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We derive the equations of motion for the bulk-to-boundary propagators of the anti-de Sitter (AdS) boson
and fermion fields with arbitrary total angular momentum J in a soft-wall AdS/QCD model and solve it
analytically. It provides the opportunity to study transition form factors induced by these bulk-to-boundary
propagators, both for on-shell and off-shell hadrons. This is a continuation of our study of hadron form
factors induced by the bulk-to-boundary propagator with total angular momentum J ¼ 1 (e.g., electro-
magnetic form factors of mesons, nucleons, and nucleon resonances).
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I. INTRODUCTION

The soft-wall anti-de Sitter/quantum chromodynamics
(AdS/QCD) model proposed in Ref. [1] plays an impor-
tant role for the description and understanding of hadron
structure: mass spectra, form factors, parton distributions,
QCD scattering processes (like Drell-Yan, deep-inelastic
scattering), etc. The pioneer contribution to the inves-
tigation of QCD scattering processes based on gauge/
string duality was made in Ref. [2], and the success of the
soft-wall model is based on the fact that it provides
analytical calculations of hadronic properties. The for-
malism of the soft-wall AdS/QCD model is based on
phenomenological actions formulated in terms of boson
and fermion AdS fields, propagating in five-dimensional
AdS space. One should stress that the Hamiltonian
approach is also widely used, especially in connection
with the light-cone formalism, e.g., in the model of
Ref. [3]. Four of the five dimensions of the AdS space
correspond to the Minkowski subspace and the fifth
(holographic) dimension z corresponds to a scale.
Conformal and chiral symmetry in the underlying actions
are broken by introducing the dilaton field, quadratically
dependent on the variable z in the exponential prefactor of

the action or in the phenomenological potential. In the
case of the Hamiltonian approach [3] the conformal
symmetry of the Hamiltonian remains. Based on this
action one can solve two problems: (i) The bound-state
problem, i.e. derive equations of motion (EOM) for the
bulk profiles ϕðzÞ (the parts of the AdS fields explicitly
dependent on the holographic variable z). These profiles
obey Schrödinger type equations of motion, which are
solved analytically [1]. The solutions of these equations
correspond to the hadronic mass spectrum due to the
duality of bulk profiles and hadronic wave function.
(ii) The scattering problem, i.e. one can derive EOM
for the bulk-to-boundary propagators Vð−q2; zÞ describ-
ing the momentum dependence of the AdS field traveling
from the AdS interior to its boundary (Minkowski space).
In particular, the bulk-to-boundary propagators depend on
two variables: holographic coordinate z and q, which is
Fourier conjugate to Minkowski coordinate x. Therefore,
the main components produced by the AdS/QCD soft-wall
action needed for the study of hadron structure are the bulk
profiles ϕðzÞ, dual to hadronic wave functions describing
the hadrons on the mass shell, and the bulk-to-boundary
Vð−q2; zÞ, dual to the off-shell external gauge fields or
external hadrons. In particular, hadronic form factors,
which are the main focus of the present paper, are the
integrals over z of the product of bulk-to-boundary
propagators and two bulk profiles. One should stress that
up to now, the study of hadronic form factors has been
focused on the quantities induced by the bulk-to-boundary
propagator with the total angular momentum J ¼ 1, dual
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to electromagnetic field. In particular, following the idea
proposed in Ref. [4] one can derive the massless bulk-to-
boundary propagator for the field with total angular
momentum J ¼ 1 and reach its application for the calcu-
lation of form factors of mesons and baryons in Euclidean
spacetime, which has been done very successfully in
Refs. [3,5–16]. For application of the bulk-to-boundary
propagators with J ¼ 0 and J ¼ 1 in Minkowski space
see, e.g., Ref. [17]. In fact, the soft-wall AdS/QCD not
only provides the correct power scaling description of
form factors and helicity amplitudes of all hadrons at large
Q2 in Euclidean spacetime [18]; it is also able to give good
agreement with the data at low and intermediate Q2. Note
that up to now only the massless AdS bulk-to-boundary
propagator, dual to massless gauge vector fields, has been
considered in the context of soft-wall AdS/QCD.
The main objective of the present paper is to extend the

soft-wall model formalism for the study of bulk-to-
boundary propagators with arbitrary J in the Euclidean
spacetime. First, we consider massless bulk-to-boundry
propagators, which are relevant for the description of
gravitons or light hadrons for which one can apply the
massless limit. Second, we extend our results for the case
of massive bulk-to-boundary propagators dual to massive
gauge bosons and massive hadrons. As a result, we derive
analytical expressions of the form factors describing
(i) the coupling of off-shell massless gauge bosons
(photon, graviton) or massless scalar/pseudoscalar fields
of new physics (NP): axions, axionlike particles (ALPs),
etc. with two on-shell hadrons; (ii) the coupling of off-
shell massive gauge bosons (weak W� and Z0 bosons) or
Higgs H, with two on-shell hadrons; (iii) the coupling of
off-shell massless hadrons with two on-shell hadrons; and
(iv) the coupling of off-shell massive hadrons with two on-
shell hadrons. In all cases the off-shell behavior of gauge
fields and hadrons is encoded in the Q2 behavior of the
corresponding bulk-to-boundary propagator. This pro-
vides an opportunity to study the off-shell behavior of
hadronic form factors, i.e. direct coupling of three par-
ticles, when one particle is off-shell and the other two are
on-shell. It provides useful insight to lattice QCD and
effective field theories, such as chiral perturbation theory
(ChPT), heavy hadron ChPT, where direct couplings
of hadrons are calculated from first principles (lattice
QCD) or provide input parameters for phenomenological
Lagrangians.
The paper is organized as follows. In Sec. II, we discuss

the derivation of bulk-to-boundary propagators dual to off-
shell gauge fields and hadrons. First, we consider the case
of boson propagators and then we extend our formalism to
the case of fermions. For massive gauge fields and hadrons
we propose an extension of the bulk-to-boundary propa-
gators to a massive case. Finally, in Sec. III we present our
conclusion.

II. FORMALISM

A. Boson bulk-to-boundary propagator

We start by specifying the AdS5 metric

ds2 ¼ gMNdxMdxN ¼ ηabe2AðzÞdxadxb

¼ e2AðzÞðημνdxμdxν − dz2Þ;
ημν ¼ diagð1;−1;…;−1Þ; ð1Þ

whereM and N ¼ 0; 1;…; 4 are the base manifold indices,
a ¼ ðμ; zÞ and b ¼ ðν; zÞ are the local Lorentz (tangent)
indices, and gMN and ηab are curved and flat metric tensors,
which are related by the vielbein ϵaMðzÞ ¼ eAðzÞδaM as
gMN ¼ ϵaMϵ

b
Nηab. Here z is the holographic coordinate.

We restrict our discussion to a conformal-invariant metric
with AðzÞ ¼ logðR=zÞ, where R is the AdS radius.
The action of the soft-wall AdS/QCD model describing

totally symmetric traceless bosonic fields VM1���MJ
ðx; zÞ

with arbitrary integer J was derived in Ref. [1]. In
particular, this action has a simplified form in the axial
gauge Vz���ðx; zÞ ¼ 0:

SJ ¼
ð−ÞJ
2

Z
d4xdze−BJðzÞ∂MVμ1���μJðx; zÞ∂MVμ1���μJðx; zÞ;

ð2Þ

where ∂M ⊗ ∂
M ¼ ∂μ ⊗ ∂

μ − ∂z ⊗ ∂z, BJðzÞ ¼ φðzÞ−
ð2J − 1ÞAðzÞ, φðzÞ ¼ κ2z2 is the dilaton field, and κ ∼
500 MeV [3,19,20] is the dilaton scale parameter.
The massless bulk-to-boundary propagator VJðq; zÞ of

the Vμ1���μJðx; zÞ field is given by the Fourier transformation,

Vμ1���μJðx; zÞ ¼
Z

d4q
ð2πÞ4 e

−iqxVμ1���μJðqÞVJð−q2; zÞ; ð3Þ

where q is the Fourier conjugates to x. Next, from Eq. (2) we
derive the equation of motion for the propagator VJð−q2; zÞ:

∂z

�
e−BJðzÞ∂zVJð−q2; zÞ

�
þ e−BJðzÞq2VJð−q2; zÞ ¼ 0; ð4Þ

which has an analytical solution in terms of gamma ΓðaÞ and
Trikomi Uða; b; zÞ functions,

VJðQ2; zÞ ¼ ðκ2z2ÞJ ΓðaJ þ 1Þ
ΓðJÞ UðaJ þ 1; Jþ 1;κ2z2Þ; ð5Þ

where aJ ¼ aþ J − 1, a ¼ Q2=ð4κ2Þ, Q2 ¼ −q2 is the
Euclidean momentum squared, and an integral representa-
tion for the Trikomi function reads
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Uða; b; cÞ ¼ 1

ΓðaÞ
Z∞
0

dte−ctta−1ð1þ tÞb−a−1

¼ 1

ΓðaÞ
Z1
0

dxxa−1

ð1 − xÞb e
− cx
1−x: ð6Þ

Therefore, an integral representation for the propagator
VJðQ2; zÞ is given by

VJðQ2; zÞ ¼ ðκ2z2ÞJ
ΓðJÞ

Z1
0

dxxaJ

ð1 − xÞJþ1
e−

κ2z2x
1−x : ð7Þ

By changing the integration variable x ¼ y=ðyþ κ2z2Þ one
can derive another representation for the VJðQ2; zÞ

VJðQ2; zÞ ¼ 1

ΓðJÞ
Z∞
0

dyyJ−1e−y
 

y
yþ κ2z2

!
a

: ð8Þ

Additional useful integral representation for the VJðQ2; zÞ,
derived from Eq. (7) by partial integration, reads

VJðQ2; zÞ ¼ 1

Bða;JÞ
Z1
0

dxxa−1ð1− xÞJ−1e−κ2z2x
1−x ; ð9Þ

Bðx; yÞ ¼ ΓðxÞΓðyÞ=Γðxþ yÞ is the beta function.
Now let us consider the properties of the derived bulk-

to-boundary propagators. A nice feature of the derived
bulk-to-boundary propagator VJðQ2; zÞ is the following:
while it was derived for the boson propagators with higher
J ≥ 2, it is also valid for the limit J ¼ 1. In particular, in the
limit J ¼ 1 (the case of the vector bulk-to-boundary propa-
gator), V1ðQ2; zÞ reduces to the well-known result [5,8]

V1ðQ2; zÞ ¼ κ2z2Γðaþ 1ÞUðaþ 1; 2; κ2z2Þ

¼ κ2z2
Z1
0

dxxa

ð1 − xÞ2 e
−κ2z2x

1−x

¼
Z∞
0

dye−y
 

y
yþ κ2z2

!
a

: ð10Þ

The vector bulk-to-boundary propagator obeys the impor-
tant conditions [5,8]: (i) charge conservationV1ð0; zÞ ¼ 1 at
Q2 ¼ 0, (ii) local limitV1ðQ2; 0Þ ¼ 1 at z ¼ 0, (iii) confine-
ment V1ðQ2; zÞ → 0 at z → ∞, and (iv) it produces power
scaling of hadronic form factors FðQ2Þ ∼ 1=Q2ðτ−1Þ at large
Q2 [18], where τ is the leading twist of the hadron, which is
also the number of its constituent partons.
From the integral representation (8), it immediately

follows that all properties (i)–(iv) relevant for the vector
propagator are also valid for the propagators with higher
J ≥ 2. In particular, from Eq. (8) it follows that the

normalization conditions VJðQ2; 0Þ ¼ VJð0; zÞ ¼ 1 are in-
dependent of J. Obviously, the propagator VJðQ2; zÞ has no
proper limit J ¼ 0. In particular, while at Q2 ¼ 0 and z ¼ 0

the scalar propagator V0ðQ2; zÞ has the required normal-
izations V0ðQ2; 0Þ ¼ V0ð0; zÞ ¼ 1; it vanishes at finite
values of Q2 and z. Therefore, we had to propose an action
for the scalar AdS field, which produces a scalar bulk-
to-boundary propagator consistent with the following
requirements: (i) normalization condition V0ðQ2; 0Þ ¼
V0ð0; zÞ ¼ 1, (ii) V0ðQ2; zÞ is finite at Q2 ≠ 0 and z ≠ 0,
(iii) confinement V0ðQ2; zÞ → 0 at z → ∞, and (iv) correct
power scaling of hadronic form factors FðQ2Þ ∼ 1=Q2ðτ−1Þ

at largeQ2 [18]. One of such actions, which obeys the above
requirements, reads

S0 ¼
1

2

Z
d4xdze−BðzÞ∂MSðx; zÞ∂MSðx; zÞ; ð11Þ

where BðzÞ ¼ φðzÞ − AðzÞ.
Next, from the action (11) we derive the following

equation of motion for the scalar propagator V0ð−q2; zÞ:

∂z

�
e−BðzÞ∂zV0ð−q2; zÞ

�
þ e−BðzÞq2V0ð−q2; zÞ ¼ 0; ð12Þ

which has the solution V0ðQ2; zÞ, coinciding with the vector
bulk-to-boundary propagator V0ðQ2; zÞ≡ V1ðQ2; zÞ.
Note that at Q2 → ∞ the bulk-to-boundary propagator

VJðQ2; zÞ for J ≥ 1 behaves as

VJðQ2; zÞ → eκ
2z2

ΓðJÞ
�
Q2z2

4

�
J
Z∞
0

dt
tJþ1

exp

�
−t −

Q2z2

4t

�

¼ 2eκ
2z2

ΓðJÞ
�
Qz
2

�
J
KJðQzÞ; ð13Þ

where Q ¼
ffiffiffiffiffiffi
Q2

p
, and

KnðxÞ ¼
xn

2nþ1

Z∞
0

dt
tnþ1

exp

�
−t −

x2

4t

�
ð14Þ

is the modified Bessel function of the second kind for
arbitrary n [15]. As before, the Q2 → ∞ asymptotics
coincides for J ¼ 0 and J ¼ 1. It was shown in
Ref. [15] that in the case J ¼ 1 and in the limit κ → 0,
the vector bulk-to-boundary propagator V1ðQ2; zÞ in the
soft-wall AdS/QCD model,

V1ðQ2; zÞ ¼ QzK1ðQzÞ; ð15Þ

coincides with the one obtained in the hard-wall AdS/QCD
model [4]. Therefore, we make the prediction that the
Q2 → ∞ asymptotics of the bulk-to-boundary propagator in
the hard-wall model for arbitrary J ≥ 1 coincides with the
one in the soft-wall model for κ → 0:
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VJðQ2; zÞ ¼ 2

ΓðJÞ
�
Qz
2

�
J
KJðQzÞ: ð16Þ

We should stress that the massless boson bulk-to-
boundary propagator VJðQ2; zÞ is mostly relevant for the
description of the propagation of massless gauge bosons
(photon with J ¼ 1 and graviton with J ¼ 2) and massless
scalar/pseudoscalar of NP (axion, ALPs) with J ¼ 0. In the
case of massive gauge fields, such as the weak W� and Z0

bosons or the Higgs H, one should include their masses,
which appear after spontaneous breaking of gauge sym-
metry. We propose to include the finite mass for the bulk-
to-boundary propagator by shifting the square of the
momentum as −q2 ¼ Q2 → −q2 þM2 ¼ Q2 þM2, where
M is the mass of the gauge field or Higgs, taken from data
in Ref. [21]:

MW� ¼ 80.377� 0.012 GeV;

MZ0 ¼ 91.1876� 0.0021 GeV;

MH ¼ 125.25� 0.17 GeV: ð17Þ

For example, the massive bulk-to-boundary propagator of
the weak bosons and Higgs reads

VðQ2 þM2; zÞ ¼
Z∞
0

dye−y
�

y
yþ κ2z2

�
aðM2Þ

; ð18Þ

where aðM2Þ ¼ aþM2=ð4κ2Þ ¼ ðQ2 þM2Þ=ð4κ2Þ and
M ¼ MW� ;MZ0 ;MH. One can see that our extension to
massive bulk-to-boundary propagators is consistent. It is
clear that forM2 ≫ Q2 one can neglect the Q2 dependence
of the propagator VðQ2 þM2; zÞ, i.e. in this limit VðQ2 þ
M2; zÞ → VðM2; zÞ in consistency with the Standard Model
(SM). Also, the massless limit M → 0 is straightforward
leading to the massless propagator. Here we consider as
example the particles of the SM, but this discussion is true
for any other massless/massive gauge fields or other
structureless particles (axion, ALPs, etc.).
Next we clarify how to use the bulk-to-boundary propa-

gator with arbitrary J for the description of the propagation
of composite particles—hadrons. The difference of hadrons
from structureless particles is that hadrons in the soft-wall
AdS/QCD are described by hadronic wave functions. The
latter are dual to the profiles of the AdS fields depending on
the holographic variable z. In particular, the meson wave
function describing the hadron, which is made by the Fock
state with leading twist τ, reads [3,8,19]

ϕMτ
ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s
κτ−1zτ−3=2e−κ

2z2=2: ð19Þ

We should stress that the inclusion of subleading Fock states
in the context of the soft-wall model has been considered in

Refs. [9,10,13,14,16]. In the present paper we restrict the
discussion to the leading Fock state contribution to the
structure of the specific hadron. Therefore, the massive
bulk-to-boundary propagator with total angular momentum
J, dual to massive meson with the same J and made by the
leading Fock state with twist τ, must be constructed as a
product of the massive bulk-to-boundary propagator

VJðQ2 þM2
M; zÞ ¼

Z∞
0

dyyJ−1e−y
 

y
yþ κ2z2

!
aðM2

MÞ
ð20Þ

whereMM is the mass of a meson and meson wave function
ϕMτ

ðzÞ (19). For convenience, we denote the bulk-to-
boundary propagator dual to massive meson with arbitrary
J as

ϕMJ;τ
ðQ2 þM2

M; zÞ ¼ VJðQ2 þM2
M; zÞϕMτ

ðzÞ: ð21Þ

One can see that the massive bulk-to-boundary propagator,
dual to a hadron (21), obeys important requirements:
(i) mass-shell limit q2 ¼ −Q2 ¼ M2

M and (ii) massless limit
M2

M ¼ 0. In particular, in the limit (i): VJðQ2 þM2
M; zÞ →

VJð0; zÞ ¼ 1 and therefore

ϕMJ;τ
ðQ2 þM2

M; zÞ → ϕMJ;τ
ð0; zÞ ¼ ϕMτ

ðzÞ: ð22Þ

In the limit (ii): VJðQ2 þM2
M; zÞ → VJðQ2; zÞ and

therefore

ϕMJ;τ
ðQ2 þM2

M; zÞ → ϕMJ;τ
ðQ2; zÞ ¼ VJðQ2; zÞϕMτ

ðzÞ:
ð23Þ

We summarize the results of this subsection. We derived
the set of massless and massive bulk-to-boundary propa-
gators with arbitrary J, dual to massless andmassive fields of
SM (photon, weak bosons, Higgs) and of NP (axion, ALPs,
etc.) and of hadrons. These quantities describe off-shell
behavior of SM or NP particles and of hadrons and could be
used for the calculation of transition form factors involving
off-shell and on-shell states. As we stressed before, it could
be useful to provide insight to lattice QCD and effective field
theories, where direct couplings of hadrons are calculated
from first principles or provide input parameters for phe-
nomenological Lagrangians. Later, we will extend our ideas
to the sector of fermion bulk-to-boundary propagators.
In Figs. 1–3 we present two- and three-dimensional plots

illustrating the properties of boson bulk-to-boundary propa-
gators, dual to the gauge bosons with J ¼ 1 and J ¼ 2, and
hadrons (mesons) with arbitrary integer J. In particular, in
Fig. 1 (left panel) we show results for the bulk-to-boundary
propagator V1ðQ2; zÞ as a function of Q2 and z, dual to the
massless gauge field with J ¼ 1 (like photon). In Fig. 1
(right panel) we show results for the ratio R21ðQ2; zÞ ¼
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V2ðQ2; zÞ=V1ðQ2; zÞ of two propagators with J ¼ 2 and
J ¼ 1, dual to the massless gauge fields with J ¼ 2
(graviton) and J ¼ 1 (photon). One can see that the plot
for V1ðQ2; zÞ decreases when z and Q2 increase. The ratio
R21ðQ2; zÞ increases when z and Q2 increase. One should
stress that for both plots the Q2 → ∞ asymptotics is fully
consistent with our analytical prediction in Eq. (13). In
particular, at large Q2 → ∞ the R21ðQ2; zÞ behaves as

R21ðQ2; zÞ ¼ Qz
2

K2ðQzÞ
K1ðQzÞ ¼

Q2z2

4

R
∞
0

dt
t3 exp

�
−t − Q2z2

4t

�
R
∞
0

dt
t2 exp

�
−t − Q2z2

4t

� :
ð24Þ

In Fig. 2 we show results for the massive bulk-to-
boundary propagators ϕMJ;τ

ðQ2 þM2
M; zÞ as functions of

Q2 and z dual to massive mesons at fixed value of leading
twist τ ¼ 2 for specific mesons characterized by total
angular momentum J and mass MM: (a) pion with
J ¼ 0 and Mπ ¼ 0.13957 GeV, (b) ρ meson with J ¼ 1

and Mρ ¼ 0.7665 GeV, (c) a2 meson with J ¼ 2 and
Ma2 ¼ 1.3186 GeV, and (d) ω3 meson with J ¼ 3 and
Mω3

¼ 1.67 GeV [21].
In Fig. 3 we present results for the massive bulk-to-

boundary propagator ϕMJ;τ
ðQ2 þM2

M; zÞ as a function of
Q2 and J at fixed values of z ¼ 1 and z ¼ 2 GeV−1, for
leading twist τ ¼ 2. Figure 3 shows that increasing z leads
to a more suppressed behavior of the ϕMJ;τ

ðQ2 þM2
M; zÞ, as

expected.
Next we check that the boson bulk-to-boundary propa-

gator with arbitrary J, dual to gauge bosons or mesons,
produces the correct power scaling of hadronic form factors
FðQ2Þ ∼ 1=Q2ðτ−1Þ at large Euclidean values of Q2 ¼ −q2.

FIG. 1. 3D plots of the massless boson bulk-to-boundary propagators as functions ofQ2 and z, which are dual to massless gauge fields
with J ¼ 1 and J ¼ 2: V1ðQ2; zÞ (left panel), ratio R21ðQ2; zÞ ¼ V2ðQ2; zÞ=V1ðQ2; zÞ (right panel).

FIG. 2. 3D plots of the massive bulk-to-boundary propagators ϕMJ;τ
ðQ2 þM2

M; zÞ as functions ofQ2 and z, dual to massive mesons at
fixed value of the leading twist τ ¼ 2 for specific mesons: (a) pion with J ¼ 0 and Mπ ¼ 0.13957 GeV (left-upper panel), (b) ρ meson
with J ¼ 1 and Mρ ¼ 0.7665 GeV (right-upper panel), (c) a2 meson with J ¼ 2 and Ma2 ¼ 1.3186 GeV (left-bottom panel), (d) ω3

meson with J ¼ 3 and Mω3
¼ 1.67 GeV (right-bottom panel).

BULK-TO-BOUNDARY PROPAGATORS WITH ARBITRARY TOTAL … PHYS. REV. D 108, 054030 (2023)

054030-5



In particular, we derive the master formulas for the transition
meson and baryon form factors FVJMτ1

Mτ2
ðQ2Þ and

FVJBτ1
Bτ2

ðQ2Þ, which are produced by the integral over

the holographic coordinate z of the product of the bulk-to-
boundary propagator VJðQ2 þM2; zÞ (off-shell SM or NP
bosons with quantum number J) or ϕMJ;τ

ðQ2 þM2
M; zÞ (off-

shell meson with quantum numbers J and τ) and two hadron

wave functions with arbitrary leading twists τ1 and τ2:
meson ϕMτ1

ðzÞ and ϕMτ2
ðzÞ, or baryon ϕBτ1

ðzÞ and ϕBτ2
ðzÞ

wave functions, respectively [3,5–8].
First, we consider the case of a meson transition form

factor induced by off-shell SM or NP bosons, which in the
soft-wall AdS/QCD model is given by [3,5,8]

FVJMτ1
Mτ2

ðQ2Þ ¼ gVJMτ1
Mτ2

Z
∞

0

dzVJðQ2 þM2; zÞϕMτ1
ðzÞϕMτ2

ðzÞ;

¼ gVJMτ1
Mτ2

Γ
�
J þ τ1þτ2

2
− 1
�

ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðτ1 − 1ÞΓðτ2 − 1Þp B

�
aðM2Þ þ J;

τ1 þ τ2
2

− 1

�
; ð25Þ

where gVJMτ1
Mτ2

is the normalization constant, fixed by
gauge invariance, from data or from phenomenological
approaches. Equation (25) can be also used for the
description of the coupling of an off-shell meson with
total angular momentum J with two mass-shell mesons
with leading twists τ1 and τ2. In the soft-wall AdS/QCD
model, the form factor (25) for the case J ¼ 1 was
calculated for the first time in Ref. [15].
It can be seen that all the Q2 dependence of the form

factor FVJMτ1
Mτ2

ðQ2Þ is encoded in the beta function.

Therefore, the large Q2 behavior of FVJMτ1
Mτ2

ðQ2Þ is
defined by the corresponding behavior of the beta function.
At large Q2 ≫ M2 the form factor FVJMτ1

Mτ2
ðQ2Þ has the

scaling independent on J,

FVJMτ1
Mτ2

ðQ2Þ ∼ 1

Q2ðτ1þτ2
2

−1Þ : ð26Þ

The J dependence only remains in the coupling constant
gVJMτ1

Mτ2
and the factor

ΓðJ þ τ1þτ2
2

− 1Þ
ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðτ1 − 1ÞΓðτ2 − 2Þp : ð27Þ

In the special case τ1 ¼ τ2 ¼ τ we reproduce the result
dictated by quark counting rules [18]

FVJMτMτ
ðQ2Þ ∼ 1

Q2ðτ−1Þ : ð28Þ

Next, by analogy with the meson case, we derive a baryon
transition form factor induced by off-shell SM or NP bosons
and two on-shell baryons. In the case of two on-shell
baryons one should take into account that the baryon
AdS spinors are decomposed into two solutions: right-

handed ϕðrÞ
Bτ
ðzÞ and left-handed ϕðlÞ

Bτ
ðzÞ chiral eigenstates

[6–8,10,12]. Here, the leading twist of baryon field τ is
related to the angular orbital momentum L as τ ¼ 3þ L,
e.g., for L ¼ 0 baryons (e.g., nucleons with JP ¼ 1

2
þ and Δ

isobars with JP ¼ 3
2
þ) the leading twist equals to τ ¼ 3. For

fixed internal spin S the total angular momentum J runs
from jL − Sj to jLþ Sj. Therefore, by changing the value of

FIG. 3. 2D plots of the massive bulk-to-boundary propagators ϕMJ;τ
ðQ2 þM2

M; zÞ as functions of Q2 and J ¼ 0, 1, 2, 3,
dual to massive mesons at fixed values of the leading twist τ ¼ 2 and holographic coordinate: z ¼ 1 GeV−1 (left panel),
z ¼ 2 GeV−1 (right panel).
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L we can generate the solutions for baryonic wave functions
with any required value of total angular momentum-parity
JP. In the soft-wall AdS/QCD approach the baryon wave
functions with specific leading twist have definite relations
with the corresponding meson wave functions. In particular,

the baryon wave function ϕðrÞ
Bτ
ðzÞ coincides with the meson

wave function ϕMτ
ðzÞ, while ϕðlÞ

Bτ
ðzÞ is related to ϕðrÞ

Bτ
ðzÞ as

ϕðlÞ
Bτ
ðzÞ ¼ ϕðrÞ

Bτþ1
ðzÞ. In particular [8],

ϕðrÞ
Bτ
ðzÞ≡ ϕMτ

ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Γðτ − 1Þ

s
κτ−1zτ−3=2e−κ

2z2=2;

ϕðlÞ
Bτ
ðzÞ≡ ϕðrÞ

Bτþ1ðzÞ ¼
ffiffiffiffiffiffiffiffiffi
2

ΓðτÞ

s
κτzτ−1=2e−κ

2z2=2: ð29Þ

The form factors describing the coupling of an external
boson field with total angular momentum J and two

baryons with leading twists τ1 and τ2 and specific handed-
ness (r) or (l) are calculated [6,8] by analogy with the case
of meson form factors (25). Then we get the following
expression using this analogy, with the resulting formula
looking very similar:

F
VJB

ði1Þ
τ1

B
ði2Þ
τ2

ðQ2Þ ¼ g
VJB

ði1Þ
τ1

B
ði2Þ
τ2

Z∞
0

dzVJðQ2 þM2; zÞ

× ϕði1Þ
Bτ1

ðzÞϕði2Þ
Bτ2

ðzÞ; ð30Þ

where g
VJB

ði1Þ
τ1

B
ði2Þ
τ2

and i1; i2 ¼ l, r are the normalization

constants, which are introduced by analogy with the case of
the meson form factors.
By analogy with the meson case we get for

F
VJB

ði1Þ
τ1

B
ði2Þ
τ2

ðQ2Þ:

F
VJB

ðrÞ
τ1
BðrÞ
τ2

ðQ2Þ ¼ g
VJB

ðrÞ
τ1
BðrÞ
τ2

ΓðJ þ τ1þτ2
2

− 1Þ
ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðτ1 − 1ÞΓðτ2 − 1Þp B

�
aðM2Þ þ J;

τ1 þ τ2
2

− 1

�
;

F
VJB

ðrÞ
τ1
BðlÞ
τ2

ðQ2Þ ¼ g
VJB

ðrÞ
τ1
BðlÞ
τ2

ΓðJ þ τ1þτ2−1
2

Þ
ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðτ1 − 1ÞΓðτ2Þ
p B

�
aðM2Þ þ J;

τ1 þ τ2 − 1

2

�
;

F
VJB

ðlÞ
τ1
BðrÞ
τ2

ðQ2Þ ¼ g
VJB

ðlÞ
τ1
BðrÞ
τ2

ΓðJ þ τ1þτ2−1
2

Þ
ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðτ1ÞΓðτ2 − 1Þp B

�
aðM2Þ þ J;

τ1 þ τ2 − 1

2

�
;

F
VJB

ðlÞ
τ1
BðlÞ
τ2

ðQ2Þ ¼ g
VJB

ðlÞ
τ1
BðlÞ
τ2

ΓðJ þ τ1þτ2
2

Þ
ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðτ1ÞΓðτ2Þ
p B

�
aðM2Þ þ J;

τ1 þ τ2
2

�
: ð31Þ

At large Q2, the form factors F
VJB

ði1Þ
τ1

B
ði2Þ
τ2

ðQ2Þ scale as

F
VJB

ðrÞ
τ1
BðrÞ
τ2

ðQ2Þ ∼ 1

Q2ðτ1þτ2
2

−1Þ ;

F
VJB

ðrÞ
τ1
BðlÞ
τ2

ðQ2Þ ∼ F
VJB

ðlÞ
τ1
BðrÞ
τ2

ðQ2Þ ∼ 1

Q2ðτ1þτ2−1
2

Þ
;

F
VJB

ðlÞ
τ1
BðlÞ
τ2

ðQ2Þ ∼ 1

Q2ðτ1þτ2
2

Þ : ð32Þ

Note that the left-handed baryon wave function produces an

extra 1=
ffiffiffiffiffiffi
Q2

p
falloff. In the limiting case τ1 ¼ τ2 ¼ τ we

reproduce the result dictated by the quark counting rules
[18] for the F

VJB
ðrÞ
τ1
BðrÞ
τ2

ðQ2Þ form factor

F
VJB

ðrÞ
τ BðrÞ

τ
ðQ2Þ ∼ 1

Q2ðτ−1Þ : ð33Þ

The other three form factors have extra 1=
ffiffiffiffiffiffi
Q2

p
and 1=Q2

falloff, respectively,

F
VJB

ðlÞ
τ BðrÞ

τ
ðQ2Þ ∼ F

VJB
ðrÞ
τ BðlÞ

τ
ðQ2Þ ∼ 1

Q2ðτ−1=2Þ ;

F
VJB

ðlÞ
τ BðlÞ

τ
ðQ2Þ ∼ 1

Q2τ : ð34Þ

Next we derive analytical expressions for the form
factors describing the direct coupling of three hadrons
induced by an off-shell meson with quantum numbers J
and τ and two on-shell hadrons (two mesons or two
baryons) with twists τ1 and τ2. As we pointed out before,
the off-shell meson is described by the bulk-to-boundary
propagator ϕMJ;τ

ðQ2 þM2
M; zÞ, while on-shell hadrons by

the corresponding hadronic wave functions with leading
twists τ1 and τ2 defined before in Eqs. (19) and (29).
The coupling of off-shell meson J ≥ 1 with two on-shell

mesons reads
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FMJ;τMτ1
Mτ2

ðQ2Þ ¼ gMJ;τMτ1
Mτ2

Γ
�
τþτ1þτ2

2
þ J− 2

�
ΓðJÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðτ− 1ÞΓðτ1− 1ÞΓðτ2− 1Þp Z1
0

dxxaðM2
MÞþJ−1ð1− xÞτþτ1þτ2

2
−3
�

2

3− x

�τþτ1þτ2
2

þJ−3
; ð35Þ

where gMJ;τMτ1
Mτ2

is the normalization constant. For J ¼ 0 we get

FM0;τMτ1
Mτ2

ðQ2Þ ¼ gM0;τMτ1
Mτ2

Γ
�
τþτ1þτ2

2
− 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðτ− 1ÞΓðτ1 − 1ÞΓðτ2 − 1Þp Z1

0

dxxaðM2
MÞð1− xÞτþτ1þτ2

2
−3
�

2

3− x

�τþτ1þτ2
2

þJ−2
: ð36Þ

AtQ2 → ∞ the form factor (35) is independent on the total
angular momentum J of off-shell meson and scales as

FMJ;τMτ1
Mτ2

ðQ2Þ ∼ 1

ðQ2Þτþτ1þτ2
2

−2
: ð37Þ

The couplings of off-shell mesons with two on-shell
baryons are calculated by analogy with the case of the
three-meson coupling discussed above. We get the follow-
ing relations between three-meson and meson-two-baryon
form factors:

F
MJ;τB

ðrÞ
τ1
BðrÞ
τ2

ðQ2Þ ¼
g
MJ;τB

ðrÞ
τ1
BðrÞ
τ2

gMJ;τMτ1
Mτ2

FMJ;τMτ1
Mτ2

ðQ2Þ; ð38Þ

F
MJ;τB

ðrÞ
τ1
BðlÞ
τ2

ðQ2Þ ¼
g
MJ;τB

ðrÞ
τ1
BðlÞ
τ2

gMJ;τMτ1
Mτ2þ1

FMJ;τMτ1
Mτ2þ1

ðQ2Þ; ð39Þ

F
MJ;τB

ðlÞ
τ1
BðrÞ
τ2

ðQ2Þ ¼
g
MJ;τB

ðlÞ
τ1
BðrÞ
τ2

gMJ;τMτ1þ1Mτ2

FMJ;τMτ1þ1Mτ2
ðQ2Þ; ð40Þ

F
MJ;τB

ðlÞ
τ1
BðlÞ
τ2

ðQ2Þ ¼
g
MJ;τB

ðlÞ
τ1
BðlÞ
τ2

gMJ;τMτ1þ1Mτ2þ1

FMJ;τMτ1þ1Mτ2þ1
ðQ2Þ: ð41Þ

B. Fermion bulk-to-boundary propagator

Next we derive the fermion bulk-to-boundary propaga-
tor, e.g. the corresponding off-shell baryons. As in the
bosons case, first we derive the massless propagator and
then extend it to the finite mass case by analogy with
bosons. The soft-wall AdS/QCD action has been derived in
Ref. [8] for fermions with higher J ≥ 5=2:

SJ ¼
Z

ddxdz
ffiffiffi
g

p
e−φðzÞ

�
i
2
Ψ̄N1���NJ−1=2ðx; zÞϵMa ΓaDMΨN1���NJ−1=2

ðx; zÞ

−
i
2
ðDMΨN1���NJ−1=2ðx; zÞÞ†Γ0ϵMa ΓaΨN1���NJ−1=2

ðx; zÞ − Ψ̄N1���NJ−1=2ðx; zÞ
�
μþ VFðzÞ

�
ΨN1���NJ−1=2

ðx; zÞ
�
; ð42Þ

where ΨN1���NJ−1=2
is the spin-tensor field, g ¼ j det gMN j ¼

e10AðzÞ, μ ¼ ðLþ 3=2Þ=R is the bulk fermion mass,
VFðzÞ ¼ φðzÞ=R is the dilaton field-dependent effective
potential, and DM is the covariant derivative acting on the
spin-tensor field defined as

DMΨN1���NJ−1=2
¼ ∂MΨN1���NJ−1=2

− ΓK
MN1

ΨKN2���NJ−1=2
− � � �

− ΓK
MNJ−1=2

ΨN1���NJ−3=2K

−
1

8
ωab
M ½Γa;Γb�ΨN1���NJ−1=2

: ð43Þ

Here ωab
M and ΓK

MN are the spin and affine connections,
which are defined and related as

ωab
M ¼A0ðzÞðδazδbM−δbzδ

a
MÞ¼ ϵaK

�
∂Mϵ

Kbþ ϵNbΓK
MN

�
: ð44Þ

Γa ¼ ðγμ;−iγ5Þ and Γ0 ¼ γ0 are the Dirac matrices.
Next, decomposing the fermion field in left- and right-

chirality components

Ψμ1���μJ−1=2ðx; zÞ ¼ΨðlÞ
μ1���μJ−1=2ðx; zÞ þΨðrÞ

μ1���μJ−1=2ðx; zÞ;

Ψðl=rÞ ¼ 1∓ γ5

2
Ψ; γ5Ψðl=rÞ ¼ ∓Ψðr=lÞ ð45Þ

and performing the Fourier transformation for theΨðlÞðx; zÞ
andΨðrÞðx; zÞ fields in terms of left- and right-handed bulk-

to-boundary propagators FðlÞ
L ð−q2; zÞ and FðrÞ

L ð−q2; zÞwith
orbital momentum L (lower index) and left (l) and right (r)
chirality (superscript indices)
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Ψðl=rÞ
μ1���μJ−1=2ðx; zÞ ¼

Z
d4q
ð2πÞ4 e

−iqxΨðl=rÞ
μ1���μJ−1=2ðqÞFðl=rÞ

L ð−q2; zÞ;

ð46Þ

we derive the equations of motion for the massless fermion

bulk-to-boundary propagators FðrÞ
L ð−q2;zÞ andFðlÞ

L ð−q2; zÞ:

∂z

�
e−B

ðrÞðzÞ
∂zF

ðrÞ
L ð−q2; zÞ

�
þ e−B

ðrÞðzÞq2FðrÞ
L ð−q2; zÞ ¼ 0;

∂z

�
e−B

ðlÞðzÞ
∂zF

ðlÞ
L ð−q2; zÞ

�
þ e−B

ðlÞðzÞq2FðlÞ
L ð−q2; zÞ ¼ 0:

ð47Þ

Here BðrÞðzÞ ¼ ϕðzÞ − ð2Lþ 1ÞAðzÞ and BðlÞðzÞ ¼ ϕðzÞ−
ð2Lþ 3ÞAðzÞ. The equations of motion and their solutions
for the fermion propagators are similar to those for the boson
propagators (4).We also get the same equations and solutions
for the fermion propagators with lower values of J ¼ 1

2
and 3

2
,

whose actions were already discussed in Ref. [8].
We establish the following relations between the sol-

utions for massless boson and fermion bulk-to-boundary
propagators:

FðrÞ
L ðQ2; zÞ ¼ FðlÞ

L−1ðQ2; zÞ ¼ VLþ1ðQ2; zÞ

¼ 1

ΓðLþ 1Þ
Z∞
0

dyyLe−y
�

y
yþ κ2z2

�
a
: ð48Þ

As in the case of boson propagators, the fermion ones are
also properly normalized:

FðrÞ
L ð0; zÞ ¼ FðlÞ

L ð0; zÞ ¼ FðrÞ
L ðQ2; 0Þ ¼ FðlÞ

L ðQ2; 0Þ ¼ 1;

ð49Þ

and they also vanish at z → ∞. By analogy with the boson
case we include the finite mass M in the fermion bulk-to-
boundary propagator, via the extension Q2 → Q2 þM2.
As application of the fermion bulk-to-boundary propa-

gators, we consider only the case of their duals—off-shell
baryons with quantum numbers of total angular momentum
J and massMB. In particular, we calculate the form factors
describing the coupling of an off-shell baryon with a pair of
on-shell meson and baryon. By analogy with the mesons
case we define the bulk-to-boundary propagator dual to
massive baryon with artbitrary J as the product of the
fermion bulk-to-boundary propagator and baryon wave
function with specific handedness i ¼ l; r:

ϕðiÞ
BL;τ

ðQ2 þM2
B; zÞ ¼ FðiÞ

L ðQ2 þM2
B; zÞϕðiÞ

Bτ
ðzÞ: ð50Þ

In this case we have four possibilities, corresponding to the
two possible handedness of the fermion bulk-to-boundary
propagator and the baryon: (i) right-handed off-shell baryon

couples with right-handed on-shell baryon, (ii) right-handed
off-shell baryon couples with left-handed on-shell baryon,
(iii) left-handed off-shell baryon couples with right-handed
on-shell baryon, and (iv) left-handed off-shell baryon
couples with left-handed on-shell baryon. For these four
possibilities one can produce four types of form factors:

F
B
ði1Þ
L;τ Mτ1

B
ði2Þ
τ2

ðQ2Þ ¼ g
B
ði1Þ
L;τ Mτ1

B
ði2Þ
τ2

Z∞
0

dzϕðiÞ
BL;τ

ðQ2 þM2
B; zÞ

× ϕMτ1
ðzÞϕði2Þ

Bτ2
ðzÞ; ð51Þ

where g
B
ði1Þ
L;τ Mτ1

B
ði2Þ
τ2

are the normalization constants.

Baryon form factors F
B
ði1Þ
L;τ Mτ1

B
ði2Þ
τ2

ðQ2Þ are related to

meson form factors FMJ;τMτ1
Mτ2

ðQ2Þ (35) as

F
BðrÞ
L;τMτ1

BðrÞ
τ2

ðQ2Þ ¼
g
BðrÞ
L;τMτ1

BðrÞ
τ2

gMLþ1;τMτ1
Mτ2

FMLþ1;τMτ1
Mτ2

ðQ2Þ; ð52Þ

F
BðrÞ
L;τMτ1

BðlÞ
τ2

ðQ2Þ¼
g
BðrÞ
L;τMτ1

BðlÞ
τ2

gMLþ1;τMτ1
Mτ2þ1

FMLþ1;τMτ1
Mτ2þ1

ðQ2Þ; ð53Þ

F
BðlÞ
L;τMτ1

BðrÞ
τ2

ðQ2Þ¼
g
BðlÞ
L;τMτ1

BðrÞ
τ2

gMLþ2;τþ1Mτ1
Mτ2

FMLþ2;τþ1Mτ1
Mτ2

ðQ2Þ; ð54Þ

F
BðlÞ
L;τMτ1

BðlÞ
τ2

ðQ2Þ ¼
g
BðlÞ
L;τMτ1

BðlÞ
τ2

gMLþ2;τþ1Mτ1
Mτ2þ1

FMLþ2;τþ1Mτ1
Mτ2þ1

ðQ2Þ:

ð55Þ

At large Q2 these form factors scale as

F
BðrÞ
L;τMτ1

BðrÞ
τ2

ðQ2Þ ∼ 1

Q2ðτþτ1þτ2
2

−1Þ ;

F
BðlÞ
L;τMτ1

BðrÞ
τ2

ðQ2Þ ∼ F
BðrÞ
L;τMτ1

BðlÞ
τ2

ðQ2Þ ∼ 1

Q2ðτþτ1þτ2−1
2

Þ
;

F
BðlÞ
L;τMτ1

BðlÞ
τ2

ðQ2Þ ∼ 1

Q2ðτþτ1þτ2
2

Þ : ð56Þ

For example, for the coupling with leading twist-2 meson
and leading twist-3 baryon, one gets

F
BðrÞ
L;3M2B

ðrÞ
3

ðQ2Þ ∼ 1

Q6
;

F
BðlÞ
L;3M2B

ðrÞ
3

ðQ2Þ ∼ F
BðrÞ
L;3M2B

ðlÞ
3

ðQ2Þ ∼ 1

Q7
;

F
BðlÞ
L;3M2B

ðlÞ
3

ðQ2Þ ∼ 1

Q8
: ð57Þ

As was expected, the left-handed baryon wave function

produces an extra falloff 1=
ffiffiffiffiffiffi
Q2

p
in comparison with the

right-handed one.
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III. CONCLUSION

We proposed an extension of the soft-wall AdS/QCD
model for the calculation of boson and fermion bulk-to-
boundary propagators with arbitrary total angular momen-
tum J. Starting from AdS/QCD actions for boson and
fermion fields with arbitrary J, we derived EOMs for the
massless boson and fermion bulk-to-boundary propagators.
Next we include finite masses of the bulk-to-boundary
propagators by shifting the square of the momentum as
−q2 ¼ Q2 → −q2 þM2 ¼ Q2 þM2, whereM is the mass
of the SM or NP fields or hadrons. Bulk-to-boundary
propagators obey known and required properties of charge
conservation, local limit, and confinement.
The bulk-to-boundary propagators are dual to off-shell

SM (NP) fields or off-shell hadrons. This allows one to
calculate form factors describing the coupling of two on-
shell hadrons (mesons or baryons) with an off-shell SM
(NP) field or hadron. The produced form factors are
consistent, at large Q2, with the constituent counting
rules [18]. In the case of the bulk-to-boundary propagators,
dual to SM (NP) fields, the application of our formalism is
relevant for the values of J ¼ 0, 1, 2. For the case of bulk-to-
boundary propagators dual to off-shell hadrons, we are not
limited by upper values of J, because hadrons (both mesons

and baryons) with higher J have been searched experimen-
tally and predicted or studied in theoretical approaches [21].
According to the Particle Data Group [21], mesons up to
J ¼ 6 and baryons up to J ¼ 15=2 are known.
We derived the set of analytical formulas describing

hadronic form factors with one off-shell and two on-shell
particles. This lead to a unique opportunity to study the off-
shell behavior of hadronic form factors. Therefore it
provides useful insight to lattice QCD and effective field
theories, where direct couplings of hadrons are calculated
from the first principles or provide input parameters for
phenomenological Lagrangians. Our formalism can be
straightforwardly extended for study of hadronic form
factors with two and three off-shell particles.
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