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We study the dependence of soft contribution to the energy loss of a test parton moving with a high
velocity on the chiral imbalance and magnetic field in the QCD medium. A semiclassical approach is
adopted to estimate the parton energy loss that takes into account the back-reaction on the parton due to the
polarization effects of the QCD medium while traversing through the medium. We find that the motion of
the parton is sensitive to the chiral asymmetry in the medium. Further, we investigate the effect of magnetic
field-induced anisotropy on the energy transfer between the moving parton and the medium. Our results
show that the energy loss of the parton is strongly influenced by the strength of the magnetic field as well as
the relative orientation of the motion of the parton and the direction of the magnetic field in the medium.
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I. INTRODUCTION

The heavy-ion collision (HIC) experiments at
Relativistic Heavy Ion Collider (RHIC) and Large
Hadron Collider (LHC) provide a unique opportunity to
produce and investigate the properties of an extremely hot
and dense state of matter: the quark-gluon plasma (QGP),
which is believed to resemble the state of the universe
shortly after the big bang [1–4]. The success of relativistic
viscous hydrodynamics in describing the evolution of the
QGP medium is considered one of the theoretical break-
throughs in this area of research [5,6]. The dissipative
processes and the associated transport parameters rely on
the understanding of the nonequilibrium physics of the
QGP. Much research has been devoted to the extraction of
the transport coefficients by employing the hydrodynamics
approach and data fitting methods to the observables
associated with the final state particles [7,8]. The data-
driven methods are currently getting wider attention in this
field as the physics of the QGP is entering a high-precision
science era [9–11].

The class of hard probes such as jets, heavy quarks, etc
offers another possible way to characterize the properties of
the QGP. These energetic patrons penetrate and travel
through the QGP and lose their energy due to several
interactions in the medium. Therefore, proper knowledge of
the energy loss of a fast-moving parton is essential for the
quantitative description of the jet quenching phenomenon.
The theoretical modeling of the energy loss mechanism of
the energetic partons and its dependence on various
observables of collision experiments play a significant role
in elucidating the underlying physics. Several efforts have
been made to understand the transport properties of the
QGP through the investigation of jets while considering
both the collisional and radiative processes of the energetic
parton [12–18]. The heavy quarks are another promising
candidates that can probe the evolution history of the QGP
as they are created in the very initial stages of the HIC
[19–25]. Themotion of the energetic partons and their energy
loss depend on the properties of the medium. There have
been some attempts to explore the parton interactionwith the
nonequilibrium plasma or unstable medium [26–32].
The chiral anomaly and parity-violating effects have

recently attracted substantial theoretical and experimental
interest in the study of the QGP and strong interaction. The
interaction of the chiral fermions/quarks with the nontrivial
gluonic field produces asymmetry between left- and right-
handed chiral fermions that yield chiral imbalance [33].
Furthermore, the recent observations [34,35] and the
associated studies [36,37] of the enhanced directed flow
of heavy flavor mesons revealed the existence of a strong
magnetic field (for reviews on the strong magnetic field in
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collision experiments, see Refs. [38–41]) in the initial
stages of the HICs. This generated magnetic field breaks
the rotational symmetry of the medium, and induces
anisotropy in the produced medium that, in turn, affects
the thermodynamic and transport properties of the QCD
medium as the charged particle motion is influenced by the
field [42–53]. References [54–56] showed that the charm
quark momentum diffusion critically depends on the
preferred direction and strength of the magnetic field.
The magnetic field, together with the chiral imbalance,
leads to novel phenomena such as chiral magnetic effect
(CME) and is one of the active areas of ongoing studies in
contemporary physics [41,57–60]. The dependence of
collisional energy loss on the helicity of the fermion
traversing the plasma has been recently studied in
Ref. [61]. Both the magnetic field and chiral imbalance
are expected to influence the passage of partons through the
medium, as the momentum broadening and energy loss of
energetic partons depend on the properties of the medium.
It is an exciting task to study the impact of chiral
asymmetry and magnetic field on the energy loss pattern
of the moving parton in the medium, and this sets the
motivation for the present study.
A large fraction of the total energy loss of the equili-

brated plasma is carried by particles with momentum in
order ∼T where T is the temperature of the medium (hard
modes). In addition, there are gauge fields (soft modes) in
the plasma with momentum ∼gT in which g is the coupling
constant. The soft modes can be considered as classical
fields as they are highly occupied (Ref. [62]). While
traversing through the medium, the test parton interacts
with hard and soft modes of the QGP. It is important to
emphasize that the energetic test parton initial momentum
is considered much larger than T. The hard contribution of
parton energy loss that originates from the elastic collisions
with the plasma constituents (with momentum ∼T) and
inelastic collision (radiative processes) have been well
studied in several studies [12,63]. On the other hand, the
soft contribution of the parton energy loss has received
much less attention in comparison to contributions from the
hard modes. This is due to the fact that soft modes carry a
small fraction of total plasma energy. But the interaction
frequency of classical fields with test parton is non-
negligible due to their high occupation number in the
plasma. Physically, the soft part of energy loss corresponds
to the interaction of the parton with soft collective exci-
tations of the medium. The authors of Refs. [27,62] have
shown that the soft contribution to energy loss plays an
important role in the total energy loss of the test parton in
the medium and in the phenomenology of jet quenching.
In the current work, for the first time, we analyze the

impact of chiral imbalance, strength, and orientation of the
magnetic field on the soft contribution of the parton energy
loss. A semiclassical approach is utilized to set up the
formalism for energy loss experienced by an energetic

parton that incorporates its interactions with the chromo-
dynamic fields in the QCD medium. The motion of the test
parton in plasma is described with Wong’s equations by
treating it as a classical particle with SUðNcÞ color charge.
The change in the color field configuration due to the
passage of the parton is embedded through the linearized
Yang-Mills equations. We consider three different choices
of plasma, namely (i) isotropic, (ii) chiral asymmetric, and
(iii) magnetized QCD medium. While traversing the
medium, the backreaction exerted on the parton medium
is taken into account by analyzing the polarization effects
of the medium. We observe that the chiral asymmetry
affects the parton energy loss mechanism. Further, we show
that the presence of the magnetic field suppresses the
energy loss. Another crucial finding is the magnetic field-
induced anisotropy in the parton energy loss, which
indicates that the relative orientation of the parton’s motion
and the magnetic field’s direction strongly influences the
energy loss.
We organize the manuscript as follows. In Sec. II, we

present the formalism for the energy loss of an energetic
parton moving in three different choices of QCD medium.
Section III is devoted to the results and discussions. Finally,
we summarize the analysis with an outlook in Sec. IV.
Notations and conventions: In the present analysis, we

consider c¼ kB¼ℏ¼ 1, gμν ¼ diagð1;−1;−1;−1Þ, Nc ¼ 3,
and Nf ¼ 2. The quantity qf denotes the particle’s electric
charge with flavor f. A four-vector is defined as Xμ ¼
ðx0; jxjÞ with the component of the three-vector is
described with the Latin indices xi where i ¼ ð1; 2; 3Þ.

II. FORMALISM

A highly energetic test parton, while passing through the
QGP medium, loses energy due to its interactions with the
color fields. The energy loss experienced by the parton can
be measured through the work of the retarding forces acting
on the parton in the medium from the induced chromo-
electric field that generated due to its motion. The dynamics
of the test parton in chromodynamic fields can be described
with Wong’s equations [64] that in the Lorentz covariant
form given as,

dXμðτÞ
dτ

¼ VμðτÞ; ð1Þ

dPμðτÞ
dτ

¼ gsqaðτÞFμν
a ðXðτÞÞVνðτÞ; ð2Þ

dqaðτÞ
dτ

¼ −gsfabcVμðτÞAμ
bðXðτÞÞqcðτÞ; ð3Þ

with τ, XμðτÞ, VμðτÞ, and PμðτÞ as the proper time, position,
velocity, and momentum of the test parton. Here, gs denotes
the strong running coupling constant; qa is the parton color
charge; Fμν represents chromodynamic field tensor; Aμ is
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the gauge potential; fabc describes the structure constant of
SUðNcÞ group; and a defines the color index with
a ¼ 1; 2;…; N2

c − 1. We follow two assumptions to solve
Wong’s equations; first, we choose the gauge condition
VμA

μ
aðXÞ ¼ 0, which indicates the gauge potential vanishes

on the particle’s trajectory [27,65]. Second, we consider
that the energy of the moving parton is comparatively much
larger than its energy loss in the medium [65,66]. Next,
considering μ ¼ 0 component in Eq. (2) and replacing
proper time with time t ¼ γτ, we get,

dE
dt

¼ gsqav ·Eaðt;x ¼ vtÞ; ð4Þ

where Eaðt;x ¼ vtÞ is the chromo-electric field induced
due to the motion of the parton with the energy, E and
velocity, v. The energy loss can also be described in terms
of the color current ja generated by the energetic moving
parton as,

dE
dt

¼
Z

d3xEaðt;xÞ · jaðt;xÞ; ð5Þ

with jaðt;xÞ ¼ gsqavδð3Þðx − vtÞ. The form of Ea gener-
ated due to the test parton motion in the medium can be
obtained by solving the linearized Yang-Mills equation.
Employing the conventional way, i.e., Fourier transforming
the linearized differential equation to algebraic forms, the
induced chromo-electric can be obtained as [67,68],

Ei
aðKÞ ¼ iωΔijðKÞjjaðKÞ; ð6Þ

where Kμ ¼ ðω;kÞ. The gluon propagator ΔijðKÞ and the
external current jjaðKÞ take the following forms [69],

Δij ¼ ½ðjkj2 − ω2Þδij − kikj þ ΠijðKÞ�−1; ð7Þ

jjaðKÞ ¼ igsqavj

ω − k · v þ i0þ
: ð8Þ

Here, ΠijðKÞ is the gluon self-energy tensor that captures
the medium effects. Using Eqs. (7) and (8) in Eq. (6), one
can obtain the induced field, and that, in turn, gives the
change of parton energy in the Fourier space. Next, to get
back to the coordinate space, we perform the inverse
Fourier transformation, which after averaging over color
indices and completing ω-integration using the residue
theorem (as the integrand has a pole at ω ¼ k · v) can be
written as,

�
dE
dx

�
¼ i

1

jvj g
2
sCFvivj

Z
d3k
ð2πÞ3 ωΔ

ij; ð9Þ

where CF is the Casimir invariant of SUðNcÞ and
ω ¼ k · v. Notably, the change of energy of the parton

depends on its velocity and the gluon propagator. The latter
has a strong dependence on the choice of the medium.
Depending on the medium properties and initial conditions,
the energy change can be negative or positive. If parton
loses energy while interacting with the medium, −hdEdxi
should be positive; otherwise, if in some special cases, the
test parton gains energy, −hdEdxi should be negative [28,66].
Next, we shall discuss the gluon propagator (that depends
of the gluon self-energy or the dielectric permittivity of the
medium) and the energy loss mechanism for three different
systems.

A. Moving parton in isotropic medium

For an isotropic medium, the gluon self-energy tensor
can be decomposed in terms of longitudinal projection
operator Bij ¼ kikj

jkj2 and transverse projection operator Aij ¼
δij − kikj

jkj2 as,

ΠijðKÞ ¼ AijΠTðKÞ þ BijΠLðKÞ; ð10Þ
where ΠL and ΠT are the longitudinal and transverse form
factors, respectively. The ΠijðKÞ can be related to the
induced current in the medium via linear response theory.
The current induced in the medium can be quantified in
terms of the deviation of the medium particle distribution
functions that can be obtained by solving the Boltzmann-
Vlasov transport equation. Hence, the form factors can be
obtained by solving the transport equation and employing
linear response theory and can be expressed as [70–72],

ΠTðKÞ ¼ m2
D

ω2

2jkj2
�
1 −

K2

2ωjkj ln
�
ωþ jkj
ω − jkj

��
; ð11Þ

ΠLðKÞ ¼ −m2
D
ω2

k2

�
1 −

ω

2k
ln

�
ωþ k
ω − k

��
; ð12Þ

where K2 ¼ ω2 − jkj2 and m2
D ¼ ðNf þ 2NcÞ g

2
sT2

6
is the

Debye screening mass. Employing Eq. (10) in Eq. (7), the
gluon propagator for an isotropic medium can be written as,

Δij ¼ 1

CT
Aij þ 1

CL
Bij; ð13Þ

with CT ¼ −ω2 þ jkj2 þ ΠT and CL ¼ −ω2 þ ΠL. By
substituting Eq. (13) in Eq. (9), the loss of the moving
parton in an isotropic medium can be obtained as,

−
�
dE
dx

�
¼ αsCF

2π2jvj
Z

d3k
ω

jkj2 fω
2Imð−ω2 þ ΠLÞ−1

þ ðjkj2jvj2 − ω2ÞImð−ω2 þ k2 þ ΠTÞ−1gω¼k·v:

ð14Þ
The medium effects are incorporated through the form
factors of the gluon self-energy and coupling constant.
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We can rewrite Eq. (14) (as estimated in other parallel
studies [67,73,74]) in terms of the longitudinal ϵLðKÞ and
transverse ϵTðKÞ components of the dielectric permittivity
ϵijðKÞ of the medium as,

−
�
dE
dx

�
¼ αsCF

2π2jvj
Z

d3k
ω

jkj2 fImðϵLðKÞÞ−1

þ ðjkj2jvj2 − ω2ÞImðω2ϵTðKÞ − jkj2Þ−1gω¼k·v;

ð15Þ

where the relation between gluon self-energy and dielectric
permittivity is taken as,

ϵijðKÞ ¼ δij −
1

ω2
ΠijðKÞ: ð16Þ

It is important to emphasize that the Eqs. (14) and (15)
describe the energy loss due to the polarization effects of
the medium, i.e., the change in parton energy due to its
interaction with collective excitations of the medium. For
the numerical calculation, we took the upper limit of the
integration kmax ∼ E, i.e., the initial energy of the parton.
For the longitudinal boost–invariant expansion (noninter-
acting QGP), the temperature evolution takes the following
form [75]

TðτÞ ¼ T0

�
τ0
τ

�
1=3

; ð17Þ

where τ is proper time with T0 ≡ Tðτ0Þ ¼ 600 MeV for
τ0 ¼ 0.25 fm for the LHC energy. The effects of medium
expansion on the energy loss can enter through the temper-
ature profile of the medium. The detailed description is
presented in Ref. [24] for charm quarks. It is important to
note that the medium expansion can further give rise to
nonequilibrium effects on the parton motion. The non-
equilibrium effects to parton energy in the evolving
medium are discussed in the Appendix in detail.

B. Moving parton in chiral imbalance medium

The asymmetry between right-handed and left-handed
fermions can be quantified in terms of the chiral chemical
potential, μ5 ≡ μR − μL. The chiral plasma with a finite μ5
can be described within the kinetic theory with Berry
curvature terms [76–79]. In the small gauge field Aμ, using
the linear response theory, we can express Πμν in terms of
induced current density in the chiral medium, which can be
obtained from the linearized transport equation with Berry
curvature correction. The parity-violating terms are enter-
ing through the Berry curvature terms, and Πij with finite
μ5 can be described as [79],

ΠijðKÞ ¼ Πij
þðKÞ þ Πij

−ðKÞ; ð18Þ

where Πij
þðKÞ and Πij

−ðKÞ are parity even and parity odd
parts of self-energy, respectively, and can be defined as,

Πij
þðKÞ ¼

m2
Dω

4π

Z
du

uiuj

U · K þ iϵ
; ð19Þ

Πij
−ðKÞ ¼ μ5g2s

4π2
iϵijkkk

�
1 −

ω2

jkj2
��

1 −
ω

2jkj ln
�
ωþ jkj
ω − jkj

��
:

ð20Þ

Here, Uμ ¼ ð1;uÞ with u ¼ k
jkj, the indices i, j, k represent

the spatial components, and the Debye mass in the chiral
medium takes the form as,

m2
D ¼ ðNf þ 2NcÞ

g2sT2

6
þ Nf

g2s
2π2

ðμ2R þ μ2LÞ: ð21Þ

Due to the parity-violating term, an additional projector
operator is required for the tensorial decomposition of Πij

in the chiral medium as compared to the isotropic case. At
finite μ5, gluon propagator can be written as [79],

Δij ¼ CT

C2
T − C2

A
Aij þ 1

CL
Bij −

CA

C2
T − C2

A
Cij; ð22Þ

where Cij ¼ iϵijk kk
jkj is the antisymmetric tensor and CA that

denotes the parity violating component of the self-energy
takes the form as,

CA ≡ ΠA ¼ μ5
g2s jkj
4π2

�
1 −

ω2

jkj2
��

1 −
ω

2jkj ln
�
ωþ jkj
ω − jkj

��
:

ð23Þ

Notably, CA is proportional to chiral chemical potential and
in the limit μ5 ¼ 0, Eq. (22) reduce back to the result of
isotropic case as described in Eq. (13). Energy loss of the
parton can be influenced by the chiral asymmetry in the
medium and can be quantified in terms Δij. Employing
Eq. (22) in Eq. (9), the energy loss of the parton in a chiral
imbalance plasma can be written as,

�
dE
dx

�
¼ ig2sCF

jvj
Z

d3k
ð2πÞ3

ω

jkj2
�
ω2

1

CL
þ ðjkj2jvj2 − ω2Þ

×
CT

C2
T − C2

A
− ijkjv · ðv × kÞ CA

C2
T − C2

A

	
ω¼k·v

:

ð24Þ

By substituting the forms of CL, CT , and CA in Eq. (24) we
obtain,
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−
�
dE
dx

�
¼ αsCF

2π2jvj
Z

d3k
ω

jkj2
�
ω2Imð−ω2 þ ΠLÞ−1 þ ðjkj2jvj2 − ω2ÞIm

�
−ω2 þ jkj2 þ ΠT

ð−ω2 þ jkj2 þ ΠTÞ2 − Π2
A

�	
ω¼k·v

ð25Þ

The energy loss term that originates from contraction of the
antisymmetric projection operator Cij given in Eq. (22)
vanishes, however, the chiral effects still enter through the
Debye mass and parity violating scalar component of the
self-energy ΠA. In the case of vanishing chiral chemical
potential, Eq. (25) reduces back to the form of test parton
energy loss expression for an isotropic case as defined
in Eq. (14).

C. Moving partons in magnetized QCD medium

The magnetic field is a source of anisotropy in the
system, which will be reflected in the medium’s QCD
thermodynamics and transport processes. The motion of the
test parton will be affected by the strength B and direction
of the magnetic field n in the medium. In the magnetized
medium, the tensor basis for a symmetric second-rank
tensor will be different from that of an isotropic medium
due to the inclusion of the additional magnetic field vector.
Using vectors ki and ni with n2 ¼ 1, we can construct the
spacial part of the gluon self-energy. In the analysis, we
consider various cases with different directions of the test
parton velocity v to analyze the impact of the relative
orientation of v and n on the parton energy loss. In the
presence of a magnetic field, Πij can be decomposed in
terms of basis tensors which depend on ki and ni as,

Πij ¼ aNij þ bBij þ cRij þ dQij; ð26Þ

where the projection operators can be defined as follows,

Nij ¼ −
k̂iñj þ k̂jñiffiffiffiffiffi

ñ2
p ; ð27Þ

Bij ¼ kikj

jkj2 ; ð28Þ

Rij ¼ −δij þ kikj

jkj2 −
ñiñj

ñ2
; ð29Þ

Qij ¼ ñiñj

ñ2
: ð30Þ

In the presence of a magnetic field, defining ñi ¼ Aijnj

vector to describe the tensor basis is convenient. Here, a, b,
c, and d are Lorentz-invariant form factors and can be
obtained from the following relations,

a ¼ 1

2
NijΠij; ð31Þ

b ¼ BijΠij; ð32Þ

c ¼ RijΠij; ð33Þ

d ¼ QijΠij: ð34Þ

One can get the similar forms of the tensor structures in
presence of the momentum anisotropy as well with ni

representing the anisotropic direction [80,81]. The form
factors can be calculated from the one-loop gluon self-
energy. The fermion loop is shown in Fig. 1, which is
affected by the magnetic field. We are considering the
strong magnetic field limit with the energy hierarchy
T <

ffiffiffiffiffiffiffiffiffiffiffijqfBj
p

. The form factors containing the gluon loop,
ghost loop, and magnetic field modified quark loop
contributions are given as [82],

a ¼
X
f

g2sqfB

4π2
e−k

2⊥=2qfB
ωkz

ω2 − k2z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥K4

ω2jkj4

s
; ð35Þ

b ¼ Ncg2sT2

3

�
K4

ω2jkj2
�
½1 − T Kðω; jkjÞ�

−
X
f

g2sqfB

4π2

�
K4

ω2jkj2
�
e−k

2⊥=2qfB
k2z

ω2 − k2z
; ð36Þ

c ¼ Ncg2sT2

3

1

2

�
ω2

jkj2 −
K2

jkj2 T Kðω; jkjÞ
�
; ð37Þ

d ¼ Ncg2sT2

3

1

2

�
ω2

jkj2 −
K2

jkj2 T Kðω; jkjÞ
�

þ
X
f

g2sqfB

4π2

�
K4

ω2jkj2
�
e−k

2⊥=2qfB
k2z

ω2 − k2z
; ð38Þ

K

P

P−K

FIG. 1. One loop gluon self-energy. The double line denotes the
modified quark propagator in the presence of a strong magnetic
field.
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where the angular integral reads as T Kðω; jkjÞ ¼
R

dΩ
4π

ω
ω−k·p̂

with p̂ is unit vector along p, i.e., p̂ ¼ p=jpj and

k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The general structure of the gluon effective

propagator in the magnetized medium can be written as,

Δij ¼ C1Bij þ C2Rij þ C3Qij þ C4Nij; ð39Þ

where C1;::4 are related to the form factors as,

C1 ¼
K2 − d

ðK2 − bÞðK2 − dÞ − a2
;

C2 ¼
1

K2 − c
;

C3 ¼
K2 − b

ðK2 − bÞðK2 − bÞ − a2
;

C4 ¼
a

ðK2 − bÞðK2 − dÞ − a2
: ð40Þ

Employing Eq. (39) in Eq. (9), we can estimate the parton
energy change in the magnetized medium as,

�
dE
dx

�
¼ igsCF

jvj
Z

d3k
ð2πÞ3 ω

�
C1

ω2

jkj2 − C2

�
jvj2 − ω2

jkj2

þ 1

ñ2
ðv · nÞ2 þ 2

kzω
ñ2jkj2 ðv · nÞ þ

k2zω2

jkj4ñ2
�

þ C3

ñ2

�
ðv · nÞ2 þ 2

kzω
jkj2 ðv · nÞ þ

k2zω2

jkj4
�

−
2C4ffiffiffiffiffi
ñ2

p ω

jkj
�
ðv · nÞ þ kzω

jkj2
�	

: ð41Þ

Here, we define ðk · nÞ ¼ kz as the magnetic field is fixed
along the ẑ-direction in the present analysis. The term ðv · nÞ
describes the relative orientation of the parton with respect to
the direction of the magnetic field and has a direct influence

on the energy loss. This can give rise to anisotropy in the
energy loss of the parton in the magnetized medium. In
addition to that, the magnetic field effects are entering
through the form factors as described in Eqs. (35)–(38).
For the perpendicular case, where the parton is moving
transverse to the direction of the magnetic field, i.e.,
ðv · nÞ ¼ 0, Eq. (41) can be further simplified as,

�
dE
dx

�
¼ igsCF

jvj
Z

d3k
ð2πÞ3 ω

�
C1

ω2

jkj2 − C2

�
jvj2 − ω2

jkj2
�

þ ðC3 − C2Þ
k2zω2

jkj4ñ2 −
2C4ffiffiffiffiffi
ñ2

p kzω2

jkj3
	
: ð42Þ

Next, we shall discuss the results obtained from various
sections.

III. RESULTS

Our primary findings are the energy loss of a test parton
in the presence of chiral imbalance and a strong magnetic
field in the QGP medium. The impact of chiral asymmetry
and medium temperature over the energy loss of the fast-
moving parton within the massless limit is depicted in
Fig. 2 (left panel). In this figure, the imbalance between
right-handed and left-handed fermions is measured using a
chiral chemical potential μ5 ¼ μR − μL. For the quantitative
estimation, we consider μ2L þ μ2R ¼ 1

2
ðμ25 þ μ2VÞ with

μV ¼ μR þ μL. The induced current due to the passage
of the parton depends on the chirality of the medium and is
reflected in the energy loss mechanism as described in
Eq. (25). The passage of the energetic parton is influenced
by the chiral effects of the medium that enter through the
medium’s screening mass and parity-violating component
of the self-energy ΠA as defined in Eqs. (21) and (23),
respectively. Similar to the case of an isotropic medium, the
parton energy loss in the chiral imbalance medium
increases with an increase in the temperature of the
medium. The ratio of energy loss of a massless parton

FIG. 2. Temperature dependence of the energy loss of a fast-moving parton in a chiral imbalance medium (left panel). The ratio of
energy loss in a chiral medium to that of an isotropic medium is plotted as a function of temperature (right panel).
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in the chiral imbalance medium to the isotropic medium is
shown in Fig. 2 (right panel). We observe an increment in
the energy loss in the presence of the chiral asymmetry
compared to the isotropic QGP medium with vanishing
chemical potential, which has a strong dependence on the
values of μR and μL. The proper time evolution of energy
change of the parton moving in the medium with longi-
tudinal boost–invariant expansion is plotted in Fig. 3. It is
observed that the chiral effects of the medium on the parton
energy loss is more visible in the later stages of the
evolution.
The energy loss of a parton in a left- and right-hand

dominated medium at a fixed temperature is plotted in
Fig. 4. The region above and below the diagonal line μR ¼
μL represent the left- and right-hand fermions dominated
regions, respectively. Notably, the energy loss is symmetric
at a fixed temperature in both regions. This is because the
parton energy loss in chiral medium remains as a parity

conserving term as −hdEdxi depends on μ25 as described in
Eq. (25). It is seen that the parton energy loss increases with
the chemical potential. The curved lines that represent
constant energy loss contours indicate that −hdEdxi in a chiral
medium is not only depending on the value of μR and μL but
also the difference between them.
In Fig. 5, we illustrated the momentum behavior of

anisotropy generated due to the strong magnetic field to the
energy loss mechanism. It is more relevant to the case of
heavy quarks than the massless test parton, as they expect
to witness a strong magnetic field in the initial stages of the
collision. Here, we target the charm quark energy loss case
with m ¼ 1.25 GeV, T ¼ 250 MeV, and eB ¼ 0.3 GeV2

to ensure the strong field approximation. It is crucial to
underline that the heavy quark does not undergo Landau-
level dynamics owing to its large mass and initial momen-
tum in the medium. However, the QCD medium properties
and hence, the polarization effects will change with the
inclusion of the magnetic field. They can indirectly affect
charm quark energy loss in the magnetized medium. We
observe that the energy loss of the charm quark traveling
through a magnetized medium is sensitive to the magnetic
field in the plasma. Notably, the energy loss strongly
depends on the relative direction of the charm quark’s
velocity and magnetic field in the medium. The impact is
more pronounced at the high momentum regime. It is seen
that the energy loss is more when the motion is transverse to
the direction of the magnetic field.
The dependence of the strength of the magnetic field and

temperature on the energy loss of a massless parton is
shown in Fig. 6. We fix the relative orientation of parton
motion and magnetic field by choosing θk ¼ π=2. For an
energetic parton, the magnetic field suppresses the energy
loss compared to that in the thermal medium due to the
dimensionally reduced Landau level motion of the charged

FIG. 3. Time evolution of energy loss of a massless fast-moving
parton in a chiral imbalance medium.
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FIG. 4. Energy loss of a massless energetic parton in the chiral
medium at T ¼ 200 MeV. Curved lines denote constant energy
loss contours and hdEdxi is described with the unit [GeV/fm].

FIG. 5. Momentum dependence of the parton energy loss in a
magnetized QCD medium for various choices of angle between
parton velocity and magnetic field in the medium (θk). The mass
of fast moving parton is chosen as m ¼ 1.25 GeV.
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fermions in the plasma. The impact of the magnetic field
strength is more pronounced in the low-temperature
regimes. As the temperature rises, the suppression of parton
energy loss that arises from the Landau kinematics is not
sensitive to the strength of the magnetic field. The
observation holds true for other choices of θk as well.

IV. SUMMARY AND OUTLOOK

In conclusion, we have studied the energy loss of a fast-
moving parton for three scenarios within the QGP medium,
viz., the isotropic, chiral asymmetric, and strongly mag-
netized QGP medium. To do so, we employed Wong’s
equations combined with linearized Yang-Mills equations
that describe the backreaction exerted on the energetic
parton by the medium while traversing through it. In the
isotropic case, it is found that the energy loss increases with
the temperature of the medium. It further increases with the
momentum of the test parton. Similar trends are found for
the chiral asymmetric medium as well. Moreover, the
energy loss turned out to be sensitive to the chiral chemical
potential, especially at the low-temperature regimes. We
further investigated the heavy parton energy loss in a
magnetized QCD medium. It is noticed that the magnetic
field induces anisotropy in the medium that, in turn,
suppresses the energy loss. Furthermore, the energy loss
is found to have a strong dependence on the relative
orientation of the parton’s velocity and the magnetic field.
It is seen parton loses more energy when it travels
transversely to the direction of the magnetic field compared
to other directions.
The current focus is on the parton energy loss due to the

polarization effects of the medium. The current formalism
(by treating test parton as a classical particle with a color
charge and its dynamics within Wong’s equations) holds
true only for the soft interactions. For the phenomenologi-
cal studies, this analysis should be combined with the

contribution from that of the hard modes. The estimation of
scattering amplitude 2 → 2 elastic process with medium
particles (momentum ∼T) and especially the soft gluon
emission 2 → 3 of a moving particle in the presence of an
arbitrary magnetic field and chiral chemical potential
requires further attention and is beyond the scope of this
study. Another interesting direction is to set up the
formalism by considering the fluctuations in a magnetized
QCD medium and exploring the possibility of energy gain
of the parton. These are interesting aspects to explore
shortly.
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APPENDIX: EFFECT OF ANISOTROPIC
MOMENTUM DISTRIBUTIONS ON

PARTON ENERGY LOSS

The medium evolution can give rise to nonequilibrium
effects on the parton energy loss. The effect of anisotropic
momentum distributions of plasma constituents in the
nonequilibrium medium on the parton energy loss can
be quantified as follows: The nonequilibrium distribution
function can be defined as

fðanisoÞ ¼ f0 þ δf; ðA1Þ

where f0 is the equilibrium isotropic part and δf is the
nonequilibrium correction part which can be described as
follows [81],

δf ¼ −
ξ

2EkT
ðk · aÞ2ðf0Þ2 exp

�
Ek

T

�
: ðA2Þ

Here, ξ is the anisotropic parameter that determines the
deviation of the momentum distribution from equilibrium
and a is the unit vector that represents the direction of
momentum anisotropy in the medium. The spacelike
components of the self-energy tensor can be described as,

Πij¼−g2
Z

d3p
ð2πÞ3v

i
∂
lfðanisoÞðpÞ

�
δjlþ vjkl

K ·Vþ iϵ

�
; ðA3Þ

with Vμ ¼ ð1; kωÞ. We can further decompose the self-
energy into four structure functions in the anisotropic
medium as,

Πij ¼ αAij þ βBij þ γYij þ δZij; ðA4Þ
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FIG. 6. Energy loss (in [GeV/fm]) of an energetic massless
parton as a function of temperature and magnetic field.
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where Aij and Bij are the conventional transverse and
longitudinal projection operators. Here, Yij ¼ ãiãj

ã2 and
Zij ¼ kiãj þ kjãi with ãi ¼ Aijaj. The detailed calculation
of the structure functions α, β, γ, δ are presented in
Ref. [81]. We can obtain the effective propagator from
Eq. (A4). Following the similar formalism employed in our
manuscript, we can obtain the energy loss of the parton in
the anisotropic medium and quantify the nonequilibrium
correction to the energy loss as [27],

�
dE
dx

�
¼ −i

1

jvj g
2
sCFvivj

Z
d3k
ð2πÞ3 ω½Δ1ðωÞðAij − YijÞ

þ Δ2ðωÞððω2 − jkj2 − α − γÞBij

þ ðω2 − βÞYij þ δZijÞ�; ðA5Þ

where Δ1 ¼ ω2 − jkj2 − α and Δ2 ¼ ðω2 − βÞðω2 − jkj2−
α − γÞ − jkj2δ2ã2. It is important to focus that in the limit
ξ → 0, γ and δ vanishes and Eq. (A4) reduce back to that of
isotropic case. The nonequilibrium corrections will not be
significant in the near-equilibrium region (ξ ≪ 1). In a
recent study [24], some of us have shown that the non-
equilibrium corrections are negligible in the momentum
evolution of charm quark in a 1þ 3 − D expanding QGP
medium. However, these nonequilibrium corrections are
important to maintain the theoretical consistency of the
analysis in an evolving medium. Fluctuations on chromo-
dynamic fields in the preequilibrium phase can also affect
the energy loss pattern especially in the very early phase of
evolution [28].
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