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We study a doubly bottomed tetraquark state ðbbū d̄Þ with quantum number IðJPÞ ¼ 0ð1þÞ, denoted by
Tbb, in lattice QCD with the nonrelativistic QCD (NRQCD) quark action for b quarks. Employing (2þ 1)-
flavor gauge configurations at a ≈ 0.09 fm on 323 × 64 lattices, we have extracted the coupled-channel
potential between B̄B̄� and B̄�B̄� in the HAL QCD method, which predicts an existence of a bound Tbb

below the B̄B̄� threshold. By extrapolating results at mπ ≈ 410, 570, 700 MeV to the physical pion mass

mπ ≈ 140 MeV, we obtain a binding energy with its statistical error as EðsingleÞ
binding ¼ 155ð17Þ MeV and

EðcoupledÞ
binding ¼ 83ð10Þ MeV, where “coupled” means that effects due to virtual B̄�B̄� states are included

through the coupled channel potential, while only a potential for a single B̄B̄� channel is used in the
analysis for “single.” A comparison shows that the effect from virtual B̄�B̄� states is quite sizable to the
binding energy of Tbb. We estimate systematic errors to be �20 MeV at most, which are mainly caused by
the NRQCD approximation for b quarks.

DOI: 10.1103/PhysRevD.108.054502

I. INTRODUCTION

One of typical characteristic features of QCD is the color
confinement that only color-singlet states can appear in
nature. While almost all observed color-singlets states are
either mesons (qq̄) or baryons (qqq), other color-singlet
states such as tetraquark state (qqq̄ q̄), pentaquark states
(qqqqq̄), and glueball states are theoretically allowed to
exist. These states are rarely observed and called exotic
hadrons, whose existences have not been firmly established
yet. Recently, experimental observations have been
reported for several heavy exotic hadrons, which include
tetraquark states Xð2900Þ [1] and Tcc [2] containing one or
two charm quarks, a pentaquark state Pc [3] containing a
charm and anticharm pair, or tetraquark states Zb [4]
containing a bottom and antibottom pair. Their properties
such as particle contents and internal structures, however,

are needed to be understood, in particular, theoretically in
terms of QCD.
In this paper, as the first step to understand such heavy

exotic hadrons, we investigate a tetraquark hadron ðbbūd̄Þ
in IðJPÞ ¼ 0ð1þÞ channel, called Tbb, from the first
principle using lattice QCD. While Tbb has not been
experimentally observed yet, theoretical predictions by
the diquark model [5] and by color magnetic interactions
under the static limit [6,7] suggest existences of heavy
tetraquark bound states QQq̄q̄. Indeed, as mentioned
before, Tcc, a charm counterpart to Tbb, seems to exist.
There exist several lattice QCD studies for Tbb [8–14],

all of which conclude that Tbb appears as a bound state
below the B̄B̄� threshold, where the threshold energy is
given by Ethreshold

B̄B̄� ≃ 10.604 GeV. Lattice QCD calculations
so far are classified into two categories depending on a
treatment of heavy-b quarks. In one approach, b quarks are
treated by the static-quark approximation, and the corre-
sponding static-quark potentials have been evaluated. One
then solve the Schrödinger equation with the static quark
potentials to obtain the binding energy of Tbb. The results,
however, depends on a number of channels included in the
analysis, as shown in Table I. The binding energy in a
coupled B and B� channel analysis is 59 MeV [9], which is
smaller than 90 MeVof a single B channel analysis [8] by
about 30 MeV, where the B̄B̄� channel is denoted by B
while the B̄�B̄� channel by B�, whose threshold energy
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Ethreshold
B̄�B̄� ≃ 10.649 GeV is about 45 MeV above the B̄B̄�

threshold. In the other approach, b quarks are treated by the
lattice NRQCD, which allows b quarks to move, not only in
time but also in space, and one directly evaluate the binding
energy of Tbb from the corresponding correlation functions.
As shown in Table I, the binding energy of Tbb in the direct
calculations with the NRQCD, ranging from 112 MeV to
186 MeV, are somewhat larger than results from the static
quark, 59 MeV or 90 MeV.
One may wonder whether this difference is real beyond

statistical and systematic errors except the treatment of b
quarks, and if so, what causes the difference. In order to try
answering these questions, we calculate the binding energy
of Tbb in this paper, combining the NRQCD action for b
quarks with the couple channel extension of the HAL QCD
method [15], which makes it possible to extract the coupled
channel potentials directly without assumptions, unlike the
finite-volume method [16].
After this introduction, we review the HAL QCDmethod

in Sec. II and summarize our lattice QCD setup, including
the NRQCD action for b quarks in Sec. III. In Sec. IV, we
present results of potentials and the scattering analysis.
Finally we give a summary of this study in Sec. V.

II. HAL QCD METHOD

A. Definition of the potential

A basic quantity for a definition of potentials in the HAL
QCD method is the Euclidean time Nambu-Bethe-Salpeter
(NBS) wave function, defined by [15,17–19]

ψH1þH2

W ðr; tÞ≡ ψH1þH2

W ðrÞe−Wt

≡ 1ffiffiffiffiffiffiffiffi
ZH1

p 1ffiffiffiffiffiffiffiffi
ZH2

p X
x

hΩjH1ðxþ r; tÞH2ðx; tÞj

× ðH1 þH2Þ;Wi; ð1Þ

where Hiðx; tÞ is the hadron operator at ðx; tÞ, jΩi is the
QCD vacuum state, jðH1 þH2Þ;Wi stands for an eigen-
state of the QCD Hamiltonian having quantum numbers of
the two-hadrons H1 þH2 with a center-of-mass energy W,
and ZHi

¼jhΩjHið0ÞjHiij2 with jHii being a single-hadron
state. We focus our attention on an energy region below
inelastic threshold, where only elastic-scattering occurs. In
this energy region, the asymptotic behavior of the lth
partial wave of the NBS wave function reads

ψH1þH2

W;l ðrÞ⟶r→∞½jlðpWrÞ−πtlðWÞhþl ðpWrÞ�Plðr̂ ·p̂WÞ; ð2Þ

where the magnitude of the relative momentum pW is
determined from a relation W ¼ EW1 þ EW2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
W þm2

H1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
W þm2

H2

q
, PlðzÞ is the Legendre poly-

nomial, jlðzÞ=nlðzÞ is the spherical Bessel/Neumann
function, and h�l ðzÞ¼nlðzÞ�ijlðzÞ are spherical Hankel
functions. The scattering T-matrix tlðWÞ in the above is
related to the unitary S-matrix as slðWÞ ¼ 1–2πitlðWÞ,
and to the scattering amplitude as flðWÞ ¼ − π

pW
tlðWÞ.

A hadronic 4-point correlation function in lattice QCD
can be expressed in terms of NBS wave functions as

FH1þH2

J ðr; tÞ≡X
x

hΩjH1ðxþ r; tÞH2ðx; tÞJ †
H1þH2

ðt ¼ 0ÞjΩi

¼
X
x

X
n

hΩjH1ðxþ r; tÞH2ðx; tÞjðH1 þH2Þ;WnihðH1 þH2Þ;WnjJ †
H1þH2

ð0ÞjΩi þ ðinelaÞ

≃
X
n

AJ ;nψ
H1þH2

Wn
ðr; t ≥ tðinelaÞÞ ⟶

t→∞
AJ ;0ψ

H1þH2

W0
ðrÞe−W0t; ð3Þ

where J †
H1þH2

ð0Þ is a source operator which creates two-
hadron states at t ¼ 0 with a target quantum number IðJPÞ
of H1 þH2, (inela) represents inelastic contributions,
which become negligible at t ≥ tðinelaÞ, W0 is the lowest
eigenenergy of two hadrons, and

AJ ;n ≡ ffiffiffiffiffiffiffiffi
ZH1

p ffiffiffiffiffiffiffiffi
ZH2

p hðH1 þH2Þ;WnjJ †
H1þH2

ð0ÞjΩi: ð4Þ

In the HAL QCD method, a nonlocal but energy-
independent potential Uðr; r0Þ is formally defined from
the NBS wave function so as to satisfy the Schrödinger
equation below inelastic threshold as�∇2

2μ
þ p2

W

2μ

�
ψWðrÞ ¼

Z
d3r0Uðr; r0ÞψWðr0Þ; ð5Þ

TABLE I. Binding energies extrapolated to the physical pion
mass in previous lattice studies.

b quark Analysis
Binding energy
of Tbb [MeV]

Static approximation
Single B 90ðþ43

−36 Þ [8]
Coupled B and B� 59ðþ30

−38 Þ [9]

NRQCD approximation Direct (spectrum)

180(10)(3) [10]
165(33) [11]

128(24)(10) [12]
186(22) [13]
112(13) [14]
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where μ is the reduced mass of two hadrons. Since QCD
interactions are short-ranged, Uðr; r0Þ vanishes sufficiently
fast as jrj increases. The potential Uðr; r0Þ may depend on
how sink hadron operatorsH1 and H2 are constructed from
quarks. Even though a choice of hadron operators is fixed,
however, the above equation can not determine Uðr; r0Þ
uniquely due to a restriction of the energy below the
inelastic threshold [20,21]. Thus, the above definition of
the potential is rather formal. For concreteness, we define
Uðr; r0Þ in the derivative expansion, which is symbolically
written as

Uðr; r0Þ ¼ Vðr;∇Þδðr − r0Þ

¼
X∞
k¼0

VðkÞðrÞ∇kδðr − r0Þ; ð6Þ

and determine coefficient functions VðkÞðrÞ order by order.
For example, the leading-order (LO) term can be approx-
imately obtained as

Vð0Þðr;WÞ ¼ 1

ψWðrÞ
�∇2

2μ
þ p2

W

2μ

�
ψWðrÞ; ð7Þ

where Vð0Þðr;WÞ, obtained from the NBS wave function
ψWðrÞ, is the LO approximation of Vð0ÞðrÞ. Given the
relationship between the hadron 4-point correlation func-
tion and the NBS wave function, the LO potential from the
ground state is extracted as

Vð0Þðr;W0Þ ≃
1

FH1þH2

J ðr; tÞ

�∇2

2μ
þ p2

W0

2μ

�
FH1þH2

J ðr; tÞ; ð8Þ

where t should be taken as large as possible to make the
lowest-energy state dominate in the 4-point correlation
function.

B. Time-dependent method

In order to achieve the ground state saturation in Eq. (8),
t should satisfy t ≫ 1=ðW1 −W0Þ ∝ L2 for two-hadron
systems, where L is a size of the spatial extension. Since the
4-point function FH1þH2

J ðr; tÞ becomes very noisy at such
large t, in particular for two-baryon systems, it is imprac-
tical to employ Eq. (8) for reliable extractions of potentials.
An improved method of extracting the potential that does
not require the ground-state saturation has been proposed in
Ref. [22], and is employed in this study.
In the improved method, the potential can be extracted

directly from a normalized 4-point function, called a
R-correlator, which is a sum of NBS wave functions as

RH1þH2

J ðr; tÞ≡ FH1þH2

J ðr; tÞ
e−mH1

te−mH2
t

≃
X
n

AJ ;nψ
H1þH2

Wn
ðrÞe−ΔWnt; ð9Þ

where we take moderately large t > tðinelaÞthreshold in the right-
hand side, in order suppress inelastic contributions, and
ΔWn ≡Wn −mH1

−mH2
satisfies

p2
n

2μ
¼ ΔWn þ

1þ 3δ2

8μ
ðΔWnÞ2 þOððΔWnÞ3Þ;

δ≡ jmH1
−mH2

j
mH1

þmH2

: ð10Þ

Using this relation and taking t > tðinelaÞthreshold, we obtainZ
d3r0Uðr; r0ÞRH1þH2

J ðr0; tÞ

≃
X
n

�∇2

2μ
þ p2

n

2μ

�
AJ
n ψ

H1þH2

Wn
ðrÞe−ΔWnt

≃
X
n

�∇2

2μ
þ ΔWn þ

1þ 3δ2

8μ
ðΔWnÞ2

�
× AJ

n ψ
H1þH2

Wn
ðrÞe−ΔWnt

¼
�∇2

2μ
−

∂

∂t
þ 1þ 3δ2

8μ

∂
2

∂t2

�
RH1þH2

J ðr; tÞ; ð11Þ

which looks like a time-dependent Schrödinger equation
for a nonlocal potential with relativistic corrections. It is
important to note that potentials can be extracted from a
sum of NBS wave functions without knowing individual
energy ΔWn and coefficient AJ

n by this method. At leading
order in the derivative expansion, Eq. (11) gives

Vð0ÞðrÞ ¼ 1

RH1þH2

J ðr; tÞ

�∇2

2μ
−

∂

∂t
þ 1þ 3δ2

8μ

∂
2

∂t2

�
× RH1þH2

J ðr; tÞ; ð12Þ

where a t-dependence in the right-hand side is canceled
between numerator and denominator if inelastic contribu-

tions become negligible at t > tðinelaÞthreshold. In practice, we
use the t-independence of Vð0ÞðrÞ as an indicator for

t > tðinelaÞthreshold to satisfy.

C. Coupled-channel HAL QCD method

Since thresholds of BðB̄þ B̄�Þ and B�ðB̄� þ B̄�Þ are so
close, we can not ignore an influence of the B� channel to a
potential in the B channel. We thus decided to employ the
coupled channel extension of the HAL QCD method in
our study.
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To explain this extension, we consider an energy region
where an inelastic scattering Aþ B → CþD in addition
to an elastic-scattering Aþ B → Aþ B occurs with
mA þmB < mC þmD. The NBS wave function of the
scattering channel α ¼ 0, 1 is denoted by

ψα
W;βðr; tÞ≡ ψα

W;βðrÞe−Wt

≡ 1ffiffiffiffiffiffi
Zα
1

p ffiffiffiffiffiffi
Zα
2

p X
x

hΩjHα
1ðxþ r; tÞHα

2ðx; tÞjW; βi;

ð13Þ

where ðH0
1; H

0
2Þ ¼ ðA;BÞ or ðH1

1; H
1
2Þ ¼ ðC;DÞ, and W is

the center-of-mass energy. At a given energy W, there
exists two independent states with the same quantum
number as Aþ B, labeled by β, which are expanded in
terms of asymptotic states as jW; βi ¼ c0βjAþ B;Wi þ
c1βjCþD;Wi þ � � �. Thus, as in the case of the elastic
scattering, an asymptotic behavior of an lth partial wave of
the NBS wave function reads [20]

ψα
W;β;lðrÞ⟶

r→∞X
γ

½δαγjlðpα
WrÞ þ pα

Wh
þ
l ðpα

WrÞfαγl ðWÞ�

× cγβPlðr̂ · p̂α
WÞ; ð14Þ

where the scattering amplitude from a channel γ to a
channel α is defined from the T matrix tαγl as

fαγl ðWÞ≡ −π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eα
W1E

α
W2

Eγ
W1E

γ
W2

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pα
Wp

γ
W

s
tαγl ðWÞ: ð15Þ

Since Eq. (14) is identical to an asymptotic solution to a
coupled-channel Schrödinger equation with the total
energy W [23], we define the coupled-channel potential as

�∇2

2μα
þ ðpα

WÞ2
2μα

�
ψα
W;βðrÞ≡

X
γ

Z
d3r0Uαγðr; r0Þψγ

W;βðr0Þ;

ð16Þ

where pα
W and μα are a magnitude of the relative momen-

tum and a reduced mass in the channel α, respectively.
As in Eq. (6) for the single channel case, the nonlocal

potential Uαβðr; r0Þ is defined in term of the derivative
expansion, whose leading-order term is given by

Uαγðr; r0Þ ¼ VαγðrÞδðr − r0Þ þOð∇Þ: ð17Þ

The LO potential can be approximately extracted from two
NBS wave functions by a matrix inversion as

�
V00ðrÞ V01ðrÞ
V10ðrÞ V11ðrÞ

�

¼
�K0

W0;β0
ðrÞ K0

W1;β1
ðrÞ

K1
W0;β0

ðrÞ K1
W1;β1

ðrÞ

��ψ0
W0;β0

ðrÞ ψ0
W1;β1

ðrÞ
ψ1
W0;β0

ðrÞ ψ1
W1;β1

ðrÞ

�−1

;

ð18Þ

where Kα
W;βðrÞ is given by the left-hand side of Eq. (16).

For the matrix inversion to obtain potentials, we must take
two linearly-independent NBS wave functions, by choos-
ing W and β appropriately. Note that it is not guaranteed
that the coupled channel potential is Hermitian due to the
approximation of the derivative expansion.
As in the case of the single channel, the coupled channel

4-point function is expressed in terms of NBS wave
functions as

Fα
ξðr; tÞ ¼

X
x

hΩjHα
1ðxþ r; tÞHα

2ðx; tÞJ †
ξðt ¼ 0ÞjΩi

⟶
t→∞ ffiffiffiffiffiffi

Zα
1

p ffiffiffiffiffiffi
Zα
2

p X
i¼0;1

ψα
Wi
ðrÞAWi;ξe

−Wit;

AWi;ξ ≡ hWijJ †
ξð0ÞjΩi; ð19Þ

where W0 and W1 are lowest two energies of this coupled-
channel system. To extract the 2 × 2 potential matrix, we
need to determine AW0;1;ξ for two linearly independent J†ξ ,
as well as W0;1.
The R-correlator in the channel α, defined by

Rα
ξðr; tÞ≡

Fα
ξðr; tÞ

e−m
α
1
te−m

α
2
t ≃

X
n;β

Aα
Wn;β;ξ

ψα
Wn;β

ðrÞe−ΔαWξ;nt; ð20Þ

where we take t > tðinelaÞthreshold in the right-hand side with
ΔαWξ;n ≡Wξ;n −mα

1 −mα
2 , satisfies

�∇2

2μα
−

∂

∂t
þ 1þ 3δα2

8μα
∂
2

∂t2

�
Rα
ξðr; tÞ

≃
X
β

Δ̃αβðtÞ
Z

d3r0Uαβðr; r0ÞRβ
ξðr0; tÞ ð21Þ

up to OððΔWÞ2Þ as in the single-channel case, where

Δ̃αβðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Zβ
1Z

β
2

Zα
1Z

α
2

s
e−ðm

β
1
þmβ

2
Þt

e−ðmα
1
þmα

2
Þt ; ð22Þ

which is needed to correct differences in masses and
Z-factors between two channels. Denoting the left-hand
side of Eq. (21) as Kα

ξðr; tÞ, the LO potential is extracted as
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�
V00ðrÞ Δ̃01ðtÞV01ðrÞ

Δ̃10ðtÞV10ðrÞ V11ðrÞ

�

¼
�
K0

0ðr; tÞ K0
1ðr; tÞ

K1
0ðr; tÞ K1

1ðr; tÞ

��
R0
0ðr; tÞ R0

1ðr; tÞ
R1
0ðr; tÞ R1

1ðr; tÞ

�−1
: ð23Þ

As before, there is no guarantee that the LO potential is
Hermitian.

III. LATTICE QCD SETUP

A. Operators

We are interested in the doubly bottomed tetraquark state
with quantum numbers IðJPÞ ¼ 0ð1þÞ, called Tbb here-
after. The lowest scattering channel with these quantum
numbers is the B (B̄B̄�) channel with threshold near
10600 MeV, while the second one is the B� ≡ ðB̄�B̄�Þ
channel with a threshold at 45 MeV above [24]. Since the
threshold of the third channel is too far above to contribute
low-energy states such as Tbb, we only consider B and B�
channels in this paper.
Sink operators for two mesons at a distance rwith a total

spin S ¼ 1 and a total isospin I ¼ 0 are taken as

Bj ≡
X
x

ðūðyÞγ5bðyÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
B̄ðyÞ

ðd̄ðxÞγjbðxÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
B̄�ðxÞ

−½u ↔ d�;

y ≡ xþ r; ð24Þ

B�
j ≡ ϵjkl

X
x

ðūðyÞγkbðyÞÞðd̄ðxÞγlbðxÞÞ − ½u ↔ d�; ð25Þ

where j, k, l are spatial vector indices. At the source,
interchanges between q ↔ q̄ are made for q ¼ u, d, b,
together with uses of wall sources for q ¼ u, d.
In addition to these two meson operators, we introduce

an operator made of two diquarks, calledD, at the source as

D†
j ≡ ðϵabcb̄bðs0ÞγjCb̄cðs0ÞÞðϵadeddðs0ÞCγ5ueðs0ÞÞ

− ½u ↔ d�; ð26Þ

where a; b; c;… denote color indices, C ¼ γ4γ2 is the
charge-conjugation matrix, and the argument s0 in the
quark field denotes a source point [12].
A reason for a use of the diquark at the source is as

follows. If we perform a coupled-channel analysis with B†

and B�† source operators, an inverse matrix in Eqs. (18) or
(23) becomes singular, probably because B† and B�† source
operators create similar combinations of states, a meson-
meson state (primary) plus a compact state (secondly), as
seen in Fig. 5 of Ref. [12]. To overcome this difficulty, we
introduce the diquark-type source D†, which probably
couples to a different combination of states. We then
perform the coupled-channel analysis for the R-correlators
(or the NBS wave functions) with B and B� as sink

operators, and B† and D† as source operators, which leads
to more stable results than B�† and D† sources.

B. Light-quark propagators

In this work, we impose exact isospin symmetry on u, d
quarks, so that propagators for both quarks are identical. In
our study, we employ the Wilson-Clover operator for the
quark, given by

DðxjyÞ ¼ δx;y − κ
X
μ

fð1 − γμÞUμðxÞδxþμ̂;y

þ ð1þ γμÞU†
μðx − μ̂Þδx−μ̂;yg

− κcsw
1

2

X
μ;ν

½γμ; γν�½Δμ;Δν�
2

; ð27Þ

where Δμ in the clover term are symmetric covariant
difference operator, defined by

ΔμfðxÞ ¼ UμðxÞfðxþ μ̂Þ −U†
μðx − μ̂Þfðx − μ̂Þ; ð28Þ

and μ̂ is a unit vector in the μ direction with a length a,
where a is a lattice spacing. See Sec. III D for parameters
κ; csw used in this study. As mentioned before, we use wall
sources for light quarks.

C. Heavy-quark propagator

As long as the relativistic lattice fermion is used,
amQ ≪ 1 is required to keep lattice artifact small, where
mQ is a quark mass. This condition, however, is badly
violated for the b quark in our simulations, since mb ≈
4.2 GeV and a ≈ 0.09 fm (1=a ≃ 2 GeV). Therefore, we
cannot treat the b quark relativistically on a lattice.
Fortunately, since the typical velocity of the b quark inside
a hadron is v2 ∼ 0.1 [25], and thus sufficiently nonrelativ-
istic, we can treat the b quark in the nonrelativistic QCD
(NRQCD) approximation. The NRQCD approximation
improves the static approximation, by including effects
of moving b quarks in space, which seem to give a non-
negligible contribution to the binding energy of the
tetraquark state [8,12].
In the NRQCD, we evaluate a time evolution of the

heavy-quark propagator according to nonrelativistic
dynamics using a Hamiltonian without b-quark mass term.
The NRQCD Hamiltonian at the tree level is obtained from
the QCD Hamiltonian by the Foldy-Wouthuysen-Tani
(FWT) transformation [26,27] designed to be block diago-
nal up to OðvnÞ in spinor space as

HQCD → RHNRQCDR† ≃R
�
Hψ 0

0 Hχ†

�
R†; ð29Þ

whereR is the FWT transformation matrix. The propagator
for the particle field ψ moving in the positive direction can
be approximated as
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D−1ðxjyÞ → RψðxÞψ
⎴

†ðyÞR†

≃R
�
GψðxjyÞ 0

0 0

�
R†θðx4 − y4Þ; ð30Þ

and the two-spinor NRQCD propagator Gψ is evolved in
time by Hψ ≡H0 þ δH on a lattice as [28]

Gðx; tþ 1js0Þ ¼
�
1 −

H0

2n

�
n
�
1 −

δH
2

�

× U†
4ðxÞ

�
1 −

δH
2

��
1 −

H0

2n

�
n
Gðx; tjs0Þ

þ s0ðxÞδtþ1;0; ð31Þ

where s0 is a source vector defined previously, and n ¼ 2 is
a stabilization parameter for numerical calculations. This
calculation requires much smaller computational costs than
solving linear equations for relativistic quark propagators.
In this work, we use the block-diagonal Hamiltonian up to
Oðv4Þ [29], given on a lattice as

Hψ ¼ H0 þ
X
i

ciδHðiÞ; H0 ¼ −
1

2M
Δð2Þ;

δHð1Þ ¼ −
1

2M
σ ·B; δHð2Þ ¼ i

8M2
ðΔ ·E −E · ΔÞ;

δHð3Þ ¼ −
1

8M
σ · ðΔ ×E −E × ΔÞ;

δHð4Þ ¼ −
1

8M3
ðΔð2ÞÞ2; δHð5Þ ¼ 1

24M
Δð4Þ;

δHð6Þ ¼ −
1

16nM2
ðΔð2ÞÞ2; ð32Þ

where M is the bare heavy-particle mass, ci ¼ 1 at the tree
level in perturbation theory, Δ;Δð2Þ;… are discretized
symmetric covariant derivatives in space, and the chro-
moelectromagnetic field E;B are given by the standard
clover-leaf definitions. The FWT transformation matrix is
also given up to Oðv4Þ [29] as

R ¼ 1þ
X
i

RðiÞ;

Rð1Þ ¼ −
1

2M
γ · Δ; Rð2Þ ¼ 1

8M2
Δð2Þ;

Rð3Þ ¼ 1

8M2
·B; Rð4Þ ¼ −

i
4M2

γ4γ ·E: ð33Þ

In our study, all link variables are rescaled as
Uμ → Uμ=u0, in order to include perturbative corrections
by the tadpole improvement [28], where u0 is determined
from an average of the plaquette UP as

u0 ¼
�
1

3
TrUP

�
1=4

: ð34Þ

In the lattice NRQCD, the ground-state energy obtained
from a behavior of the two-point function in time repre-
sents the interaction energy, not the hadron mass itself,
since the quark-mass term is removed from the NRQCD
Hamiltonian. Therefore, a correlation function with non-
zero momentum behaves at large t as

hHXðp; tÞH†
Xðp; 0Þi⟶

t→∞
e−EXðpÞt;

HXðpÞ≡
X
x

HXðxÞe−ipx; ð35Þ

where EXðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðMkin

X Þ2
p

− δ with the p indepen-
dent energy shift δ. Since this energy shift δ, equal to the
bare quark mass at the tree level, usually suffers from large
perturbative corrections, we directly estimate a (kinetic)
mass of the hadron X without determining δ as

Mkin
X ¼ p2 − ðEXðpÞ − EXð0ÞÞ2

2ðEXðpÞ − EXð0ÞÞ
: ð36Þ

D. Configurations

We have employed the (2þ 1)-flavor full QCD con-
figurations, generated by the PACS-CS Collaboration [30]
with the Iwasaki gauge action and the Wilson-Clover light-
quark action at a ≈ 0.09 fm. For the wall source, gauge
configurations are fixed to the Coulomb gauge. We
estimate statistical errors by the jackknife method, with
a bin size 20, using 400 configurations on each quark
mass. Parameters for gauge ensembles and hadron masses
measured in this work are listed in Tables II and III,
respectively.
Comments on measured hadron masses are in order:
(i) While an individual mass of B̄ or B̄� has a sizable

statistical error due to a use of data at nonzero p in
Eq. (36), we can determine the mass splitting
between them from EB̄� ð0Þ − EB̄ð0Þ, which does
not require noisy data at nonzero p. In the table,
we also list the spin average mass Mspinavg

B̄ ≡
1
4
MB̄þ3

4
MB̄� . For calculations of potentials, we need

to use MB̄ and MB̄� separately.
(ii) Values of B̄ meson mass in the table are consistent

with an experimental value Mspinavg
B̄ ¼ 5313 MeV

[24] within large statistical errors at three light-quark
masses, and we expect that this agreement holds
even at the physical pion mass. Thanks to smaller
statistical errors, on the other hand, we observe a
tendency that the mass splitting ΔEB̄B̄� decreases as
the pion mass decreases and it becomes smaller than
an experimental value ΔEB̄B̄� ¼ 45 MeV [24] at the
physical pion mass. Among possible reasons for
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this, it is most likely that c1 ¼ 1 with the tadpole
improvement is not good enough as a coefficient of
δHð1Þ in the NRQCD Hamiltonian, which is the LO
term in the NRQCD power counting responsible for
the spin splitting. Therefore we expect 10–20%
systematic errors for the spin splittings at the tree-
level coefficient even with the tadpole improvement.

In this work, scattering quantities are calculated on three
different pion masses, and then extrapolated to the physical
point defined by mπ ≈ 140 MeV.

IV. NUMERICAL RESULTS

A. Leading-order potential

1. Single-channel case

In this subsection, assuming that the Tbb couples only to
the B channel, we compute the S-wave1 LO potential
according to Eq. (12). Figure 1 (left) shows the one at
mπ ≃ 700 MeV (PACS-CS-A) and t ¼ 13. Here and here-
after, t is always given in the lattice unit. The potential
between B̄ and B̄� mesons is attractive at all distances and it
becomes zero within errors at distances larger than 1.0 fm,
which is smaller than Ls=2 ≃ 1.45 fm. Thus, the interaction
is sufficiently short-ranged to be confined within the box,
so that finite size effect to the potential is expected to be
small. To fit data of the potential, we use a 3-Gauss function
given by

V3GðrÞ ¼ V0e−r
2=ρ2

0 þ V1e−r
2=ρ2

1 þ V2e−r
2=ρ2

2 ; ð37Þ

where Vi and ρi are fit parameters. We show fit results
to lattice data at t ¼ 12–14 in Fig. 1 (right), whose
time dependence is negligibly small, indicating that con-
taminations from inelastic states are well under control.
Thus we have employed the potential at t ¼ 13 for our
main analysis, whose fit parameters are given in Table IV.

2. Coupled-channel case

We now consider a case that the Tbb couples to B and B�
channels. In this situation, we compute the S-wave LO
potential using Eq. (23). Figure 2 (upper) show 2 × 2
coupled-channel potentials at mπ≃700MeV (PACS-CS-A)
and t ¼ 13, which become zero within errors at r⪆1.0 fm,
together with 3-Gauss fit by red lines. As before, we thus
confirm that interactions in this channel are sufficiently
short-range, so that possible finite-size effects are expected
to be small.
A diagonal potential,VBB, is attractive at distances smaller

than 0.8 fm, while another one,VB�B�
, has a repulsive core at

short distances surrounded by an attractive pocket at
r ≃ 0.4 fm. On the other hand, magnitudes of off-diagonal
interactions between B and B� channels are comparable to
those of diagonal interactions, showing that a channel
coupling between B and B� is significant. This observation
suggests an importance of a coupled-channel analysis or
conversely a possibility that a single-channel analysis may
contain large systematic uncertainties. In addition, we have
observed that Hermiticity of the 2 × 2 potential matrix is
badly broken; two off-diagonal components are very differ-
ent. We speculate that the leading-order approximation for
the original nonlocal coupled-channel potential, which
should be Hermitian, causes this large violation of
Hermiticity, suggesting strong nonlocality of the coupled-
channel potential in this system, which is consistent with our
observation that off-diagonal interactions are significant.

TABLE II. Parameters for gauge ensembles. The bare b-quark mass Mb is taken to satisfy Mspinavg
bb̄

≈ 9450 MeV
within errors. The expectation value of the link variable u0 defined in Eq. (34) is used for the tadpole improvements.

Configuration V lat ¼ L3
s × Lt a (fm) Ls (fm) κud κs csw Mb u0

PACS-CS-A 323 × 64 0.0907(13) 2.902(42) 0.13700 0.13640 1.715 1.919 0.868558(42)
PACS-CS-B 323 × 64 0.0907(13) 2.902(42) 0.13727 0.13640 1.715 1.919 0.868793(43)
PACS-CS-C 323 × 64 0.0907(13) 2.902(42) 0.13754 0.13640 1.715 1.919 0.869005(44)

TABLE III. Hadron masses measured on each ensemble. The B-meson mass MB̄ is determined by the
kinetic mass, and the spin-averaged mass is 1

4
MB̄ þ 3

4
MB̄� . The energy-splitting ΔEB̄B̄� is defined by

ΔEB̄B̄� ≡ EB̄� ð0Þ − EB̄ð0Þ.

Configuration mπ (MeV) mρ (MeV) Mspinavg
B̄ (MeV) ΔEB̄B̄� (MeV)

PACS-CS-A 701(1) 1102(1) 5440(174) 49.4(2.6)
PACS-CS-B 571(0) 1011(1) 5382(269) 44.9(1.6)
PACS-CS-C 416(1) 920(3) 5332(220) 42.7(3.9)

1The NBS wave function is projected to the Aþ
1 representation

of the cubic group, where we ignore higher partial waves such as
l ¼ 4; 6;….
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Since the standard scattering analysis requires the
unitarity of the S-matrix, which is guaranteed by
Hermitian potentials, we can not perform the coupled-
channel analysis for scatterings above the B� threshold. In
this paper, however, we still employ coupled-channel
potentials for a scattering analysis in the B channel below
the B� threshold, in order to partly incorporate nonlocality
caused by off shell B� propagations. Details of such an
analysis will be given in Sec. IV B.
Figure 2 (lower) presents 3-Gaussian fits to lattice data at

t ¼ 12–14. An off-diagonal component VBB�
show a

detectable time dependence at the short distance, which
however is found to give tiny effects on scattering quan-
tities. We therefore conclude that contributions from
inelastic states are well under control, and we employ
t ¼ 13 data in our main analysis. Table V gives fit
parameters of the coupled channel potential at t ¼ 13.

3. Pion-mass dependence

Figure 3 compares potentials at three different pion
masses, mπ ¼ 701, 571, 416 MeV. As the pion mass gets
smaller, both diagonal and off-diagonal potentials become
stronger and more long-range. This suggests that a mixing
effect between B and B� increases toward the physical pion
mass, so that the coupled-channel analysis may be man-
datory even below the B� threshold. In this study, physical
observables such as scattering phase shifts and a binding
energy, not potentials themselves, are extrapolated from
results at three heavier pion masses to the physical pion
mass, mπ ¼ 140 MeV.

B. Scattering analysis

1. Inclusion of virtual B� effects

In the following analysis, we restrict ourself to scatter-
ings only in the B channel below the B� threshold, where
the B� channel virtually appear as intermediate states, even
though we employ the 2 × 2 coupled-channel potential
matrix in the analysis. This kind of situation has been
analyzed in [20], which shows that effects of virtual B�
states appear as nonlocality of the effective potential in the
B channel. Explicitly, the coupled channel Schrödinger
equation between B and B� becomes an effective single
channel Schrödinger equation in the B channel as

ðH0 þUBB
eff;EÞΨB ¼ EΨB; ð38Þ

where

UBB
eff;Eðx; yÞ ¼ VBBðxÞδðx − yÞ

þ VBB� ðxÞGB�B�
E ðx; yÞVB�BðyÞ; ð39Þ

where Gαα
E ðx; yÞ ¼ ðE −Hα

0 − VααÞ−1ðx; yÞ is the full
Green function for the energy E in the α channel, and
thus the effective potential UBB

eff;Eðx; yÞ explicitly depends
on the energy E. In this expression, it is clear that effects of
intermediate B� states leads to nonlocality for UBB

eff;Eðx; yÞ
in the second term. While the original Uðx; yÞ is defined in
QCD, UBB

eff;Eðx; yÞ contains only a part of nonlocality
caused by such intermediate B� states with local inter-
actions VB�B�

, VBB�
, and VB�B for a given energy E. A

remaining nonlocality comes not only from nonlocality of
coupled channel potentials but also from virtual channels
other than B and B�, latter of which have negligible effects
on the scattering in the B channel below the B� threshold,
since thresholds of other channels are far above from it.
Note that, even though UBB

eff;Eðx; yÞ is still non-
Hermitian, we can extract real-scattering phase shifts in

FIG. 1. Left: a lattice result of the potential at t ¼ 13 (blue circles), together with the 3-Gauss fit by a red line. Right: 3-Gauss fits at
t ¼ 12; 13; 14. A gray-dashed line indicates r ¼ L=2.

TABLE IV. 3-Gauss fit parameters at t ¼ 13.

V Vi (MeV) ρi (fm)

i ¼ 0 −482ð11Þ 0.088(0.002)
i ¼ 1 −185ð8Þ 0.218(0.004)
i ¼ 2 −236ð2Þ 0.583(0.002)
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FIG. 2. Upper: 2 × 2 coupled-channel potentials (blue circles) at t ¼ 13, together with 3-Gauss fits by red lines. Lower: 3-Gauss fits at
t ¼ 12, 13, 14.
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the B channel and thus an unitary S-matrix, as long as we
take real E below the B� threshold [31], as will be explicitly
shown later. For the analysis, we employ the coupled-
channel Lippmann-Schwinger equation to incorporate

effects of virtual B� to the scattering in the B channel,
which indeed lead to sizable corrections to results obtained
in the single-channel analysis without virtual B� states.

2. Matrix inversion method for the
Lippmann-Schwinger equation

The Lippmann-Schwinger (LS) equation for the
T-matrix with the potential matrix reads

Tαβðpα
W;p

β
WÞ ¼ Vαβðpα

W;p
β
WÞ

þ
X
γ

Z
d3kVαγðpα

W;kÞ

×
1

ðW − Eγ
thÞ − k2=2μγ þ iε

Tγβðk;pβ
WÞ;

ð40Þ

where pα
W ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μαðW − Eα
thÞ

p
is the momentum calculated

from the total energyW and Eα
th ¼ Mα

1 þMα
2 is a threshold

energy for a channel α.
We have employed the matrix-inversion method [32] to

solve the LS equation, approximating the momentum
integral by a finite sum over Gaussian quadrature points.
For the S-wave component in the partial wave expansion,
the LS equation is reduced to

FIG. 3. Fit results Vαβ
3GðrÞ at mπ ¼ 701 MeV (blue), 571 MeV (orange), and 416 MeV (red) at t ¼ 13.

TABLE V. 3-Gauss fit parameters at t ¼ 13.

VBB Vi (MeV) ρi (fm)

i ¼ 0 −491ð60Þ 0.092(0.013)
i ¼ 1 −254ð64Þ 0.255(0.095)
i ¼ 2 −110ð144Þ 0.476(0.180)

VBB�
Vi [MeV] ρi [fm]

i ¼ 0 302(38) 0.086(0.007)
i ¼ 1 138(47) 0.289(0.090)
i ¼ 2 170(65) 0.578(0.063)

VB�B Vi [MeV] ρi [fm]

i ¼ 0 −109ð17Þ 0.147(0.125)
i ¼ 1 −61.1ð16.2Þ 0.288(0.051)
i ¼ 2 −9.27ð4.95Þ 0.820(0.188)

VB�B�
Vi [MeV] ρi [fm]

i ¼ 0 456(26) 0.181(0.005)
i ¼ 1 −76.2ð6.1Þ 0.657(0.043)
i ¼ 2 −1.53ð1.45Þ 1.385(0.099)
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tαβl¼0ðkαi ; kβj Þ ¼ V̂αβ
l¼0ðkαi ; kβj Þ

−
X
γ;δ

XN
m;n¼0

V̂αγ
l¼0ðkαi ; kmÞĜγδ

0 ðkm; knÞ

× tδβl¼0ðkn; kβj Þ; ð41Þ

where ks with s ¼ 0;…; N − 1 represents a momentum at
the Gaussian quadrature point, while the on shell momen-
tum pα

W is stored in kαN . A matrix element of the potential

for a Gaussian expansion of the potential, VðrÞ ¼P
k Vke−r

2=ρ2k , is defined as

V̂αβ
0 ðkαi ; kβj Þ≡ 1ffiffiffiffiffiffi

4π
p

ffiffiffiffiffiffiffiffiffiffi
μαμβ

kαi k
β
j

s X
k

Vkρk exp

�
−
1

4
ρ2i ðkαi þ kβj Þ2

	

× ðexp½ρ2kkαi kβj � − 1Þ; ð42Þ

while the Green function is given by

Ĝγδ
0 ðkm; knÞ≡ δδγδmn ×

8<
:

w̃m
2km

k2m−2μγðW−Eγ
thÞ

ðm ¼ 0;…; N − 1Þ

−
P

N−1
l¼0 w̃l

2kγN
k2l−2μ

γðW−Eγ
thÞ
þ iπ ðm ¼ NÞ

; ð43Þ

where

kj ¼ pcut tan

�
π

4
ðxj þ 1Þ

	
;

w̃j ¼ pcut
π

4

wj

cos2
h
π
4
ðxj þ 1Þ

i ; xj ∈ ½−1; 1� ð44Þ

with the weight wj ¼ 2
ð1−x2j Þ½P0

NðxjÞ�2
for the Gauss-Legendre

quadrature used in our calculations. We have confirmed
that physical observables are insensitive to our choice,
N ¼ 50 and pcut ¼ 100 MeV. (Results are unchanged
within errors for pcut ¼ 1000 MeV or N ¼ 60.) Then,
the T-matrix is approximately obtained by a matrix
inversion as t0 ¼ ð1 − VG0Þ−1V, where tαβ0 ðkαN; kβNÞ corre-
sponds to the on shell T-matrix tαβ0 ðWÞ.

3. T-matrix and bound states

The scattering phase shift can be extracted from the on-
shell T-matrix as

tBB0 ðWÞ
pB
W

¼ −1
π

1

pB
W cot δBB0 ðWÞ − ipB

W

; ð45Þ

and then p cot δ is parametrized by the effective range
expansion (ERE) as

pB
W cot δBB0 ðWÞ ¼ −

1

a0
þ reff;0

2
ðpB

WÞ2 þOððpB
WÞ4Þ; ð46Þ

where a0 is the scattering length and reff;0 is the effec-
tive range.
Since bound states correspond to poles of the T-matrix in

a negative ðpB
WÞ2 axis, we have to solve the LS equation at

ðpB
WÞ2 < 0 in order to find such poles. Alternatively, using

(46), we may search an intersection between the ERE

p cot δ and a bound-state condition −
ffiffiffiffiffiffiffiffiffi
−p2

p
at ðpB

WÞ2 < 0,
which gives a pole at p ¼ þipBS in the upper-half complex
pB
W plane. In addition, for a pole of a physical bound state,

p cot δ must cross −
ffiffiffiffiffiffiffiffiffi
−p2

p
from below as [33]

d
dp2

h
p cot δðpÞ −



−

ffiffiffiffiffiffiffiffiffi
−p2

q �i���
p2¼−p2

BS

< 0: ð47Þ

4. Results

Figure 4 shows scattering phase shifts as function of the
energy from the B threshold (W −mB −mB�) at mπ ≃
701 MeV (upper left), 571 MeV (upper right), and
416 MeV (lower left), obtained below the B� threshold
but by the coupled-channel analysis. Physical phase
shifts δ are calculated in the scattering region at
0 < W −MB −MB� < W − 2MB� ≃ 45 MeV,while bound
states are examined at W −MB −MB� < 0 using the ana-
lyticity of the S-matrix. As mentioned before, a bound state
appears at the intersection betweenp cot δ (pink, orange, red
lines) and−

ffiffiffiffiffiffiffiffiffi
−p2

p
(blue lines). It is observed that the system

produces a pole of the T-matrix at each pion mass, which
satisfies a physical pole condition, Eq. (47), so that one
physical bound state exists at each pion mass. The thick line
drawn along −

ffiffiffiffiffiffiffiffiffi
−p2

p
curve is the binding energy inde-

pendently obtained from the Schrödinger equation by the
Gaussian expansion method (GEM) [34], which is consis-
tent with the pole from the intersection. Here we set a
number of bases of the GEM to 50 and the range parameters
were set to be a geometric sequence with b1 ¼ 100 [1=fm2]
and b50 ¼ 0.0348 [1=fm2].
Figure 5 compares the binding energy obtained by the

GEM in the coupled-channel analysis (cyan) with the one
in the single-channel analysis (magenta) as a function ofm2

π

(open circles), together with a linear extrapolation in m2
π to

the physical-pion mass mπ ¼ 140 MeV (solid line), which
predicts the binding energy at the physical pion mass as
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Eðsingle;physÞ
binding ¼ −154.8� 17.2 MeV;

Eðcoupled;physÞ
binding ¼ −83.0� 10.2 MeV; ð48Þ

where errors are statistical only. A comparison of two
results shows an about 40–50% reduction of the binding
energy from the single-channel analysis to the coupled-
channel analysis, probably due to large off-diagonal com-
ponents of potentials. Thus, this systematics is attributed to
virtual transitions such that B → B� → B, which may
easily occur since the B� threshold is only 45 MeV above
the B threshold. Therefore, an inclusion of virtual B� effect
is required to predict physical observables such as the
binding energy of the tetraquark state Tbb accurately in
lattice QCD.
Figure 6 shows the scattering length a0 (left) and the

effective range reff;0 (right) in the coupled-channel analysis,
obtained from the ERE fit (46), as a function of m2

π (open
circles), together with a linear extrapolation in m2

π to the

FIG. 5. The binding energy obtained by the GEM as a function
of m2

π (open circles), together with a linear extrapolation in m2
π to

mπ ¼ 140 MeV (solid line) from the single-channel analysis
(magenta) and the coupled-channel analysis (cyan).

FIG. 4. Results of p cot δðWÞ from the LS equations as a function of W < EB�
threshold, together with −

ffiffiffiffiffiffiffiffiffi
−p2

p
by the blue solid line. A

thick line along the −
ffiffiffiffiffiffiffiffiffi
−p2

p
curve represents the binding energy calculated by the GEM, which agrees well with the intersection

corresponding to a pole of the T-matrix.
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physical pion mass mπ ¼ 140 MeV (solid line), which
leads to

aðcoupled;physÞ0 ¼ 0.43� 0.05 fm;

rðcoupled;physÞeff;0 ¼ 0.18� 0.06 fm; ð49Þ

at the physical pion mass, where errors are again statis-
tical only.
In Fig. 7, the binding energy at the physical pion mass is

alternatively estimated from an intersection between

−
ffiffiffiffiffiffiffiffiffi
−p2

p
(blue solid line) and p cot δðpÞ (green band)

with aðcoupled;physÞ0 and rðcoupled;physÞeff;0 in (49), which not only
satisfies the physical-pole condition (47) but also well
agrees with the binding energy by the GEM extrapolated
directly to the physical pion mass (red thick curve along
−

ffiffiffiffiffiffiffiffiffi
−p2

p
). The agreement in the binding energy between

the two methods provide a strong support for reliability of
our analysis.

V. CONCLUSIONS

In this paper, we have extracted scattering quantities
through S-wave potentials between B̄ and B̄� mesons with
quantum numbers IðJPÞ ¼ 0ð1þÞ, applying the coupled
channel HAL QCD method to this single-channel scatter-
ing. We have employed the NRQCD action for b quarks to
incorporate effects of their propagations in space. This
paper presents the first analysis from a combination of the
NRQCD action with the HAL QCD method. Physical
observables such as the binding energy, the scattering
length, and the effective range obtained on (2þ 1)-flavor
full QCD configurations at three pion masses are extrapo-
lated to the physical-pion mass.
Since off-diagonal potentials are asymmetric and com-

parable in magnitude to diagonal ones, as shown in Fig. 2,
we have employed non-Hermitian 2 × 2 potentials in order
to include the nonlocality caused by virtual B� states into a
single-channel potential as UBB

eff . The single-channel analy-
sis with UBB

eff show that the system with B̄ and B̄� mesons
have a bound state corresponding to a doubly bottom
tetraquark Tbb, whose binding energy is smaller by
40–50% than the one from the standard single channel
analysis without nonlocality. This explicitly demonstrates
an importance of virtual transitions between B and B�
channels to the tetraquark state Tbb. Thus, it may give some

FIG. 6. ERE parameters in the coupled-channel analysis as a function ofm2
π (open circles), together with a linear extrapolation inm2

π to
mπ ¼ 140 MeV (solid line). Left: the scattering length a0. Right: the effective range reff;0. Both are defined in Eq. (46).

FIG. 7. The ERE at mπ ¼ 140 MeV obtained with a0 and reff;0
by linear extrapolations in m2

π (green band), together with
−

ffiffiffiffiffiffiffiffiffi
−p2

p
(blue solid line). An intersection of the two give a pole

of the T-matrix, whose position is consistent with the binding
energy by the GEM at mπ ¼ 140 MeV by a linear extrapolations
in m2

π (red thick curve along −
ffiffiffiffiffiffiffiffiffi
−p2

p
).
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hints on the nature of the tetraquark state Tbb such as its
internal structure.
In addition to statistical errors quoted in Eqs. (48) and

(49), we here estimate systematic errors in our result, which
are caused by a truncation of the NRQCD expansion, a
truncation of the perturbative matching between the
NRQCD Hamiltonian and QCD, the finite lattice spacing,
the finite volume, and the chiral extrapolation in lattice
QCD simulations, and so on. Since these systematic errors
are difficult to evaluate explicitly and precisely, we focus
our attention on errors associated with the NRQCD action
for b quarks and employ previous studies [12,29,35] for
rough estimations. Effects of these systematics on the
binding energy may be about 20 MeV at most, and other
systematic errors such as the finite-lattice spacing, the finite
volume and the chiral extrapolation are probably much
smaller than 20 MeV, and thus are included in this 20 MeV.
We then obtain

Eðsingle;physÞ
binding ¼ −154.8� 17.2� 20 MeV;

Eðcoupled;physÞ
binding ¼ −83.0� 10.2� 20 MeV; ð50Þ

for the final estimate of the binding energy including
systematic errors.
We compare these final results with latest lattice studies

[8–14] in Fig. 8. From the comparison, we draw following
conclusions:

(i) In both cases of static quark potential and HALQCD
potential, the binding energies of Tbb in the coupled-
channel analysis are smaller than those in the single-
channel analysis. The reduction is larger for the
HAL QCD potential; 155 MeV (blue cross) reduces
to 83 MeV (blue open circle) for the HAL QCD
potential, while 90 MeV (green cross) becomes
59 MeV (open circle) for the static-quark potential.
Binding energies themselves are larger for the

HAL QCD potentials than for the static-quark
potentials in both single- and coupled-channel
analyses. The moving b quarks in the NRQCD
are probably responsible for this enhancement of
binding energies.

(ii) Within the NRQCD b quark, our result in the single
channel analysis (blue cross) roughly agrees with
the direct-spectrum calculations (squares) within
errors, though the systematic error of our result
is large.

(iii) The result with the NRQCD b quark in the coupled-
channel analysis (blue open circle)maybe regarded as
the best estimate ofTbb ’s binding energy in this paper.
While errors are large, the value, 83(10)(20) MeV,
seems a little smaller than results from the NRQCD,
ranging from112(13)MeV to 186(22)MeV. To give a
definite conclusion on this point, however, it will be
necessary to reduce statistical as well as systematic
errors in the HAL QCD method, for example, by
improving the chiral extrapolation and performing
the continuum extrapolation with a more precise
NRQCD action.

While an existence a tetraquark bound state Tbb is a robust
prediction in lattice QCD, reductions of systematic errors
will be needed to evaluate its binding energy more precisely
in future studies. A possible improvement is to extract Tbb
spectra from correlations functions using optimized oper-
ators obtained by the HAL QCD potential [36].
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