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QCD Laplace sum rules are used to examine the constituent mass spectrum of J¥ € {0F, 11} (scalar,
axial vector) heavy-light [Qg| diquarks with Q € {c,b} (charm, bottom) and g € {u,d, s} (up, down,
strange). As in previous sum-rule studies, the negative parity J* €{0~, 17} (pseudoscalar, vector) [Qq]
diquark mass predictions do not stabilize, so the sum-rule analysis focuses on positive parity [Qq] diquarks.
Doubly strange J© = 17 (axial vector) [ss] diquarks are also examined, but the resulting sum rules do not
stabilize. Hence there is no sum-rule evidence for J* = 17 [ss] diquark states, aiding the interpretation of
sum-rule analyses of fully strange tetraquark states. The SU(3) flavor splitting effects for [Q¢] diquarks are
obtained by calculating QCD correlation functions of J* € {0+, 1"} diquark composite operators up to
next-to-leading order in perturbation theory, leading-order in the strange quark mass, and in the chiral limit
for nonstrange (u, d) quarks with an isospin-symmetric vacuum (7in) = (i) = (dd). Apart from the
strange quark mass parameter m;, the strange quark condensate parameter k = (5s)/(7in) has an important
impact on SU(3) flavor splittings. A Laplace sum-rule analysis methodology is developed for the mass
difference My, — M|p,) between the strange and nonstrange heavy-light diquarks to reduce the theoretical
uncertainties from all other QCD input parameters. The mass splitting is found to decrease with increasing
K, providing an upper bound on x where the Mg, — M|, mass hierarchy reverses. In the typical QCD
sum-rule range 0.56 <k < 0.74, 55 MeV < M) — M|.,; <100 MeV and 75 MeV < Mg — My S
150 MeV, with a slight tendency for larger splittings for the J” = 17 axial-vector channels. These
constituent mass splitting results are discussed in comparison with values used in constituent diquark
models for tetraquark and pentaquark hadronic states.

DOI: 10.1103/PhysRevD.108.054036

I. INTRODUCTION

Over the past two decades, numerous mesons have been
discovered that do not fit within the conventional quark
model of quark-antiquark states (see e.g., Refs. [1-9] for
reviews). Exotic four-quark meson configurations antici-
pated long ago [10,11] seem to be realized in nature with
astounding richness and complexity. Noteworthy recent
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discoveries of four-quark states include the doubly charged
open-charm state 7%,(2900)"" (and its neutral partner)
[12,13]; the fully closed charm X(6900) [T, (6900) in
the Ref. [14] naming scheme] [15]; open-charm states
X(2900) and X;(2900) [T .4 (2900)° and T.;(2900)°]
[16,17]; and the hidden-charm states Z.(3985)7,
Z.,(4000)", Z.,(4220)" [18,19].

An important scenario for four-quark mesons is the
compact tetraquark scenario involving the interaction of
colored diquark-antidiquark constituents [20,21]. Various
models can then be used to determine tetraquark properties
in this diquark-antidiquark scenario, including types I
and II diquark models [22-27], dynamical quark model
[28], relativized diquark model [29-33], relativistic quark
model [34-38], and the diquark effective Hamiltonian
model [39]. The constituent diquark masses are one of
the crucial input parameters in these models, and depending
on the model, the diquark constituent mass is either fit to
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the observed tetraquark candidates or is separately deter-
mined (or estimated) within the model itself. Diquark
constituent masses are also important ingredients in various
pentaquark models (see, e.g., [40—42]).

Because of the crucial role of the diquark constituent
mass in tetraquark (and pentaquark) models, it is important
to determine whether there is supporting QCD evidence for
the diquark constituent mass parameters used in these
models. QCD sum rules [43,44] (see, e.g., [45-48] for
reviews) have been used to predict diquark constituent
masses for various J” combinations for light-light diquarks
[49-51], heavy-light diquarks [52—54], and doubly heavy
diquarks [55]. Overall, these QCD sum-rule diquark
constituent mass predictions are in good agreement with
the values used in the various diquark models, providing
QCD evidence supporting the tetraquark and pentaquark
mass predictions emerging from these models. For exam-
ple, in Ref. [55], [cc| and [bb] axial vector constituent
diquark masses were calculated using QCD sum rules and
results were compared with different diquark models of
fully heavy [cc][¢ ] and [bb][b b] tetraquark states.

One of the challenges of QCD sum-rule methods is
determining the light flavor hadronic mass splittings because
theoretical uncertainties tend to obscure the small differences
between systems with strange quarks and those with non-
strange quarks. For example, approaches that separately
predict hadronic masses in strange and nonstrange systems
typically result in masses that overlap in the bands of
theoretical uncertainty, preventing reliable determination
of light-flavor mass splittings. Examples relevant to exotic
hadron systems include Refs. [54,56-60]. However, QCD
sum-rule analysis methods such as double-ratios predict the
light-flavor splittings and provide better control over theo-
retical uncertainties [61].

In this paper, QCD Laplace sum rules are used to
calculate the constituent mass spectrum of J¥ € {0*, 17}
(scalar, axial vector) heavy-light [Qg] diquarks with
Q €{c,b} (charm, bottom), and g € {u,d, s} (up, down,
strange). Doubly strange [ss]J© = 17 diquarks are also
considered, extending the Ref. [55] sum-rule analysis of
[cc] and [bb] diquarks to the strange sector.” Our method-
ology begins with a baseline prediction of the nonstrange
constituent masses M|y, (updating Ref. [52] to reflect
improved determinations of quark mass parameters). In this
baseline analysis it is found that negative parity J* €
{07, 17} mass predictions do not stabilize as in Ref. [52],
nor do those of J¥ = 17 [ss] diquarks. Further analysis
of [Qq| diquarks therefore focuses on the J* €{0", 17}
diquarks. From this baseline, the double-ratio method [61]
is extended to predict the flavor-splitting mass difference
Mg — Mg, between strange and nonstrange heavy-light
diquarks. This analysis builds upon Ref. [54] in two

"The [Qg] and [ss] notation is used only to denote the diquark
flavor content and not the flavor symmetry properties.

significant ways by including next-to-leading order (NLO)
perturbative effects, and reducing the theoretical uncertainty
in Mg, — M|y, through our mass-splitting methodology.

As shown below, the strange quark condensate parameter
x = (35)/(in), (i.e., (in) = (iu) = (dd)) has an impor-
tant impact on SU(3) flavor splittings. The mass splitting
is found to decrease with increasing x, providing an
upper bound on k where the Mg, — Mg, mass hierarchy
reverses. In the typical QCD sum-rule range for «, the
constituent mass splitting predictions are discussed in
comparison with values used in constituent diquark models
for tetraquark and pentaquark states.

II. DIQUARK CORRELATION FUNCTIONS

QCD sum rules use correlation functions of composite
operators to probe the properties of bound states correspond-
ing to the valence content of the operator [43,44] (see,
e.g., [45-48] for reviews). The dispersion relation satisfied
by the correlation function then establishes a duality relation
between the QCD prediction and a spectral function for the
bound states. Families of sum rules are then constructed by
transforming the dispersion relation (e.g., the Borel [43,44]
transform used to obtain Laplace sum rules).

The correlation function for heavy-light diquark systems
is defined as

(02 =i / dP el (QIT[IY (%) Sue (2,005 (0)]]22),

(1)

where Q% = —¢>, {a, } are color indices, D = 4 + 2¢ is
the spacetime dimension for dimensional regularization,
Sew(x,0) is the Schwinger string [see Eq. (6)], and

J5 (x) represents the heavy-light color-triplet diquark
currents [49,50]

I (x) = €43, 05 (x)COr, () (2)

with €,5, a Levi-Civita symbol in quark color space,
Q denoting a heavy-quark (charm ¢ or bottom b), and
q representing a light-quark (either strange s or nonstrange
ne{u,d}), T is the transpose, and C is the charge
conjugation operator. In Eq. (2), the operator O

OFE{I,]/SJ/”,}/”YS}, (3)

respectively, probes the pseudoscalar (I' = P, J¥ = 07),
scalar (U = §, JX = 01), axial vector T = A, J' =17),
and vector (' =V, J” = 17) diquark states. The axial-
vector and vector diquark states are extracted from pro-
jections of (1)

Av)(Q2) = = 1 1 (qﬂgv _

gﬂv)nﬁé” (@ @
q
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while for the scalar and pseudoscalar cases IT5 and IT” are
used directly.

The correlation function for doubly strange J¥ = 17 [ss]
diquarks is defined analogously to (1) but with current

T (x) = Ja(x) = eqpsp(x)Cris, (). (5)
The axial-vector doubly strange diquark states are extracted
as in (4). When discussing doubly strange diquarks, the
left-hand side of (4) is denoted IT**(Q?).

The Schwinger string, schematically shown in Fig. 1, is
given by

a

. 2 [
Sule0) = Pexp|in S ["azaga] o)
0 aw

where P, the path-ordering operator, is used to extract
gauge-invariant information from the correlation functions
of the (gauge-dependent) diquark currents [49,50]. In
principle, the Schwinger string could present calculational
challenges for the correlation function, but there exist some
important simplifications. In the Landau gauge, the
straight-line string trajectory representing the ground-state
configuration has zero perturbative contribution to the
correlation function at NLO [49,50]. This was explicitly
verified in Ref. [52] where the heavy-light diquark corre-
lation function in Eq. (1) was calculated to NLO in an
arbitrary covariant gauge and it was shown that the result is
independent of the gauge parameter. Note that this same
approach was used for doubly heavy [QQ] diquarks in
Ref. [55]. In this work, for completeness it has been verified
that the same cancellation of the gauge parameter occurs for
the heavy-strange [Qs] and doubly strange [ss]| diquarks.
Therefore perturbative contributions from the Schwinger
string can be replaced by S, (x,0) = &, while working
in Landau gauge up to NLO. Similarly, nonperturbative
QCD condensate contributions from the Schwinger string
are zero at LO in fixed-point gauge methods [49,50].
Combined with the equivalence between fixed-point
gauge and other methods for calculating OPE coefficients
for gauge-invariant correlators [62], nonperturbative

FIG. 1. Feynman diagram representing the LO contribution to
the Schwinger string (6) for a straight-line spacetime trajectory
(dashed-line) between spacetime points x and O represented
by the diquark current insertions ®, with @ representing z.
A similar diagram also occurs with the gluon connecting to the
light quark line.

contributions from the Schwinger string can also be
replaced by S,,(x,0) = &,, at LO.

The contributions to the heavy-light [Qg| diquark
correlation function are now calculated up to NLO in
perturbation theory and up to LO in the strange quark mass
mg as shown in the Feynman diagrams of Fig. 2. The
necessary heavy-light diquark composite operator renorm-
alization properties are known to two-loop order [63] and
were successfully implemented in the NLO light-quark
chiral limit correlation function calculation of Ref. [52].
Here, the presence of an additional mass scale for strange
quarks presents additional technical challenges in the
renormalization of nonlocal (i.e., nonpolynomial in Q?)
divergences resulting from the diagrams of Fig. 2. These
technical challenges are addressed via diagrammatic
renormalization methods (see, e.g., Refs. [64-67]) for
QCD correlation functions as discussed in Ref. [68].

{4
D

FIG. 2. LO and NLO Feynman diagrams for perturbative
contributions to the correlation function for the heavy-light
diquarks. Bold lines represent the heavy quark, thin lines
represent the strange (for the [Qs] diquark) or nonstrange (for
the [Qg] diquark) quarks, curly lines represent the gluon, and
® indicates an insertion of the diquark current.

(a) (b)

(©) (d)

FIG. 3. Subdiagrams extracted from Fig. 2. Diagrams (a) and
(b) originate from the self-energy topologies (top-right and
bottom-left diagrams) in Fig. 2, while diagrams (c) and (d) origi-
nate from the gluon exchange topology (bottom-right) in Fig. 2.

054036-3
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(2)

(b)

(c) (d) (e)

FIG. 4. Counterterm diagrams generated by the subdiagrams of Fig. 3 and associated with the corresponding diagrams of Fig. 2, where
the “black square” represents the subdivergence insertion. Diagram (b) is the counterterm for the top-right (self-energy) diagram of
Fig. 2, diagram (c) is for the bottom-left (self-energy) diagram of Fig. 2, and diagrams (d),(e) are for the bottom-right (gluon exchange)
diagram of Fig. 2. For completeness, diagram (a) shows the counterterm for the LO diagram (top-left diagram) of Fig. 2 and results in a
local divergence corresponding to a dispersion relation subtraction that does not contribute to QCD sum rules.

For each of the bare NLO diagrams of Fig. 2, the first
step in diagrammatic renormalization is calculating the
divergent part of the subdiagrams shown in Fig. 3. These
subdivergences are then used to construct the counterterm
diagrams of Fig. 4. The counterterm diagrams are calcu-
lated and then subtracted from the original diagram,
resulting in the renormalized diagram where the strong
coupling a, and quark masses m are interpreted as o, (u)
and m(u) at renormalization scale u in the desired renorm-
alization scheme. This diagrammatic renormalization proc-
ess cancels all nonlocal divergences from the original
diagram; the remaining local divergences are polynomials
in Q” corresponding to dispersion relation subtractions
which are removed while constructing the QCD sum rules
(e.g., via the Borel transform). Note that the subdiagram
and associated counterterm diagram of Fig. 5 result in
local divergences and can therefore be ignored as a

|

2
T m-w+1
HE)eZ[(QZ) =2

i
i}

dispersion-relation subtraction that does not contribute to
the sum rules. Detailed examples, technical subtleties, and
computational advantages of the diagrammatic renormal-
ization procedure for QCD correlation functions are out-
lined in Ref. [68] along with the conceptual connection to
conventional operator mixing renormalization methods.

Calculation of the correlation functions is performed
using dimensional regularization with D =4 + 2¢, and
final results are presented in the MS scheme.” Feynman
diagrams are calculated using FeynCale [69—71], TARCER
[72] implementation of recursion relations for two-loop
integrals [73,74], Package-X [75,76], results for master
integrals [77-79], and HypExp [80,81], with HPL [82] for
the expansion of hypergeometric functions.

The renormalized final result for the perturbative con-
tributions to NLO in the loop expansion and to first-order in
the strange quark mass is given by

[(co +%d0> log (1 +w) +% [(cl —1—%031) log (1 +w)+ (cz +%d2)10g2(1 +w)

mg m ) w my , w
3+ md3>log3(1 +w)+ <c4 + md4> log (1 + w)Li, <1+w> + <c5 +md5>L12 <1+w>

mg . my .
C6 + Zd6>Ll3(—W) + <C7 + Zd7)Ll3<

(7)

=)l

W=, (8)

It is easiest to carry out diagrammatic renormalization in MS scheme and then convert to MS by redefinition of the renormalization

scale p? — 4 p?.
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(a) (b)

FIG. 5. Additional subdiagram (a) and counterterm diagram
(b) originating from the quark loops in the self-energy topologies
(top right and bottom left) of Fig. 2. The counterterm diagram
results in a local divergence corresponding to a dispersion
relation subtraction that does not contribute to QCD sum rules.

where m is the heavy quark mass, and T € {P, S, A, V}
indicates the quantum numbers of the current. The quan-
tities m, m,, and @, are implicitly referenced to the
renormalization scale y in the MS scheme. The coefficients
¢; and d; are functions of w = Q?/m? (with Q* = —¢?)
given in Tables I and II. The agreement between ¢ to ¢; in
|

2

Table I with Table 2 of Ref. [52] validates the diagrammatic
renormalization methodology. As discussed above, in
obtaining (7), it has been verified that the gauge parameter
cancels from the Schwinger string up to first order in my,
extending the chiral-limit analysis of [52] and justifying
the use of Landau gauge where the Schwinger string is
simplified to the color-space identity operator J,,, [49,50].
The new results in (7) are the strange-quark mass correc-
tions d, to d; given in Table II. Higher-order terms
proportional to (m,/m)? are numerically suppressed by
the small value of the strange-heavy quark mass ratio
mg/m. Additional details showing the explicit cancellation
of divergences in the diagrammatic renormalization for
diquark correlation functions are given in Ref. [68].

The QCD spectral function (imaginary part) associated
with TID(Q?) is required to formulate the Laplace sum
rules (see, e.g., detailed discussion in Ref. [83]). Analytic
continuation of (7) leads to the following imaginary part of
the perturbative contributions (see, e.g., Refs. [84,85] for
conventions and details)

Imnl()l;l)‘t(x) = % Kfo +%90> +% [(ﬂ +%91> + (fz +%92> log(x) + <f3 +%93> log (1 - x)

2
+ <f4+%g4> log(x)log (1 —x) + <f5 +%95)Li2(x) + <f6 —i—%%) log(’Z—z>”, 0<x<l,

(10)

The coefficients f; and g; are functions of x given in
Tables IIT and I'V. The coefficients f to f; in Table III agree
with Table 3 of Ref. [52], providing a consistency check on
the extraction of the imaginary parts. The new results in (9)

©)

|
are the strange-quark mass corrections g to g7 in Table IV.
Similarly, the new results in (7) are the strange-quark mass
corrections d to d in Table II. Thus the NLO perturbative
contributions to the benchmark heavy-nonstrange [Qn]
diquark sum rules can be formulated by ignoring the
Eq. (9) g; coefficients, or the Eq. (7) d; coefficients, (i.e.,
in the chiral limit) and the new analysis of heavy-strange

TABLEI. Coefficient functions c; for the renormalized perturbative result (7). Note that L,, = log (’%2), where u is
the renormalization scale. The coefficients agree with Table 2 of Ref. [52], providing a valuable confirmation of the
diagrammatic renormalization methods. The definition of w is given in (8).

JP 0% (S, P) 1T (A, V)

co %W(l-ﬁ-w) %(l—i—w)(Zw—l)

c1 20165 + 51w + 27%(1 4+ w) — 18(5 + w)L,,] 2 Ow? + 90w — 93 + 22 (2w? +w — 1) — 54(w — 1)L,,]
& S i ST

3 w1l +w) S 4+w)2w-1)

cy w(l +w) T(14+w)2w-1)

C6 Iw(l+w) T 4+w)(2w-1)

7 Iw(l+w) T 4+w)(2w-1)
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TABLEIIL. Coefficient functions d; for the renormalized perturbative result (7). Note that L,, = log (Z’—;) where p is
the renormalization scale. The definition of w is given in (8).

JP 0% (P.S) 17 (V. A)
dy + % w + %w
d, + w[=9(3w+5)L,,+63w+r*(w+1)+87] + =36w(w+2)L,,+(93+27%)w?+2w(72+7>)+3

6(w+1) 12(w+1)

Iw?+16w42 6w’ +10w—1
d T2 T %
ds +3 +5
dy +2w +2w
Sw? Sw?

ds iZ(W-H) i2(W+l)
de +3w +3w
d; +3w +3w

[Qs] sum rules (to first order in the strange-heavy quark
mass ratio m,/m) is obtained by including both the f;
and g; coefficients from (9).

Regarding doubly strange diquarks, the perturbative
diagrams that contribute to IT*!(Q?) up to NLO are those
shown in Fig. 2 but with all quark lines representing
strange quarks. In this case, the upper-right and lower-left
diagrams of Fig. 2 are degenerate. Unlike the [Qs] case

TABLE III.  Coefficient functions f; for the imaginary part of
the renormalized perturbative result (9), where x is defined
in (10). The coefficients agree with Table 3 of Ref. [52],
providing a valuable confirmation of the diagrammatic renorm-
alization methods.

JP 0% (S, P) 1 (A, V)

So 3(1—x)? 2-3x+x°

1 1(17 = 72x + 55x2) 1(3-33x—x? +31x°)
I 3 —16x + 12x% — 243 %x(—7—2x+4x2)
f3 2(x —4)(1 —x)? —3(1=x)*(5+4x)
fa 2(1 —x)? 2(2-3x+x%)

fs 4(1 —x)? $(2-3x+x%)

Se =3(1 — 6x + 5x2) 6x(1 —x?)

TABLE IV. Coefficient functions g; for the imaginary part of the
renormalized perturbative result (9), where x is defined in (10).

J! 0% (P.5) I¥ (V. A)
9o +6x(x — 1) +6x(x — 1)

g1 +(58x% — 42x) +(—x3 +48x2 — 31x)
I3 +(—4x3 4+ 32x2 — 18)x +2x(x* + 10x — 6)
73 Hx(x—1)(x=7) £2x(1 —x)(x + 11)
G4 +4x(x—1) +ax(x—1)

Js £8x(x—1) +8x(x—1)

Js +6x(3 — 5x) +12x(1 — 2x)

where the heavy quark mass scale m can combine with m
to obtain an O(my) correction, for [ss] diquarks it is
necessary to work to O(m?) to find the strange quark mass
corrections. As discussed above, following the Ref. [55]
analysis of [QQ] diquarks, the gauge parameter also
cancels for [ss] diquarks, the Schwinger string is trivial
in Landau gauge [49,50], and up to O(m?) the NLO
perturbative result is

2 : 45m? 2
HEéJI(Qz)—%[IJr;—ﬂ(l— Q"; )}m(%). (11)

Note that the O(m?) correction to LO perturbation theory
vanishes. Renormalization is trivial as (11) is finite,
consistent with the absence of LO m, corrections and
the result of Ref. [63] in which it was shown that the
axial vector diquark current multiplicative renormaliza-
tion constant is 1 + O(a?). It is then straightforward to
show that

[ss] 75 & _45m§
Imeert(t)—ﬂ{l—l-z”(l =) a2

The QCD condensate contributions to the heavy-light
diquark correlation functions are now considered. As dis-
cussed above, fixed-point gauge techniques are used because
of the simplification that the Schwinger string reduces to the
identity operator for the x*Ay = 0 fixed-point gauge con-
dition [49,50]. Furthermore, the gauge invariance of the
correlation function (1) implies that fixed-point gauge meth-
ods will be equivalent to those obtained in other methods [62],
justifying the use of the Schwinger-string simplification.

QCD condensate contributions to the heavy-light
diquark correlation functions do not require light-quark
mass corrections beyond leading order.” Such m/m effects
would be numerically smaller than uncertainties in the

3Mixing of scalar glueballs and gg mesons are one example
where light-quark mass corrections are necessary [86,87].
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FIG. 6. Feynman diagram for dimension-three (gg) quark
condensate contributions to the heavy-light diquark correlation
function (1).

QCD condensate parameters and would introduce signifi-
cant operator mixing complications into the calculation
of OPE coefficients [88,89]. Thus, in principle, the
QCD condensate results [52] can be interpreted as applying
to any light-quark mass m, and with appropriate input of
the QCD condensates (e.g., nonstrange systems where
(qq) = (An) and strange systems where (ggq) = (5s)).
The QCD condensate results of [52] are extended to
include some minor effects of additional Feynman dia-
grams as outlined below.

The Feynman diagram for the dimension-three (gq) =

<E[f q{»j ) quark condensate contributions to the diquark
correlation function is shown in Fig. 6, and the result is [52]

(Qz) _ 2m_<f‘]>2’
(%) = - (13)

As discussed above, Eq. (13) can be applied to both
nonstrange and strange heavy-light diquarks through input
of the appropriate value of (gq).

For [ss| diquarks, the diagram that gives the dimension-
three quark condensate contribution to IT¥*/(Q?) is that of
Fig. 6 but, again, with all quark lines representing strange
quarks. To O(my), the result is

(ss)(Qz) - : (14)

The Feynman diagrams for the dimension-four (a,G?) =
(a,G;,Gy,) gluon condensate contributions to the

diquark correlation function are shown in Fig. 7, and the
result is [52]

2 <asG2> 1
an (0= Q*+m?’
st 3 2 Q2
(XGZ (QZ) <a24”> @_QZ_'_mZ_%log (1+W):|

Note that the V, A channels have an imaginary part that is
required to construct the QCD Laplace sum rules:

G2
<;’j1 2>x2, 0<x<1, (16)
m

AV
ImI1 o (1) =

where x is defined in (10).

For TI!(Q?), the diagrams corresponding to the
dimension-four gluon condensate contribution are those
of Fig. 7. Again, all quark lines should be interpreted as
strange quarks. In this case, the first two diagrams of Fig. 7
are degenerate. Summing all diagrams gives

_{a,G?)
6rnQ*

M) s (07) = (17)

The Feynman diagrams for the dimension-five
(9q0Gq) = (9q% 0"*G%,q) mixed condensate contribu-
tions to the diquark correlation function are shown in

Fig. 8, extending the calculations of Ref. [52] with the
inclusion of diagram (b), resulting in

m(m? — 0
ganq (QZ) % (9G0Gq),
(IfIO'Gq (QZ) gqan (Qz)
‘Illo’Gq (Qz) W (90Gq),
LﬂlﬂGq (@) = E;‘;”Gq>(Q2), (18)

As for the (gq) contributions, Eq. (18) can be applied to
both nonstrange and strange heavy-light diquarks through
input of the appropriate value of (ggoGq).

The dimension-five mixed condensate contributions to

T165)(Q?) are given by the diagrams of Fig. 8 but, again,

L Lo >

FIG. 7.
function (1).

Feynman diagrams for the dimension-four (a;G?) gluon condensate contributions to the heavy-light diquark correlation
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() (b)

FIG. 8. Feynman diagrams for the dimension-five (¢9goGq)
mixed condensate contributions to the heavy-light diquark
correlation function (1).

@ (b)

FIG.9. Feynman diagrams for the dimension-six (gqgq) quark
condensate contributions to the heavy-light diquark correlation
function (1).

with all quark lines representing strange quarks. Summing
the two diagrams gives

ss mg _
HEgS‘]aGs)(QZ) = 3—Q4 (9506Gs). (19)

The Feynman diagrams for the dimension-six (§qgq)
quark condensate contributions to the diquark correlation
function are shown in Fig. 9, extending the calculations of
Ref. [52] with inclusion of diagram (b), resulting in

4 22 4
(S.P) oy Sm” —3m 0~ =20 -0
<c7qc7q><Q )_ﬁ (0% +m2)? a,(qq)°,
AV) oy AmSmt+12m?0* +30%
H(‘?qqlD(Q ) - _ﬁ (QZ T m2)4 as(QQ> . (20)

where the vacuum saturation approximation [43,44] has
been used for the various dimension-six quark condensates.
With appropriate input of the condensate parameter
a,(gq)?, Eq. (20) can be applied to both nonstrange and
strange heavy-light diquarks.

The diagrams that contribute to the dimension-six quark
condensate part of I1/(Q?) are those of Fig. 9 with all
quark lines representing strange quarks and the diagram
shown in Fig. 10. The extra diagram of Fig. 10 does not
contribute to the heavy-light diquark correlator as it would
require a heavy quark line to condense. Summing all
diagrams gives, to O(m;),

32

3—Q4as<§s>2. (21)

1L (07 =

FIG. 10. Feynman diagram for the dimension-six (5s5s) con-
densate that contributes to the doubly strange diquark correlation
function but not the heavy-light diquark correlation function.

As in (20), the vacuum saturation hypothesis has been used
in (21).

II1. QCD LAPLACE SUM-RULE ANALYSIS

Formulation of the QCD Laplace sum-rules begins with
the dispersion relation satisfied by (1)

no() - 10) + @0) + 0 [~ 0

(22)

where pr(7) is the spectral function with threshold #, related
to states |h) with quantum numbers such that the
current J(U) serves as an interpolating field to the vacuum
(h|JW|Q) # 0. In (22), T can represent a heavy-light or a
doubly strange diquark. The (divergent) subtraction con-
stants T1(0) and IT'(0) can be eliminated and the ground
state can be enhanced in (22) through the Borel transform
operator B [43,44]

s (=OHN [ d\N
b= lim W) (@) ’ @)
N/Q*=t

which has the useful properties

Blag+a,0*+ ...a,0*] =0, n=0,1,2,... (nfinite),
(24)

R QZn ~
B[@] =z(=1)"t"e¢™", n=0,1,2,.... (25)

The Borel transform B is related to the inverse Laplace
transform [90] via

7109 = [ F@e e = LiF()
= LBIF(0Y)] = F(2) = LIF(QY). (20

3 B L b+ico 2
LA =5 [ R0 @)

where the real parameter b in the definition (27) of the
inverse Laplace transform must be chosen so that f(Q?) is
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analytic to the right of the contour of integration in the
complex Q7 plane. In cases where the correlation function
has an imaginary part branch cut discontinuity (e.g.,
perturbative and gluon condensate contributions discussed
above) the Borel transform results in an integration of the
imaginary part representing the QCD spectral function (see
e.g., Ref. [83]) that ultimately gets combined with the
continuum contributions as discussed below.

Laplace sum rules are obtained by applying B to (22)
weighted by integer powers of Q2, which will involve the
QCD prediction

£00(2) = L B{(-1) Q¥ (02
=) ()

For k>0, this results in the following Laplace sum

rules relating the QCD prediction E,ﬁm
function pp(7)

= [T
)

The high-energy region in (29) is suppressed by the
exponential factor, which enhances the low-energy states
of the spectral function. The spectral function is now
separated into a resonance contribution and a QCD
continuum (see, e.g., Refs. [43-48])

(7) to the spectral

te~pr(ndr,  k>0.  (29)

pel) = p(0) + 0 = so) D), (30)
C]((F)(T, s0) = / the=" ! Iml'I( )(t)dt, (31)

leading to a family of Laplace sum rules relating the QCD
prediction R;(z, s¢) to resonance contributions pjt*()

R (7. 50) = L (2) = exlz.50). (32)
(F) _ k —tr res
R, (r,so)/ e P (t)dht. (33)
)

The exponential factor in Egs. (31) and (33) has a combined
effect of enhancing the ground state resonance and sup-
pressing the QCD continuum.

|

(8.P) . A
B a4ia) (k.7) = a%(

4
BMY) (k.7) = —Za,(g

81

qq)2(m2)F1 e [ <203 + k2 (6m2t + 9) + k(—6m*z>

g)2(m?)*=te=m T[2k3 + k*(3 — 6m>t) + 2k(3m*z?

The imaginary parts needed to calculate the continuum
contributions are given in Eqgs. (9), (12), and (16) (see
also Tables IIT and IV). The Borel transform of the QCD
condensate contributions to (28) are denoted by

Q| o

BY) (k,7) =

cond

(o rmiy0)]. (34

Beginning with heavy-light diquarks and using (25) for the
results in Egs. (13), (15), (18), (20) gives

BN (k,7) = —2m(gq)m* e,
PV SA
Blaa) (k:7) = =Blg) (k.7) (33)
for the (gq) terms,
(@G) ot e
(an(kT) oyPRLC
( V) <aSG2> 2k ,—m*t
B, Gz)(k 7) = g, meT (36)

for the (a;G?) terms [note the logarithmic term in (15) that
contributes to the inverse Laplace Borel transform will be
combined with the continuum contribution],

S _ _
0 oy (k. T) = 5 m(ggoGa) (m?)+!
X e~ T [k — 2km*t 4+ m*t(m?z — 1)],
(P) _ (s)
B(s;t?qu) (k. 7) _B< q0Gq) (k 7),
1
A
Blsaecy) (k) = 5 m(gq0Ga) (m?)~!

2, [ K2 k(2m21+1)+ 5

X e - 3 2|,
v) _ (A)
B i06q) (K:T) = =Bl 106 (K T), (37)

for the (ggoGgq) terms, and

— 12m?7 4 5) + m*c(2m*7* 4 3m?7 — 12)],
—6m*t —7) + m*t(—2m*z> + 9m?z +9)],

(38)

for the (gqgq) terms. Thus the final form of the Laplace sum rules R, (z, s¢) is
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= Bl (k1) - / tFe=ImIIM) (1) dt,

T S()
cond
r
:BE_)>(k 7) + B o (k. 7) + Bl (K. 7) + E; 2 k7)
s, /m 1 1
m / "™ (mz) {Iml‘[pm <> + T, ﬂdz. (39)
F4 z
Focusing second on [ss] diquarks, Egs. (14), (17), (19), (21), (25), and (34) together give
.y G2 1 32
Blak0.0) = =8y (55) = ) oG as) + 3 57, (40)
n
s 1 - 32n _
Beona(1.7) = =3 m,(g50Gs) === a (55)?. (41)
Combining (12) and (32), the doubly strange Laplace sum rules are
SS SS 1 — — —

Ry (2.50) = Biona(0.7) + =5 {1 = 77 (1 4 597) + T2 [1 = ™57 (1 + 507) = d5mde(1 = e™0)] ), (42)

T

SS SS 1 o
R[l ](T, 50) = Bgoid(l, 7) + 20 {2 — 7507 (2 4 2597 + S%Tz)
+ % 2 — e™07(2 + 2507 + 537%) — 45m?7(1 — e=507[1 + sOT])}}. (43)
n

The QCD input parameters required for the sum rules
will now be specified. The MS one-loop expression (see,
e.g., Ref. [91]) for the strong coupling at scale y, referenced
to the Ref. [92] values of a (M) for charm heavy-light and
doubly strange diquarks or a,(M,) for bottom-light
diquarks, is

a,(M)
1+ A% jog ()

a;(p) = ; (44)

where the parameters in (44) are specified in Table V.
Note that the uncertainties in a,(M,) and a (M) are
negligibly small compared to other QCD inputs. Similarly,
the (one-loop) MS heavy quark masses at scale u is (see,
e.g., Ref. [91])

TABLE V. Parameters used for QCD sum-rule analysis, see text
for details.

Parameter Charm Bottom

M (GeV) M, =177 M, =91.188
ay(M) 0.33 £ 0.01 0.1184 £ 0.0007
A 25/12 23/12

m (GeV) 1.27 £0.02 4.18 £0.03
Ton 32140+ 11.78 1474.18 £+ 44.81
r0s 11.7619% 53.94 +0.12

K 0.56, 0.66, 0.74, 0.80, 1.08

m(p) _ (ag(u)\'/A _ -

_— = s = = s 45
W) _ (2 A= mu= ), (45)

where m,. and /m;, values from Ref. [93] are given in Table V.

An analogous expression also applies to the strange quark

mass anchored to m(2 GeV) = 93.475% [93]

25

12

as(u) \'A _
(2GeV)) A=

The result (46) is needed for the [ss] Laplace sum rules (42)
and (43). Because strange quark mass effects enter the [Qs]
perturbative results (7) as the renormalization group (RG)
invariant strange/heavy mass ratio, the strange quark mass is
parametrized for [Qs] sum rules by

my(p) = (46)

m (2 GeV)(

m(2 GeV)
my(2 GeV)’

mp)
my(u)

rQS—

(47)

with the Ref. [93] value for rp, given in Table V.
The Ref. [94] value for the (a,G?) gluon condensate will
be used
(a,G?) = (7.5 +2.0) x 1072 GeV*. (48)
The (ggq) quark condensate contributions enter with a
prefactor of the heavy quark mass, so for the nonstrange
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22 - : T
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2 20t - sp=4.5GeV? ]
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< 19 o !
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= N T
S L8F Nt 4
< .o
g T -
16 1 1 1 1 1
1.0 1.2 1.4 1.6 1.8 2.0
M), (GeV)
—5) = 00
=== 50 =5.0 GeV? ]
== 50 =4.5GeV? 4
a= 5= 4.0 GeV?
T — |
16 1 1 1 1 1
1.0 1.2 1.4 1.6 1.8 2.0
My, (GeV)
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—_— ) = 00
S‘ === 55 = 30.0 GeV?
(53
<) - 5o = 28.5 GeV?
? 2
EO === 50 =28.0GeV?
<
~
=
=1
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4.9

1.6 1.8 2.0 22 2.4 2.6

89 = o0
- 50 =30.0 GeV?
== 50 =28.5GeV?

- s9=28.0GeV?

........................

My, (GeV)

FIG. 11. The sum-rule ratio \/ R[IQ”] (M, s0)/ R([)Q"] (M, s) is shown as a function of the Borel scale M, for 0T [cn] (top left), 0 [bn]
(top right), 17 [cn] (bottom left), and 17 [bn] (bottom right) diquarks. Selected values of s, have been chosen near the optimized values

s " of Table VI and for the s, — oo robust upper bound on the mass prediction. The associated Borel windows for sgpt are given in

Table VI

condensate the RG-invariant PCAC Gell-Mann-Oakes-
Renner relation [95]

i) = =3 fom, (49)
(7n) = (au) = (dd), (50)
my(2 GeV) = % m, (2 GeV) + mg(2 GeV)], (51)

is combined with the nonstrange-heavy quark mass ratio to
give the RG-invariant result
m(2 GeV)
Fon = ———,
2" m, (2 GeV)

m(in) = rg,m,(in), (52)

where the Ref. [93] value for ry, is given in Table V, the

convention f, = 130/y/2 MeV [93] is used (along with
m, = 0.139 GeV), and Eq. (50) characterizes SU(2)
invariance of the vacuum. The SU(3) flavor-breaking
associated with the strange quark condensate is parame-
trized by the RG-invariant ratio

(53)

As shown below, « is a crucial parameter in the SU(3)
flavor splitting of the QCD sum-rule mass predictions

for [Qs] and [Qn] diquarks.” Determinations of k vary
across a wide range, including QCD sum rules for mesonic
systems [96-99], QCD sum rules for baryonic systems
[61,100-102], lattice QCD [103], and combined lattice/
sum-rule analyses [104] (see, e.g., Ref. [105] for a review).
Table V specifies selected values from the conservative
range k = 0.66 4= 0.10 of Ref. [46] obtained by combining
mesonic and baryonic determinations, the k = 0.74 central
value of Ref. [102], the k = 0.8 central value of Ref. [104],
and the x = 1.08 central value of Ref. [103]. Combining
Egs. (52) and (53) gives

m(3s) = mx(iin) = krg,m,(in). (54)

Similarly, for the doubly strange [ss] sum rules, the
dimension-three quark condensate contribution is given by

ms(§s> = mSK'<I7LI’l> = Krsnmn<ﬁn>’ (55)
with [93]
mg(2 GeV)
=L =107.331047,
Vsn mn(z GCV) 7 33—0.77 (56)

“Reference [47] discusses the importance of improving the
determinations of .
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TABLE VI.  The optimized value for the continuum s;" and the
associated for J¥ diquark mass predictions Mg, obtained by

minimizing (71). The quantities MM" and M7 correspond to the
Borel window obtained via Egs. (69) and (68).

[On] J7 s (GeV?) Mg, (GeV) MP™ (GeV) MP™ (GeV)
[en] OF 4.50 1.78 4+ 0.05 1.23 1.50

I+ 5.00 1.87 +£0.05 1.38 1.61
[bn] O 28.5 4.97 £0.08 241 3.61

1t 28.5 4.97 £0.08 2.63 3.65

In [Qg] and [ss] sum rules, the mixed condensate (¢9goGq)
also occurs with a quark-mass prefactor, so a similar
approach as for the dimension-three quark condensates
uses [106]

(gicGn) = M3(fn), M2 = (08+0.1) GeV>  (57)
to obtain
m(gnoGn) = ro,Mim,,(iin), (58)
m(g56Gs) = kro,Mim, (iin), (59)
m(gseGs) = krg,M3m,(iin). (60)

The dimension six (finiin) condensate is given by [107]

22

[Qu] ' Q]
21L — S = 00 — ) = 00 ]
=== 5)=50GeV> === 50="50GeV>
2.0¢ == 50 =4.5GeV? === s55=45GeV> ]
19 ams 5g=4.0GeV? === sy =4.0GeV?
1.8F
1.7¢
1.0 1.2 1.4 1.6 1.8 2.0
M, (GeV)
2.2 T T T
[Qn] [Qs]
2.1[ — S = 00 — ) = 00 ]
=== 5)=50GeV? === 57="50GeV>

= 59 =4.5GeV? =e=s s) =45 GeV? ]
ams 50 =4.0GeV? === 55 =4.0GeV?
LT
R S PT
Nens,
1.7¢
1.0 1.2 1.4 1.6 1.8 2.0
M, (GeV)

a,(iniin) = (5.8 £0.9) x 1074 GeVe,  (61)

which is extended to the strange case via (53) to give

a,(5s5s) = K*a,(iniin)

=x%(5.84+0.9) x 107* GeV®. (62)
Having combined a factor of the heavy quark mass m
with the chiral-violating condensates, a final subtlety in the
[Qg] sum-rule analysis involves the residual factors of
the heavy quark mass appearing in the (LO) QCD con-
densate contributions. Following Refs. [52,108] the pole

mass [108-112]
mem{1 2 (G-ef] )} @

and its relation to the MS mass m(u) is used for these
residual (LO) condensate mass factors. The final ingredient
needed for the detailed QCD sum-rule analysis is
RG-improvement, which is achieved by choosing the
renormalization scale y> = 1/7 [113].

The methodology for using Egs. (33), (39) to predict
the heavy-light diquark mass spectrum begins with the
narrow-resonance model

P (1) = fro(t — ME), (64)

5.6

[Qn] [Qs]
—8) > —5) >
=== 5y =30.0GeV? === sy =30.0GeV>
== 50 =28.5GeV? === 5)=28.5GeV?
=== 59=28.0GeV? === s5)=280GeV>

49 L L .
2.0 2.5 3.0 3.5
My, (GeV)
5.6 . T T
. [Qn] [Qs]
. — 80 = 0O — S = 00
,\ === 5y =30.0GeV? === sy =30.0GeV>
ammn 50 =285GeV? =es= 5p =285 GeV?
=== 59=28.0GeV? === s5)=280GeV>

49

2.0 2.5 3.0 3.5
M, (GeV)

FIG. 12. The quantity \/’REQ‘]] (Mb,so)/’R([)Qq] (M, sg) for O [cq] (top left), OF [bg] (top right), 1T [cg] (bottom left), and 1T [bq]
(bottom right) diquarks for the s, values of Fig. 11 and with x = 0.74. The black curves represent [Qn] diquarks and the red curves

represent [Qs] diquarks.
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where Mp is the heavy-light diquark mass with
quantum numbers I' and fr ~ (Q[J|h) parametrizes
the coupling of the diquark state |#) to the vacuum via
the (interpolating field) current J®). In this resonance
model, (33) becomes

1 oo
R (euso) =1 [t o)dr = fupre e, (65
)

and the diquark mass Mt is related to the ratio of the two
lowest-weight Laplace sum rules

= Mr, (66)

where

1

=25 (67)
M;,

T

and M, is the Borel mass scale.

Extraction of the diquark mass prediction from (66)
requires constraining the Borel window to the M, region
where the QCD prediction is reliable, and the methods used
in Ref. [52] will be adopted. The first constraint limits the
relative size of the continuum to control the uncertainties in
the approximation (see, e.g., Refs. [43-45])

R (2, 50) /R (. 50)
L)/ @)

> 0.5, (68)

which leads to an upper bound on M, (lower bound on
v = 1/M3). Lower bounds on M, are obtained via the

oM (MeV)

M (MeV)

—20f ]
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 L4 1.6 1.8 2.0
M, (GeV) M, (GeV)
L k=074 «=0.80
40 40t |
> >
(o) [}
=) =)
= =
“w o
—20}
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0
M, (GeV) M,, (GeV)
| k=1.08
40l
> 20l — §p=4.0 GeV?
s —== 50 = 4.5 GeV2
= L
< 0 = 50 =5.0GeV?
= == 50= 6.0 GeV?2
1.0 12 14 16 1.8 2.0
M, (GeV)

FIG. 13. The quantity 5M (M, sy + 2M|g,jA) with A = 0 as a function of M,, for J* = 0" [cq| diquarks with Table V x values and

selected s, near s;° (see Table VI).
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FIG. 14. The quantity 6M (M, s + 2Mg,jA) with A = 0 as a function of M, for J* = 0 [bg] diquarks with Table V x values and

selected s near sg” (see Table VI).

Hoelder inequality technique of Ref. [114] which leads to
the constraint’

(69)

Because (69) is obtained by using positivity of the
spectral function in (33), it represents the minimum

requirement for the QCD prediction R,@ (7,50) to be
consistent with an integrated spectral function. The
Borel window is thus the range of M, where the sum
rules satisfy the constraints of Eqs. (68) and (69). The
minimum value for the continuum threshold s, can be

SAs in Ref. [52], related constraints with higher-weight sum
rules lead to less restrictive bounds than (69).

determined by requiring that the sum-rule ratio for the
diquark mass ratio is stable under variations in the Borel
scale (i.e., the sum-rule stability criterion)

=0

d d b

— %:—-—%fﬁﬂ =0. (70)
dr dr Ry (7, 50)

Because the 7 solution of (70) depends on s, the minimum
value for the continuum threshold, sg‘i“, is the minimum
value of s for which the sum rule is stable inside the Borel
window. If stability is achieved, then the predicted value of
the diquark mass M and optimized value of s, is found by
minimizing the following residual sum of squares
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FIG. 15. The quantity 6M (M, sg + 2Mg,jA) with A = 0 as a function of M, for J* = 1" [cq] diquarks with Table V x values and

selected s near sg™ (see Table VI).

with respect to M and s(, where the sum is over n = 30
equally spaced M, points in the Borel window. The
quantity Mr is implicitly a function of s, obtained by
fitting (66) in the Borel window

(72)

so minimization of (71) implicitly reduces to a one-
dimensional optimization in s.

Using the above analysis methodology, the benchmark
prediction of the heavy-nonstrange diquark mass Mgy, is
now performed. This analysis updates the previous deter-
mination of Ref. [52] by including the additional QCD
condensate diagrams Figs. 8(b) and 9(b) and incorporating
changes in the PDG quark mass parameters over the past

decade (in comparing the 2012 and 2022 PDG values
of Refs. [93,115], the central values have changed and
uncertainties have decreased). As in Ref. [52], the negative
parity channels do not stabilize, and Fig. 11 shows the sum-
rule ratio as a function of the Borel scale for various choices
of s0.6 Figure 11 is almost indistinguishable from the
corresponding figures in Ref. [52], and the resulting central
values for M|y, shown in Table VI are slightly smaller than
Ref. [52] but overlap within theoretical uncertainties.
Although the same procedure can be used to independ-
ently predict the [Qs] diquark masses, the theoretical
uncertainties in Table VI completely obscure the
M g5 — Mg, mass splitting. Inspired by the double-ratio

®The 5o — oo case provides a robust upper bound on the mass
prediction, see, e.g., Ref. [83].
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method which has been shown to reduce the theoretical
uncertainty in SU(3) flavor splittings [61], the following
expression is used to determine the mass splitting 6M using
the [On] analysis as a baseline

R[]Qn] (Mb, sgpt)
R (My. s3)
(73)

R[]Q‘] (Mb , S([)QX])

R([)QS] (Mbv SEQS‘] )

SM(M,,, s\2") =

’

where sgpt corresponds to the appropriate value in Table VI.
Because Fig. 12 illustrates that the differences between
strange and nonstrange Laplace sum-rules are small (par-
ticularly near s>), 512" ~ s¢"" and can be parametrized by

the quantity A defined by

A= Mg — Mg, < Mgy, (74)

opt

— M2
-5y =M

5,2 . (75)

_M[2

Qn] ~ 2M[Q”]A,

where (75) is given to first-order in the small parameter
A/My, < 1. A self-consistent solution for A of

Eqgs. (73)—(75) occurs when

A =68M(M,, sy + 2M g, A). (76)
Note that (76) is founded upon the [Qn] sum-rule deter-
minations Mgy, and sq”" (see Table VI), quantities that

are independent of the parameter k. An iterative solution
for (76) can be constructed via

60 . , . . 60 . , . .
> >
(5] [}
=) =)
= [ =
“w r )
-20 . . . . -20 . . . .
2.0 25 3.0 35 4.0 2.0 25 3.0 35 4.0
M, (GeV) M, (GeV)
60 . : . . 60 . : . .
L k=074 =080
40l | 40l ]
> 5
[*) r [}
= o200 = i s ]
Z2 | 2
0
_20 1 1 1 1 1 1
2.0 25 3.0 35 4.0 2.0 25 3.0 35 4.0
M, (GeV) M, (GeV)
60 . , . .
o xk=1.08
40} i
> | — 50=28.0 GeV?
= 20t ]
= b === 50 =28.5 GeV>
2 [
b == 50 =30.0 GeV?
0
-20 I . . . .
2.0 25 3.0 35 4.0
M, (GeV)

FIG. 16. The quantity 5M (M, sy + 2M|g,jA) with A = 0 as a function of M, for J* = 1* [bg| diquarks with Table V « values and

opt

selected sy near s, (see Table VI).
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An+l = 5M(Mbv sgpt + 2M[Qn]An)’ (77)

with Ay = 0 to begin the iterative procedure. At each stage
of the iteration, A, is determined by the critical value
(maximum) of M defined by d;ﬁdh oM = 0 [i.e., the Eq. (70)
stability criterion]. The initial step of the iteration is
closely connected to the double-ratio method [61] because
with Ay = 0 the continuum values in (31) are aligned
and the double-ratio is then obtained by dividing (73) by

VR /REY. Figures 13-16 show this initial iterative

t
step for selected values of k and for s, values near s .

At this first iterative step, Figs. 13—16 show a general trend
of decreasing mass splitting M = Mg, — Mg, as k
increases, and for the largest chosen x the mass hierarchy
inverts so that Mg, < M [Qn].7 The prominent role of « in
Figs. 13-16 reinforces the comment from Ref. [47] on the
importance of improved determinations of «.

It is clear that Figs. 13—-16 do not represent a self-
consistent solution of (76) for A = 0 because 6M # 0 at its
critical (M, stability) values. Thus, the final determination
of the mass splitting Mo, — M|g, is obtained from the
self-consistent solution of (76), with upper and lower

'QCD sum-rule studies of tetraquarks have also found inverted
mass hierarchies for larger « [116].

bounds on M|y, — M|y, resulting from x = 0.56 chosen
as the smallest sum-rule value from Ref. [46] and k = 0.74
chosen from Ref. [102] as the most accurately determined
sum-rule value (see, e.g., review in Ref. [105]).8 The
results for the self-consistent solution for the mass
splitting My — My, are shown in Figs. 17-18 and
summarized in Table VII. The maxima of 6M used to
construct the solution occur at M, above the Borel
window lower bound; the Borel window upper bound
is not relevant in this analysis because M suppresses the
continuum contributions through the difference (73).
Notice that the self-consistent solution increases the mass
splitting M|y — M|y, compared to the initial iteration

with A = 0 (see Figs. 13-16), so the limit s/2" = s/¢"
provides a lower bound on M|y — M|g,. Thus our final
determination of the J¥€{0", 1%} flavor splitting of
diquark constituent masses is 55 MeV < M. — M|, <
100 MeV and 75 MeV < My — My, < 150 MeV, with
a slight tendency for larger splittings for the J* = 1%
axial-vector channels.

Investigation of theoretical uncertainties in the mass
splitting arising from QCD parameters shows that apart
from « all other effects are suppressed via the difference

%The central value x = 0.74 of Ref. [102] is also consistent
with the range k¥ = 0.66 4+ 0.10 of Ref. [46].
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diquarks (top left), 0" [bq] diquarks (top right), 1" [cg] diquarks (bottom left), and 17 [bg] diquarks (bottom right).

oM in Eq. (73), similar to the reduction in theoretical
uncertainty in the double-ratio method [61]. Apart from

the crucial parameter k, which is specific to the strange
channel and therefore cannot be suppressed in 6M, the
next most important quantity is rp, because of its
appearance with x in Eq. (54) for m(ss). Variation of
ro, over the range in Table V leads to ~5 MeV
uncertainty in the Table VII mass splittings. Table VII
also explores methodological uncertainty in the extrac-
tion of the mass splitting via the self-consistent solution
for A using the critical value (maxima) in Figs. 17-18.
This is done by comparing M2 , =M (on) + A with the

03
fitted value M% " obtained via (72) for si’

by Eq. (75). As shown in Table VII, the resulting

given

methodological uncertainty is less than 5 MeV. Thus
the theoretical uncertainty associated with x is the
dominant effect.

Finally, returning attention to [ss] diquarks, the single-
narrow-resonance analysis methodology discussed in
detail below (64) can be applied in an attempt to predict
a doubly strange diquark mass. However, substituting (42)
and (43) into (66) leads to a monotonically decreasing
function of 7 for all reasonable values of s, as is illustrated
in Fig. 19. Note that the 7 interval used in Fig. 19,
i.e, 7 <2 GeV~? suffices to cover the acceptable Borel
window of any Laplace sum-rule analysis of light- or
strange-quark systems. None of the plots have a local
minimum, and so it can be concluded that the Laplace

sum-rule analysis of J” = 1% [ss] diquarks fails to

TABLE VII. The J” diquark mass splittings A = M (0s] — M|gn) for selected k obtained via the self-consistent

MEEP3R i obtained by the

solution of (76). The quantity M [A  is the resulting diquark mass M [AQS] = Mg, + Aand M,
fitted quantity (72) for s, given by Eq. (75).
_ QCDSR
A= M[Qs] - M[Qn] (MGV) M[AQY] (GSV) M[Qs] (GGV)

[Qq] Jr k=0.74 k=0.56 k=0.74 k= 0.56 k=0.74 k=0.56
[cq] ot 54.3 95.0 1.83 1.87 1.82 1.85

1" 56.2 102 1.93 1.97 1.91 1.94
[bq] ot 76.9 132 5.05 5.10 5.04 5.09

1" 89.0 152 5.06 5.12 5.05 5.11
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stabilize. This absence of sum-rule evidence for J© = 1*
[ss] diquarks is distinct from the stable sum-rule predic-
tions for [cc| and [bb] axial-vector diquark constituent
masses in Ref. [55].

IV. CONCLUSIONS

Motivated by the compact tetraquark diquark-
antidiquark models for four-quark mesons, the constituent
masses of J¥ € {0", 17} heavy-light [Q¢] and J* = 17 [ss]
diquarks have been studied in QCD Laplace sum rules.
For the [Qq] diquarks, the sum-rule analysis focused on the
SU(3) flavor mass splittings. QCD correlation functions
of JP €{0*, 1%} [Qq] diquark composite operators were
calculated up to NLO in perturbation theory, LO in the
strange quark mass, and in the chiral limit for nonstrange
(u, d) quarks with an isospin-symmetric vacuum (in) =
(uu) = (dd). The J¥ = 1% [ss] diquark correlation func-
tion was calculated up to NLO in perturbation theory
and to order m? (i.e., the first nontrivial order) in the
strange quark mass.

The challenges of diquark composite operator renorm-
alization with inclusion of strange-quark masses were
addressed by diagrammatic renormalization methods for
QCD correlation functions [68]. These diagrammatic
renormalization methods were validated by confirming
the NLO chiral-limit perturbative results of Ref. [52].

Contrary to the stable sum-rule analysis of J¥ = 1T
[QQ] diquarks [55], the single-narrow-resonance Laplace
sum-rule analysis of J¥ = 17 [ss] diquark masses failed to
stabilize. Consequently, no sum-rule evidence for the
existence of J¥ = 11 [ss] diquark states was discovered.
Unlike the case for charm and bottom quarks, a physical
interpretation of the unstable J” = 17 [ss] sum-rule results
is that the strange quark mass is insufficiently large to
mitigate the effect of the spin-spin interaction (see, e.g.,
Ref. [20]) in a color-triplet S-wave diquark system. The
lack of sum-rule evidence for [ss] diquarks can also guide
interpretations for the internal structure of fully strange
four-quark states. The Ref. [117] sum-rule analysis of
fully strange four-quark states found similar stable mass

predictions for both molecular and tetraquark currents, and
thus the absence of evidence for [ss| diquarks favors the
molecular interpretation of Ref. [117].

The QCD sum-rule methodology developed to reduce
the theoretical uncertainty in the [Qg] diquark mass flavor
splittings is inspired by the double-ratio method [61],
and begins with a baseline prediction of the nonstrange
constituent diquark masses M|p,, updating Ref. [52]
by inclusion of additional QCD condensate diagrams
Figs. 8(b) and 9(b) and to reflect improved determinations
of quark mass parameters. As in Ref. [52] negative parity
JP€{07,17} sum-rule predictions do not stabilize, and
the baseline J” € {0",17}My,) mass predictions agree
with Ref. [52] within theoretical uncertainties, with slightly
smaller central values.

The sum-rule methodology developed to calculate the
diquark mass splittings A = M|y — M|g, involves the
self-consistent solution for A from Eq. (76). The strange
quark condensate parameter x = (5s)/(fn) is found to
have an important impact on SU(3) flavor splittings,
decreasing the mass difference Mg — Mg, as «
increases, and for sufficiently large x the mass hierarchy
inverts to give Mg, < M|gp,. In the typical QCD sum-rule
range 0.56 < k < 0.74, the final determination of the
JPe{0", 17} flavor splitting of diquark constituent
masses is (see Table VII)

55 MeV 5 M[cs] - M[m] ,S 100 MCV,

75 MeV < Mg — M, < 150 MeV, (78)
with a slight tendency for larger splittings for the J* = 1*
axial-vector channels. Other sources of theoretical uncer-
tainty in M|y < M|y, were found to be smaller than
~5 MeV.

In comparison to the constituent diquark mass param-
eters used in models of tetraquarks (and pentaquarks),
the QCD sum-rule predictions M|y, — M|y, obtained in
this work are in good agreement with the Mg — M|p, &
100 MeV values in the dynamical quark model [28]
and relativistic quark model [34-38]. However, the
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Mpg — Mg, =~ 200 MeV values used in type I/Il diquark
models [22-27] and in the diquark effective Hamiltonian
model [39] are somewhat larger than our QCD sum-rule
predictions. The relativized diquark model [29-33] has
quite different patterns of mass splitting, with
M pg — M) < Mo — M|, whereas our sum-rule pre-
dictions have M, — M, &% M. — M|,). In conclusion,
the QCD sum-rule predictions of the My — Mg, mass
splittings in Eq. (78) provide good supporting QCD

evidence for the diquark constituent mass parameters used
in the dynamical quark model [28] and relativistic quark
model [34-38].
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