PHYSICAL REVIEW D 108, 054038 (2023)

Gluon generalized parton distributions and angular momentum
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We study the leading twist gluon generalized parton distributions and the gluon angular momentum
inside the proton within a light-cone spectator model. Using the light-cone wave functions derived from the
model, we provide the expressions of these distributions at the particular kinematical point £ = 0 in the

overlap representation. The numerical results of the HY, EY, Y, H"%, and E? as functions of x at different
A7 are presented. Particularly, HY, HY at nonzero Ay are different from their forward counterparts, the
unpolarized distribution f¥ and the helicity distribution g{, respectively. We also obtain the total angular
momentum of the gluon contributed to the proton spin JY = 0.19, which is consistent with the recent lattice
calculation after the uncertainties are considered. The kinetic orbital angular momentum is also calculated

and is negative in our model.
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I. INTRODUCTION

The study of the hadronic structure in terms of the quark
and gluon degrees of freedom is one of the important
tasks in hadronic physics. Although the parton distribution
functions (PDFs), which encode the distributions of the
longitudinal momentum and polarization carried by quarks
and gluons in a fast moving hadron, are most widely used in
the investigation of the hadronic structure, a more com-
prehensive picture can be obtained from the general parton
distributions (GPDs) [1-3]. These objects are experimen-
tally accessible through the hard exclusive reactions, such
as deep virtual Compton scattering and deep virtual meson
production [4-9].

One of the necessities of studying GPDs is their
relationships with mass decomposition [10,11] and spin
decomposition of hadrons. In particular, Ji [12] derived a
gauge-invariant decomposition of the nucleon spin in terms
of the quark spin, quark orbital angular momentum (OAM),
and the gluon angular momentum. Furthermore, the angu-
lar momentum sum rule can relate the moments of GPDs to
the corresponding form factors defined through the expect-
ation value of certain operators, which gives the spin and
(orbit) angular momentum of partons evaluated at t = 0.
The quark OAM and spin-orbit correlations in the nucleon
and the pion meson have been calculated by different
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models [13-16]. In addition, Fourier transforming GPDs
with respect to the transverse momentum transfer Az
yields the impact-parameter-dependent distributions f(x, b%)
[17-20], which encode how partons are distributed in the
transverse plane along with the longitudinal momentum
fraction of partons inside the hadron.

The quark GPDs in the nucleon and the meson have
been widely studied from theoretical aspect [21-27].
However, the knowledge of the gluon GPDs [2,28] is
rather limited. Nevertheless, the twist-2 gluon GPDs have
been calculated in a quark-target model [29] that is
different from the realistic situation of the target state.
In Ref. [29], the authors also studied the relations
between the gluon GPDs and transverse-momentum-
dependent parton distributions(TMDs). For H? and EY,
the Balitsky-Fadin-Kuraev-Lipatov resummation tech-
nique [30,31] is established and widely used in phenom-
enology, and this means that the study on how they evolve
mainly focuses on the small-x region [32,33]. Similarly,
the gluon OAM can also be calculated using the sum rule
of the corresponding GPDs [34,35], and the methods of
extracting it from experimental observables have been
proposed [36-43].

In this work, we study the leading-twist gluon GPDs and
the kinetic gluon OAM from an intuitive model concerning
the gluon structure of the proton, which can be considered
as a useful complement to the phenomenological analysis
on the experimental data and other model calculations. The
approach of the study follows the one applied in Ref. [44],
in which a spectator model was applied to generate the
gluon degree of freedom from the proton target to calculate
the gluon Sivers function. In the approach, the proton is
regarded as a two-particle system composed by an active

Published by the American Physical Society
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gluon and a spectator particle that contains three valence
quarks. A similar model has also been applied to calculate
the T-even gluon TMDs [45] in which the spectral function
and more complicated form factors are considered. Within
the spectator model, we can obtain the expression of the
gluon GPDs using the overlap representation [46,47] in
terms of the light-cone wave functions of the proton
Fock state. Based on this, we choose the Brodsky-Huang-
Lepage prescription [48] for the coupling of the nucleon-
gluon spectator vertex to calculate the analytical forms of
these distributions. We calculate the five T-even gluon
GPDs HY, E9, HY, HY, and Ef at ¢ = 0. The GPDs then can
be used to study the total angular momentum of the gluon
contributed to the proton spin via Ji’s sum rule. As a by-
product, we also investigate the x dependence of the gluon
kinetic OAM.

The rest of the paper is organized as follows. In Sec. II,
the definition of the leading-twist gluon GPDs is provided
via the light-cone correlation function. In Sec. III, we
present the analytic expressions of the gluon T-even GPDs
in the overlap representation within light-cone spectator
model. In Sec. IV, we provide the results of the GPDs as
functions of x at different A;. In Sec. V, some conclusions
are given.

I1. DEFINITION OF THE GLUON GPDs

In this section, we present the definitions of the gluon
GPDs of the proton. Unless specified otherwise, we will
follow the conventions used in Ref. [2]. Figure 1 describes
the kinematics for the gluon GPDs. The momenta of the
incoming and outgoing proton are given by

1 1

. 1 dz= . ;
Fg[l]](x, A,,Lﬂ/) = F/ielk.z<p/;/l/|Fa+j(

2

1 1 1 1
J— e +i[ .
Z)Wab< 21,2z>Fb <2z>|p,/1)

FIG. 1.

Kinematics for gluon GPDs.

where p? = p’> = M?, with M as the proton mass. In a
physical process, P = (p + p')/2 is the average momen-
tum of the initial and final proton, and A = p’ — p is the
momentum transfer to the proton. The GPDs depend on
three variables,

k* AT
X = F s =
where k and x are the average momentum and the average
plus-momentum fraction carried by the active gluon,
respectively; skewness & is the fraction of the transferred
momentum, and ¢ is the square of the momentum transfer.
In the light-cone coordinate, a general four-vector is
defined as

1
at = —(a’ £ a?),

V2

Similar to the definitions of PDFs, the GPDs are also
defined through the relevant correlation functions. For
the leading-twist gluon GPDs, the light-cone correlator
reads [2]

ar = (a;,a,). (3)

: (4)

77=0"z;=07

where 1 and A’ denote the helicity of the initial and final proton, respectively. The gluon field strength tensor F%”(x) has the

standard form

Fa'(x) = 0"Ag(x) = 0"AG(x) + gf anc A}, (x) AL (x), (5)

with f ;. being the structure constants of the SU_.(3) group. To ensure the color gauge invariance of the correlator (4), the

Wilson line running along the path

1 1
Wap | == 22
ab( ZZ 2Z)

1

7F=0" z;=07 [ 2

|-
0+,——Z_,0T;0+,—Z_’OT} = Pexp [_g/zz dy™ fapcAL(07,y7,07) (6)
ab =

=7

2%

is included, which couples to the gluon field strength tensor through the coupling constant g. P denotes all possible ordered
paths followed by the gluon field A. The following two tensors

i ___ij
or = —g",

€ = et (7)
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are applied to define the chiral-even gluon GPDs, while the symmetric operator §

S0V =

| =

(0 + 0it — i omm), (8)

is used to define the chiral-odd gluon GPDs, with O as a general tensor. Then the twist-2 gluon GPDs can be obtained from
the correlator by projecting onto the tensors in Eqs. (7) and (8) as follows:

Py,

o 1 A
Pos 83 ) = BP0 3, 83 2) = 500! 20 (1 B0 800+ T ) Julpid). )

Fie, s ) = i€ OO (. A2, ) = oo

F§9 (x, A; A, 1) = =SFI (x, A 2, 1)

. s A
a(p' . A) <7/+J/5Hg(x,é, 1)+ M

*ys

Bo(.c. z))u(nz), (10)

§ PYAL—ATPL i y AL —Atrr o,
= pT Pt a(p', M) ict Hy(x, &, 1) +TET(x, & 1)
PTAL — ATPL 7/er./' —P+Vj B
+%H?(%f, 1)+ Er(x§ f))u(PJ)- (11)

Note that Eqgs. ) gnd (10) define the four chiral-even
GPDs HY, EY9, H9, E9, while Eq. (11) expresses the four
chiral-odd GPDs H, E%, HY, Ef, respectively. Besides,
EY9, HY, and Ej are the helicity-flipped GPDs.

If we choose a particular kinematical point £ = 0, which

[

transverse component Ay of the momentum transfer, we
find [29]
i€l AL S

F9(x,Ar;S) = HI(x,0,—A%) o LEI(x,0,-A%),

implies the plus-momentum transfer A* =0, the right- (12)
hand side of Egs. (9)—(11) will be simplified considerably. g .\ — 1879 A2
With the help of the spin vector S of the proton and the Fo(x, Ag; §) = AHY(x, 0, -A7), (13)
|
i SALA] 8 YN A2
F§Y(x, Az; S) = T‘TFT <E-§(x, 0,—-A%) + 2H(x.0, —A§)> + 727MT L (H;(x, 0,—A%) + —4MTZ H(x,0, —A%))
SALE (2A5AL - Sp — SEAL) -
_l T T( T=T T T T)H%(X,O,—A%). (14)

sM>

Because of the choice ¢ = 0, the GPDs EY and Ef. will not
show up in the above expressions.

III. GLUON GPDs IN THE OVERLAP
REPRESENTATION WITHIN
SPECTATOR MODEL

The gluon GPDs have been first studied by models in
Refs. [29,49], in which the authors applied the quark-target
model inspired by perturbative QCD, i.e., the gluon is
produced from the radiation off the parent quark. In the case
where the target is a proton, the minimum Fock state for the
proton that contains a gluon is |ggqg). As the four-body
system is rather complicated, here we resort to a more
phenomenological approach to assume that the three quarks
can be grouped into a spectator particle [44,45]. Thus, in
this model, in which the degree of freedom of a gluon is

present, the proton can be viewed as a composite system
formed by an active gluon and a spectator particle X,

p:S) = 195, X, (uud)), (15)

where s, and sy denote the spins of the gluon and the
spectator particle, respectively. In principle, the spin
quantum number of the spectator can be sx = 1/2 or
3/2. According to the angular momentum conservation, for
a Sy :% spectator, the orbital angular momentum of the
gluonmay be L = Qor L = 1. While fora sy = % spectator,
the orbital angular momentum of the gluon has to be at least
L = 2. As the contribution from high OAM components is
assumed to be much smaller than that from the low OAM
components, in this calculation we only consider the spin-
1/2 component and ignore the contribution from a sy = %
spectator, following Refs. [44,45].
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Then the Fock-state expansion of the proton with J, = +1/2 has the following form:

d’krdx
| twopamCle( Pr T)> 1673 x(l—x)

where z,z/sT o (x, kr) are the wave functions corresponding to

the two- pzfrtlcle states |53, s%;xp ™t kr), with 57 and s5
being the z components of the spins of the gluon and
spectator, respectively. Here 1(]) denotes that the z
component J, of the proton spin S equals 1/2(—1/2).
Thus, the light-cone wave functions of the Fock-state
component of the proton (16) can be expressed as

—k} + ik?
1 _ T T
l[/+1+%(x,kr) = —\/Eméb,
M

wll_%(x,kT) = —\/E(M -1 —Xx> @,

+kp + ik7
yl k) = —vV2———L¢,

+3 X

y!yy(xkr) =0, (17)

which is similar to the light-cone Fock-state wave functions
of the physical electron given in Ref. [50]. Here, My is the
spectator mass, and ¢ denotes the wave function in the
momentum space,

|:w11+%(xa kT)

1
- 1’ +§;xp+’kT> + WIl_l('x’ kT)
2

1 1
) 1 :
+1,+2,xp+,kr>+lll+1_%(X,kT) +]’_29xp+7kT>
1
_1,__;xp+3kT ) (16)
2
[
AVx(l —x
d(x,kr) = v : (18)

Cx(1—x)M? -

where M ; is the gluon mass for which we fix M, = 0, and 4
denotes the coupling of the nucleon-gluon spectator vertex.
To simulate the nonperturbative physics of the vertex, we
choose the Brodsky-Huang-Lepage prescription for the
coupling A [48],

(1= x)kf — x(k7 + M%)

2
A—»N,lexp<—/2\/l—ﬂz>, (19)
1

where N, is a strength parameter of the vertex, f; is a
cutting-off parameter, and M is the invariant mass of the
two-particle system,

kK2 k3 + M
MZZ_T_FQ_ (20)

X 1—x

Similarity, the Fork-state expansion of the proton with

J, =—1/2 is given by

|lpivoparticle(p+’p’f =07)) = /% {l//ilJr%(x, kr)| +1, +%;xp+,kr> + l//il_%(x,kr) +1, —%;xp+,kT>
N I +;;xp+,kr> ot ()| - 1,—;;xp+,kT>} (1)
where
‘//i1+%(x’kT) =0,
v k) = 2 TR
Wi“_%(‘x?kT) = —\/E<M - lﬂixx> b,
vl y(eky) = V2 % $. (22)

It is worth noting that Egs. (17) and (22) are obtained using light-cone perturbation theory introducing theory uncertainties.
Similar to the analytical results of the gluon GPDs in the quark-target model [29], we can write the GPDs in the overlap

representation using the light-cone wave functions as

HY(x,0,—A2%)

dkT T*
CFZ / 32723 Vsisi

555%

Ou[,k%UI)l//I " (xm kln) + e 5X< xout, k%ut)wigs; (xin’ki;})’ (23)
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A &ky o -
o 0.-A3) = Cp / Te W ) T Ry ) (24)

79 2 koT T out gouty,, T in zin out gouty,, T in zin

H ()C, 0, _AT) = CF m +]i%('x ’kT )W+]i%(x ’kT) - ]+1(x k ) ]+%(.X ’kT>

L Oy R =y Ry (6 ), (25)

k_ g9 2 deT Tk out zout),, | in gin T out zout),, | in gin
—MH'T(X,O, —-A7) =Cr 1625 WH_%()C k7 )WH_%(x K7) = ‘/’_H%(x k7 )l//_1+%(x k7). (26)
AL AZ [ ks N o
- SR BN 0.2A7) = Cyi [Tl ()~ ) 27

I
I:I; (x,0,—A2) =0, (28) and those of the final-state wave functions are given by

where Cp = (N?2-1)/(2N,), with N, =3 being the
number of the color degree of freedom. We find that
FIgT(x, 0, —A%) in Eq. (28) vanishes, which is same as the
case in the quark-target model. In addition, Egs. (23)—(28)
are tree-level results; hence, in principle, higher-order
corrections can be carried out. Here the arguments of the
initial-state wave functions are given by

A
k(])pt — kT + (1 _XOUt)TT’
out _ )lc - g (30)

Note that Egs. (23)—(28) hold at £ = 0, so Egs. (29) and

ki}l =kr— (1 - xi“) ﬂ, (30) can be simplified further.
2 By substituting the light-cone wave functions (17) and
yin — x+¢ ’ (29) (22) into the overlap representation (23)—(27) of GPDs, we
1+¢& obtain the following analytical results:
|
N? A2 + 4xM% + (1 — x)>A?
H9(x,0,—A%) = d’k L X L
(x.0.-A%) =575 / rexp < ax(1— )
A2 (My = M(1 = x))? + (1 + (1 - x)?) (4k7 — (1 - x)°A7) (31)
Dg<.x, AT,kT) ’
N? 4kG +4xME + (1= x)*A7\ M(My = M(1 = x))(1 = x)°

E%(x,0, —A2 — / ke r X r X , 32
(x =3 re 4x(1 — x)p? DY(x, Ag. kr) (32)

. N2 4k2 Ax M2 1 — x)2A2

" 2410 4x(1 —x)p;
My — M1 —x))2 + (14 (1 =x))(4k3 — (1 — x)?A2) (33)
D-"(x, ATva) ’
4k2 4xM? 1 —x)2A2 My —M(1 - 1-
Hg(xo AZ /dsze T+ X X+( - .X) T ( X ( X))( X>’ (34)
4x(1 —x)p; DI(x, Az, k)
2 _ 2A1A2
E(x.0.-A2) — - Vil =%) / Pk exp(— HE+ M+ (1= 0°A7 slig (ki = (1~ " e (35)
Tt 3mx 4x(1 —x)p DY(x, Ar, kr) '

where
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D9(x, Ay, ky) = [(kr—;(l—x)AT>2+xM§—x(1—x)M2] Kk,+1(1—x)AT>2+xM§—x(1—x)M2 . (36)

We also check that HY and HY reduce to the unpolarized
PDF f4(x) and helicity PDF ¢{(x) as Ay — 0. Finally,
comparing the gluon GPDs in Egs. (31)—(35) with those in
the quark-target model [29], we find that the former will
reduce to the latter after the following substitutions:

. Ak + AxM5 + (1 - x)°AF o
4x(1 —x)p? '

Nﬁ_)gv

My, M — m.

IV. NUMERICAL RESULTS

In order to present the numerical results of the gluon
GPDs, we need to specify the values of parameters M, My,
P, and N, in our model. We choose [44]

N, =5.026,
$1 =2.092 GeV,

My = 0.943 GeV,
M =0938 GeV,  (37)

which were obtained from a fit of the model result to the
leading-order set of the Gliick-Reya-Vogt (GRV98) [51]
gluon PDF. In this fit, we choose the lowest allowed scale
of GRV98 parametrization as the model scale, which is
u3 = 0.8 GeV2. After integrating out k; and substituting
the corresponding parameter values in Egs. (31)-(35), we
obtain the numerical results of GPDs.

In Fig. 2, we plot the GPDs HY(x,0,—A2), E9(x, 0, —A2),
H9(x,0,—AZ%), HY(x,0,—AZ2), and E}(x,0, —A%) as func-
tions of x at Ay = 0.5, 1, and 1.5 GeV, respectively. It is
shown that H9(x, 0, —AZ%) has two features that are different
from those of the unpolarized gluon PDF f¥(x). First, in the
small-x region H9(x,0,—A%) is negative, while f(x) is
positivein the whole region 0 < x < 1. Thatis because there
is an additional term —(1 — x)?AZ in the numerator of the
expression (31). Second, HY(x,0,—AZ%) vanishes as x
approaches 0 when Az # 0. This is different from f(x),
which is nonzero in the small-x region. HY(x,0,—AZ%)
turns out to be positive in the large-x region; i.e., there is
a node in the x dependence of HY(x,0, —A%). Concerning
the A, dependence, the size of H7(x, 0, —A%) decreases with
increasing Ay, and the node position moves toward higher x.

The GPDs EY(x,0,—A2%) and H%(x,0,—AZ%) share
similar shape since EY = xHé} in our model. That is, they
are both negative in the entire x region, and the peak of the
curve moves to the higher-x region with increasing A;. The

2

[
GPD H9(x,0,—AZ%) is negative in the smaller-x region
and is positive in the larger-x region. Again there is a node
in the x dependence of HY(x,0,—AZ), which is similar
to the case of HY(x,0,—A%). Finally, the chiral-odd GPD
E%(x,0,—A2) is positive in the entire x region. It has
substantial magnitude in the small-x region, while it is
largely suppressed in the region x > 0.6.

In order to study the impact of the initial scale applied in
the fit of f4(x), we also perform the fit at two different
scales: yf = 1.2 and pf = 1.6 GeV2. We then calculate the
x dependences of H(x,0,—A%) calculated from the three
fits and plot them in Fig. 3 for comparison. We find that the
sizes of GPDs monotonically decrease with increasing
scale. Thus, the difference of the initial scale can change
the size of H(x,0,—A%), while it will not alter the shape
of H(x,0,—A2).

The GPDs provide unique opportunity to explore the
spin structure of the nucleon. According to Ji’'s sum rule
[12], the following moment gives rise to gluon contribution
to the nucleon spin:

5= [ detalo.0.0) + B, 0.0)) - (38)

We apply our model results for H7(x,0,0) and E9(x,0,0)
to perform the calculation, yielding

J9 = 0.190. (39)

This result is consistent with the recent lattice result J9 =
0.187 calculated by the ETM Collaboration [52], and this
lattice result is given in the MS scheme at the scale of
2 GeV. However, we note that the two results are obtained
at different scales and may not be compared directly.
Using the GPDs HY, EY, and HY, we also calculate the
gluon OAM inside the nucleon from the expression [12]

=> / dx{x[HO(x.0,0) + E%(x,0,0)] — F%(x.0.0)}

(40)

- / dxLY(x). (41)

This definition corresponds to the kinetic OAM of the
gluon [53-55], and L{(x) denotes the x dependence of
the unintegrated OAM. Our numerical result shows that
LY = —0.123, which means that the gluon kinetic OAM

054038-6
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FIG. 2. The dependence of the gluon GPDs HY(x, 0,

£ =0 when A7y =0.5,1.0, 1.5 GeV, respectively.
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FIG. 3. The dependence of the gluon GPDs HY(x,0,—A%) on
the initial scale M% used in the fit. The solid line, dashed line, and
the dotted line correspond to the results with the initial scale
w3 = 0.8, 1.2, and 1.6 GeV?, respectively.

-0.05 F 3
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FIG. 4. The dependence of the kinetic gluon OAM LY(x) on x
in the proton.

is negative. In order to present the contribution of the gluon
OAM at different x, we plot the unintegrated OAM L?(x) as
a function of x in Fig. 4. We find that LY(x) is negative in
the entire 0 < x < 1 region. It is also interesting to point
out that the contribution in the very small-x region is not
zero. The “distribution” peaks at around x = 0.05, and it

decreases rapidly when x approaches 1. Another observa-
tion is that in our model there is substantial cancellation
between xH9(x,0,0) and ﬁg(x,0,0) because these two
GPDs are both positive. Thus, in our result the sign of
LY(x) is almost determined by (1/2)xE?(x,0,0).

V. CONCLUSION

In this work, we studied the leading-twist gluon GPDs of
the proton as well as the kinetic gluon OAM by employing
a light-cone spectator model. In the study, we took a special
kinematic point £ = 0. Thus, among the eight leading-twist
GPDs, HY, EY, H9, HY}, EY, and HY survive in this limit.
These GPDs can be expressed as the overlap of the proton
wave functions for the in and out states within the light-
cone formalism. In a first approximation, we treated the
proton as a composite system formed by an active gluon
and a spectator particle X to get the proton wave functions.
We chose the Brodsky-Huang-Lepage prescription for the
coupling of the proton-gluon spectator vertex to simulate
the nonperturbative physics.

Based on these model assumptions, we obtained
the analytic results of the GPDs HY, EY, HY, H‘%, and
Ej. The GPD H. is found to be zero in this model, similar
to the case of the quark GPDs. We found that, in the
intermediate-x and large-x regions, HY and HY are positive,
while in the small-x region they are negative and vanish
as x approaches 0 and A7 # 0. This is different from the
PDFs f{(x) and ¢{(x), which are positive in the whole
region 0 < x < 1 and are nonzero in the small-x region.
Nodes were found in the x dependence of GPDs HY and
HY(x,0,—A%). It was shown that the GPDs E9(x, 0, —AZ2)
and H%(x,0,—AZ) share similar shape since £ = xH? in
our model, i.e., they are both negative in the entire x region.
The chiral-odd GPD E%(x,0, —A2) is positive in the entire
x region and has substantial magnitude in the small-x
region. Using Ji’s sum rule, we also calculated the total
angular momentum of the gluon and obtained J9 = 0.190,
which agrees with recent lattice results within uncertainty.
The kinetic OAM of the gluon in the same model is found
to be L? = —0.123. Our study may provide useful theo-
retical constraints on the gluon GPDs and angular momen-
tum. Further experimental measurements are needed to
verify these predictions.
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