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We study lattice cutoff effects on the confinement-deconfinement transition and the Z3 symmetry in
SUð3Þ-Higgs theory in 3þ 1 dimensions. The Higgs in this study is a complex triplet with vanishing bare
mass and quartic coupling. The lattice cutoff is regulated by varying the number of temporal lattice sites,Nτ.
Our results show that the nature of the confinement-deconfinement transition depends onNτ. ForNτ ¼ 2 the
transition is found to be the end point of a first-order transition and is first order forNτ ≥ 3. The distributions
of the Polyakov loop and other observables, sensitive to the Z3 symmetry, show that the strength of Z3

explicit breaking decreases with Nτ. Up to T ≃ 2Tc, the free energy difference between Z3 states decreases
with Nτ, suggesting the realization of Z3 symmetry in the continuum limit.
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I. INTRODUCTION

Studies of the confinement-deconfinement (CD) transi-
tion in quantum chromodynamics, electroweak theory, etc.,
are key to understanding matter at extreme temperatures.
These studies are also important for the phase diagram of
these theories. It is well known that the transition, from a
confined to a deconfined phase, is primarily driven by the
non-Abelian gauge fields. Its nature depends on the gauge
group SUðNÞ, couplings, and masses of the matter fields in
the theory [1–4]. In the pure gauge limit, the confined and
deconfined phases are characterized by the free energy of an
isolated static charge. At low temperatures, the free energy
diverges, which leads to confinement. In the string model
of confinement, color singlet pairs of static charges are
connected by a string of nonzero tension. This is backed by
the first principle lattice gauge theory calculations that show
the free energy of the pairs rising linearly with separation (r)
between them [5–7]. Thermal fluctuations at high temper-
atures melt the string, which leads to the liberation of
the static charges and the onset of deconfinement [8]. In
the Euclidean formulation of thermodynamics, the free
energy of a static charge in units of temperature is given
by the negative logarithm of the Polyakov loop thermal

average [5,6,9–11]. As this average vanishes in the confined
phase and acquires a nonzero value in the deconfined phase,
it acts as an order parameter for the CD transition [11–14].
Furthermore, the Polyakov loop transforms like a ZN spin
under gauge transformations, that are twisted along the
temporal direction by ZN phases [10,13,15]. Since the
Polyakov loop acquires a nonzero average in the deconfined
phase, the ZN symmetry is spontaneously broken, which
subsequently leads to N degenerate ZN states [14–17].
In the presence of dynamical matter fields in the funda-

mental representation, the string connecting the static singlet
pair breaks due to excitations of dynamical charges. The
matter fields, after a twisted=ZN gauge transformation, do
not satisfy necessary temporal boundary conditions [18–22].
Thus, the transformed matter fields cannot be part of the path
integral of the partition function. Nevertheless, two gauge
field configurations belonging to different ZN sectors of the
Polyakov loop contribute to the partition function. It is clear
that the two contributions will not be the same, as only the
gauge fields can be rotated by ZN gauge transformations.
This suggests that the ZN symmetry is explicitly broken. But
determining the strength or the extent of the explicit breaking
requires integrating out the matter fields. Note that this
situation is different from the explicit breaking in spin
models due to the external field, which is not a dynamical
field but a constant parameter.
Studies of spin systems show that, with the increase in

strength of the explicit breaking, phase transitions soften.
A strong first-order phase transition turns into a crossover
for large enough explicit breaking. So, it is expected that
ZN explicit breaking will cause softening of the CD
transition [9,20,23–26]. Also, the Polyakov loop average
is expected to be nonzero even in the confined phase.
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There are many studies on the effect of dynamical matter
fields on the ZN symmetry [18–20,27–31]. In lattice gauge
theories in the strong coupling limit, mean-field calculations
show that a decrease in quark masses increases the explicit
breaking [20,32]. Perturbative loop calculations also find
that, with a decrease in the mass of dynamical fields, the
explicit breaking increases [18,32–34]. Furthermore, the
free energy difference between the different ZN states
increases with temperature.
The ZN breaking due to dynamical matter fields near

the CD transition is studied mostly in nonperturbative
lattice simulations. Early lattice studies of the CD tran-
sition in SUð2Þ with dynamical quarks showed a sharp
crossover [35]. In SUð3Þ gauge theory with dynamical
quarks, a decrease in quark masses leads to an increase in
explicit breaking in the heavy-quark region [4]. For small
enough masses, the explicit breaking is so large that the
CD transition becomes a crossover. In SUð2Þ-Higgs
theory [36], the CD transition was found to be sharper
for a smaller cutoff. Recent studies of Z2 symmetry in
SUð2Þ-Higgs theory show that the explicit breaking
decreases drastically in the Higgs symmetric side of the
phase diagram [21]. This suggests that the Higgs con-
densate could be playing the role of the symmetry-
breaking field. In these studies, the lattices used had only
a few temporal lattice sites (Nτ ≤ 4). A detailed study of
cutoff effects was done for vanishing bare Higgs mass
(mH) and quartic coupling (λ) in Ref. [21]. It was observed
that the CD transition becomes sharper with a smaller
lattice cutoff, i.e., a larger Nτ. Furthermore, finite-size
scaling was observed near the critical point, for Nτ ≥ 8.
The distributions of the Polyakov loop near the transition
region exhibited Z2 symmetry, within statistical errors,
suggesting vanishingly small explicit breaking in the
continuum limit, i.e., for Nτ → ∞ [21]. Note that strong
coupling, as well as perturbative calculations, suggested
maximal explicit Z2 breaking for mH ¼ 0 and λ ¼ 0.
We mention here that ZN symmetry has been observed
in one-dimensional gauged Higgs chains in the continuum
limit [37]. One-dimensional Z2-Higgs theory also exhibits
the Z2 symmetry in the thermodynamic limit [38].
It is important to explore the ZN symmetry in the

continuum limit for higher N. In the present work, we
extend the previous work [21] to SUð3Þ-Higgs theory. We
consider a simple mass term in the Higgs potential, ignoring
the quartic or higher-order interactions. This ensures that the
system is in the Higgs symmetric phase in the vicinity of the
CD transition, where we intend to study the Z3 explicit
symmetry breaking. The higher-order interaction terms in
the Higgs potential, such as the quartic interaction term
(λΦ4), have been used to study the explicit breaking of Z2

symmetry on the phase diagram of SUð2Þ-Higgs theory.
This study found that the explicit breaking of Z2 symmetry
is large in the Higgs broken phase and gradually decreases
on approach toward the Higgs transition point on the phase

diagram. The explicit breaking is found to be vanishingly
small in the Higgs symmetric part of the phase diagram, in
the continuum limit. We plan to work on the explicit
breaking of Z3 on the phase diagram of SUð3Þ-Higgs
theory in the future. The perturbative one-loop calculations,
for λ ¼ 0, find that the explicit breaking is maximal for
vanishing bare Higgs mass and monotonically decreasing to
a vanishingly small value in the quenched limit. Lattice
results for a given cutoff, in the nonperturbative regime, also
show that the explicit breaking decreases withmH; thus, we
consider the case of maximum possible explicit breaking,
i.e., mH ¼ 0, in the present study. As in the case of SUð2Þ-
Higgs, the CD transition is found to depend on the lattice
cutoff. The distributions of the Polyakov loop show that the
strength of explicit breaking decreases with Nτ. With the
decrease in explicit breaking, the CD transition becomes
stronger. The CD transition is found to be an end point of a
first-order phase transition for Nτ ¼ 2 and is a first-order
transition forNτ ≥ 3. We also compare physical observables
between the different Z3 states in the deconfined phase up to
T ≃ 2Tc, which suggests that the free energy difference
between them is vanishingly small in the continuum limit.
This paper is organized as follows. In Sec. II, we discuss

the ZN symmetry in the presence of fundamental Higgs
fields. This is followed by numerical simulations of CD
transition and the Z3 symmetry in pure SUð3Þ gauge theory
and in SUð3Þ-Higgs theory in Sec. III. In Sec. IV, dis-
cussions and conclusions are presented.

II. ZN SYMMETRY IN THE PRESENCE
OF FUNDAMENTAL HIGGS FIELDS

The path-integral form of the partition function, Z, for
pure SUðNÞ gauge theory at finite temperature is given by

Z ¼
Z

½DAμ�e−SE½Aμ�: ð1Þ

Aμ ¼ TaAa
μ, where Ta; a ¼ 1; 2;…; N2 − 1, are generators

of SUðNÞ. In terms of the gauge fields Aa
μ, the non-Abelian

field strengths Fa
μν are written as Fa

μν ¼ ∂μAa
ν − ∂νAa

μþ
igfabcAb

μAc
ν. The Euclidean action SE½A� is given by

SE½A� ¼
Z
V
d3x

Z
β

0

dτ

�
1

2
Tr½Fμνðx⃗; τÞFμνðx⃗; τÞ�

�
: ð2Þ

Here, β is the inverse of temperature, i.e., β ¼ 1=T. The
integration in Eq. (1) is carried out over gauge fields that are
periodic along the temporal direction, i.e., Aμðx⃗; τ ¼ 0Þ ¼
Aμðx⃗; τ ¼ βÞ. The action Eq. (2) is invariant under the
following gauge transformation of gauge fields:

Aμðx⃗; τÞ→ Vðx⃗; τÞAμðx⃗; τÞV−1ðx⃗; τÞ− i
g
Vðx⃗; τÞ∂μV−1ðx⃗; τÞ;

ð3Þ
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where Vðx⃗; τÞ∈ SUðNÞ. The periodicity of the gauge
transformed fields is preserved, even if Vðx⃗; τÞ is not
periodic in τ but satisfies

Vðx⃗; τ ¼ 0Þ ¼ zVðx⃗; τ ¼ βÞ; with z∈ZN ⊂ SUðNÞ: ð4Þ

Here, z ¼ 1 expð2πinN Þ with n ¼ 0; 1; 2;…; N − 1. The term
ZN symmetry refers to the fact that all allowed gauge
transformations of the Euclidean gauge action are classified
by center ZN of the gauge group SUðNÞ. Under these gauge
transformations, the Polyakov loop

Lðx⃗Þ ¼ 1

N
Tr

�
P

�
exp

�
−ig

Z
β

0

A0ðx⃗; τÞdτ
���

ð5Þ

transforms as L → zL. This transformation of the Polyakov
loop is similar to that of magnetization under Z2 trans-
formation in the Ising model [13,15]. As mentioned pre-
viously, the thermal average of the Polyakov loop vanishes
in the confined phase. In the deconfined phase, the Polyakov
loop acquires a nonzero thermal average value, which leads
to the spontaneous breaking of the ZN symmetry. As a result,
there are N degenerate states in the deconfined phase
characterized by the elements of ZN .
In the presence of the Higgs field Φ in the funda-

mental representation, the Euclidean SUðNÞ-Higgs action
is given by

SE½A;Φ� ¼ SE½A� þ
Z
V
d3x

Z
β

0

dτ

�
1

2
ðDμΦÞ†ðDμΦÞ

þm2
H

2
Φ†Φþ λ

4!
ðΦ†ΦÞ2

�
: ð6Þ

Here, the covariant derivative DμΦ ¼ ∂μΦþ igAμΦ. mH

and λ are the mass and quartic coupling of the Higgs field,
respectively. The total partition function of this theory at
finite temperature is given by

Z ¼
Z

½DA�½DΦ�e−SE½A;Φ�: ð7Þ

Φ satisfies periodic boundary condition in the temporal
direction, i.e.,

Φðx⃗; 0Þ ¼ Φðx⃗; βÞ: ð8Þ

Under the SUðNÞ gauge transformation, the Φ field
transforms as

Φðx⃗; τÞ → Φ0ðx⃗; τÞ ¼ Vðx⃗; τÞΦðx⃗; τÞ: ð9Þ

A twisted ZN gauge transformation, with Vðx⃗; τ ¼ 0Þ ¼
zVðx⃗; τ ¼ βÞ and z ≠ 1, would lead to Φ0 with

Φ0ðx⃗; 0Þ ¼ zΦ0ðx⃗; βÞ: ð10Þ

As Φ0 is not periodic, it cannot be part of the path integral
of the partition function. Therefore, gauge transformations
for which z ≠ 1 are not a symmetry of the action [Eq. (6)].
But gauge fields that are related by gauge transformations
[Eq. (4)] can both contribute to the partition function.
These contributions will not be equal, as the twisted gauge
transformations cannot act on the Higgs. One can show
that the difference is due to only one term in Eq. (6), i.e.,

Z
V
d3x

Z
β

0

dτ
�
1

2
ðD0ΦÞ†ðD0ΦÞ

�
; ð11Þ

involving a temporal covariant derivative. Note that gauge
transformations [Eq. (4)] can be written as

Vðx; τÞ ¼ VaðτÞVpðx; τÞ; Vaðτ ¼ 0Þ ¼ zVaðτ ¼ βÞ;
Vpðτ ¼ 0Þ ¼ Vpðτ ¼ βÞ: ð12Þ

To see the effect of ZN gauge transformations, one needs to
consider only VaðτÞ. Suppose

Vaðτ ¼ 0Þ ¼ 1 and z ¼ 1eð2πiq=NÞ; ð13Þ

with q ¼ 0; 1;…; N − 1. This transformation is gauge
equivalent to VaðτÞ ¼ exp½iαðτÞ�, with αðτÞ ¼ 0 for τ<β
and αðβÞ ¼ 2πq=N. This will affect only the terms in which
temporal gauge fields are involved, i.e., jD0Φj2. So, at the
leading order, the explicit breaking of ZN arises due to
temporal gradient terms.
To compute the strength of ZN explicit breaking, the

Higgs field must be integrated out. It is possible to achieve
this in simplified models, e.g., one-dimensional gauged
Higgs chain with λ ¼ 0. In this case, the explicit breaking
becomes vanishingly small in the continuum limit [37]. In
the Higgs symmetric phase of Z2-Higgs theory, the entropy
contribution to the partition function is Z2 invariant for large
Nτ. As the entropy dominates the Boltzmann factor in the
thermodynamic limit, the Z2 symmetry is realized [38]. For
a 3þ 1-dimensional model, it is not possible to integrate out
the Higgs field exactly. In this work, we consider simulating
the partition function [Eq. (1)] using Monte Carlo tech-
niques. In the following, we describe our simulations of the
partition function and results.

III. MONTE CARLO SIMULATIONS
OF SUð3Þ-HIGGS THEORY

To carry out the Monte Carlo (MC) simulation, the
3þ 1-dimensional Euclidean space L3 × β is discretized as
a lattice with N3

s × Nτ points. In terms of the lattice
constant a, Ns ¼ ðL=aÞ and Nτ ¼ ðβ=aÞ. The lattice sites
are denoted by n ¼ ðn1; n2; n3; n4Þ with 1 ≤ n1; n2; n3 ≤
Ns and 1 ≤ n4 ≤ Nτ. The Higgs field Φn lives at the site n,
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and the gauge link Un;μ ¼ eigaAμðnÞ is between the sites n
and nþ μ̂. The discretized lattice action for λ ¼ 0 and
mH ¼ 0 takes the following form [21,39]:

S ¼ βg
X
P

Tr

�
1 −

UP þU†
P

2

�

− κ
X
n;μ

ReðΦ†
nþμUn;μΦnÞ þ

1

2

X
n

ðΦ†
nΦnÞ; ð14Þ

where the hopping parameter κ ¼ 1=8. βg ¼ 2N
g2 , where

g is the gauge coupling constant. The plaquette UP is the
path-ordered product of links Un;μ along an elementary
square, i.e.,

UP ¼ Un;μUnþμ;νU
†
nþν;μU

†
n;ν: ð15Þ

In the action Eq. (14), the second term corresponds to the
gauge-Higgs interaction. The average of the Polyakov
loop (L) is given by

L ¼ 1

N3
s

X
n⃗

Lðn⃗Þ; Lðn⃗Þ ¼ 1

N
Tr

YNτ

n4¼1

Uðn⃗;n4Þ;4̂: ð16Þ

Here, n⃗≡ n1; n2; n3 are the spatial and n4 is the temporal
coordinates.
In the Monte Carlo simulations, an initial configuration of

fUn;μ;Φng is updated according to the probability distri-
bution, Expð−SÞ. To update a given link Un;μ, the rest of
the fields coupled to it are treated as a heat bath. A new
choice for the link is generated using the standard heat-bath
method [40,41]. In the case of components of Φn, the new
values are obtained from a Gaussian distribution, whose
peak is determined by κ and nearest-neighbor fields. This
procedure is repeated sequentially for all the links and site
variables, which we call a sweep. Since a new configuration
is generated from an old one, the two are correlated. Based
on the autocorrelation of the Polyakov loop, many sweeps
are carried out before a configuration is considered for
calculating physical observables. The observables computed
are the average of the magnitude of the Polyakov loop (jLj)
and distributions HðjLjÞ; HðArgðLÞÞ, the gauge-Higgs
interaction term, SK ¼ Re

P
n;μ ðΦ†

nþμUn;μΦnÞ, and the
plaquette (Sg ¼

P
p Up). The simulations were carried

out for several values of Nτ ¼ 2, 3, 4, 8, to study the Nτ

dependence. We set Ns ≥ 4Nτ for all the simulations. Pure
SUð3Þ simulations were carried out to observe the effects of
the Higgs field. In the following, we present our results.

A. The CD transition vs Nτ

It is well established that, in pure SUð3Þ gauge theory, the
nature of the CD transition is first order [2–4,16,17,42–46].
For pure SUð3Þ, in Fig. 1 we show HðjLjÞ for Nτ ¼ 2 at

βg ¼ 1.698. In Fig. 2, the same is plotted for Nτ ¼ 4 at
βg ¼ 1.897. Since the transition is first order, for βg values
near the transition point, the histogram shows two peaks.
The peak corresponding to the smaller (higher) value of jLj
corresponds to the confined (deconfined) phase. In Figs. 3
and 4, the Polyakov loop average (L) vs βg is plotted for
Nτ ¼ 2 and Nτ ¼ 4, respectively. There is a range in βg for
which there are two values of jLj for a given βg. These two
points do not correspond to the partition function average of
the Polyakov loop but represent the locations of the peak
positions of HðjLjÞ. The peak location which is closer to
zero corresponds to the confined state and the other to the
deconfined state. Note that the positions of the two peaks do
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FIG. 1. HðjLjÞ for Nτ ¼ 2 at βg ¼ 1.698 and κ ¼ 0.
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FIG. 2. HðjLjÞ for Nτ ¼ 4 at βg ¼ 1.897 and κ ¼ 0.
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FIG. 3. hjLji vs βg for Nτ ¼ 2.
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not change with the initial condition or configuration and
the number of statistics. On the other hand, the partition
function average of the Polyakov loop depends on the
number of statistics as the system tunnels between the
confined and deconfined states and vice versa. As in
previous studies [43–45], the transition region shifts to
higher values with Nτ. In the presence of Higgs with κ ¼
1=8 (Fig. 5) show jLj vs βg for Nτ ¼ 2. The spatial sizes
considered are Ns ¼ 12, 20, 30, 40. jLj is continuous in βg
for all spatial sizes, but the variation of jLj near the

transition point is sharper for larger spatial sizes, clearly
showing finite-size effects. Furthermore, the value of jLj at
the transition point is nonzero and nearly independent of
Ns, which suggests that this CD transition may be an end
point of a first-order transition. Such end points have been
studied both in condensed matter as well as in high-energy
physics models [47–51]. Conventionally, energy (E-like)
and magnetization (M-like) observables are crucial to
analyze the nature of a second-order phase transition.
The E-like and M-like observables are expected to be
uncorrelated. Following the methods employed in Ref. [47],
we consider orthogonal linear combinations of the gauge
action (Sg) and the Polyakov loop jLj to obtain the E-like
and M-like observables. In Fig. 6, we have plotted the
distribution of Sg vs L. The distribution clearly shows that
Sg and jLj are correlated. But the distribution of E-like and
M-like, in Fig. 7, clearly shows that the partition function
average of their correlation is vanishingly small. More
importantly, the shape of this distribution strongly resem-
bles the corresponding distribution in the case of the 3D
Ising model. This suggests that the nature of CD transition
for Nτ ¼ 2 is likely the end point of a first-order phase
transition. We also did the same analysis by substituting Sg
with the total action. The distributions of the resulting E-like
and M-like observables are shown in Fig. 8.
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FIG. 4. hjLji vs βg for Nτ ¼ 4.
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To be more precise about the nature of the transition, the
Binder cumulant (UM) and the susceptibility (χM) corre-
sponding to the M-like observables are calculated near the
critical point for different spatial lattice sizes. The value
of the Binder cumulant near the critical point is within
0.44–0.48 for different Ns as shown in Fig. 9; whereas for
the 3D Ising universality class it is around 0.47 [21,22]. The
critical exponent “γ=ν” determined from the susceptibility
of M-like observables (χM) is shown in Fig. 10 for
Ns ¼ 12; 20; 30; 40. The dotted line in Fig. 10 corresponds
to the fitted function giving the value of γ=ν ∼ 1.973. For
3D Ising universality class, the critical exponent γ=ν ∼
1.968 [21,47,52]. So the observed UM and the critical
indices are suggestive that it is an end point of a first-order
phase transition.
Figures 11 and 12 show HðjLjÞ for Nτ ¼ 3 and Nτ ¼ 4,

at βg ¼ 1.854 and βg ¼ 1.904, respectively. Ns ¼ 4Nτ. The
results for jLj vs βg are shown in Figs. 13 and 14 forNτ ¼ 3

and 4, respectively. These results suggest that the CD
transition is first order. The finite-size scaling analysis for
Nτ > 2 shows that the results are independent of lattice
sizes. The results from Nτ ¼ 2 to Nτ ¼ 4 show that the
nature of CD transition changes with Nτ. For higher Nτ the
CD transition continues to be first order. Since higher Nτ

corresponds to a smaller cutoff, these results suggest that
the CD transition will be first order in the continuum limit.

B. Z3 symmetry vs Nτ

In this section, we present observables which are
sensitive to the Z3 symmetry, i.e., the distribution of the
Polyakov loop in the complex plane, the average of the
gauge-Higgs interaction SK , and the gauge action Sg. When
there is Z3 symmetry, the distribution should be invariant,
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FIG. 9. Binder cumulant vs spatial size.
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when the transformation L → zL is made. Furthermore, in
the deconfined phase, the difference of SK between differ-
ent Z3 states should vanish. Here, Z3 states refer to states
for which the Polyakov loop phase (θ) is 0, 2π=3, or 4π=3.
The distributions of L for pure SUð3Þ are shown in

Figs. 15 and 16 at βg ¼ 1.891 and βg ¼ 1.92, respectively.
The distribution in Fig. 15 corresponds to the confined
phase and in Fig. 16 corresponds to the deconfined phase.
There is Z3 symmetry in both these distributions. In the
deconfined phase, βg > βgc, the symmetry is spontaneously
broken, which leads to Z3 states. The three patches in
Fig. 16 correspond to the three Z3 states. Note that all three
states, for βg away from βgc, cannot be sampled in a single
MC run, as the tunneling rate between them is very small.
To sample different Z3 states, we consider MC runs with
different initial conditions. Though the Polyakov loop
values differ, they have the same free energy. In the presence
of Higgs, in Fig. 17, the distribution HðθÞ vs θ is plotted
at βg ¼ 1.691 for Nτ ¼ 2. HðθÞ vs θ has only one peak
at θ ¼ 0. The Z3 symmetry is clearly broken, as there are
no peaks corresponding to θ ¼ 2π=3; 4π=3. For Nτ ¼ 2,
the distribution of L exhibits Z3 symmetry in both the
confined and deconfined phases. In the presence of Higgs,
for Nτ ¼ 2, even though there is explicit breaking, the
θ ¼ 2π=3; 4π=3 states develop deep in the deconfinement

phase. For Nτ ¼ 4, Fig. 18 shows HðθÞ close to the critical
point. There is a slight Z3 asymmetry inHðθÞ, though peaks
corresponding to θ ¼ 2π=3; 4π=3 are almost comparable to
that at θ ¼ 0. In Fig. 19, the measured values of L, for the
same βg, are plotted in the complex plane. The distribution
of the scattered point is almost Z3 symmetric.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1.89  1.9  1.91  1.92

�=0.125,163 x 4

�g

〈� L
� 〉

FIG. 14. hjLji vs βg for Nτ ¼ 4.
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FIG. 15. Distribution of L in the confined phase for Nτ ¼ 4.
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FIG. 16. Distribution of L in the deconfined phase for Nτ ¼ 4.
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These results suggest that for larger Nτ the explicit
breaking of Z3 near the transition point significantly
decreases. To compare the physical properties of the Z3

states, we computeΔSK ¼ SKðθ ¼ 0Þ − SKðθ ¼ 2π=3Þ and
ΔSg ¼ Sgðθ ¼ 0Þ − Sgðθ ¼ 2π=3Þ for different Nτ at the
same physical temperature. To fix the temperature, the βg
values for different Nτ are obtained from the one-loop beta
function [36]. ΔSK and ΔSg vs Nτ are plotted in Figs. 20
and 21, respectively. The results show that the differences
between θ ¼ 0 and θ ¼ 2π=3 states exponentially decrease.
The free energy difference between these states can be
calculated by integrating ΔSKðκÞ over κ ¼ f0; 1=8g, in
other words, over mH ¼ ð∞; 0g. Since ΔSKðκ ¼ 0Þ ¼ 0,
the integrand is vanishingly small over the integration range.
As a consequence, the difference will also be vanishingly
small in the continuum limit.
Note that the physical mass of the Higgs will be nonzero

even though the bare mass is vanishingly small. This mass is
due to the fluctuations resulting from gauge-Higgs inter-
action. On the lattice, physical Higgs mass differs from the
continuum limit for small Nτ. For the Nτ values considered
in our study, the critical temperature computed from the
one-loop beta function decreases with Nτ. The decrease
can be well approximated by an exponential with a nonzero
limiting value, which is indicative of the cutoff effects

decreasing with Nτ. Our results for the critical temperature
suggest that the difference in cutoff effects between Nτ ¼ 6
and Nτ ¼ 8 is much less compared to that between Nτ ¼ 2
and Nτ ¼ 4. Similarly, we expect that the difference in
physical Higgs mass between Nτ ¼ 6 and Nτ ¼ 8 will be
smaller compared to that between Nτ ¼ 2 and Nτ ¼ 4, and
it will approach a nonzero value in the continuum limit.
Since the explicit breaking of Z3 decreases monotonically
with Nτ and becomes vanishingly small (Figs. 20 and 21),
within statistical errors, for Nτ ¼ 6 and 8, we expect it to
remain so even for larger Nτ.
The above results suggest that the explicit breaking Z3

symmetry will be vanishingly small in the continuum
limit. To test whether the decrease in Z3 explicit breaking
with Nτ is due to a decrease in the interaction between the
gauge and Higgs fields with Nτ, we compare the gauge
Higgs interaction term (SK) in Eq. (14). A weaker
interaction with decreasing Nτ should lead to a decrease
in SK. Our results, in Fig. 22, show that SK increases
monotonically with Nτ. Note that SK in physical units will
also increase, as the lattice spacing decreases with Nτ. The
estimation of this increase requires the critical βg vs Nτ.
Because of the coexistence of the confined and deconfined
states near the transition point, it is difficult to find the
critical value of βg accurately.
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FIG. 19. L on the complex plane for 163 × 4 lattice.
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IV. CONCLUSIONS

We have studied the CD transition and Z3 symmetry in
SUð3Þ-Higgs theory for vanishing bare Higgs mass and
quartic coupling. Most of the MC simulations that have
been done are around the CD transition point. The
Monte Carlo results show that the nature of the CD
transition and the explicit breaking of Z3 vary with Nτ.
For Nτ ¼ 2, analysis of the simulation results using
conventional methods suggests that the CD transition is
an end point of a first-order phase transition. The distri-
bution of the Polyakov loop breaks Z3 symmetry, with no
peaks corresponding to the Z3 symmetry. For Nτ ¼ 3, the
transition is first order. The distribution of the Polyakov
loop near the transition point does have peaks correspond-
ing to all the Z3 sectors. However, the peak heights are not
the same, breaking the Z3 symmetry. This suggests that the
explicit breaking is there but small compared to that of the
Nτ ¼ 2 case.
The explicit breaking for Nτ ¼ 4 is similar compared to

Nτ ¼ 3. The distributions of the Polyakov loop show
partial Z3 symmetry with a smaller difference in the peak
heights of Z3 sectors compared toNτ ¼ 3. This pattern that
the CD transition is first order and decrease in the explicit
breaking continues for higher Nτ in our simulations. To
make a quantitative assessment of explicit breaking, we
compute the difference of the gauge-Higgs interaction as
well as that of the pure gauge part of the action, between
different Z3 states. Our results show that both observables’
differences decrease exponentially with Nτ. The vanishing

difference in the large Nτ limit will lead to the same free
energy for all the Z3 states. These results suggest that the
CD transition is first order and the explicit breaking of Z3

is vanishingly small in the continuum limit. In the presence
of higher-order terms in the Higgs potential, our results
will be still valid as long as the system is in the Higgs
symmetric part of the phase diagram, except near second-
order Higgs phase transition points. We mention here that
there are no studies on the ZN symmetry when a second-
order Higgs transition point or line is approached from
the Higgs symmetric side of the phase diagram. At a
second-order transition point or line, the fluctuations of
the physical observables involving the Higgs field will
diverge, including the interaction term. It is not clear that
in this case the ZN symmetry will be realized.
The action we consider in this study does not possess

Z3 symmetry, but the partition function averages turn out
to be Z3 symmetric. We believe that this may be due to
the dominance of the Z3 symmetric entropy, over the
Boltzmann factor in the continuum limit. The vanishing of
the explicit breaking for vanishing Higgs mass and quartic
coupling should also hold for the nonzero Higgs mass
case. In the future, we plan to study the implications of
nonzero λ. We mention here that the perturbative calcu-
lations show that deep inside the deconfinement Z3 is
explicitly broken. It is possible that the realization of Z3 is
limited to the region close to the transition point. It will be
interesting to explore Z3 for large βg values and compare
them with perturbative results.
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