe01;…; e0kÞ are

called equivalent when there exists an integer m such that
ea ¼ e0aþmðmodkÞ. The equivalence class including cycle C is

denoted as [C]. A cycle C is defined as reduced if it lacks
both a backtracking and a tail. The set of representatives of
the equivalence classes of all kinds of cycles containing
bumps is denoted as ½P�, and we the set of representatives
of reduced cycles is denoted as ½PR� ⊂ ½P�.
Since a primitive reduced cycleC has its inverseC−1 also

be a primitive reduced cycle of equal length, the set ½PR�
can be partitioned into two disjoint unions; ½PR� ¼
½Πþ�⊔½Π−�, where ½Π−� consists of the inverses of elements
in ½Πþ�. These elements in ½Πþ� are referred to as (the
representatives of) chiral primitive reduced cycles.

B. Definition of the model

We propose a model on a simple directed graph G,
generalizing the model presented in [35]. Each edge
e∈E on the graph G is assigned a unitary matrix
Ue ∈UðNcÞ. Nf complex scalar fields, denoted as ΦvI ¼
ðΦvIÞi (I ¼ 1;…; Nf; i ¼ 1;…; Nc), reside on each vertex
v∈V and are in the fundamental representation of UðNcÞ.
Note that these scalar fields can also be expressed as
rectangular matrices of sizeNc × Nf, asΦv ¼ ðΦvÞiI . Then
we define a gauge theory on the graph G by the action,
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S ¼
X
v∈V

m2
vΦ

†
v
IΦvI − q

X
e∈E

�
Φ†

sðeÞ
IUeΦtðeÞI

þΦ†
tðeÞ

IU†
eΦsðeÞI

�
; ð2:1Þ

where m2
v is a mass parameter of the scalar fields ΦI

v which
is uniform for all I ∈ f1;…; Nfg and q is a coupling
constant. In contrast to the original model in [35], wherem2

v

was fixed, we now adjust m2
v based on the relationship

between the vertex v and the surrounding edges, as

m2
v ¼ 1 − q2ð1 − uÞ2 þ q2ð1 − uÞ deg v; ð2:2Þ

where deg v is the number of edges whose source or target
is the vertex v. This parametrization is necessary for the
interpretation of the model’s partition function as a graph
zeta function in the following subsection, as established
in [23,24]. While the model retains the UðNcÞ gauge
symmetry, it lacks the extra Uð1Þ symmetry present in
the original KM model (1.1). Henceforth, we refer to this
model as the FKM model.

C. Partition function in terms of the graph zeta function

The integration over the scalar fields in the definition of
the partition function of this model is a Gaussian integral;

ZG ¼
Z Y

v∈V

dΦvdΦ†v
Y
e∈E

dUee−βS

¼
YNf

I¼1

Z Y
v∈V

dΦvIdΦ†vI
Y
e∈E

dUee−βΦ
†vIΔv

v0Φv0I ; ð2:3Þ

where the action is given by (2.1) and Δ is a square matrix
of size NcnV with the elements defined by

Δv
v0 ≡ δv

v01Nc
− qðAUÞvv0 þ ð1 − uÞq2ðdeg v − ð1 − uÞÞ

× δv
v01Nc

; ð2:4Þ

and the matrix AU is the matrix-weighted adjacency matrix
whose elements are given by

ðAUÞvv0 ¼
X
e∈ED

Ueδhv;v0i;e: ð2:5Þ

Although β can be absorbed into the scalar fields by
rescaling, it is deliberately retained in the expression.
The matrix Δ is the same matrix appearing in the vertex
representation of the matrix-weighted Bartholdi zeta func-
tion [23,24],

ζGðq; u;UÞ ¼ ð1 − ð1 − uÞ2q2Þ−NcðnE−nVÞ

× detð1NcnV − qAU þ ð1 − uÞ
× q2ðD − ð1 − uÞ1NcnV ÞÞ−1; ð2:6Þ

where D is a diagonal matrix whose elements are given by
Dvi

v0j ¼ deg vδvv
0
δi

j. Therefore, by integrating out the
scalar fields, the partition function (2.3) can be written as

ZG ¼
�
2π

β

�
NfNcnV ð1 − ð1 − uÞ2q2ÞNfNcðnE−nVÞ

×
Z Y

e∈E

dUeζGðq; u;UÞNf : ð2:7Þ

The matrix-weighted Bartholdi zeta function ζGðq; u;UÞ is
originally defined as the Euler product over all possible
Wilson loops along primitive cycles of the graph:

ζGðq; u;UÞ≡ Y
C∈ ½P�

detð1Nc
− qjCjubðCÞUCÞ−1; ð2:8Þ

where UC is the Wilson loop associated with the cycle
C ¼ ðei1 � � � eijCj Þ and UC ≡Uei1

� � �UeijCj
. If the cycle C

contains a bump ee−1, the unitary matrices at the bump in
UC are canceled asUeUe−1 ¼ UeU−1

e ¼ 1Nc
. Therefore, the

Wilson loop on such a cycle is equivalent to the Wilson
loop on the reduced cycle obtained by recursively collaps-
ing all bumps in C, and the Euler product in (2.8) is
rewritten as a product over the equivalence class of chiral
primitive reduced cycles as (for derivation, see [23])

ζGðq; u;UÞ ¼ VGðq; uÞNc

Y
C∈ ½Πþ�

exp

 X∞
n¼1

1

n
fCðq; uÞn

�
TrUn

C þ TrU†n
C

�!
; ð2:9Þ

where VGðq; uÞ and fCðq; uÞ are defined by

VGðq; uÞ≡
Y

C̃∈ ½B0�

1

1 − qjC̃jubðC̃Þ
; fCðq; uÞ≡

X
C̃∈ ½BðCÞ�

qjC̃jubðC̃Þ; ð2:10Þ

respectively. ½B0� and ½BðCÞ� are the sets of the representatives of primitive cycles that reduce to a point and a primitive
reduced cycle C, respectively, by eliminating all bumps. Combining (2.7) and (2.9), we can write the partition function as
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ZG ¼
�
2π

β

�
NfNcnV ð1 − ð1 − uÞ2q2ÞNfNcðnE−nVÞVGðq; uÞNfNc

×
Z Y

e∈E

dUe

Y
C∈ ½Πþ�

exp

�
Nf

X∞
n¼1

1

n
fCðq; uÞnðTrUn

C þ TrU†n
C Þ
�
: ð2:11Þ

Therefore, the effective action of the FKM model obtained
by integrating the scalar field is

SeffðUÞ ¼ −
X

C∈ ½Πþ�
Nf

X∞
n¼1

1

n
fCðq; uÞn

�
TrUn

C þ TrU†n
C

�
:

ð2:12Þ

It would be worthwhile to mention the existence of a
limit in which this effective action becomes the Wilson
action. To this end, we recall that, for a primitive reduced
cycle C, the cycle with the shortest length in ½BðCÞ� is [C]
because bumps generally increase the length of a cycle.
Therefore, from the definition (2.10), the function fCðq; uÞ
behaves as

fCðq; uÞ → qjCj; ð2:13Þ

if q is sufficiently small regardless of the value of u. Here,
let l be the minimum length of the primitive reduced cycles
of the graph. Then, by setting,

γ ≡ Nf

Nc
; ð2:14Þ

and taking the limit,

q → 0; γ → ∞; λ≡ 1

γql
∶ fixed; ð2:15Þ

the effective action (2.12) reduces to

SeffðUÞ ¼ −
Nc

λ

X
C∈ ½Πl

þ�

�
TrUC þ TrU†

C

�
; ð2:16Þ

where ½Πlþ� is the set of representatives of chiral primary
reduced cycles of the minimal length l. When the graph
consists of the fundamental cycles (plaquettes) of the same
length (size) l as the standard square lattice, this is nothing
but the Wilson action with the ’t Hooft coupling λ ¼ Ncg2.
This indicates that the FKM model reproduces the lattice
gauge theory with the Wilson action at least classically.2

For the latter purpose, we note that the matrix-weighted
Bartholdi zeta function (2.8) can also be expressed as

ζGðq; u;UÞ ¼ det ð12NcnE − qðWU þ uJUÞÞ−1; ð2:17Þ

where the matrices WU and JU are referred to as the edge
adjacency matrix and bump matrix, respectively, and are
defined as

ðWUÞee0 ¼
�
Ue if tðeÞ ¼ sðe0Þ and e0−1 ≠ e

0 others
;

ðJUÞee0 ¼
�
Ue if e0−1 ¼ e

0 others
; ð2:18Þ

respectively [24].
Setting Nc ¼ 1 and Ue ¼ 1 in the expressions (2.6),

(2.8), and (2.17) results in the standard Bartholdi zeta
function ζGðq; uÞ [28],

ζGðq;uÞ ¼
Y

C∈ ½P�
ð1− qjCjubðCÞÞ−1

¼ ð1− ð1− uÞ2q2Þ−ðnE−nV Þ
×detð1nV − qAþ ð1− uÞq2ðD− ð1− uÞ1nV ÞÞ−1

¼ detð12nE − qðW þ uJÞÞ−1; ð2:19Þ

where the matrices A, W and J are obtained by setting
Nc ¼ 1 and Ue ¼ 1 for AU,WU and JU in (2.5) and (2.18),
respectively. Furthermore, taking u ¼ 0 yields the Ihara
zeta function [25–27],

ζGðqÞ ¼
Y

C∈ ½PR�
ð1 − qjCjÞ−1

¼ ð1 − q2Þ−ðnE−nVÞ detð1nV − qAþ q2ðD − 1nV ÞÞ−1
¼ detð12nE − qWÞ−1: ð2:20Þ

These expressions will be also utilized later on.

III. GWW PHASE TRANSITION IN THE FKM
MODEL ON CYCLE GRAPHS

Let us examine the FKM model on a cycle graph
G ¼ Cn, which has nV ¼ nE ¼ n and deg v ¼ 2 for all
vertices as depicted in Fig. 1. The cycle graph has a single
chiral primitive reduced cycle C ¼ ðe1 � � � enÞ, so we can

2Although this limit has already been mentioned in [35], the
capacity for precise evaluation in the limit has become attainable
due to the expression of the partition function in terms of the
graph zeta function.
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simplify the notation for UC to U. In this instance, we can
calculate VGðq; uÞ and fCðq; uÞ explicitly as [24]

VGðq;uÞ ¼ ξþðq;uÞ−n; fCðq;uÞ ¼ qnξþðq;uÞ−n; ð3:1Þ

where

ξþðq; uÞ≡ 1

2

�
1þ ð1 − u2Þq2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ð1þ u2Þq2 þ ð1 − u2Þ2q4

q �
: ð3:2Þ

We assume 0 < q < 1 and 0 ≤ u < 1, in which region the
Bartholdi zeta function on the cycle graph is well defined.
We define

α≡ fCðq; uÞ ¼ qnξþðq; uÞ−n; ð3:3Þ

which runs in the range 0 < α ≤ 1. By fixing the gauge as
U2 ¼ U3 ¼ � � �Un ¼ 1Nc

, the partition function of the
FKM model can be expressed as

ZCn
¼
�
2π

βqn

�
NfNcnV

αNcNf

Z
dUeNf

P
∞
m¼1

αm
m ðTrUmþTrU−mÞ

¼ N
Z

π

−π

YNc

i¼1

dθie
P

j≠k
log j sinθj−θk

2
j−Nf

P
i
log ð1−2α cos θiþα2Þ;

ð3:4Þ

where N is an irrelevant normalization constant.
Let us next evaluate the free energy of this system in

the limit ofNc → ∞ and Nf → ∞with fixing the ratio γ as
in (2.14), by following the strategy in [38,39]. In this
limit, the eigenvalues θi can be treated as a continuous

variable θðxÞ ðx∈ ½0; 1�Þ, and the free energy can be
expressed as

FCn
≡ − lim

Nc→∞

1

N2
c
logZCn

¼ −
Z
�

1

0

dxdy log

				 sin θðxÞ − θðyÞ
2

				
þ γ

Z
1

0

dx logð1 − 2α cos θðxÞ þ α2Þ; ð3:5Þ

up to an inessential constant, where the symbol
R� denotes

the principal value integral.
Since the saddle point approximation becomes exact in

large Nc, the free energy is determined by solving the
saddle point equation,

Z
�dy cot

�
θðxÞ − θðyÞ

2

�
¼
Z
�θ0

−θ0
dθ0ρðθ0Þ cot

�
θ − θ0

2

�

¼ γ
2α sin θ

1 − 2α cos θ þ α2
; ð3:6Þ

where ρðθÞ is the density of the eigenvalues,

ρðθÞ≡ 1

Nc

XNc

i¼1

δðθ − θiÞ; ð3:7Þ

and �θ0 (0 < θ0 ≤ π) are the boundaries of the support
of the density function, namely, we have assumed that
ρðθÞ ≥ 0 in the region −θ0 ≤ θ ≤ θ0 and ρðθÞ ¼ 0 outside.
If θ0 ¼ π, the eigenvalues are dispersed around the circle,
whereas if θ0 < π, the eigenvalues are distributed over only
a portion of the circle around θ ¼ 0 (Fig. 2). Under either
boundary condition, the equation is easily solved [44] and
the result is

ρðθÞ ¼

8><
>:

1
2π

�
1þ 2γ α cos θ− α2

1− 2α cos θþ α2

�
; ðθ0 ¼ πÞ

2ðγ − 1Þα
π

cos θ
2

1− 2α cos θþ α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θ0

2
− sin2 θ

2

q
; ðθ0 < πÞ

ð3:8Þ

where

sin2
θ0
2
¼ ð1 − αÞ2

4α

2γ − 1

ðγ − 1Þ2 : ð3:9Þ

The phase transition between these two phases is known as
the GWW phase transition [38,39].
We should here note that the occurrence of the GWW

phase transition in this model depends on the value of γ: If γ
is too small, the attractive force between the eigenvalues,
induced by the potential [the second term of (3.5)], will be
unable to adequately counteract the repulsive force caused

FIG. 1. A cycle graph Cn with n vertices and edges.
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by the Jacobian term (the first term), resulting in a
circumferential distribution of eigenvalues, regardless of
the value of α. In fact, in the phase of θ0 ¼ π, the condition
ρð�πÞ ≥ 0 suggests that 0 < α ≤ 1

2γ−1 for γ ≥ 1
2
and α >

1
2γ−1 for γ < 1

2
. Recalling the range of α, 0 < α ≤ 1, this

means that ρð�πÞ ¼ 0 can be realized at

α ¼ α� ≡ 1

2γ − 1
; ð3:10Þ

for γ ≥ 1, while ρð�πÞ is always positive for γ < 1. In
particular, for γ ¼ 1, the value of the α� is at the boundary
of the range of α. Therefore, the GWW phase transition
occurs only when γ > 1, that is, Nf > Nc.
Let us evaluate the free energy in both phases and

determine the degree of the phase transition. This is
achieved by substituting (3.8) into (3.5). After straightfor-
ward computations, we obtain

FCn
¼
(
F−
Cn

≡ γ2 log ð1 − α2Þ ð0 < α ≤ α�Þ
Fþ
Cn

≡ ð2γ − 1Þ logð1 − αÞ þ 1
2
log αþ fðγÞ ðα� < α ≤ 1Þ ð3:11Þ

where fðγÞ is a function of γ which is determined by the
requirement that both expressions have the same value at
α ¼ α�. Since the first and the second derivative by α of
F�
Cn

at α ¼ α� are equal;

dF−
Cn

dα

			
α¼α�

¼ dFþ
Cn

dα α¼α�
¼ −2γ2 þ γ

2ðγ − 1Þ ;

and

d2F−
Cn

dα2

			
α¼α�

¼ d2Fþ
Cn

dα2

			
α¼α�

¼ ð−2γ2 þ 2γ − 1Þð2γ − 1Þ2
4ðγ − 1Þ2 ;

while the third derivative jumps;

d3F−
Cn

dα3

			
α¼α�

≠
d3Fþ

Cn

dα3

			
α¼α�

:

This phase transition is third-order, which is the same as the
original GWW phase transition.
It is instructive to observe that, upon taking the

limit (2.15) with qn ¼ α, the density (3.8) and the free
energy (3.11) converge to those of the original GWW
model as

ρðθÞ ¼

8><
>:

1
2π

�
1þ 2

λ cos θ
�
; ðθ0 ¼ πÞ

2
πλ cos

θ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
2
− sin2 θ

2

q
; ðθ0 < πÞ

ð3:12Þ

and

FCn
¼
(
F−
Cn
≡− 1

λ2
ð0< α≤ α�Þ

Fþ
Cn
≡−2

λ−
1
2
logλþ const: ðα�< α< 1Þ ; ð3:13Þ

respectively. This is consistent with the result that the
effective action of the FKM model becomes that of the
GWWmodel (represented by the Wilson action in a single
plaquette) in the limit (2.15).

IV. ANALYSIS AT LARGE Nc
FOR GENERAL GRAPHS

In this section, we evaluate the partition function of the
FKM model on a general graph G at large Nc.

FIG. 2. This show that an example of the eigenvalue distributions in the different phases. We set γ ¼ 10, then the critical point is
α� ¼ 1

19
¼ 0.0526316 � � �. (a) For α < α�, the eigenvalue distribution is attached at θ ¼ �π with the periodicity. (b) For α > α�, the

eigenvalue distribution behaves in the same manner as Wigner’s semi-circle.
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A. Evaluation by a large N decomposition
of Wilson loops

Let us first rewrite the partition function (2.11) by using
the identity,

exp

 X∞
m¼1

am
m

xm
!

¼
X∞
n¼0

xn
X
λ⊢n

aλ
zλ

; ð4:1Þ

where λ is a partition of n expressed as λ ¼ ðlm1

1 � � � lmk
k Þ

ðl1 > � � � > lk ≥ 0Þ with
P

k
i¼1mili ¼ n, aλ ≡Qk

i¼1 a
mi
li
,

and zλ ≡Qk
i¼1mi!l

mi
i . Applying this identity to the expres-

sion in (2.9), we obtain

exp

 
Nf

X∞
m¼1

1

m
fCðq; uÞmTrUm

C

!

¼
X∞
nC¼0

fCðq; uÞnC
X
λC⊢nC

N
mλC
f

zλC
ϒλCðUCÞ; ð4:2Þ

where we have defined mλ ≡Pk
i¼1 mi and

ϒλðUÞ≡Yk
i¼1

TrðUliÞmi : ð4:3Þ

Therefore, the unitary matrix integral in the partition
function (2.11) can be rewritten as

Z Y
e∈E

dUe

Y
C∈ ½Πþ�

exp

 X∞
n¼1

1

n
fCðq; uÞnðTrUn

C þ TrU†n
C Þ
!

¼
Z Y

e∈E

dUe

Y
C∈ ½Πþ�

 X∞
nC;mC¼0

X
λC⊢nC

X
μC⊢mC

fCðq; uÞnCþmC
N

mλC
þmμC

f

zλCzμC
ϒλCðUCÞϒμCðU†

CÞ
!
: ð4:4Þ

Although it is hard to carry out this unitary matrix integral
in finite Nc, it is decomposed in large Nc as [45–47] (see
also [24])

Z Y
e∈E

dUe

 Y
C∈ ½Πþ�

ϒλCðUCÞϒμCðU†
CÞ
!

¼
Y

C∈ ½Πþ�

 Z Y
e∈E

dUeϒλCðUCÞϒμCðU†
CÞ
!

þOð1=NcÞ;

ð4:5Þ

and the integral can be evaluated as [23]

Z Y
e∈E

dUeϒλCðUCÞϒμCðU†
CÞ¼ δmC;nCδλC;μCzλC þOð1=NcÞ;

ð4:6Þ

in large Nc. Combining them, the integration (4.4) can be
rewritten as

Z Y
e∈E

dUe

Y
C∈ ½Πþ�

exp

 X∞
n¼1

1

n
fCðq; uÞnðTrUn

C þ TrU†n
C Þ
!

¼
Y

C∈ ½Πþ�

 X∞
nC¼0

fCðq; uÞ2nC
X
λC⊢nC

N
2mλC
f

zλC

!
ð1þOð1=NcÞÞ

¼
 Y

C∈ ½Πþ�

1

ð1 − fCðq; uÞ2ÞN
2
f

!
ð1þOð1=NcÞÞ: ð4:7Þ

In deriving the third line from the second line, we have used
the identity,

1

ð1 − tÞM ¼
X∞
n¼0

tn
X
λ⊢n

Mmλ

zλ
; ð4:8Þ

for M∈N. This is derived from the generating function of
the power sum symmetric polynomials,

Y
i

1

1 − txi
¼
X∞
n¼0

tn
X
λ⊢n

pλðxÞ
zλ

; ð4:9Þ

where pλðxÞ ¼
Q

k
i¼1 ð

P
j x

li
j Þmi is the power sum sym-

metric polynomial corresponding to the partition λ ¼
ðlmi

1 � � � lmk
k Þ. By setting x1 ¼ � � � ¼ xM ¼ 1 and xMþ1 ¼

xMþ2 ¼ � � � ¼ 0, we obtain (4.8).
The terms of the order of Oð1=NcÞ in (4.7) merit

scrutiny. This is because this expression contains power
series of Nf and fCðq; uÞ, and if NffCðq; uÞ ∼OðNcÞ, the
contribution of these terms can be finite. Hence, to dismiss
the Oð1=NcÞ terms in Eq. (4.7), it is necessary to consider
the limit of Nc → ∞ while maintaining NffCðq; uÞ ≪ Nc,
equivalently qNf ≪ Nc, yielding the asymptotic form of
the partition function:

ZG →

�
2π

β

�
NfNcnV ð1− ð1− uÞ2q2ÞNfNcðnE−nV ÞVGðq;uÞNfNc

×
Y

C∈ ½Πþ�

1

ð1− fCðq;uÞ2ÞN
2
f

: ð4:10Þ
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B. Evaluation by the saddle point approximation

Next, we evaluate the unitary matrix integral of the
partition function (2.7),Z Y

e∈E

dUeζGðq; u;UÞNf ;

in the limit of large Nf. First, the gauge is fixed appro-
priately by utilizing the gauge invariance of ζGðq; u;UÞ and
the left-right invariance of the Haar measure. This is
achieved by setting Ue ¼ 1Nc

on the edges within a
spanning tree of the connected graph G, resulting in r ¼
nE − nV þ 1 unitary matrices, which are the Wilson loops
corresponding to the fundamental cycles of the graph G,
remaining. The edges out of the spanning tree are labeled as
feaja ¼ 1;…; rg and the remaining matrices are renamed
as Ua ≡Uea . Subsequently, the integral becomesZ Yr

a¼1

dUaζGðq; u;UÞNf ≡
Z Yr

a¼1

dUae−NfS½U�: ð4:11Þ

At large Nf, the integral (4.11) can be precisely
evaluated through the application of the saddle-point
approximation. From the expression (2.17), the “action”
S½U� can be written as

S½U� ¼ − log ζGðq; u;UÞ
¼ Tr log ð1 − qðWU þ uJUÞÞ: ð4:12Þ

By defining

δAa ≡ −iδUaU−1
a ; ð4:13Þ

the variation of the action can be represented as

δS½U� ¼ −i
Xr
a¼1

X
C∈Ra

fCðq; uÞTrðδAaðUC − U†
CÞÞ; ð4:14Þ

where Ra constitutes the set of reduced but not necessarily
primitive cycles that commence with ea, and fCðq; uÞ
designates a function of q and u specific to C, defined
similarly as in (2.10). To satisfy δS½U� ¼ 0 for any value of
q and u, it is necessary that

UC ¼ U†
C ð4:15Þ

be satisfied by all Wilson loops. In particular, the same
condition must be satisfied by the Wilson loops along the
fundamental cycles:

U†
a ¼ Ua: ð4:16Þ

Since any Wilson loop is generated by Ua (a ¼ 1;…; r),
the conditions (4.15) and (4.16) entail

UaUb ¼ ðUaUbÞ† ¼ UbUa ð4:17Þ

for ∀a; b∈ f1…; rg. As a result, Ua (a ¼ 1;…; r) can be
diagonalized simultaneously and the saddle points are
given by

Ua ¼ diagð�1;…;�1Þ; ð4:18Þ

modulo (global) unitary transformation.
The value of the action at one of the saddle points is

evaluated as

S½U�jFP ¼ −
X

C∈ ½PR�

X∞
m¼1

1

m
fCðq; uÞmðNþ

C þ N−
Cð−1ÞmÞ

þ const:; ð4:19Þ

where N�
C signifies the number of �1 in the eigenvalues of

UC on the saddle point and the constant term corresponds
to the contribution from VGðq; uÞ. The saddle point
yielding the minimal action is

Ua ≡Uð0Þ
a ¼ 1Nc

; ð4:20Þ

for all a∈ f1;…; rg and the values of e−NfS½U� at this point
is expressed by the Bartholdi zeta function (2.19) as

e−NfS½Uð0Þ� ¼ ζGðq; uÞNfNc : ð4:21Þ

Compared to it, the values of e−NfS½U� at other saddle points
are negligible in the order of e−Nf in the limit of large Nf.
However, it is important to note that the value of Nc

determines the validity of disregarding saddle points other
than (4.20). Since the number of the saddle points is of the
order of eNc , if Nc ≳OðNfÞ, the total contribution from all
saddle points cannot be dismissed even if each individual
contribution is proportional to e−Nf . Therefore, in contrast
to the previous subsection, we evaluate (4.11) in the region
of Nc ≪ Nf and take the limit of Nc → ∞ in the rest of this
subsection.
In this region, it is only necessary to calculate the second

derivative of the action (4.12) about the vacuum (4.20) to
evaluate (4.11):

S½U� ¼ −Nc log ζGðq; uÞ −
Xr
a;b¼1

TrNc
ðδAaδAbÞðMGÞab

þOðδA3Þ; ð4:22Þ

whereMG is a square matrix of size r, which is comprised
of the elements of the matrix appearing in the edge
expression of the Bartholdi zeta function (2.19),

Y ≡ ð12nE − qðW þ uJÞÞ−1; ð4:23Þ
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as

ðMGÞab ¼ 2
�
−Yeaeaδab þ YeaebYebea − Yeae−1b

Ye−1b ea

�
:

ð4:24Þ

Therefore, in the limit of Nc → ∞ with Nc ≪ Nf, the
integral (4.11) can be exactly evaluated as

Z Yr
a¼1

dUaζGðq; u;UÞNf ¼
Z Yr

a¼1

dUae−NfS½U�

¼ N ζGðq; uÞNfNcðdetMGÞ−
N2
c
2 ;

ð4:25Þ

with an irrelevant constant N , and we see that the partition
function (2.7) behaves asymptotically as

ZG→N
�
2π

β

�
NfNcnV ð1−ð1−uÞ2q2ÞNfNcðnE−nV ÞVGðq;uÞNfNc

×

 Y
C∈½Πþ�

1

ð1−fCðq;uÞÞ2NfNc

!
ðdetMGÞ−

N2
c
2 : ð4:26Þ

C. Phase structure in general graphs

From (4.10) and (4.26), we see that the free energy
FG ¼ − 1

N2
c
logZG of the model in large Nc behaves as

FG → F−
G ≡ γ2

X
C∈ ½Πþ�

logð1 − fCðq; uÞ2Þ ð4:27Þ

in the region q ≪ 1
γ and

FG → Fþ
G ≡ 2γ

X
C∈ ½Πþ�

logð1 − fCðq; uÞÞ

þ 1

2
Tr logMG þ const: ð4:28Þ

in the region γ ≫ 1 up to common irrelevant terms. As
already discussed, the FKM model on a graph with r
fundamental cycles is characterized by r mutually inde-
pendent unitary matrices. The qualitative discussion in
the previous section remains applicable in this context: The
distribution of eigenvalues of the unitary matrices is the
result of the interplay between the measure-induced repul-
sive forces and the attractive forces derived from the
potential term. Hence, when Nf is small, the eigenvalues
of all unitary matrices are dispersed along the circles due to
the insufficient attractive force, conversely, when Nf is
substantial, the eigenvalues tend to cluster near the origins.
This indicates that F−

G and Fþ
G correspond to the free energy

in the phases where the eigenvalue densities of all unitary

matrices are dispersed along the circles or concentrated near
the origins, respectively.
This can be understood more clearly by applying (4.27)

and (4.28) to cycle graphs. In fact, the cycle graph G ¼ Cn
has only one fundamental cycle and the “matrix” MCn

is

MCn
¼ 2α

ð1 − αÞ2 ; ð4:29Þ

with α ¼ fCðq; uÞ for the unique fundamental cycle C.
Therefore, the free energies (4.27) and (4.28) can be
written as

F−
Cn

¼ γ2 logð1 − α2Þ; ð4:30Þ

and

Fþ
Cn

¼ ð2γ − 1Þ logð1 − αÞ þ 1

2
log αþ const:; ð4:31Þ

respectively, which reproduce the exact result (3.11).
In general, however, there are 2r potentially possible

phases that can be realized, dependent upon whether the
eigenvalue distributions of the r unitary matrices are dis-
persed or concentrated on the circles. The expressions (4.27)
and (4.28) are believed to correspond to the free energies
of the two most disparate phases, respectively. As the
parameter of the theory shifts from the phase with the free
energy (4.27), where all eigenvalue distributions are dis-
persed, it is anticipated that the eigenvalue distributions of
the r unitary matrices will sequentially be separated, until the
phase with the free energy (4.28) is eventually realized. In
essence, in a general graph with r > 1, we expect that the
FKM model will have rþ 1 different phases, with the
GWW phase transitions occurring at their boundaries. Note
that the order of these phase transitions is not necessarily
third-order because, unlike the cycle graph discussed in
the previous section, there is nontrivial interaction between
the unitary matrices through the infinitely many primitive
cycles in general. Therefore, the two expressions of the free
energy (4.27) and (4.28) will not be directly contiguous, and
an attempt to connect them would appear as if a first-order
phase transition were occurring.
For a graph with larger symmetry, it is natural to assume

that multiple unitary matrices should behave in a similar
manner. In this case, the intermediate phases should collapse
and the number of transitions should be smaller than r
unless the symmetry of the graph is spontaneously broken.
In particular, if the graph consists of repetitions of the
same plaquette, such as a symmetric square lattice, all the
intermediate phases will collapse and there should remain
only two phases where the eigenvalues of all the unitary
matrices are dispersed seamlessly around the circles as in (a)
of Fig. 2 or concentrated near the origins as in (b) of Fig. 2.
This is the special case where it will make sense to discuss
the phase transition between (4.27) and (4.28).
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In order to see it explicitly, let us consider the case of
u ¼ 0 where the Bartholdi zeta function becomes the Ihara
zeta function. In this case, VGðq; uÞ and fCðq; uÞ reduce to

VGðq; u ¼ 0Þ ¼ 1; fCðq; u ¼ 0Þ ¼ qjCj; ð4:32Þ

and therefore (4.27) and (4.28) can be written through the
Ihara zeta function ζGðqÞ as

F−
Gju¼0 ¼ −

γ2

2
log ζGðq2Þ;

Fþ
Gju¼0 ¼ −γ log ζGðqÞ þ

1

2
Tr logMG þ const; ð4:33Þ

which can be explicitly evaluated by using the determinant
expression of the Ihara zeta function in (2.20).
As an example of an asymmetric graph, we consider

such a graph that a triangle and a square are joined by one
edge, called TS. (See Fig. 3.) The Ihara zeta function and
detMG for G ¼ TS is evaluated as

ζTS ¼
1

ð1 − q2Þð1þ qþ q2 − q4 − 2q5Þð1 − qþ q2 − 2q3 þ q4 − 2q5Þ ;

detMTS ¼
4q7ð1þ qþ 3q2 þ q3 þ 3q4 þ q5 þ q6Þ

ð1þ qþ q2 − q4 − 2q5Þ2ð1 − qþ q2 − 2q3 þ q4 − 2q5Þ2 : ð4:34Þ

and the free energies F−
TS and Fþ

TS are obtained by
substituting them into (4.33). In order to compare the
behavior of the free energies in the limit of (2.15), we set
q ¼ ðγλÞ−1=3 and regard λ as the coupling constant of the
order of Oð1Þ.3 Since it is difficult to compare the free
energy directly due to the presence of the constant term
in (4.31), the first-order derivatives are compared instead.
We expect that they represent the free energies of two non-
adjacent phases and thus they cannot be smoothly con-
nected. Fig. 4 is the typical behavior of d

dλ ðF−
TS − Fþ

TSÞ for
large γ. The curves never cross nor touch the λ-axis, which
means that F−

TS and Fþ
TS cannot be connected smoothly as

expected. It is natural to assume that there is another phase
in the middle of these phases.
Next, as an example of a symmetric graph, let us evaluate

(4.27) and (4.28) for a graph of two triangles pasted
together by one edge, which we call the double triangle
(DT). (See Fig. 5.) The Ihara zeta function and detMG for
G ¼ DT are given by

ζDTðqÞ¼
1

ð1−q4Þð1þq2−2q3Þð1−q2−2q3Þ ;

detMDT¼
4q6ð1þqÞ2

ð1þq2Þð1þq2−2q3Þ2ð1−q2−2q3Þ2 ; ð4:35Þ

and the free energies F−
DT and Fþ

DT are again obtained by
substituting them into (4.33). As in the TS case, we set
q ¼ ðγλÞ−1=3 and regard λ as the coupling constant.
Figure 6 is the behavior of d

dλ ðF−
DT − Fþ

DTÞ for large γ.
In this case, we expect that the phases expressed by F−

DT

and Fþ
DT are adjacent to each other. We see that the phase

transition is at most second-order for γ < ∞ since the
derivative of the free energy crosses the λ-axis, even though
we cannot estimate the point of the phase transition exactly
due to the existence of the constant term in the free energy.4

Remarkably, d
dλ ðF−

DT − Fþ
DTÞ becomes tangent to the λ-axis

at λ ¼ 2 in the limit of γ → ∞, namely, in the limit
of (2.15). In the next subsection, we see that this indicates
that the transition indeed reduces to a third-order GWW
phase transition in the limit of (2.15) and the same
phenomenon occurs in a wide class of graphs.

D. Free energies in the Wilson action limit

Let us again consider the limit (2.15) where the
effective action of the model becomes the standard
Wilson action (2.16). It is easy to see the first terms of
the free energies (4.27) and (4.28) become

FIG. 3. A triangle-square (TS) graph with five vertices and
six edges.

3Although we see a fluctuating behavior in the derivative of the
free energy in the region of jλj ≪ 1 with finite γ, it is thought to be
non-universal since this behavior vanishes in the limit of γ → ∞.

4Another possibility is that there is an intermediate phase and
we cannot connect F�

DT directly. In that case, it means that the
symmetry of the graph should be spontaneously broken.
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γ2
X

C∈ ½Πþ�
log ð1 − fCðq; uÞ2Þ → −

r0

λ2
;

2γ
X

C∈ ½Πþ�
log ð1 − fCðq; uÞÞ → −

2r0

λ
; ð4:36Þ

respectively, where r0 is the number of the representative
of cycles with the minimal length l. The term with
log detMG can be evaluated by considering the meaning
of the matrix element (4.24): The diagonal element
ðMGÞaa is (twice of) the summation of fCðq; uÞ for such
reduced cycles C that start from ea. Therefore, in the limit
of q → 0, only the leading contribution 2qjCaj survives. On

the other hand, the off-diagonal element ðMGÞab is the
summation of fCðq; uÞ for such reduced cycles C that start
from ea and include eb. Then the off-diagonal elements of
MG behave in higher order than OðqjCajÞ for any a in the
limit of q → 0. Therefore, the leading behavior of detMG

in small q is 2rq
P

r
a¼1

jCaj. As a result, in the limit (2.15),
the free energies (4.27) and (4.28) converge to

F−
G → −

r0

λ2
;

Fþ
G → −

2r0

λ
−
1

2

 
1

l

Xr
a¼1

jCaj
!
log λþ const; ð4:37Þ

respectively. For the special case where all fundamental
cycles Ca are of the same length l such as the square
lattice, (4.37) reduces to

F−
G → −

r
λ2

;

Fþ
G → −

2r
λ
−
r
2
log λþ const; ð4:38Þ

For example, when the graph is the double triangle, we can
read detMDT ∼ 4q6 for small q from (4.35), which is
consistent with the result with l ¼ 3 and r ¼ 2.
It is no coincidence that this representation is equal to r

times the free energy of the cycle graph (3.13) in the same
limit. As seen in Sec. IVA, we can decompose all the
primitive reduced cycles in the evaluation of the unitary
matrix integral at least in the phase with dispersed

FIG. 4. For the triangle-square asymmetric graph, this plot shows the behavior of d
dλ ðF−

TS − Fþ
TSÞ for γ ¼ 20, 200, 2000 and the γ → ∞

limit in the region of the coupling λ ∼Oð1Þ, with setting q ¼ ðγλÞ−1=3. Since these curves do not cross nor touch the λ-axis, F−
TS and F

þ
TS

cannot be connected smoothly in this region.

FIG. 5. A double triangle (DT) graph with four vertices and
five edges.
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eigenvalue distribution. If we take the limit (2.15), only the
cycles of minimal length survive and it yields r copies of
cycle graphs effectively. We have seen that the FKM model
on the cycle graph shows the third-order GWW phase
transition and the transition point is λ ¼ 2 in the limit (2.15).
This strongly suggests that the phase transition point of the
present graph is also at λ ¼ 2 and the third-order phase
transition occurs universally in this class of graphs.
In the case where the graph is a two-dimensional square

lattice, this is consistent with the result that the effective
action of the FKMmodel reduces to the Wilson action in the
limit of (2.15) since the Wilson action on a two-dimensional
square lattice is equivalent to the GWW model. Notably,
however, this result extends to arbitrary-dimensional lattice
Yang-Mills theories represented by the Wilson action,
owing to the sole assumption that all fundamental cycles
are of the same length. This implies that the third-order
GWW phase transition is present in large N lattice gauge
theories of arbitrary dimensions.
On the other hand, if the fundamental cycles fCag

contain cycles of length larger than l, no third-order phase
transition occurs between F�

G because the coefficient of
log λ changes. This can be interpreted as the result that the
multiple phases that arise due to the smaller symmetry of the
graph survive in this limit as well. However, this result does
not directly reflect the phase structure of the lattice gauge
theory with the Wilson action on such a graph, since the
contribution of cycles with large lengths disappears and the
effective action (2.12) does not coincide with the Wilson
action on the graph under consideration in this limit.

V. CONCLUSION AND DISCUSSION

In this paper, we have generalized the model proposed
in [35] onto an arbitrary simple directed graph. This model,
which is referred to as the FKM model, constitutes a
variation of the KM model in which the adjoint scalar
fields are replaced by Nf fundamental scalar fields. It was
demonstrated that the partition function of the FKM model
can be expressed as a unitary matrix integral of a matrix-
weighted Bartholdi zeta function. The effective action of
the FKM model is comprised of a sum of all Wilson loops,
in a form analogous to that of the Wilson action in lattice
gauge theory. This is a consequence of the fact that this
model, unlike the original KM model, has no extra local
Uð1Þ symmetry. We showed that, by taking a suitable
scaling limit, the effective action converges to the standard
Wilson action on the graph. We evaluated the free energy
of the FKMmodel on a cycle graph (one plaquette) at large
Nc and showed that this model undergoes a third-order
GWW phase transition exclusively when Nf > Nc. We
also evaluated the free energy of the FKM model in the
limiting regions of qNf ≪ Nc and Nf ≫ Nc at large Nc on
a general graph. The large N decomposition of Wilson
loops is applied for the former calculation, and the saddle
point method for the latter. We argued that the FKM model
on general graphs has multiple phases at large Nc and that
these two expressions are the free energy corresponding to
the phases at both ends of the weakly and strongly coupled
sides, respectively. When we consider a graph with larger
symmetry like the square lattice, the intermediate phases

FIG. 6. For the double triangle (DT) graph, this plot shows that the behavior of d
dλ ðF−

DT − Fþ
DTÞ for γ ¼ 20, 200, 2000 and

the γ → ∞ limit with setting q ¼ ðγλÞ−1=3. We see that the third-order phase transition never occurs for the finite γ, since the
corresponding curves cross the λ-axis. The curve for γ → ∞ contacts with the λ-axis at λ ¼ 2, which is the third-order phase transition
point of the GWW model.
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collapse and a transition occurs between these two phases.
We evaluated a scaling limit of the free energies and
showed that for graphs in which the fundamental cycles
(all plaquettes in other words) consist of cycles of the
same length, a third-order GWW phase transition occurs
between them at that limit. Since this condition holds for
square lattices of arbitrary dimension, this implies that the
third-order GWW phase transition occurs in large N lattice
gauge theories of arbitrary dimension.
The property that the Wilson action can be reproduced

by taking the scaling limit of the FKM model makes this
model intriguing because it would open up the possibility
of investigating the Yang-Mills theory through the FKM
model. Although this result is obtained at the tree level, the
nonperturbative analysis performed in the concrete graphs
in the limit of large Nc suggests that the same conclusion
can be obtained in quantum theory. In addition, similar
results are obtained in our ongoing preliminary numerical
simulations (we will publish it soon). From these obser-
vations, it seems certain that the FKM model does indeed
contain a lattice gauge theory with the Wilson action. The
most important conclusion of this paper is that the FKM
model undergoes the GWW phase transition at large Nc,
regardless of the detail of the graph. As mentioned in
Introduction, this transition is closely related to the confine-
ment/deconfinement phase transition of QCD. This is
because, in the process where the eigenvalues of the
Polyakov loop transits from being localized in a part of
the circumference to being uniformly distributed and the
expectation value of the Polyakov loop vanishes, a phe-
nomenon that the eigenvalue distributions join on the
circumference always occurs [40–43]. Thus, considered
in conjunction with our conclusion that the FKM model
encompasses the Wilson action as a limit of the parameters,
this result suggests that the Wilson lattice gauge theory
shares the same properties. Therefore, we can expect that
the FKM model will be used to clarify the nature of the
confinement/deconfinement transition in QCD.
Although the phase transition in this paper is considered

at large Nc with fixing a graph, it is natural to assume, as is
the case with the original GWW phase transition, that these
transitions are not mere lattice artifacts but are related to
the large N phase transitions observed in the continuum
Yang-Mills theory in each dimension (See, e.g., [48] and
references therein). The FKM model has the remarkable
feature that its effective action is represented by the graph
zeta function, which can be analytically connected to the
complex plane at least in the region where jqj and juj are
sufficiently small and have properties similar to the famous
Riemann zeta function. Although the properties of the
matrix-weighted graph zeta function proposed in [23,24]
have not yet been fully investigated, its similarity to the
Artin L-function and its connection to covering graphs
have been suggested. If a more comprehensive analysis of
properties can be conducted, it could lead to the creation of

a novel analytical approach to probe the non-perturbative
aspects of Yang-Mills theory. A similar unitary matrix model
to the FKM is also discussed in [49,50] where the multi-
critical phase transition is suggested by using the Tracy-
Widom distribution of the random partitions. This implies
that the Schur-Weyl duality and the random partitions can be
an alternative way to analyze the FKMmodel. These present
promising prospects for future research.
As stated in the primary text, we expect that the FKM

model is anticipated to exhibit multiple phases at large Nc.
In order to confirm it, a promising approach would be
numerical simulations. It is straightforward to carry out a
Monte-Carlo analysis for asymmetric graphs like Fig. 3. In
addition to the large Nc limit, it is also interesting to
examine the continuous limit of the FKM model. If the
FKM model indeed belongs to the same universality class
as the Yang-Mills theory, the results of the Yang-Mills
theory should be reflected in the continuous limit of the
FKM model. Verifying this through numerical simulations
constitutes a significant area of inquiry.
In [23,24], the partition function of the KMmodel on the

cycle graph was computed at finite Nc, whereas the value at
finite Nc of the partition function of the FKM model on the
cycle graph for arbitrary Nf is not known. The only
exception is when Nf ¼ 1 where we can carry out the
unitary matrix integral exactly by using results in [51] and
the result is

Z
Nf¼1

C1
¼
�
2π

β

�
Nc ξþðq; uÞ−Nc

1 − q2ξþðq; uÞ−2
: ð5:1Þ

Unfortunately, there is no known integral formula available
when Nf > 1, and current technology can only reach
complicated forms involving the Weingarten functions.
However, the evaluation of the unitary matrix integral
undoubtedly changes at Nf ¼ Nc because the rank of the
rectangular matrix Φv changes here. As demonstrated, the
phase transition occurs exclusively when Nf > Nc for
substantial values ofNc. It is anticipated that the background
of this change in model properties at Nf ¼ Nc is related to
its property at finite Nc. Clarification of this point would be
of great interest.
The expressions of the free energy (4.27) and (4.28) with

u ≠ 0 are still formal unless we know how to compute
fCðq; uÞ in a general graph. For (4.28), we can instead
rewrite Fþ

G by using the Bartholdi zeta function as

Fþ
G ¼ −γ log ζGðq; uÞ þ

1

2
Tr logMG; ð5:2Þ

up to a constant term, which can be evaluated explicitly by
using the determinant formulas to express the Bartholdi
zeta function. However, it is still an open question if F−

G
in (4.27) can be expressed by appropriate graph zeta
functions. It is the case for u ¼ 0 as shown in (4.33),
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but it is still unclear for u ≠ 0 because we cannot express
the term

Q
C∈ ½Πþ�

1
1−fCðq;uÞ2 by using known graph zeta

functions. It would be useful to define a novel graph zeta
function. To this end, we recursively reduce all bumps
contained in a primitive cycle C. The obtained cycle is a
reduced cycle and is a positive power of a primitive reduced
cycle Ĉ. Calling this power wðCÞ, we can define a function
by the Euler product with “fermionic” signature,

ζ̃Gðq; uÞ≡
Y

C∈ ½P�
ð1 − ð−1ÞwðCÞqjCjubðCÞÞ−1: ð5:3Þ

If ð−1ÞwðCÞ is omitted, it becomes the Bartholdi zeta
function. Repeating the same computation to show
ζGðq; uÞ ¼ Vðq; uÞQC∈ ½PR�ð1 − fCðq; uÞÞ−1 (see [24]),
we can show

ζ̃Gðq; uÞ ¼ VGðq; uÞ
Y

C∈ ½PR�
ð1þ fCðq; uÞÞ−1: ð5:4Þ

Therefore, we can write F−
G as

F−
G ¼ −

γ2

4
log ðζGðq; uÞζ̃Gðq; uÞÞ; ð5:5Þ

up to a constant term. If the function (5.3) has a
determinant expression, not only we can express the free
energy in both regions explicitly for u ≠ 0, but also the
function (5.3) would serve as an interesting new graph
zeta function. A richer relationship may be found between
lattice gauge theory and the graph zeta function by
exploring this possibility.
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APPENDIX: GRAPH ZETA FUNCTIONS

In this appendix, we summarize the definition and some
properties of the Ihara and Bartholdi zeta functions. For
more detail, see [23,24].

1. Ihara and Bartholdi zeta functions

The graph zeta functions are defined by the Euler
product associated with primitive cycles of a given graph.
The simplest graph zeta function is called the Ihara zeta

function [25–27] which is defined as the Euler product over
the equivalence classes of primitive reduced cycles of a
given graph G

ζGðqÞ ¼
Y

C∈ ½PR�

1

1 − qjCj
: ðA1Þ

The Ihara zeta function counts only reduced cycles,
whereas the Bartholdi zeta function counts all cycles
including bumps [28]5:

ζGðq; uÞ ¼
Y

C∈ ½P�

1

1 − qjCjubðCÞ
: ðA2Þ

We concentrate on the Bartholdi zeta function in the
following since the Bartholdi zeta function reduces to
the Ihara zeta function by setting u ¼ 0:

ζGðq; u ¼ 0Þ ¼ ζGðqÞ:

It is remarkable that the Bartholdi zeta function (and
thus also the Ihara zeta function) is represented as the
inverse of a polynomial, even though the graph generally
has infinitely many equivalence classes of cycles. Let us
define 2nE × 2nE matrices W and J whose elements are
defined by

Wee0 ¼
�
1 if tðeÞ ¼ sðe0Þ and e0−1 ≠ e

0 others
;

Jee0 ¼
�
1 if e0−1 ¼ e

0 others
; ðA3Þ

where e; e0 ∈ED, which are called the edge adjacency
matrix and the bump matrix, respectively. Using these
matrices, the Bartholdi zeta function can be expressed as

ζGðq; uÞ ¼ det ð12nE − qðW þ uJÞÞ−1; ðA4Þ

which is the inverse of a polynomial of q and u as
announced.
The expression (A4) is sometimes called the edge

Bartholdi zeta function because it is described through
matrices W and J that characterize the relation among the
edges of the graph. Apart from this expression, there is
another expression focusing on the relation among the
vertexes;

ζGðq; uÞ ¼ ð1nV − ð1 − uÞ2q2Þ−ðnE−nVÞ detð1nV − qA

þ ð1 − uÞq2ðD − ð1 − uÞ1nV ÞÞ−1; ðA5Þ

5See also [29] for a generalization.
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where D is the diagonal matrix defined by D ¼ diagv∈V
ðdegðvÞÞ and the matrix A is a square matrix of size nV
called the vertex adjacency matrix defined by

Avv0 ¼
X
e∈ED

δhv;v0i;e:ðv; v0 ∈VÞ: ðA6Þ

2. Matrix-weighted Bartholdi zeta function

We here consider placing an invertible K × K matrix Xe
to each edge e of the graph.We assume that the matrix on the
inverse edge e−1 is the inverse of the matrix on the edge e;

Xe−1 ¼ X−1
e : ðA7Þ

For a cycle C ¼ ðei1 � � � einÞ, we assign a matrix,

XC ≡ Xei1
� � �Xein

:

The matrix-weighted Bartholdi zeta function [23] is
defined by the Euler product as

ζGðq; u;XÞ≡
Y

C∈ ½P�
detð1K − qjCjubðCÞXCÞ−1: ðA8Þ

Like the original Bartholdi zeta function, the matrix-
weighted Bartholdi zeta function (A8) can be expressed
as the inverse of the determinant of a matrix. This is
achieved by extending the edge adjacency matrix and the
bump matrix (A3) as

ðWXÞee0 ¼
�
Xe if tðeÞ ¼ sðe0Þ and e0−1 ≠ e

0 others
;

ðJXÞee0 ¼
�
Xe if e0−1 ¼ e

0 others
: ðA9Þ

We can show that the matrix-weighted Bartholdi zeta
function can be written as

ζGðq; u;XÞ ¼ detð12KnE − qðWX þ uJXÞÞ−1: ðA10Þ

We can further show that the matrix-weighted Bartholdi
zeta function can be expressed through the matrix-weighted
vertex adjacency matrix of the size KnV ,

ðAXÞvv0 ¼
X
e∈ED

Xeδhv;v0i;e; ðA11Þ

as

ζGðq; u;XÞ ¼ ð1 − ð1 − uÞ2q2Þ−KðnE−nVÞ detð1KnV − qAX

þ ð1 − uÞq2ðD − ð1 − uÞ1KnV ÞÞ−1; ðA12Þ

where D has been redefined as

Dvi;v0j ¼ degðvÞδvv0δij: ði; j ¼ 1;…; KÞ ðA13Þ
Note that the equivalence between (A10) and (A12) is
spoiled if the condition (A7) is not satisfied.

3. Reduction of the cycles

When a cycle has backtracking as C̃ ¼ P1ee−1P2, the
matrix XC̃ can be rewritten as XC̃ ¼ XP1

XeXe−1XP2
¼

XP1
XP2

because we have assumed Xe−1 ¼ X−1
e . Therefore,

if a cycle C̃ becomes a reduced cycle C by reducing all the
bumps repeatedly, we see the matrices on the cycles C̃ andC
are identical; XC̃ ¼ XC. Noting that a reduced cycle is a
positive power of a primitive reduced cycle C by definition,
we denote the set of representatives of primitive cycles that
are equivalent to Ck ðk∈NÞ after eliminating the bumps by
½BðCkÞ� ⊂ ½P�. We also denote the set of the representatives
of primitive cycles that reduce to a point (vertex) by
eliminating the bumps by ½B0� ⊂ ½P�. Using this notation,
we can rewrite (A8) as

ζGðq; u;XÞ ¼ VGðq; uÞK
Y

C∈ ½PR�

Y∞
k¼1

Y
C̃∈ ½BðCkÞ�

detð1K − qjC̃jubðC̃ÞXk
CÞ−1

¼ VGðq; uÞK
Y

C∈ ½PR�
exp

 X∞
n¼1

1

n
fCðq; uÞnTrðXn

CÞ
!
; ðA14Þ

where

fCðq; uÞ≡
X

C̃∈ ½BðCÞ�
qjC̃jubðC̃Þ; ðA15Þ

and

VGðq; uÞ≡
Y

C̃∈ ½B0�

1

1 − qjC̃jubðC̃Þ
: ðA16Þ

We note that the matrix-weighted Bartholdi zeta function can be further rewritten as
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ζGðq; u;XÞ ¼ VGðq; uÞK
Y

C∈ ½PR�
det ð1K − fCðq; uÞXCÞ−1;

which can be regarded as an extension of the Ihara zeta function in the sense that we count rather fCðq; uÞ not qjCj for a
primitive reduced cycle C.
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