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In the presence of a momentum cutoff, effective theories seem unable to faithfully reproduce the
so-called chiral anomaly in the Standard Model. A novel prospect to overcome this related issue is

discussed herein via the calculation of the γ�π0γ transition form factor Gγ�π0γðQ2Þ, whose normalization is
intimately connected with the chiral anomaly and dynamical chiral symmetry breaking (DCSB). To
compute such transition, we employ a contact interaction model of quantum chromodynamics (QCD)
under a modified rainbow ladder truncation, which automatically generates a quark anomalous magnetic
moment term, weighted by a strength parameter ξ. This term, whose origin is also connected with DCSB, is
interpreted as an additional interaction that mimics the complex dynamics beyond the cutoff. By fixing ξ to

produce the value of Gγ�π0γð0Þ dictated by the chiral anomaly, the computed transition form factor, as well
as the interaction radius and neutral pion decay width, turn out to be comparable with QCD-based studies
and experimental data.
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I. INTRODUCTION

Conserved currents in classical theory may be violated
by quantum corrections, an outcome referred to as anomaly.
One of the most notable anomalies in the Standard Model
is the chiral anomaly discovered in 1969 by Adler [1] and
Bell and Jackiw [2], which is responsible for the neutral
pion decay, thereby having a significant impact in the γ�π0γ
transition form factor (TFF). In addressing this transition
process, there is a long-standing problem in effective
theories such as Nambu–Jona-Lasinio-like theories;
namely, the anomalous neutral pion decay is smaller than
the experimental value in the presence of a finite cutoff
[3,4], and the difference between theory and experiment
relies on the regularization scheme. This problem is
discussed extensively but there is not a completely sat-
isfactory solution, see Refs. [3–7]. For instance, if the
cutoff is removed, the chiral anomaly is faithfully

reproduced [8]. Nonetheless, one could argue that the
cutoff itself is part of the effective theory and thus should
not be changed nor removed in the calculation of observ-
ables. On the other hand, the role of the cutoff within a
path integral derivation of the chiral anomaly is clarified
in Ref. [4], highlighting cutoff-dependent higher-order
contributions that are crucial for the chiral anomaly. In
principle, it is impossible to explicitly calculate such con-
tributions at all orders without making assumptions.
However, as meticulously illustrated in Ref. [9], once the
cutoff is introduced in the effective theory, additional local
interaction terms should be added to mimic the complex
interaction triggered by higher-order contributions that
appear at shorter distances (or at higher energies) compared
to the cutoff. These additional terms depend on the latter and
must vanish upon its removal. This conception, however, has
not been implemented so far in any effective theory study
involving the chiral anomaly. In this work, we shall adopt
these ideas in the calculation of the neutral pion decay and
the corresponding γ�π0γ TFF, by using an effective model
within the framework of Dyson-Schwinger equations
(DSEs), i.e., the contact interaction (CI) model [10,11].
The DSE formalism has proven to be a powerful tool in

studying the nonperturbative nature of quantum chromo-
dynamics (QCD) in the continuum [12,13], representing
an ideal platform to study the static and structural properties
of hadrons [14–18]. Within this framework, the mass
spectrum and structural properties of hadrons are governed
by the relationship between the quark DSE and the
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bound-state Bethe-Salpeter (BS) and Faddeev equations
[19,20]. In fact, bound-state equations would be related to
Green’s functions of the theory, in such a way that the
resulting infinite system of integral equations must be
truncated in a systematic way [21,22]. A popular approach
is the so-called symmetry-preserving vector-vector contact
interaction, originally introduced to study the properties of
the pion [8,10], in a relatively simple framework capable of
preserving key features of QCD such as confinement and
chiral symmetry breaking. To date, the CI model has been
employed to address numerous hadronic properties, includ-
ing meson and baryon mass spectrum, various decay
processes, form factors, and parton distributions (see,
e.g., Refs. [8,10,23–36]); the emanating predictions, espe-
cially those concerning static properties, have provided
valuable benchmarks for both more sophisticated treat-
ments of QCD and experiment.
To properly address meson properties, a consistent

truncation of the DSE and BS equation (BSE) is crucial
to preserve the symmetries of QCD. The traditional rain-
bow ladder (RL) truncation is the common choice [37–40],
among others, because it properly captures the Goldstone-
boson nature of the pion [41,42]. However, embedded
within the CI, the RL truncation fails at reproducing the
chiral anomaly due to the presence of cutoffs; only when
those are removed it is possible to recover the anomaly [8].
A modified RL (MRL) truncation, recently proposed in
Refs. [43,44], would represent a feasible alternative. This
truncation consistently generates the quark anomalous
magnetic moment (AMM) term in the quark-photon vertex
(QPV), while maintaining the relevant symmetries of QCD
and leaving the pion static properties untouched. Following
the spirit of Refs. [4,9], the AMM term can be interpreted as
an additional interaction, between quark and photon, which
mimics the dynamics beyond the cutoff. As required by this
interpretation, we will also see in the following that the
AMM term vanishes if one removes the CI-induced
momentum cutoff under a proper regularization procedure.
The manuscript is organized as follows: In Sec. II,

we briefly introduce the CI under the MRL truncation
and expose how the structure of the QPV develops an
AMM term. In Sec. III, we discuss the γ�π0γ TFF in detail:
in particular, its connection with the AMM term in detail,
its connection with the chiral anomaly, and associated
physical quantities. Conclusions and final remarks are
presented in Sec. IV.

II. CONTACT INTERACTION

A natural starting point for the calculation of the γ�π0γ
transition form factor is the quark DSE. This can be
expressed mathematically as follows1:

S−1ðpÞ ¼ S−10 ðpÞ þ 4

3
g2

Z
q
Dμνðp − qÞγμSðqÞΓG

ν ðq; pÞ;

ð1Þ

where
R
q ≐

R d4q
ð2πÞ4 denotes a Poincaré invariant integration.

The dressed quark propagator is fully characterized by two
Dirac structures via

S−1ðpÞ ¼ Z−1ðp2Þðiγ · pþMðp2ÞÞ; ð2Þ

such that it maintains an analogy with its tree-level
counterpart, S−10 ðpÞ ¼ iγ · pþm; here m is the bare quark
mass and Mðp2Þ denotes the so-called mass function. The
rest of the ingredients of Eq. (1), also known as the gap
equation, are defined as usual: ΓG

ν and g2Dμν represent,
respectively, the fully dressed quark-gluon vertex (QGV)
and gluon propagator (g is the Lagrangian coupling
constant), each of which satisfy their own DSE. This
interconnection yields an infinite number of coupled non-
linear integral equations, which must be systematically
truncated to study a physical system [45]. Typically, one
assumes an appropriate form for the QGV that enable us to
arrive at a tractable problem [46,47]. In practice, this also
requires replacing the gluon propagator by an effective
one g2Dμνðp − qÞ → Deff

μν ðp − qÞ.
In the CI model, the fully dressed QGV is demoted to

its tree-level form, ΓG
ν → γν, corresponding to the rainbow

approximation of the gap equation. The corresponding
effective gluon propagator is defined as [10]

g2Deff
μν ðp − qÞ → 1

m2
G
δμν; ð3Þ

where mG is a gluon mass scale. Thus, the quark gap
equation is expressed as

S−1ðpÞ ¼ S−10 ðpÞ þ 4

3m2
G

Z
q
γμSðqÞγμ: ð4Þ

This integral possesses quadratic divergence that must be
regularized in a Poincaré invariant manner. The solution
of Eq. (4) then yields a rather simple form for the quark
propagator,

S−1ðpÞ ¼ iγ · pþM; ð5Þ

where the mass functionM in Eq. (2) becomes independent
of the quark momentum p. Plugging Eq. (5) into Eq. (4),
one obtains the following nonlinear integral equation
for M:

M ¼ mþ 16

3m2
G

Z
q

M
q2 þM2

: ð6Þ
1We employ a Euclidean metric with fγμ; γνg ¼ 2δμν, γ

†
μ ¼ γμ,

γ5 ¼ γ4γ1γ2γ3, and a · b ¼ P
4
i aibi. The isospin symmetry is

considered throughout this work.
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Herein we adopt the symmetry-preserving regularization
schemes described in Ref. [48], which is based on
Schwinger’s proper time method,

I−2αðM2Þ ¼
Z
q

1

ðq2 þM2Þαþ2

¼
Z

∞

0

dτ
τα−1

Γðαþ 2Þ
e−τM

2

16π2

→
Z

τ2ir

τ2uv

dτ
τα−1

Γðαþ 2Þ
e−τM

2

16π2

IR−2αðM2Þ ¼ 1

16π2
Γ½α; τ2uvM2� − Γ½α; τ2irM2�

M2αΓðαþ 2Þ ; ð7Þ

where τuv ¼ 1=Λuv and τir ¼ 1=Λir are ultraviolet (UV)
and infrared (IR) regulators, respectively; Λir ≃ ΛQCD pre-
vents the quark propagator from developing a pole at
q2 ¼ −M2, avoiding quark production thresholds and thus
producing a picture compatible with confinement, whereas
Λuv plays a dynamical role setting the scale of all dimen-
sioned quantities. Γðn; zÞ is the incomplete gamma function.
The label R stands for regularized integrals and will be
suppressed in the rest of the paper for simplicity. Thus,
in terms of the so-called irreducible loop integrals [48],
Eq. (6) becomes

M ¼ mþ 16M
3m2

G
I2ðM2Þ; ð8Þ

such that M is obtained by solving Eq. (8).
Mesons are described by the bound-state BSE, whose

interaction kernel must be written in a self-consistent
manner with the gap equation [21,22]. In the MRL trunca-
tion, the meson BSE reads

ΓHðPÞ ¼ −
4

3m2
G

Z
q
γαSðqÞΓHðPÞSðq − PÞγα

þ 4ξ

3m2
G

Z
q
Γ̃jSðqÞΓHðPÞSðq − PÞΓ̃j; ð9Þ

where ΓHðPÞ is the H-meson BS amplitude (BSA), with P
being the total momentum of the bound state. Note the first
line in Eq. (9), in conjunction with Eq. (4), defines the RL
truncation. Conversely, the second line in Eq. (9) contains
the nonladder (NL) pieces, Γ̃j ¼ fI4; γ5; iffiffi

6
p σαβg. As dis-

cussed in Ref. [43], with these new structures, the relevant
symmetries continue to be satisfied and the vector channels
are favorably modified; in particular, as it will become
evident, the AMM term in the QPV stems from this
contribution. Finally, ξ is a strength parameter controlling
the relative weight between the RL and NL contributions,
such that ξ ¼ 0 recovers the traditional RL truncation.

The general form the pion BSA adopts within the
CI-MRL truncation is

ΓπðPÞ ¼ iγ5EπðPÞ þ
γ5γ · P
M

FπðPÞ; ð10Þ

where Eπ , Fπ are scalar functions independent of the
relative momentum between the valence quark and anti-
quark. As with the quark propagator, the simple structure of
the BSA is a consequence of the CI and the corresponding
symmetry-preserving regularization. The process for solv-
ing the pion BSE is described in Appendix A.
In order to compute physical observables, the obtained

BSA must be canonically normalized. For the pseudoscalar
case, the normalization condition reads

Pμ ¼ Nctr
Z
q
Γπð−PÞSðqÞΓπðPÞ

∂

∂Pμ
Sðq − PÞ: ð11Þ

The pion leptonic decay constant may be computed
straightforwardly: this is expressible in the following way:

fπPμ ¼ Nctr
Z
q
γ5γμSðqÞΓπðPÞSðq − PÞ: ð12Þ

Notably, our symmetry-preserving scheme ensures the
Goldberger-Treiman relations are reproduced [10]. In
particular, in the chiral limit (P2 ¼ 0 ¼ m), we have

fπEπ ¼ M: ð13Þ

The computed masses, decay constants, and the nor-
malized BS amplitudes of the π meson in the CI-MRL
truncation, as well as the mass function of the dressed
quark, are reported in Table I. It is important to highlight
that these quantities are independent of the value of ξ
since the NL term in MRL does not contribute to the
pseudoscalar meson BSE, which is made clear by
performing a Fierz transformation on the NL kernel
[43] (see also Appendix A). Therefore, the static proper-
ties of the pion remains the same as those computed
within the CI-RL case. This is by no means the case of
the TFF, since it turns out that the NL pieces of the
BS kernel influence the vector channels, so that the
structure of the QPV changes favorably [43]. This is
discussed below.

TABLE I. Computed pion static properties. The model
parameters: mG ¼ 0.132 GeV, τuv ¼ 1=0.905 GeV−1, and
τir ¼ 1=0.24 GeV−1 ≃ 1=ΛQCD. Mass units in GeV.

m M mπ fπ Eπ Fπ

0 0.358 0 0.100 3.566 0.458
0.007 0.368 0.140 0.101 3.595 0.475
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A. Quark-photon vertex

The inhomogeneous BSE for the QPV ΓμðQÞ in the
MRL truncation is written as

ΓμðQÞ ¼ γμ −
4

3m2
G

Z
q
γαSðqÞΓμðQÞSðq −QÞγα

þ 4ξ

3m2
G

Z
q
Γ̃jSðqÞΓμðQÞSðq −QÞΓ̃j: ð14Þ

The simplicity of the CI model enable us to fully character-
ize the QPV by three tensor structures, namely,

ΓμðQÞ ¼ γLμfLðQ2Þ þ γTμfTðQ2Þ þ σμνQν

M
fAðQ2Þ; ð15Þ

where γTμ ¼ γμ −
=QQμ

Q2 , γLμ ¼ γμ − γTμ . By solving Eq. (14),

one obtains the dressing functions fLðQ2Þ, fTðQ2Þ,
and fAðQ2Þ,

fLðQ2Þ ¼ 1;

fTðQ2Þ ¼ −
I

KðC2
0M

2ξ̂þ 2C̄0IÞ − I
;

fAðQ2Þ ¼ C0M2ξ̂

KðC2
0M

2ξ̂þ 2C̄0IÞ − I
; ð16Þ

the integrals Cα; C̄α are defined as follows:

CαðQ2Þ ¼
Z

1

0

IαðωðM2; u; Q2ÞÞdu;

C̄αðQ2Þ ¼
Z

1

0

uðu − 1ÞIαðωðM2; u; Q2ÞÞdu; ð17Þ

with ω ¼ M2 þ uð1 − uÞQ2, I ¼ ξ̂ð2C0M2 þ C2Þ − 1,

ξ̂ ¼ 32ξ
9m2

G
, and K ¼ 8Q2

3m2
G
.

Let us now analyze the QPV dressing functions from
Eq. (16). First, the longitudinal piece fLðQ2Þ ensures the
vertex satisfies the symmetry requirement of the Ward-
Green-Takahashi identity [49]. Second, since the tensor
structures to which fT=A are attached (namely, γTμ and
σμνQν) also define the BSA of the vector meson, both
exhibit the corresponding vector meson pole in the timelike
axis. This would also be the case for RL truncation [50],
although producing fAðQ2Þ ¼ 0 and a shifted vector meson
mass due to the influence of the NL pieces in the BS
kernel [43]. Notably, the dressing function of the AMM
term fAðQ2Þ happens to be proportional to the strength
parameter ξ, so that this term vanishes in the ξ ¼ 0 limit. It
is precisely in this case that one recovers the RL truncation,
which indicates that within the CI, the RL is unable to
generate an AMM piece naturally; in fact, such term is
often added by hand [23,31]. Regarding the asymptotic

falloff of the dressing functions, one observes that
fTðQ2 → ∞Þ → 1 and fAðQ2 → ∞Þ → 0, so Eqs. (15)
and (16) would guarantee that the tree-level result γμ is
faithfully recovered. Finally, it is worth showing the values
of these dressing functions in the Q2 ¼ 0 point,

fLð0Þ ¼ 1;

fTð0Þ ¼ 1;

fAð0Þ ¼
ξ̂M2I0ðM2Þ

1 − ξ̂ð2M2I0ðM2Þ þ I2ðM2ÞÞ : ð18Þ

All these features of the fT=A dressing functions become
more perceptible in Fig. 1, which depicts their correspond-
ing profiles in a pertinent range of momenta.
As has been stated, the origin of the AMM term is

associated with dynamical chiral symmetry breaking
(DCSB), which generates quantifiable (albeit with opposite
signs) chromo- and electromagnetic moments at infrared
momenta [51–53]. This contribution would produce a
measurable outcome in transitions involving spin particles,
such as the γ�ρ → π case [37], and even critical effects in
processes involving excited states of orbital angular momen-
tum, for both mesons and baryons [31]. A prime example of
the latter is the electromagnetic transition of the nucleon to
its parity partner, whose corresponding Pauli form factor
displays an enormous sensitivity to the magnitude of the
AMM [31]. By involving two vector particles, quantifiable
effects would arise in the case of the two-photon TFFs
too [38]. Thus, as we shall discuss in the upcoming section,
this would have an impact on the low-energy domain of the
γ�π0γ process, and so on the chiral anomaly.

III. γ�π0γ PROCESS AND THE CHIRAL ANOMALY

Let us now focus on the γ�π0γ transition process,
which is parametrized by the matrix element (with e being
the unit charge),

FIG. 1. Transverse QPV dressing functions defined in Eqs. (15)
and (16). The function fAðQ2Þ dresses the AMM contribution.
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Tμνðk1; k2Þ ¼
e2

4π2fπ
ϵμνk1k2Gðk21; k1 · k2; k22Þ; ð19Þ

here ϵμνk1k2 ¼ ϵμναβk1αk2β is understood. In the impulse
approximation, this transition is expressed as [37–39]

Tμνðk1; k2Þ ¼ tr
Z
q
iΓνðk2ÞSðq − k2Þ

× ΓπðPÞSðqþ k1ÞiΓμðk1ÞSðqÞ; ð20Þ

where the trace tr is taken over the Dirac indices and
P ¼ −ðk1 þ k2Þ is the pion’s total momentum, such that
P2 ¼ −m2

π . If k1 denotes the momentum of the off-shell
photon, then the corresponding kinematic constraints read

k21¼Q2; k22¼0; k1 ·k2¼−ðQ2þm2
πÞ=2: ð21Þ

By adopting these kinematics, the Gγ�π0γðQ2Þ TFF is then
defined as

Gγ�π0γðQ2Þ ¼ 2GðQ2;−ðQ2 þm2
πÞ=2; 0Þ; ð22Þ

where the factor 2 appears in order to account for the
possible ordering of the photons.
With all the elements entering Eq. (20), namely, the

quark propagator, pion BSA, and quark-photon vertex
determined in Sec. II, it is, in principle, straightforward
to compute this transition. However, certain ambiguities
caused by the definition of the γ5 matrix arise in treatments
that require a regularization scheme. In particular, the trace
involving odd numbers of γ5 matrices leads to different
results, as can be seen in Eqs. (3.11), (3.13), and (3.16)
from Ref. [54]. Although it can be proved that these
different results can be transformed into one another, the
adopted definition of γ5 might influence the final outcomes,
and so is the case of the chiral anomaly. To overcome these
issues, Ref. [54] suggests the following definition of γ5:

γ5 ¼ −
1

24
ϵabcdγaγbγcγd; ð23Þ

to evaluate traces that contain odd number of γ5, so we will
adopt this choice in the following.
Let us first focus on the chiral anomaly, which is

associated with on-shell photon (Q2 ¼ 0) and chiral limit
pion (mπ ¼ 0), i.e., Gð0; 0; 0Þ. The computed result might
be represented as

1

4π2fπ
Gð0; 0; 0Þ ¼ 4Nc

3M
ðGEð0; 0; 0ÞEπ þ GFð0; 0; 0ÞFπÞ;

ð24Þ

where

GEð0; 0; 0Þ ¼ M2I−2ðM2Þf2Tð0Þ
þ ½I0ðM2Þ þ 4M2I−2ðM2Þ�fTð0ÞfAð0Þ
þ ½I0ðM2Þ þ 4M2I−2ðM2Þ�f2Að0Þ; ð25Þ

GFð0; 0; 0Þ ¼ 0: ð26Þ

The first thing to note is that the pseudovector component
of the pion BSA Fπ does not contribute to the anomaly.
This has been shown to be the case for any symmetry-
preserving treatment, based upon DSEs and BSEs, of the
pion TFF [55]. By employing the regularization scheme
introduced in Ref. [48], the present computation of the pion
TFF falls upon this category.
Focusing on the nonvanishing contribution GE, the last

two lines in Eq. (25) reveal that the AMM term in the QPV
indeed contributes to the chiral anomaly. To address this
observation, let us consider the ξ ¼ 0 limit, corresponding
to the CI-RL result [8],

Gξ¼0ð0; 0; 0Þ ¼ 16π2M2I−2ðM2Þ; ð27Þ

where we have employed Eq. (13). Since I−2ðM2Þ is
convergent, one can take the limits τuv → 0, τir → ∞,
and find out that

I−2ðM2Þjτir→∞
τuv→0 ¼ 1

16π2
1

2M2
: ð28Þ

Thus, it turns out that the famous chiral anomaly is
recovered by removing the cutoffs,

Gξ¼0ð0; 0; 0Þjτir→∞
τuv→0 ¼ 1

2
: ð29Þ

Thus, as we have seen, the chiral anomaly would only be
recovered after the cutoffs are eliminated. However, in an
effective theory, the ultraviolet cutoff is part of the theory
itself and, in principle, must not be removed. Under such
circumstances,Gξ¼0ð0; 0; 0Þ ≠ 1

2
, thus failing at meeting the

value dictated by the chiral anomaly. According to Ref. [4],
higher-order contributions are responsible for the missing
part of the anomaly. The analysis of Ref. [9] shows how
sensible terms can be added to the theory in order to mimic
the complex short-distance dynamics left out by the
momentum cutoff. However, for these additional terms
to be given this interpretation, it is necessary for their
contribution to vanish when the UV cutoff is removed. Here
is where the quark AMM term in the QPV, generated
automatically by the MRL truncation, becomes crucial:
first, according to Eq. (25), it provides a nonvanishing
contribution to Gð0; 0; 0Þ; second, for arbitrary ξ its
contribution vanishes when the cutoffs are removed,

Gξ≠0ð0; 0; 0Þjτir→∞
τuv→0 ¼ 1

2
; ð30Þ
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i.e., it can be duly identified as an effective term that
properly encodes the short-distance dynamics beyond the
cutoff. Thus, we can readily fix the strength parameter ξ by
requiring Gð0; 0; 0Þ ¼ 1

2
with finite cutoffs. The variation

of Gð0; 0; 0Þ with ξ is depicted in Fig. 2. It is seen that
Gð0; 0; 0Þ ¼ 1

2
is, in fact, obtained from two possible values

of ξ. Nonetheless, the largest one is unphysical since the
ρ meson BSE yields no bound-state solutions in this case.
We therefore adopt the smallest value ξ ¼ 0.151 and
employ it to evaluate the two-photon TFF.
To investigate the contributions of the difference pieces

of the QPVon the γ�π0γ TFF, the latter is computed in three
different cases: by employing the complete QPV derived
from Eq. (15) (with our preferred value ξ ¼ 0.151), by
taking the CI-RL truncation limit (corresponding to
ξ ¼ 0), thus neglecting the quark AMM contribution,
and by simply plugging in the tree-level form of the
QPV, thus discharging the AMM term and vector meson
pole contributions. The resulting form factors are shown
in Fig. 3, and the explicit mathematical expressions are
presented in Appendix B. Clearly, having retained the
cutoffs, the second and third cases (RL and tree-level
vertices, respectively) fail to obtain the correct normali-
zation of the form factor. This is not the case when the
quark AMM is properly incorporated; not only the correct
normalization is obtained (thus reproducing the chiral
anomaly), but the TFF exhibits the steepest falloff among
the three cases, becoming practically indistinguishable
from the realistic QCD-based computations [37–39] in
the small Q2 domain. Conversely, it is conspicuously
visible that the influence of the dressing functions becomes
more irrelevant with increasing photon virtuality, and the
hardness of the TFFs prevails in any case. This outcome is
expected due to the momentum-independent nature of the
CI model [8,10].
At the Q2 → 0 limit, in the MRL case, we also compute

the neutral pion decay width and the corresponding

interaction radius. These are defined, respectively, as
follows [37]:

Γπ0γγ ¼
g2πγγðQ2Þα2emm3

π

16π3f2π

�����
Q2¼0

; ð31Þ

r2
π0
¼ −6

d
dQ2

ln gπγγðQ2ÞjQ2¼0; ð32Þ

where gπγγðQ2Þ ¼ Gξ¼0.151ðQ2;−ðQ2 þm2
πÞ=2; 0Þ and

αem ¼ 1=137. Equation (31) yields Γ ¼ 7.21 eV, in agree-
ment with the experimental determination Γ ¼ 7.82�
0.14� 0.17 eV [58]. This compatibility is not surprising
since, by satisfying the anomaly in the chiral limit, the
prediction at the physical pion mass becomes practically
independent of the model inputs. Furthermore, the inter-
action radius computed from Eq. (32) is rπ0 ¼ 0.61 fm,
which is also in fair agreement with the experimental
estimate rπ0 ¼ 0.65� 0.03 fm [56]. The presence of the
quark AMM is crucial in this case, otherwise the produced
value of rπ0 would be practically halved [8].

IV. CONCLUSION

In this work we have computed the γ�π0γ TFF, intimately
connected with the so-called chiral anomaly in the Standard
Model, as well as the associated decay width and inter-
action radius. The calculation is based upon a symmetry-
preserving model of QCD, embedded within the so-called
MRL truncation. In addition to the soundness of the RL
approximation to address static and structural properties of
pseudoscalar mesons, the MRL scheme enables the CI to
produce a quark AMM term in the QPV. While RL and
MRL would produce the same static properties of the pion
(Table I), the presence of the quark AMM would be crucial

FIG. 2. The variation of Gð0; 0; 0Þ as a function of the AMM
strength parameter ξ.

FIG. 3. γ�π0γ transition form factor. Solid curve, full compu-
tation with MRL truncation; dashed, results calculated with RL
truncation; dash-dotted, results obtained with bare QPV. The
dotted curve corresponds to a monopole fit to the QCD-based
result in Ref. [37]. Experimental data from Refs. [56,57], brown
polygons and orange disks, respectively. Mass units in GeV.
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in the evaluation of the two-photon TFF and, in particular,
in correctly reproducing the chiral anomaly.
Let us now recall that, in effective field theories, the chiral

anomaly might be compromised due to the presence of finite
cutoffs [4,9], whose presence could neglect complex dynam-
ics that otherwise would have an effect on the anomaly. It is
argued that such higher-order effects can be encoded in
additional terms that must vanish when the cutoffs are
removed [9]. This is the case of the quark AMM. To support
this statement, first note that in the computation of the TFF
only the leading component of the pion BSA Eπ contributes
to the anomaly, i.e., GFð0; 0; 0Þ ¼ 0. This is nothing but a
consequence of the symmetry-preserving regularization
treatment of the CI described herein. On the other hand,
the quark AMM does indeed contribute to the normalization
of the form factor; thereby, the strength parameter ξ can
be tuned to produce, Gð0; 0; 0Þ ¼ 1=2, as imposed by the
anomaly. Furthermore, when the cutoffs are removed, the
contribution arising from the AMM vanishes regardless
of the value of ξ. This is sufficient to adopt for this piece
the interpretation of Ref. [9]: the AMM term could be
adequately regarded as an effective term that simulates the
physics discarded by the cutoffs. This interpretation becomes
even more natural due to the fact that both chiral anomaly
and quark AMM are strongly influenced by the effects of
DCSB [51–53].
Our numerical evaluation of the γ�π0γ transition included

three different inputs for the QPV: the fully dressed QPV
obtained in connection with the CI-MRL truncation, the one
derived in the CI-RL approximation (that neglects the AMM
piece), and the tree-level vertex. First, let us note that the last
two cases fail to reproduce the correct normalization of the
form factor; it is only possible to obtain if the cutoffs are
removed [8]. The CI-MRL computation, on the other hand,
satisfies the chiral anomaly, while also being practically
indistinguishable from the QCD-based results [37–39] at
lowQ2. In this case, the values obtained for the decay widths
and interaction radius are found to be compatible with the
empirical determinations as well. As the virtuality of the
photon grows, the QPV dressing functions cease to be
relevant and the three cases are reduced to the same; in this
domain of photon momentum, the form factors become
harder, as one would expect from the CI model. Finally, it is
important to highlight that such encouraging results for the
CI-MRL case indicate the effectiveness of the idea imple-
mented in this work in dealing with chiral anomaly in
effective theories.
This is an encouraging step toward a comprehensive

study of hadrons in the CI-MRL approach, among others,
because of the marked influence of the AMM on transitions
concerning excited states of orbital angular momentum [31]
and due to a potential connection with the anomalies in the
Standard Model. The immediate next step will involve
calculating γπ⋆ → ππ TFF and studying the chiral anomaly
in this process. The work on γπ⋆ → ππ TFF is underway.
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APPENDIX A: THE PROCESS FOR SOLVING
THE PION BSE

Inserting Eq. (10) into Eq. (9), the general form of the pion
BSA into the corresponding BSE, one obtains the following
coupled equations for the scalar functions Eπ and Fπ:�

Eπ

Fπ

�
¼ 4

3m2
G

�
KEE KEF

KFE KFF

��
Eπ

Fπ

�
: ðA1Þ

By taking the Dirac trace and following the aforementioned
regularization procedure, the kernels can be written as [with
ω ¼ M2 þ uð1 − uÞP2]

KEE ¼ 4

Z
1

0

duI2ðωÞ − 2uð1 − uÞP2I0ðωÞ;

KEF ¼ 4

Z
1

0

duP2I0ðωÞ;

KFE ¼ 2

Z
1

0

duM2I0ðωÞ;

KFF ¼ −4
Z

1

0

duM2I0ðωÞ: ðA2Þ

Solutions to the eigenvalue equation Eq. (A1) are only found
at discrete values of momentum Pi. Thus, it is convenient to
introduce the eigenvalue λðP2Þ to deal with this equation,
namely,

λðP2Þ
�
Eπ

Fπ

�
¼ 4

3m2
G

�
KEE KEF

KFE KFF

��
Eπ

Fπ

�
: ðA3Þ

The smallest value P2
i producing λðP2

i Þ ¼ 1 corresponds to
the ground-state pion, such that P2 ¼ −m2

π .

APPENDIX B: EXPLICIT EXPRESSIONS
OF THE γ�π0γ TFF

With the kinematic constraints (21), the transition form
factor can be written as

1

4π2fπ
GðQ2;−ðQ2 þm2

πÞ=2; 0Þ

¼ 4Nc

3M

Z
1

0

du1

×
Z

1−u1

0

du2ðGEðQ2; u1; u2ÞEπ þGFðQ2; u1; u2ÞFπÞ;

ðB1Þ
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where, with ρðM; u1; u2; Q2Þ ¼ M2 þ u1ð1 − u1ÞQ2 − u1u2ðQ2 þm2
πÞ, one gets

GEðQ2; u1; u2Þ ¼ 2I−2ðρÞM2f2T þ
�
2I−2ðρÞu1Q2 − 6I−2ðρÞu21Q2 þ 4I−2ðρÞu31Q2 þ 8I−2ðρÞu21u2Q2 − 6I−2ðρÞu1u2Q2

þ 4I−2ðρÞu1u22Q2 þ 3I0u1 þ 3I0u2 þ 8I−2ðρÞM2 þ 4I−2ðρÞu21u2m2
π

− 4I−2ðρÞu1u2m2
π þ 4I−2ðρÞu1u22m2

πÞfAfT þ ð2I−2u1Q2 − 4I−2u21Q
2 − 4I−2u1u2Q2 þ 2I0

þ 8I−2M2 − 4I−2u1u2m2
π

�
f2A

GFðQ2; u1; u2Þ ¼ ð6I−2ðρÞu1Q2 − 10I−2ðρÞu21Q2 þ 4I−2ðρÞu31Q2 þ 8I−2ðρÞu21u2Q2 − 10I−2ðρÞu1u2Q2 þ 4I−2ðρÞu1u22Q2

− 2I0ðρÞ þ 3I0ðρÞu1 þ 3I0ðρÞu2 þ 4I−2ðρÞu21u2m2
π − 8I−2ðρÞu1u2m2

π þ 4I−2ðρÞu1u22m2
πÞf2T

þ ð2I−2ðρÞQ2 þ 6I−2ðρÞu1Q2 − 8I−2ðρÞu21Q2 − 8I−2ðρÞu1u2Q2 − 2I−2ðρÞu2Q2 − 2I−2ðρÞu1m2
π

− 8I−2ðρÞu1u2m2
π − 2I−2ðρÞu2m2

πÞfTfA þ
�
−I0ðρÞu1

Q2

M2
þ 4I−2ðρÞQ2 þ 2I−2ðρÞu1

Q4

M2

− 4I−2ðρÞu1Q2 − 6I−2ðρÞu21
Q4

M2
þ 4I−2ðρÞu31

Q4

M2
þ 8I−2ðρÞu21u2m2

π
Q2

M2
þ 6I−2ðρÞu21u2

Q4

M2

− 4I−2ðρÞu1u2m2
π
Q2

M2
− 4I−2ðρÞu1u2

Q4

M2
þ 4I−2ðρÞu1u22m2

π
Q2

M2
þ 2I−2ðρÞu1u22

Q4

M2
− 4I−2ðρÞu2Q2

− 4I−2ðρÞu1m2
π þ 2I−2ðρÞu21u2

m4
π

M2
þ 2I−2ðρÞu1u22

m4
π

M2
− 4I−2ðρÞu2m2

π
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