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We analyze how gauge fixing, required by any practical continuum approach to gauge systems, can
interfere with the physical symmetries of such systems. In principle, the gauge fixing procedure, which
deals with the (unphysical) gauge symmetry, should not interfere with the other (physical) symmetries. In
practice, however, there can be an interference which takes two different forms. First, depending on the
considered gauge and on the considered physical symmetry, it might not always be simple or possible to
devise approximation schemes that preserve the symmetry constraints on (gauge-independent)
observables. Second, even at an exact level of discussion, the (gauge-dependent) effective action for
the gauge field, and thus the related vertex functions, may not reflect the physical symmetries of the
problem. We illustrate these difficulties using a very general class of gauge fixings that contains the usual
gauge fixings as particular cases. Using background field techniques, we then propose specific gauge
choices that allow one to keep the physical symmetries explicit, both at the level of the observables and at
the level of the effective action for the gauge field. Our analysis is based on the notion of invariance
modulo gauge transformations. This is not only a convenient framework to discuss symmetries in the
presence of unphysical degrees of freedom, but it also allows one to reinterpret certain aspects of gauge
theories without the need to invoke the conceptually annoying “breaking of gauge symmetry.”
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I. INTRODUCTION

Physical systems are usually characterized by sym-
metries that underlie some of their most basic properties.
Accordingly, any sound formulation of such systems
should make these physical symmetries as explicit as
possible.1 Although this should definitely be the case at
an exact level, this is not always easy to achieve in the
presence of approximations, however.
The situation is even more intricate in the case where the

formulation relies on gauge field theories which contain
unphysical degrees of freedom, and, correspondingly,
unphysical (gauge) symmetries. Most treatments of these
systems require working in a given gauge and, even though
the gauge fixing should in principle not interfere with the
way physical symmetries constrain the observables, it so
happens that, depending on the choice of gauge and
depending on the considered physical symmetries, it is
more or less easy to devise approximation schemes that
make the associated constraints explicit. Moreover, it is
sometimes convenient to work with gauge variant

quantities such as the effective action for the gauge field
or the corresponding vertex functions. In a chosen gauge,
these quantities do not necessarily reflect the physical
symmetries of the problem, not even at an exact level. This
is certainly an inconvenient feature, in particular within
continuum approaches that give primarily access to corre-
lation functions [1–23].
The goal of this work is, first, to identify possible sources

for these difficulties and, second, to use this knowledge in
order to put forward gauge fixings that are more favorable
to the building of symmetry preserving approximations,
both at the level of the observables and at the level of
the effective action/vertex functions for the gauge field.
Although the discussion applies to any type of physical
symmetry, we shall first consider the case of center
symmetry, which is relevant for the study of the confine-
ment/deconfinement phase transition in pure Yang-Mills
(YM) theories at finite temperature. Beyond this particular
application, center symmetry provides in fact a prototype
for how physical symmetries need to be considered in the
presence of unphysical degrees of freedom.
As for the gauge fixing procedure, we shall consider a

rather general formulation which we refer to as gauge fixing
on average and which contains the usual, conditional
gauge fixings as particular limits. Although admittedly a
bit formal, it has the advantage of being more rigorous
than the Faddeev-Popov approach for it allows one to
incorporate possible Gribov copies. Related to this point,
we mention that, beyond the question of approximations,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The term explicit carries here no prejudice on whether the
symmetry is spontaneously broken or not.
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it is often necessary to model the gauge fixing procedure in
the infrared. This can also strongly interfere with the
physical symmetries if the model is constructed within
an arbitrary gauge. The gauges that we shall identify are
also more favorable to the building of symmetry preserving
models of their IR completion.
The paper is organized as follows. The next two sections

introduce the various concepts to be used throughout this
work. In Sec. II, we recall basic knowledge about center
symmetry as a prototype for how, in general, physical
symmetries need to be discussed in the presence of gauge
fields. We pay particular attention to the notion of invari-
ance modulo gauge transformations. In Sec. III, we
introduce the general class of gauge fixings on average,
upon which we base the subsequent analysis. After these
introductory considerations, and using the particular exam-
ple of the Polyakov loop, Sec. IV discusses the physical
symmetry constraints on observables and how approxima-
tions within a generic gauge might violate these constraints.
Section V considers the case of the effective action/vertex
functions for the gauge field and shows that, in general, and
even at an exact level of treatment, the symmetries do not
constrain these objects in a specified gauge but, rather,
connect them to the same objects in another gauge. It
follows for instance that, unless the gauge is chosen
appropriately, the one-point function (obtained from the
minimization of the effective action) cannot be used a priori
as an order parameter for the symmetry at hand. In
Sec. VI, we define the notion of symmetric gauge fixings
for which the constraints on observables should be more
robust to approximations, and for which the above-
mentioned identities connecting the effective action/ver-
tex functions in two different gauges turn into actual
symmetry constraints in that particular gauge. It also
discusses under which conditions a given conditional
gauge fixing can be considered symmetric. Section VII
explicitly constructs symmetric gauge fixings as particular
realizations of background field gauge fixings. Finally, in
Sec. VIII, we compare this approach to the more familiar
one based on self-consistent backgrounds. After some
concluding remarks, the Appendices gather some addi-
tional material. Appendix A provides a general discussion
of physical symmetries in the presence of gauge fields,
beyond the particular example of center symmetry.
Appendix B analyzes the conditions for a given conditional
gauge fixing to be symmetric. Appendix C discusses other
possibleways to construct symmetric gauge fixings,which,
however, turn out to be not as promising as the one based on
background gauges introduced in Sec. VII.
The discussion in this article is mostly centered around

continuum methods. Its extension to the lattice setting is
left for a future work. Every now and then, however, we
shall use the lattice to provide a complementary illustration
of some of the discussed concepts and ideas. Also, as
already mentioned above, our discussion is based on the
notion of invariance modulo gauge transformations.

Beyond the specific application discussed in this work,
it allows one to reinterpret certain aspects of gauge theories
without invoking the somewhat annoying notion of
“broken gauge symmetry”. We illustrate these questions
in Secs. II E, VIII E and VIII F.

II. CENTER SYMMETRY

Center symmetry is a symmetry present in YM theories
at finite temperature [24–29]. It is physical in the sense that
it transforms certain observables such as the Polyakov loop,
see below. Yet, it acts on gauge fields modulo unphysical
(gauge) transformations. Let us see how this comes about
using the particular case of SU(N) YM theories. In what
follows, it will be convenient to see the gauge field Aa

μ as an
element Aμ ≡ Aa

μta of the associated Lie algebra.

A. Action on gauge fields

Center symmetry arises from the observation that, at
finite temperature, the transformations

AU
μ ¼ UAμU−1 þ i

g
U∂μU−1 ð1Þ

that leave the classical action invariant do not all qualify as
symmetries under the functional integral. This is because
the periodic boundary conditions of the gauge field at finite
temperature that restrict the gauge field as

Aμðτ þ β; x⃗Þ ¼ Aμðτ; x⃗Þ; ð2Þ

with τ the Euclidean time and β ¼ 1=T the inverse temper-
ature, impose the following restriction on the SU(N)
transformation field Uðτ; x⃗Þ:

Uðτ þ β; x⃗Þ ¼ ei2πk=NUðτ; x⃗Þ; ð3Þ

with k ¼ 0;…; N − 1, such that the transformed field AU
μ

remains periodic. The corresponding group of transforma-
tions will be denoted G in what follows.
It should be emphasized that, only for the subgroup

G0 < G corresponding to k ¼ 0, do Uðτ; x⃗Þ and Aμðτ; x⃗Þ
have the same boundary conditions and that only these
transformations should be considered as genuine gauge
transformations in the sense of unphysical transformations
that do not alter the state of the system. In contrast,
any element of the complementary set G − G0 ≡
fU∈GjU ∉ G0g should be seen as a physical transforma-
tion that changes the state of the system.2 In particular, it
changes the value of the observable

2The complementary set is also denoted GnG0 sometimes.
Here, we avoid this notation, not to introduce any confusion with
the quotient group G=G0 to be introduced below.
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l≡ hΦ½A�i≡ 1
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0ðτ; x⃗Þta

��
; ð4Þ

known as the Polyakov loop. That l is an observable
follows from the fact that it directly connects to the free
energy F of a static quark source in a thermal bath of
gluons, l ∼ e−βF [30].
The complementary set G − G0 is not a very useful

concept, however, since it does not possess a natural group
structure. To unveil the group structure associated to the
physical transformations, we first label all transformations
U∈G as Uk, with k the integer that determines the phase in
the boundary condition (3). This divides G into N subsets
whichwedenoteUk. The relevance of these subsets is that the
change of the Polyakov loop is the same for any trans-
formation Uk belonging to the same subset Uk. Thus, what
really characterizes the symmetry are not the distinct
elements of G but rather the distinct subsets Uk, the various
transformations Uk belonging to the same subset Uk repre-
senting the same physical transformation of the state of the
system.
In other words, the physical transformations should be

identified with the Uk and the set of all possible physical
transformations is fU0;U1;…;UN−1g. In order to define a
group structure on this set, we notice that the transforma-
tions Uk obey the relation3

UkU0
j ¼ U00

kþj; ð5Þ

where the labels are defined modulo N. We can then
define a group law on the set of physical transformations,
by setting

UkUj ≡ Ukþj: ð6Þ
This is the actual group of physical center transformations.
It is isomorphic to the group of relative integers modulo N,
ZN ≡ Z=NZ, or to the group of the Nth roots of unity,
ZN ≡ fei2πk=Njk ¼ 0;…; N − 1g, or yet to the center of
SU(N), defined as the subgroup of elements of SU(N) that
commute with any element of SU(N).
From Eq. (5), we also see that two transformations

Uk;U0
j ∈G belong to the same subset, and therefore

represent the same physical transformation, if and only
if they are related by and element U0 of G0 as Uk ¼ U0U0

j.
This means that the subsets form equivalence classes under
the relation

Uk ∼U0
j ⇔ ∃U0 ∈G0; Uk ¼ U0U0

j; ð7Þ
and that the set of physical transformations is nothing but
the quotient set G=G0. That it can naturally endowed a

group structure, see Eq. (6), relates to the fact that G0 is a
normal subgroup within G:

∀U0 ∈G0; ∀U∈G; UU0U−1 ∈G0: ð8Þ

The identity element of G=G0 is nothing but the class
generated by the identity element of G and corresponds thus
to G0 itself. The associated physical transformation is just
the identity transformation that does not change the state
of the system, in line with the fact that this class is made of
all the genuine gauge transformations. The other classes
correspond to the nontrivial center transformations.
In a certain sense, G=G0 eliminates the gauge redundancy

within G due to the presence of the subgroup of unphysical
transformations G0. It should be emphasized that the global
gauge transformations (a.k.a. color rotations) belong to G0.
Then, we are here assuming that they also correspond to
redundancies that do not alter the physical state of the
system. We do not have a fully rigorous justification for this
choice, but rather a collection of implications that make this
choice consistent and even useful at an interpretation level.
We shall illustrate them at various instances below.

B. States and gauge-field orbits

A similar discussion applies to the gauge-field configu-
rations which are redundant due to the possibility of
G0-transforming them into one another.
At a classical level,4 a given gauge-field configuration A

can be seen as representing a certain state of the system.
However, since G0 is the group of gauge transformations,
any AU0 with U0 ∈G0 represents the same physical state.
Phrased differently, a physical state is described by a given
G0-orbit A ¼ fAU0 jU0 ∈G0g and any gauge-field configu-
ration belonging to this orbit is an equivalent representation
of that state. By describing the states in terms of G0-orbits,
one eliminates the gauge redundancy associated to a
description in terms of gauge-field configurations, just as
G=G0 removes the gauge redundancy present in G.
Now, since center transformations are physical trans-

formations, it should be possible to represent them directly
on the G0-orbits. To see this, we invoke once again the fact
that G0 is a normal subgroup within G, Eq. (8). From this, it
is easy to see that the action of G on the gauge-field
configurations is in fact an action of G=G0 on the G0-orbits:
given U∈G, it transforms all configurations of a given
G0-orbit into configurations of one and the same G0-orbit.
Moreover, this G0-orbit depends only on the class U to
which belongs the transformation U,5 thereby defining the
action of G=G0 on the G0-orbits. In what follows, we

3This implies in particular that the U0 form a group: the subset
U0 is the aforementioned subgroup G0. We notice also that
U−1

k ∈ UN−k.

4We shall later adapt this discussion at a quantum level,
within a given gauge fixing.

5From now on, we will not display the label k unless a certain
value is meant, i.e. U ≡ Uk and U ≡ Uk for unspecified
k ¼ 0;…; N − 1.
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denote by AU the transformation of a given G0-orbit A
under U ∈G=G0.
Of particular interest for the discussion below are those

states that are invariant under center symmetry. According
to the discussion above, these are represented by G0-orbits
Ac such that

∀U ∈G=G0; AU
c ¼ Ac: ð9Þ

As is easily shown, they correspond to gauge-field con-
figurations Ac such that

∀U ∈G=G0; ∃U∈U; AU
c ¼ Ac; ð10Þ

or, equivalently, such that

∀U∈G; ∃U0 ∈G0; AU
c ¼ AU0

c : ð11Þ
We refer to these configurations as center-symmetric.6

According to our definition, see Eq. (10), the center-
symmetric configurations are invariant only under certain
transformations U in each class U ∈G=G0. Equivalently,
they are invariant under G modulo G0, see Eq. (11).7 A
graphical illustration of these conditions is shown in Fig. 1.
One could wonder why center-invariant configurations

could not be defined by requiring them to be strictly invariant
under G, corresponding to Eq. (11) with U0 ¼ 1. Actually,
such configurations do not exist. This is becauseG0, and thus
G, contains transformations that simply translate some of the
color components of the gauge field and which have then no
fixed point in field space.

C. Weyl chambers

For the discussion below, we will not need to identify all
center-invariant configurations but just any particular con-
figuration that obeys Eq. (10) or (11). In this respect, it is
easy to obtain the center-invariant configurations which are,
in addition, constant, temporal and Abelian, that is

βgAμðτ; x⃗Þ ¼ δμ0rjtj; ð12Þ
where the tj span the commuting or diagonal part of the
color algebra and the rj are the components of a vector
r∈RN−1.
First, one introduces the subgroup G̃ of G that preserves

the particular form (12), and similarly the corresponding
subgroup G̃0 of G0. The transformations of G̃0 can then be
shown to subdivide the space RN−1 into physically equiv-
alent cells known as Weyl chambers, each point of a Weyl

chamber representing one G̃0-orbit [31,32]. The action of
the center symmetry group on the orbits is represented by
transformations of a given Weyl chamber into itself, whose
fixed points represent center-symmetric configurations. In
order to identify these particular transformations, it is easier
to first determine the transformation of the Weyl chamber
under an element of G̃. These are typically transformations
that take the original Weyl chamber into a different one. In a
second step, one uses the transformations in G̃0 to fold the
transformedWeyl chamber back on top of the original Weyl
chamber. Doing so, one unveils how the center symmetry
group acts on a given Weyl chamber and identifies the
center-symmetric configurations of the form (12) [31,32].8

Let us illustrate the previous considerations with some
well-known examples. In the SU(2) case, r∈R and the
action of G̃0 on configurations of the form (12) is generated
by r → −r and r → rþ 4π. Equivalently, it is generated by
r → 4πk − r which correspond to reflection symmetries
with respect to the points 2πk. It follows that R is divided
into the Weyl chambers ½2πk; 2πðkþ 1Þ�, which are all
equivalent to each other from a physical point of view. A
nontrivial center transformation (with phase −1) is repre-
sented by r → rþ 2π. It transforms a given Weyl chamber
½2πk; 2πðkþ 1Þ� into ½2πðkþ 1Þ; 2πðkþ 2Þ� which can be
folded back into the original Weyl chamber using
r → 4πðkþ 1Þ − r. It follows that the corresponding
center transformation acts on ½2πk; 2πðkþ 1Þ� as r →
4πðkþ 1=2Þ − r, that is a reflection with respect to the
center 2πðkþ 1=2Þ of the Weyl chamber, which is then the
center-symmetric point in this Weyl chamber. In practice,

FIG. 1. Schematic representation of two G0-orbits connected by
the gauge class U, with gauge-field configurations A1 ∈A and
A2; A3 ∈AU , so that AU0

2 ¼ A3. On the left side, the orbits are not
center-symmetric, and A1 is connected to A2 and A3 through
elements of U, i.e. AU

1 ¼ A2 and AU0
1 ¼ A3. On the right side, the

two orbits are center-symmetric and thus lie on top of each other,
so that each gauge configuration on A is identified with one
gauge configuration on AU , in this case A1 ¼ A2 ¼ AU

1 , this is
Eq. (10). Then, two gauge configurations are always connected
by a transformation in G0, in this case AU0

1 ¼ A3 ¼ AU0

2 ¼ AU0

1 ,
this is Eq. (11).

6In fact, it is enough that these conditions apply to the
particular class U1 of center transformations corresponding to
the center element ei2π=N , since then they are satisfied for any
other class in G=G0.7We stress that the transformation U0 that enters this equation
depends in general on U and is not necessarily unique.

8We note that the transformation of G̃0 that allows one to fold
back a Weyl chamber that has been transformed by a certain
element U ∈ G̃ is precisely the inverse of a transformation U0

complying with Eq. (11) in the case where Ac belongs to the
original Weyl chamber.
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one can restrict to the fundamental Weyl chamber ½0; 2π�
whose center-symmetric point is π.
In the case of SU(3), the Weyl chambers are equilateral

triangles and the nontrivial center transformations are
represented by rotations by an angle �2π=3 about their
centers which correspond to the center-symmetric points.
This is illustrated in Fig. 2 together with the procedure that
allows one to identify how the center transformations act on
the Weyl chambers. One can restrict to the fundamental
Weyl chamber corresponding to (0, 0), ð2π; 2π= ffiffiffi

3
p Þ and

ð2π;−2π= ffiffiffi
3

p Þ, with the center-symmetric point located
at ð4π=3; 0Þ.

D. Extension to any physical symmetry

As explained in Appendix A, the previous discussion
extends to any physical symmetry that operates on gauge
fields. Thus, in what follows, G denotes any group of
physical transformations modulo gauge transformations,
the actual group of physical transformations being identi-
fied with G=G0.

At finite temperature, when restricting to configurations
of the form (12), one can again make use of the Weyl
chambers. Any physical symmetry corresponds to a certain
transformation of a given Weyl chamber into itself whose
fixed points are the invariant states for this symmetry. In
particular, YM theory is invariant under charge conjuga-
tion: Aμ → −At

μ ≡ AC
μ . In the SU(2) case, this transforma-

tion is an element of G̃0, thus any point of theWeyl chamber
is invariant and charge conjugation invariance imposes no
constraint. In the SU(3) case, in contrast, charge conjuga-
tion is not an element of G0 and the action on a given Weyl
chamber leaves only certain points invariant. Within the
fundamental Weyl chamber, these are the points corre-
sponding to r8 ¼ 0. These results are in agreement with
physical intuition. In the SU(2) case for instance, if one
evaluates the Polyakov loop functionalΦ½A� associated to a
quark, see Eq. (4), for any configuration of the form (12),

one obtains the same result as for the functional Φ½A��
which is associated to an antiquark. In the SU(3) case, in
contrast, one arrives at the same conclusion provided one
restricts, within the fundamental Weyl chamber, to r8 ¼ 0.
We note that this discussion relies crucially on treating
global gauge transformations as redundancies, see the
remark above. Had we not made this assumption, we
would have wrongly discarded configurations that do
actually qualify as charge-conjugation invariant.
Let us finally consider an even simpler example in the

vacuum. Take for instance classical electrodynamics and
consider the vector potential A⃗ðx⃗Þ ¼ ðx⃗ × B⃗Þ=2. It corre-
sponds to a constant magnetic field B⃗ and, thus, to a
translationally invariant physical field. Yet, the vector
potential is not itself translationally invariant, but transla-
tionally invariant modulo a gauge transformation:

A⃗ðx⃗þ aÞ ¼ A⃗ðx⃗Þ þ 1

2
a⃗ × B⃗

¼ A⃗ðx⃗Þ þ ∇!
�
1

2
x⃗ · ða⃗ × B⃗Þ

�
: ð13Þ

Moreover, there is no way to gauge transform this con-
figuration into a configuration which is strictly translation
invariant because the latter would necessarily correspond to
a vanishing magnetic field.

E. A comment on “gauge symmetry breaking”

We insist on the fact that the center-symmetric states
correspond to G0-orbits that are invariant under the action
of G (or G=G0 whose action is the same on the G0-orbits).
However, the gauge-field configurations that make this
orbit are not invariant under the action of G but rather
under the action of G modulo G0. The same occurs for the
charge conjugation invariant states: they correspond to
configurations invariant under Aμ → AC

μ modulo G0 but are
not necessarily invariant under Aμ → AC

μ . In general, the

FIG. 2. Transformation of a Weyl chamber under a center transformation made of a nonperiodic element of G (corresponding to a
translation along one of the edges of the Weyl chamber) followed by two genuine gauge transformations (corresponding to reflections
with respect to the edges of the Weyl chambers). The combination of these transformations leads to a specific geometrical transformation
of the Weyl chamber into itself. We have chosen a point and a particular axis of the Weyl chamber to ease orientation as the Weyl
chamber is transformed. In the first three figures, the blue items represent the transformations that will be applied to the Weyl chamber,
while in the fourth figure, the blue item represents the resulting transformation of the original Weyl chamber into itself, here a rotation by
an angle 2π=3 around its center.
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invariance under a symmetry group at the level of gauge-
field configurations needs always to be understood modulo
possible gauge transformations belonging to G0.
This leads to an interesting interpretation when the

symmetry group under scrutiny is G0 itself. Indeed, any
gauge-field configuration is invariant under G0 modulo G0

and thus the state this configuration represents is invariant
under gauge transformations. This is obvious since the
physical states correspond to the G0-orbits which are
invariant under G0 by construction. Therefore, any
gauge-field configuration, representing a certain G0-orbit,
is compatible with gauge symmetry. This interpretation
complies with the expectation that there should be no way
in which one could conclude to the spontaneous breaking
of a local gauge symmetry [33]. As already mentioned, we
are also assuming that global gauge transformations are
redundancies as well, and, as such, we do not expect them
to be broken. We shall explain in which sense they are not
broken when discussing the Higgs mechanism at the end of
the present section as well as in Sec. VIII F.9

In some approaches to Yang-Mills theories with com-
pactified dimensions, see for instance Ref. [36], a different
point of view is taken in which gauge-field configurations
are classified according to the degree of invariance of the
untraced Polyakov loop under elements of G0. In this case,
it may seem that only certain configurations comply with
gauge symmetry while the other break it in various possible
forms. We believe that a more sound interpretation is the
one that relies on invariance modulo G0 and for which any
configuration is compatible with gauge symmetry in the
extended sense discussed above. In this sense, gauge
symmetry can never be broken. What can happen, however,
is that the system transitions from a state represented by a
G0-orbit that contains configurations that are strictly invari-
ant under some of the elements of G0, to a state represented
by a G0-orbit that contains no such configurations. The
transition between these two types of states could have
observable consequences.
The classification in Ref. [36] is interesting precisely in

this sense and can be given an interpretation in terms of the
Weyl chambers. In the SU(3) case, one can argue that the
configurations of type A in Table I of Ref. [36] correspond
to the vertices of the Weyl chambers, while those of type B

correspond to the edges of the Weyl chambers and finally
configurations of type C correspond to points strictly inside
the Weyl chambers including the center-symmetric points.
The interesting question is whether the system could
transition between any of these configurations. This would
not question our interpretation that a gauge symmetry
cannot be spontaneously broken, in the sense that any of
these configurations is compatible with gauge symmetry as
explained above, but this could leave an imprint on some
observables. To discuss this question further, we need to
leave the classical framework and move to the quantum
framework and in particular specify the gauge fixing. We
shall go back to this question in Sec. VIII.
Similar considerations apply to gauge field theories

coupled to a Higgs field. Since the latter transforms as
φ → U0φ, one could be tempted to associate a nonzero
classical Higgs configuration which minimizes the
(classical) Higgs potential ðφ†φ − v2Þ2, with the breaking
of gauge symmetry. However, any gauge transformation of
φ ¼ v, which also minimizes the potential, is a represen-
tative of the same G0-orbit, which is invariant under G0 by
construction. In this sense, any pair ðA;φÞ is compatible
with gauge symmetry, irrespectively of whether φ ¼ 0 or
φ ≠ 0. Again, a transition from φ ¼ 0 to φ ≠ 0 could leave
an imprint on certain observables, but this would not mean
that gauge symmetry is broken (since the orbit, as a whole,
would remain gauge-invariant) but rather that the system
transitions from a state described by an orbit that contains
configurations of the Higgs field that are strictly invariant
under the considered transformations to a state described by
an orbit that contain no such configurations. We postpone
the discussion of the quantum case to Sec. VIII.

III. GAUGE FIXING

In order to study how the gauge-fixing procedure might
interfere with physical symmetries, let us now introduce a
formal gauge-fixing procedure that contains the usual
procedures as particular cases.

A. Gauge fixing on average

Suppose that we can find a functional ρ½A� such that, for
any configuration A,

0 <
Z
G0

DU0 ρ½AU0 � < ∞: ð14Þ

In other words, the integral of ρ½A� along any G0-orbit
should be nonzero and finite.10 When this condition is met,
we can immediately define another functional

9If the local gauge transformations that are not broken include
transformations that become constant at space-time infinity, then
the global gauge transformation cannot be broken either. This is
because any global gauge transformation can be seen as the
combination of two such local gauge transformations. It is some-
times considered that only the gauge transformations which
become the identity at space-time infinity correspond to redun-
dancies [34,35]. Our point of view in this work is slightly different
since it also considers as redundant any gauge transformation that
can be obtained from the former via a continuous deformation.
This is certainly the case of gauge transformations that become
constant at space-time infinity, but certainly not the case of the
nontrivial center transformations U ∈Uk, with k ¼ 1;…; N − 1.

10We shall assume that such functionals exist although it might
be difficult to construct one explicit example.
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z½A�≡ ρ½A�R
G0
DU0 ρ½AU0 � : ð15Þ

It is such that, for any configuration A,

Z
G0

DU0 z½AU0 � ¼
Z
G0

DU0

ρ½AU0 �R
G0
DU0

0 ρ½ðAU0ÞU0
0 �

¼
Z
G0

DU0

ρ½AU0 �R
G0
DU0

0 ρ½AU0
0
U0 �

¼
Z
G0

DU0

ρ½AU0 �R
G0
DU0

0 ρ½AU0
0 � ¼ 1: ð16Þ

In the first steps, we have used ðAU0ÞU0
0 ¼ AU0

0
U0 , as it can

be checked from Eq. (1), while in the last steps, we have
considered the change of variables U0

0 → U0
0U

−1
0 that

changes neither the integration measure11 DU0
0 nor the

integration domain.
From Eq. (16), we see that the functional z½A� provides a

partition of unity along each G0-orbit. It can then be used to
“fix the gauge.” To this purpose, one rewrites the expect-
ation value of any G0-invariant functional O½A� as

hO½A�i ¼
R
DAO½A�e−SYM½A�R
DAe−SYM½A�

¼
R
DA

R
G0
DU0 z½AU0 �O½A�e−SYM½A�R

DA
R
G0
DU0 z½AU0 �e−SYM½A�

¼
R
G0
DU0

R
DAU0z½AU0 �O½AU0 �e−SYM½AU0 �R

G0
DU0

R
DAU0z½AU0 �e−SYM½AU0 �

¼
R
G0
DU0 ×

R
DA z½A�O½A�e−SYM½A�R

G0
DU0 ×

R
DA z½A�e−SYM½A�

¼
R
DA z½A�O½A�e−SYM½A�R
DA z½A�e−SYM½A� : ð17Þ

In going from the first to the second line, we have used
Eq. (16), while in going from the second to the third line,
we have used the invariance under G0 of the measure, the
observable and the action. Finally, in going from the third to
the fourth line, we have considered the change of variables
A → AU−1

0 . This eventually allows us to factor and cancel
the volume of the gauge group: the redundant summation
over each orbit in the numerator and the denominator of the
first line has been replaced by a nonredundant summation
in which each configuration of a given orbit contributes
only partially, that is with a weight z½A�, to the numerator
and the denominator of the considered observable.

We refer to this type of gauge fixing as gauge fixing on
average.12 The reason why the gauge is “fixed” is that,
contrary to the numerator/denominator in the first line, the
contribution of each orbit to the numerator/denominator in
the last line is finite. In particular, one can extend the
expression in the last line to gauge-variant functionals. Of
course, in the case of observables, the expression in the last
line does not depend on z½A� because we can take the steps
in Eq. (17) backwards. This relies on the fact that z½A� is a
partition of unity along each G0-orbit. We shall come back
to this point below.

B. Conditional gauge fixing

One particular case of gauge fixing on average is that of
conditional gauge fixings corresponding to the choice

ρ½A� ¼ δðF½A�Þ; ð18Þ
where F½A� is known as the gauge-fixing functional
and F½A� ¼ 0 as the gauge-fixing condition. One has in
this case13Z

G0

DU0 ρ½AU0 � ¼
Z
G0

DU0 δðF½AU0 �Þ

¼
X
i

					 det δF½A
U0 �

δU0

				
UðiÞ

0
ðAÞ

					
−1

; ð19Þ

where UðiÞ
0 ðAÞ∈G0 is a solution to the gauge-fixing

condition on the G0-orbit of A, that is F½AUðiÞ
0
ðAÞ� ¼ 0.

The functional z½A� is then

z½A� ¼ δðF½A�ÞP
i

			 det δF½AU0 �
δU0

			
UðiÞ

0
ðAÞ

			−1 : ð20Þ

In order for the right-hand side of Eq. (19) to comply with
the left constraint of Eq. (14), we need to assume that each

11The Haar measure can be taken right-invariant.

12At our formal level of treatment, we are not interested in the
practicality of the gauge-fixing procedure, such as the possibility
of formulating it as a local renormalizable field theory, the
absence of a sign problem, and so on. Of course, these consid-
erations are important in practice.

13The notation in the second line of Eq. (19) is somewhat
formal. A more explicit form can be obtained by locally
considering a chart U0ðθÞ and performing the integral of
δðF½AU0ðθÞ�Þ with respect to θ while taking into account the Haar
measure expressed in these variables. The simplest choice is to
use a local chart eiθ

ataUðiÞ
0 ðAÞ in the vicinity of each of the

UðiÞ
0 ðAÞ, with trtatb ¼ 1. In this case, the Haar measure

detabtr
∂e−iθ

ctc

∂θa
∂∂eiθ

dtd

∂θb

			
θ→0

¼ detabtrtatb ¼ detabδab ¼ 1

contributes trivially and the derivative in the RHS of Eq. (19)

needs to be interpreted as δF½ðAUðiÞ
0
ðAÞÞeiθata �=δθbjθ→0.
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G0-orbit is intersected at least once by the gauge-fixing
condition. This is a natural assumption since otherwise the
gauge-fixing condition could miss configurations that
might be important for certain observables. On the other
hand, having Gribov copies along each orbit [37], that is

more than one UðiÞ
0 ðAÞ for each A, is not a problem at this

formal level of discussion.14 We shall only assume that the
sum over copies in Eq. (19) is finite, in order to fulfill the
right constraint in Eq. (14).

C. Serreau-Tissier gauge fixing

In the presence of Gribov copies, there exist in fact
many other implementations of conditional gauge fixings
as gauge fixings on average. Indeed, one can choose
ρ½A� ¼ w½A�δðF½A�Þ provided that

X
i

w½AUðiÞ
0
ðAÞ�
					 det δF½A

U0 �
δU0

				
UðiÞ

0
ðAÞ

					
−1

ð21Þ

is nonzero and finite. Noticing that det δF½AU�=δU is
only a functional15 Δ½AU� of AU, one can even choose
ρ½A� ¼ w½A�Δ½A�δðF½A�Þ with the condition thatX

i

w½AUðiÞ
0
ðAÞ�s½AUðiÞ

0
ðAÞ� ð22Þ

is nonzero and finite, with s½AUðiÞ
0
ðAÞ� the sign of the

Faddeev-Popov determinant on the Gribov copy UðiÞ
0 ðAÞ.

This particular choice leads to the class of Serreau-Tissier
gauge fixings [38].16

D. Case without Gribov copies

While we remain at a formal level of discussion, we can
also consider the case without Gribov copies, that is the

case where there is only oneUðiÞ
0 ðAÞ for each A. In this case,

the various implementations of the conditional gauge fixing
associated to a given gauge-fixing condition F½A� boil
down to17

z½A� ¼ δðF½A�Þ
					 det δF½A

U0 �
δU0

				
U0¼1

					: ð23Þ

We could restrict the functional derivative toU0 ¼ 1 thanks
to the presence of the delta function and the assumption that
there is only one configuration obeying the gauge-fixing
condition on each orbit.

IV. OBSERVABLES

We are now prepared to discuss how the gauge fixing
might interfere with physical symmetries. We consider the
case of observables in this section. The next section will be
devoted to the effective action for the gauge field and the
corresponding vertex functions.
Consider a group of physical symmetries G=G0 that is

realized as G at the level of the gauge fields. To these
symmetry transformations are associated constraints on
certain observables that transform simply enough (most
often linearly) under them. The paradigmatic example is
that of the Polyakov loop l

l≡
R
DAΦ½A�e−SYM½A�R
DAe−SYM½A�

; ð24Þ

associated with center-symmetry transformations. Let us
recall how the symmetry constraints emerge in this case,
first without gauge fixing and, then, in the presence of
gauge fixing. We shall then argue why, in the latter case,
approximations can jeopardize the symmetry constraints.

A. Without gauge fixing

With Φ½A� denoting the Polyakov loop functional, see
Eq. (4), we have for any U∈G

Φ½AU� ¼ ei2πk=NΦ½A�; ð25Þ
for some k ¼ 0;…; N − 1 and thus, if the symmetry is not
spontaneously brokenR

DAΦ½A�e−SYM½A�R
DAe−SYM½A�

¼
R
DAUΦ½AU�e−SYM½AU �R

DAUe−SYM½AU �

¼ ei2πk=N
R
DAΦ½A�e−SYM½A�R
DAe−SYM½A�

; ð26Þ

where we have used a change of variables A → AU and then
exploited the invariance of the action18 and of the integra-
tion measure under G together with the transformation
rule (25).

14It becomes a problem when trying to rewrite the associated
gauge fixing as a tractable functional integral.

15This is because of the interpretation of δF½AU�=δU discussed
in a previous footnote.

16The original idea [38] involved a functional w½A� that
allowed for a local formulation. However, this requires the use
of the “replica trick” which is not void of subtleties.

17In the usual Faddeev-Popov gauge fixing, one assumes that
this formula is valid even for functionals F½A� presenting Gribov
copies. One also removes the absolute value around the Faddeev-
Popov determinant. Although these approximations are believed
to make sense in the UV, they are not controlled in the IR. In this
latter case, it is mandatory to extend the Faddeev-Popov pre-
scription. Possible choices include a partial account of the Gribov
copies, as in the Gribov-Zwanziger framework [37,39–41],
or a more phenomenological account, as in the Curci-Ferrari
framework [42,43].

18It is important that the integration domain, here the space of
periodic gauge-field configurations, is not changed by the trans-
formation. This is where it becomes important to restrict to
transformations obeying Eq. (3). Transformations that change the
boundary conditions will also turn out to be useful below.
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One crucial ingredient in these manipulations is that, in
the right-hand side of Eq. (26), and up to a phase factor, we
have been able to reconstruct the same functional integral
as on the left-hand side. Since this integral is nothing but
the one that defines the Polyakov loop, we deduce that
l ¼ 0 when the symmetry is not broken.19

B. With gauge fixing

If we repeat the previous steps in the presence of a
generic gauge fixing on average, we find instead

R
DAΦ½A�z½A�e−SYM½A�R
DAz½A�e−SYM½A� ¼

R
DAUΦ½AU�z½AU�e−SYM½AU �R

DAUz½AU�e−SYM½AU �

¼ ei2πk=N
R
DAΦ½A�z½AU�e−SYM½A�R
DAz½AU�e−SYM½A� :

ð27Þ

In order to complete the argumentation as above, we would
need to show that the functional integral in the right-hand
side is the same as the one in the left-hand side. Of course
the simplest scenario would be that where the gauge fixing
satisfies z½AU� ¼ z½A�. We will come back to this particular
requirement below. In general, however, a generic z½A�,
whose only constraint is to be a partition of unity along
G0-orbits, has no reason to have simple transformation
properties under G. Thus, in order to connect back to l, as
in Eq. (26), one needs to find another strategy.
We then note that the functional zU½A�≡ z½AU� that

appears in the right-hand side of Eq. (27) defines a new
partition of unity along G0-orbits. To verify this we write

Z
G0

dU0zU½AU0 � ¼
Z
G0

dU0z½ðAU0ÞU�

¼
Z
G0

dU0z½AUU0 �

¼
Z
G0

dU0z½AUU0U−1U�

¼
Z
G0

dU0z½ðAUÞUU0U−1 �

¼
Z
G0

dU0z½ðAUÞU0 � ¼ 1: ð28Þ

In obtaining 1 in the last line, we have used Eq. (16)
which is valid for any A and thus in particular for A → AU.
In the last steps, we have also made the change of variables

U0 → U−1U0U which leaves the integration measure as
well as the integration domain invariant.20

Because zU½A� is a partition of unity, it qualifies as a
gauge fixing on average and can be replaced by z½A� in the
average appearing in the right-hand side of Eq. (27) since
this average is an observable. This allows one to complete
the argumentation as in Eq. (26).

C. Approximations

The reasoning in the previous section relies on the
independence of the expectation value of any observable
with respect to the choice of partition of unity. We note,
however, that this requires each orbit to be considered
entirely. In the presence of approximations, which usually
lose contact with the notion of orbit, this property might be
invalidated.
Even though our focus is here on continuum methods, in

order to appreciate the problem further, it is useful here to
imagine how a gauge fixing on average would be imple-
mented on the lattice where one usually evaluates observ-
ables or correlation functions from a certain number of
links. In the presence of a gauge fixing on average z, the
contribution of each link would need to be weighted by
the corresponding value of z. Now, when computing an
observable, because the latter depends only on the gauge
orbits, when evaluating all the links along a given orbit, the
contribution of z would add up to 1, and the result of the
observable would not depend on z. In practice however,
only a subset of links would be considered along a given
orbit and, therefore, z would not add up to 1, leaving a
residual dependence on z in the evaluation of the observ-
able that would compromise the deduction of symmetry
constraints in the presence of approximations.
Of course, the lattice usually does not rely on gauge

fixings on average but rather on conditional gauge fixing,
selecting only one configurations per orbit which suffices to
ensure the gauge-fixing independence of the observable and
thus the symmetry constraints. Unfortunately, continuum
conditional gauge fixing is not equivalent to conditional
gauge fixing on the lattice. For instance, if Gribov copies are
present a rigorous treatment such as the one in Eq. (20) is
more similar to a full-fleshed gauge fixing on average in the
sense that various (infinitely many) configurations should
be selected per orbit in order to ensure the gauge-fixing
independence of the observables. So, the problem prevails.21

19In the broken symmetry case, one needs to perform these
manipulations in the presence of an infinitesimal source coupled to
Φ½A�. The symmetry then imposes relations between the Polyakov
loop in the presence of various choices of the source [31].

20Here we assume that the group measure is left- and right-
invariant. This is the case for instance when the underlying group
is compact. That the integration domain remains invariant relies
on the fact that G0 is a normal subgroup within G.

21The ideal case of continuum conditional gauge fixing without
Gribov copies is the one that resembles most the conditional gauge
fixing on the lattice and one could think that there is no problem in
this case. We shall discuss this issue more specifically in Sec. B 4
and will find that, although the situation is indeed more favorable,
it is not totally obvious that the problem can be evaded.
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The above discussion shows that, in the continuum, it
could be convenient to find particular realizations of the
gauge fixing such that the symmetry under scrutiny is more
explicit (that is without relying on full integration along the
orbits), making it more resistant to approximations. This
will be covered in Sec. VI. Before doing so, let us extend
our discussion of the symmetry constraints to the case of
the effective action for the gauge-field and the correspond-
ing vertex functions.

V. EFFECTIVE ACTION AND VERTEX
FUNCTIONS

So far, we have focused our analysis on observables.
Another quantity of interest is the effective action for
the gauge field and the related vertex functions. In most
continuum approaches, these quantities are simpler to
evaluate. It is thus a question whether it is possible to
study the symmetries and their breaking in terms of them.
An important difference with respect to observables is

that the very definition of the effective action/vertex
functions requires a gauge to be specified. Therefore, these
quantities are usually gauge-variant. Moreover, as we will
see, within a generic gauge, the symmetries do not impose
any constraint on these objects. Rather, they connect them
to similar objects in another gauge. This is true even in the
absence of approximations.

A. Definitions

Let us choose a gauge z½A� and define the generating
functional for connected correlation functions

Wz½J�≡ ln
Z

DAz½A�e−SYM½A�þJ·A; ð29Þ

where

X · Y ≡
Z
x
2 trXμðxÞYμðxÞ: ð30Þ

The effective action Γz½A� is then defined as the Legendre
transform of Wz½J� with respect to the source J:

Γz½A�≡ −Wz½Jz½A�� þ Jz½A� · A; ð31Þ

with Jz½A� the functional inverse of

Az½J�≡ 1

2

δWz

δJt
: ð32Þ

As usual, we have

Jz½A� ¼
1

2

δΓz½A�
δAt : ð33Þ

Let us now analyze the consequences of center symmetry
on the functionals Wz½J� and Γz½A�.

B. Symmetry identity for Wz½J�
Let us proceed as in Eq. (27). Noting that22

J · AU ¼ JU
−1
· Aþ i

g
J · ðU∂U−1Þ; ð34Þ

with JU ≡UJU−1, we write

ln
Z

DAz½A�e−SYM½A�þJ·A

¼ ln
Z

DAUz½AU�e−SYM½AU �þJ·AU

¼ i
g
J · ðU∂U−1Þ þ ln

Z
DAz½AU�e−SYM½A�þJU

−1
·A

¼ i
g
J · ðU∂U−1Þ þ ln

Z
DAzU½A�e−SYM½A�þJU

−1
·A: ð35Þ

We have seen above that zU½A�≡ z½AU� is a partition of
unity and thus qualifies as a gauge-fixing functional. We
thus arrive at

Wz½J� ¼ WzU ½JU
−1 � þ i

g
J · ðU∂U−1Þ: ð36Þ

We stress that Wz½J� depends on z, even at an exact level.
Therefore, the previous identity is in general not a sym-
metry constraint on the generating functional within a given
gauge, but, rather, a relation between the generating func-
tionals in two different gauges, corresponding to z and zU
respectively. Similarly, by taking J-derivatives of Eq. (36),
one deduces relations between the correlation functions in
these two gauges but no particular constraints on the
correlation functions within a given gauge.

C. Symmetry identity for Γz½A�
The previous considerations translate into similar results

for the effective action Γz½A�. First, from Eq. (36), one
deduces that

Az½J� ¼ UAzU ½JU
−1 �U−1 þ i

g
U∂U−1 ¼ AU

zU ½JU
−1 �; ð37Þ

which, upon functional inversion, leads to

Jz½A� ¼ JUzU ½AU−1 �; ð38Þ

22Strictly speaking, this identity applies to the case of center
symmetry. For other symmetry groups G, the identity will be
different but we should assume for simplicity that it takes again
the form of an affine relation involving A.
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and thus

Γz½A� ¼ −Wz½Jz½A�� þ Jz½A� · A
¼ −WzU ½JzU ½AU−1 ��

−
i
g
JUzU ½AU−1 � · ðU∂U−1Þ þ JUzU ½AU−1 � · A

¼ −WzU ½JzU ½AU−1 �� þ JzU ½AU−1 � · AU−1
; ð39Þ

that is

Γz½A� ¼ ΓzU ½AU−1 �: ð40Þ

Once again, because Γz½A� depends on z, this is in general
not a symmetry constraint within a given gauge but, rather,
a relation between the effective actions in two different
gauges corresponding to z and zU respectively. From this
identity, one deduces relations between the vertex functions
in these two gauges but, a priori, no particular constraints
on the vertex functions within a given gauge.
Another consequence of the above is that the minimum

Amin½z� of Γz½A� does not qualify in general as an order
parameter for the symmetry. Indeed, the absence of a
symmetry constraint on Γz½A� prevents one from deducing
that the minimum is invariant under the symmetry in the
case where the minimum is unique (contrary to what
happens for an actual order parameter when the symmetry
is realized in the Wigner-Weyl sense).
All these inconvenient features will find a solution in

Sec. VI once we introduce the notion of symmetric gauge
fixings.

D. Free energy

We stress that, despite the functional Wz½J� being
z-dependent, its zero-source limit Wz½0� should be
z-independent as it corresponds to a physical quantity:
the free-energy of the system. Correspondingly, the value
of Γz½A� at its absolute minimum Amin½z� should be
independent of z23:

0 ¼ δ

δz
Γz½Amin½z��: ð41Þ

This is just the statement that the same physics should be
accessible from any gauge.
Then, at an exact level, the fact that the symmetry is not

explicit on the effective action Γz½A� for a given, generic z,
is not really a problem. Indeed, it is enough that it is explicit
for one particular choice of z. Then, if the symmetry breaks
in that gauge at the level of the effective action, this will

leave an imprint on (the derivatives of) the free energy,
which will then be carried out to any other gauge through
the identity (41). This explains in particular how the
deconfinement transition can occur, at least in principle,
in gauges that preserve color rotation invariance and for
which Amin½z� ¼ 0 at any temperature.
Unfortunately, the identity (41) is difficult to maintain

within an approximation setup.24 This is yet another reason
for looking for gauges where the symmetry is explicit at the
level of the effective action.

VI. SYMMETRIC GAUGE FIXINGS

We now define a class of gauge fixings that make the
symmetry explicit and that solve the issues described in the
previous two sections. We first define this particular class
of gauge fixings within the very generic class of gauge
fixings on average and then specify to the case of condi-
tional gauge fixings.

A. Gauge fixings on average

In Sec. IV B, we have already mentioned that, within a
gauge-fixed context, one way to retrieve the symmetry
constraint on the Polyakov loop would be to find a
functional z½A� that is explicitly invariant under G

∀U∈G; z½AU� ¼ z½A�: ð42Þ

However, we can immediately argue that there is no such
functional. Indeed, if there were, Eq. (42) would be valid
for any U∈G0 and this would immediately imply that z½A�
integrates to infinity along each orbit, invalidating the
assumption that it is a partition of unity.
One could argue that the condition (42) is too strong

since it includes that part of the symmetry that has to do
with unphysical (gauge) transformations and that the good
requirement is rather

∀U∈G − G0; z½AU� ¼ z½A�: ð43Þ

But there again, it is easy to show that elements of G − G0

generate G0, so that Eq. (43) implies Eq. (42) and one ends
up in the same dead end as before.
In fact, the requirement (43) is still too strong. However,

we only need to require that z½A� is invariant under G
modulo G0, that is

23That the limit of zero sources corresponds to an extremum of
Γz½A� follows from the fact that δΓz½A�=δA ¼ 2Jt. That it
corresponds to an absolute minimum follows from the convexity
of Wz½J� which should be guaranteed if z½A� is not too negative.

24In a strict perturbative expansion, in a scheme that does not
depend on z, Eq. (41) is true order by order. However, it is very
often the case that perturbation theory is not applied to Γz½Amin½z��
but rather to Γz½A� in which case Γz½Amin½z�� contains all orders,
some of them only partially, and then Eq. (41) applies only
approximately. Beyond perturbation theory, for instance in the
context of Dyson-Schwinger equations or within the functional
renormalization group framework, it is even more true that
Eq. (41) is not exactly fulfilled by most truncations.
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∀U ∈G=G0; ∃U∈U; z½AU� ¼ z½A�: ð44Þ
Contrary to the previous conditions (42) or (43), there is no
obvious argument to discard this possibility. In Sec. VII, we
shall actually construct explicit realizations of such gauge
fixings using background-based gauge fixings.
For each U appearing in Eq. (44), it is now possible to

perform a similar argumentation as in Eq. (26). One writesR
DAz½A�Φ½A�e−SYM½A�R

DAe−SYM½A�
¼
R
DAUz½AU�Φ½AU�e−SYM½AU �R

DAUe−SYM½AU �

¼ ei2πk=N
R
DAz½A�Φ½A�e−SYM½A�R

DAe−SYM½A�
:

ð45Þ
The important point is that we have now been able to
find a constraint for the Polyakov loop in the gauge z½A�
without ever invoking the partition of unity nature of z½A�
and therefore the notion of orbit. The constraint for the
Polyakov loop in this gauge should then be more resistant
to approximations.
Let us also note that the fact that we were only able to use

certain transformations U in each of the classes U ∈G=G0

is not a limiting factor since all the classes of G=G0 are
represented, allowing us to unveil all the consequences of the
physical symmetryon the correspondingobservables. Inwhat
follows, we denote gauge-fixing functionals obeying Eq. (44)
as zc½A� and we refer to them as symmetric gauge fixings.
It is also important to stress that, within the particular

example of center symmetry, we are, in a sense, following a
“top-down approach,” that is, starting from a very large
group of symmetries G containing redundancies related to
the subgroup G0, we remove these redundancies by con-
sidering the physical group of symmetries G=G0. As we
have argued, it is clear that a given gauge fixing functional
z½A� cannot be invariant under the whole G, but it could be
invariant under certain transformations in each of the
classes of G=G0. In some other cases, instead, one starts
already from a physical group of symmetries T , free of any
redundancies, and it can happen that z½A� is invariant under
T from the start, take for instance the case of translation
invariance in the Landau gauge. In the case where it is not
invariant, it could still happen that, in a sort of “bottom-up
approach,” after enlarging T into a group G≡ T ⋉ G0 that
contains the gauge transformations, the gauge-fixing func-
tional z½A� is found to be invariant under one transformation
in each of the classes of G=G0, transformations which are
not necessarily the original transformations within T , see
Appendix A for more details.

B. Properties

Symmetric gauge fixings are also particular with regard
to the effective action/vertex functions. Indeed, for a
symmetric gauge fixing, the identity (36) relating two gauges

becomes a symmetry constraint within one single gauge:

∀U ∈G=G0; ∃U∈U;

Wzc ½J� ¼ Wzc ½JU
−1 � þ i

g
J · ðU∂U−1Þ; ð46Þ

from which one can deduce corresponding constraints on the
correlation functions in the gauge zc. Similarly, the identity
(40) becomes

∀U ∈G=G0; ∃U∈U; Γzc ½AU� ¼ Γzc ½A�; ð47Þ

from which one can deduce corresponding constraints on
the vertex functions in the gauge zc. These constraints
provide as many potential order parameters for the sym-
metry, see Ref. [44] for a thorough discussion in the SU(2)
and SU(3) cases.
In this case also, the minimum Amin½zc� qualifies as an

order parameter for the symmetry. Indeed, if the minimum
is unique, it needs to satisfy AU

min½zc� ¼ Amin½zc� and, thus, it
can only take specific configurations as given by the fixed
points of these transformations. Any deviation of the
minimum from these fixed points would signal a breaking
of the symmetry.25

Let us stress that working within a gauge where the
effective action is center-symmetric does not necessarily
imply that the confinement/deconfinement transition will
materialize as the deviation of the minimum from its
center-symmetric configuration, see the discussion in
Appendix C. On the other hand, the symmetric gauge
fixings based on symmetric background configurations
which we introduce in Sec. VII seem to allow one to
observe such deviations, and, therefore to probe the
confinement/deconfinement transition. At least, this has
been tested within the context of background Landau
gauges and their infrared phenomenological completion
by means of the Curci-Ferrari model [32,45,46].

VII. SYMMETRIC BACKGROUNDS

So far, we have identified the condition (44) for a gauge
fixing to be symmetric.26 However, we have not yet
constructed any explicit example of such gauge fixings.
We now put forward a particular realization using the family
of background field gauges and the notion of center-
symmetric backgrounds. For other possible strategies, see
Appendix C. As we did above, we focus on the example of

25Note that if the fixed points exist, they have to be
configurations among the center-symmetric configurations in-
troduced in Sec. II B.

26In the case of conditional gauge fixings based on gauge-
fixing conditions F½A� ¼ 0, it is interesting to analyze under
which conditions the associated gauge-fixing functional z½A� is
symmetric. We discuss this question in Appendix B.
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center-symmetry but our discussion can easily be extended to
other symmetries.

A. Background field gauges

In general, background fields allow one to extend certain
gauge fixings characterized by a functional z½A� into classes
of gauge fixings characterized by a family of functionals
zĀ½A� such that zĀ¼0½A� ¼ z½A� and

∀U∈G; zĀU ½AU� ¼ zĀ½A�: ð48Þ

The background Ā should be interpreted as an infinite
collection of gauge-fixing parameters whose specification
selects one particular gauge within the class of gauges. For
these gauge fixings, it follows from Eq. (36) that

∀U∈G; WĀU ½JU� ¼ WĀ½J� −
i
g
J · U−1

∂U; ð49Þ

and, correspondingly,

∀U∈G; ΓĀU ½AU� ¼ ΓĀ½A�: ð50Þ

where we have defined WĀ ≡WzĀ and ΓĀ ≡ ΓzĀ for
simplicity.
These identities should not be mistaken with Eqs. (46)

and (47) however. First, they apply to any transformation
U∈G rather than to certain transformations U in each class
U ∈G=G0. Second, rather than being identities within a
specific gauge, they connect two different gauges, corre-
sponding to Ā and ĀU. In particular, Eq. (48) cannot be
used to deduce symmetry constraints on observables.
Moreover, Amin½Ā� does not qualify in general as an order
parameter for the symmetry and the corresponding vertex
functions in the gauge associated to Ā are not constrained
by the symmetry. Instead, they are related to the corre-
sponding vertex functions in the gauge associated to ĀU.
As we now discuss, interestingly enough, there exist

particular choices of the background Ā for which the gauge
fixing becomes explicitly symmetric and the above iden-
tities turn into symmetry constraints within that gauge.

B. Center-symmetric backgrounds

Mimicking a discussion that we had above, we could start
inquiring about the existence of backgrounds that are
invariant under G. No such backgrounds exists, basically
because the group G is too large. This is consistent with the
fact that this would lead to functionals z½A� that are invariant
under G and which we have already argued not to exist.
Similarly, no choice of background is invariant under G − G0.
But we could look for backgrounds that are invariant

under G modulo G0. These are precisely the configurations
defined in Eqs. (10)–(11) and for which we have given
explicit examples in Sec. II C. We shall refer to these
choices as center-symmetric backgrounds and denote them

as Ā ¼ Āc. It is immediate to check using Eq. (48) that
zĀc

½A� obeys Eq. (44). Therefore, it allows one to deduce
symmetry constraints on observables without relying on the
partition of unity nature of zĀc

½A� and it is more prone to
allow for the building of approximations or models that
keep the symmetry explicit.
Similarly, from Eqs. (10), (49) and (50), we find that

∀ U ∈G=G0, ∃U∈U such that

WĀc
½JU� ¼ WĀc

½J� − i
g
J · U−1

∂U; ð51Þ

and

ΓĀc
½AU� ¼ ΓĀc

½A�: ð52Þ

Thus, the effective action ΓĀc
½A� reflects the center sym-

metry explicitly. In particular, Amin½Āc� qualifies as an order
parameter for the breaking of the symmetry. Similarly, one
expects the vertex functions derived from this effective
action to reflect center-symmetry, and, therefore, to allow
one to test its breaking. Some of these signatures have been
already identified in Refs. [47,48] for the SU(2) and SU(3)
cases, and will be more thoroughly discussed in a future
work [44]. Of notable importance is the fact that the zero-
momentum SU(2) propagator in the center-symmetric
Landau gauge diverges at the transition [47].

C. Constant background fields

We stress that any choice of center-symmetric back-
ground is equally good. In particular, we may consider
center-symmetric backgrounds of the form

βgĀμðτ; x⃗Þ ¼ δμ0r̄jtj; ð53Þ

with the r̄j taking center-symmetric values which we
discussed in Sec. II C but which we leave unspecified in
what follows. One benefit of this choice is that there is an
additional symmetry that can be exploited. More precisely,
color rotations of the type Uθ ≡ expfiθjtjg∈G0 leave the
background (53) invariant. Then, Eq. (50) turns into the
symmetry constraint

∀ θ; ΓĀ½AUθ � ¼ ΓĀ½A�: ð54Þ

The numerous consequences of this symmetry have been
discussed in Ref. [48]. In particular, the symmetry (54) is a
continuous symmetry with associated Noether charges. For
fields in the adjoint representation, these are the adjoint
charges ½tj; �.
To make this symmetry and the conservation rules

explicit, it is convenient to decompose all the adjoint fields
along a basis tκ that diagonalizes all these charges simulta-
neously. This is known as a Cartan-Weyl basis:
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½tj; tκ� ¼ κjtκ: ð55Þ

The labels κ are to be seen as real-valued vectors in a space
isomorphic to the commuting subalgebra. They are of
two types. First, any tj qualifies itself as a tκ with κ ¼ 0. To
distinguish between the various tj, we shall write instead
κ ¼ 0ðjÞ, which we refer to as zeros. This notational trick is
only needed when κ refers to the label of a generator.27 The
other possible values of κ are (nondegenerate) nonzero
vectors known as roots and denoted α; β;… The set of roots
characterizes the algebra under consideration. In the SU(2)
case for instance, there is one zero and two (one-dimen-
sional) roots,�1. In the SU(3) case, there are two zeros and
six (two-dimensional) roots, �ð1; 0Þ, �ð1=2; ffiffiffi

3
p

=2Þ and
�ð1=2;− ffiffiffi

3
p

=2Þ, see Fig. 3. In what follows, we shall also
refer to the zeros and the roots as the neutral modes and the
charged modes, respectively.

D. Connection to gauges without background

Restricting to backgrounds of the form (53) allows one to
unveil an interesting relation with the gauge zĀ¼0½A� ¼ z½A�
in the absence of background, which we now describe.
So far, we have restricted to transformations U∈G that

preserve the periodicity of the gauge-field configurations.
Very often, however, the relation (48) applies to more
general transformations that modify the boundary condi-
tions. In particular, for configurations of the form (53), it is
interesting to consider the transformation

Ur̄ðτÞ≡ e−i
τ
βr̄

jtj : ð56Þ

It is such that

βg ĀUr̄
μ ¼ Ur̄ βg ĀμU−1

r̄ þ iβUr̄∂μU−1
r̄

¼ δμ0Ur̄r̄jtjU−1
r̄ − δμ0Ur̄r̄jtjU−1

r̄ ¼ 0: ð57Þ
It follows that

zĀ½A� ¼ zĀUr̄ ½AUr̄ � ¼ z0½AUr̄ �: ð58Þ
This relates the background gauge fixing zĀ½A� over the
space of periodic gauge-field configurations to the corre-
sponding gauge fixing in the absence of background but
over the space of gauge-field configurations that are theUr̄-
transformed of periodic configurations. We refer to these
configurations as background-twisted configurations.
To unveil the nature of the background-twisted configu-

rations, let us consider an adjoint periodic field which we
decompose along a Cartan-Weyl basis, φðτÞ ¼ φκðτÞtκ,
with φκðτ þ βÞ ¼ φκðτÞ. Under the action of Ur̄, we have

28

φr̄ðτÞ≡Ur̄φðτÞU−1
r̄ ¼ e−i

τ
βr̄

j½tj;�φðτÞ
¼ φκðτÞe−iτβr̄j½tj;�tκ ¼ e−i

τ
βr̄

jκjφκðτÞtκ; ð59Þ

so that φκ
r̄ðτÞ ¼ e−i

τ
βr̄

jκjφκðτÞ. Then,

φκ
r̄ðτ þ βÞ ¼ e−i

τþβ
β r̄jκjφκðτ þ βÞ

¼ e−ir̄
jκje−i

τ
βr̄

jκjφκðτÞ ¼ e−ir̄
jκjφκ

r̄ðτÞ: ð60Þ

It follows that the background-twisted configurations are
periodic modulo a phase factor e−ir̄

jκj. We have thus found
that the neutral modes remain periodic while the charge
modes are periodic modulo a phase factor e−ir̄

jαj.
One can now follow the same steps that lead to Eq. (49),

the only difference being that the integration domain under
the functional integral is changed under the change of
variables A → AUr̄ . We then find

Wtwisted
Ā¼0

½JU� ¼ Wperiodic
Ā

½J� − J0
βg

r̄jtj: ð61Þ

In particular, the one-point functions are related by

Atwisted
min;μ ½Ā ¼ 0� ¼ Amin;μ½Ā� −

δμ0
βg

r̄jtj: ð62Þ

Similar relations apply to correlation functions and also to
vertex functions. Of particular interest for us is the choice
of a center-symmetric background r̄ ¼ r̄c. In this case,
Eq. (62) rewrites

Atwisted
min;μ ½Ā ¼ 0� ¼ Amin;μ½Āc� −

δμ0
βg

r̄jctj: ð63Þ

1/2 1

3 /2

FIG. 3. Root diagram of the su(3) algebra.

27In equations where it does not play the role of a label, κ is a
mere vector and, therefore, 0ðjÞ can be replaced by 0. This should
always be clear from the context.

28We could also include the possibility of an affine term
i=gUr̄∂U−1

r̄ in the transformation of the field but this would not
change our conclusion below regarding the boundary conditions
of the transformed field.
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Since Amin;μ½Āc� is an order parameter, we conclude that
Atwisted
min;μ ½Ā ¼ 0� is also an order parameter, computed in a

gauge without background but in the presence of twisted
boundary conditions.
The previous considerations are very useful in regard to a

possible implementation of symmetric gauges Ā ¼ Āc
on the lattice. Basically, any implementation of a no-
background gauge could in principle be adapted into a
symmetric gauge by just changing the periodic boundary
conditions into twisted boundary conditions. Work in
this direction is currently in progress and could
potentially bring some interesting twist to state-of-the-art
calculations [49–55].

VIII. SELF-CONSISTENT BACKGROUNDS

Before concluding, let us compare the strategy discussed
in Sec. VII, based on the use of center-symmetric back-
grounds and the minimization of the corresponding center-
symmetric effective action ΓĀc

½A�, to the usual strategy
based on the minimization of the background effective
action (whose definition we recall below) and the asso-
ciated self-consistent backgrounds.

A. Background field effective action

Recall that the problem with generic backgrounds (or
more generally with generic gauge fixings) is that Eq. (50)
is not a symmetry constraint on the effective action in
that gauge. In particular, the corresponding minima are not
order parameters. To cope with this, one frequently
introduces the functional [31,32,56–59]

Γ̃½Ā�≡ ΓĀ½A ¼ Ā�; ð64Þ

known as the background field effective action. It is
immediate to show that

∀U∈G; Γ̃½ĀU� ¼ Γ̃½Ā�: ð65Þ

Unlike Eq. (50) which relates two functionals, Eq. (65) is a
symmetry identity on a unique functional, Γ̃½Ā�. The
minima of this functional could then play the role of order
parameters, just as the minima of ΓĀc

½A�. There are,
however, a few subtleties that need to be discussed before
qualifying the minima of Γ̃½Ā� as order parameters. These
subtleties relate to the fact that, unlike ΓĀc

½A�, the functional
Γ̃½Ā� is not a Legendre transform.
First of all, no matter what phase the system is in, Γ̃½Ā�

always admits infinitely many minima. This is because, as a
consequence of Eq. (65), Γ̃½Ā� is invariant under G0. This
obscures the discussion of physical symmetry breaking
which usually corresponds to the transition between a
Wigner-Weyl phase with one minimum (whose value is
constrained by the symmetry) to a Nambu-Goldstone phase

with degenerate minima (connected to each other by the
symmetry). The problem has a simple fix, however, since
the G0-multiplicity of minima is nothing but the expression
of gauge redundancy. The latter can be gauged away by
defining a background effective action directly on the
background orbits Ā rather than on the background
configurations Ā themselves. More precisely, one defines
Γ̃½Ā�≡ Γ̃½Ā�, with Ā any background configuration belong-
ing to the background orbit Ā.29 In terms of Γ̃½Ā�, the
discussion of symmetry breaking can be done as usual30: in
the Wigner-Weyl phase there will be only one orbit that
minimizes Γ̃½Ā� and this orbit is necessarily invariant in the
sense of Eq. (9); in the Nambu-Goldstone phase, there will
exist various orbits that minimize Γ̃½Ā�, connected to each
other by the symmetry. In general, it might not be so easy to
think in terms of orbits. At finite temperature and for
backgrounds of the form (12), however, a convenient way is
to use the Weyl chambers discussed in Sec. II C.
A more serious difficulty lies in the fact that the

identification of the minima of Γ̃½Ā� as actual states of
the system (in the limit of zero sources) is not direct. As we
recall in the next subsection, this identification relies on the
fact that the minima of Γ̃½Ā� correspond to self-consistent
backgrounds Ās such that

Ās ¼ Amin½Ās�: ð66Þ
Then, they are also minima (with respect to variations of A)
of the Legendre transform ΓĀs

½A� and, as such, qualify as
actual states of the system. Similarly, the free-energy can be
obtained solely in terms of Γ̃½Ā�. Indeed

F ¼ ΓĀs
½Amin½Ās�� ¼ ΓĀs

½Ās� ¼ Γ̃½Ās�: ð67Þ
It follows that one can in principle study all the thermo-
dynamical properties from Γ̃½Ā� and its absolute minima,
the self-consistent backgrounds.
As we will also see below, however, the identification of

the self-consistent backgrounds with the minima of Γ̃½Ā�
relies on the independence of the free-energy with respect
to the choice of Ā:

0 ¼ δ

δĀ
Γ½Amin½Ā�; Ā� ð68Þ

which one can see as a particular case of Eq. (41). As we
have already discussed, this identity might be violated

29For this definition to make sense, Γ̃½Ā� should be the same for
any background configuration Ā belonging to the same orbit Ā.
That this is true is a direct consequence of Eq. (65).

30The discussion is actually slightly more subtle since there
could still exist multiple minimizing orbits in the Wigner-Weyl
phase, see below for one specific example. What matters in the
end is that there exists one symmetry-invariant minimizing orbit
that allows one to identify the Wigner-Weyl phase.
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by approximations or the degree of modeling. This can
potentially introduce artefacts in the study of the deconfine-
ment transition using self-consistent backgrounds which
are a priori not present in the approach that relies on center-
symmetric backgrounds.

B. Self-consistent backgrounds as minima of Γ̃½Ā�
Let us now recall why self-consistent backgrounds

identify with the minima of Γ̃½Ā�. Consider first a self-
consistent background Ās. We can write

Γ̃½Ās� ¼ Γ½Ās; Ās�
¼ Γ½Amin½Ās�; Ās�
¼ Γ½Amin½Ā�; Ā�
≤ Γ½Ā; Ā� ¼ Γ̃½Ā�; ð69Þ

where we have successively made use of Eqs. (64), (66),
(68), the definition of Amin½Ā�, and again Eq. (64). It follows
that Ās is an absolute minimum of Γ̃½Ā�. Reciprocally,
consider a background configuration Āmin that minimizes
Γ̃½Ā� and assume that there exists at least one self-consistent
background Ās. We can write

Γ½Āmin; Āmin� ¼ Γ̃½Āmin�
≤ Γ̃½Ās�
¼ Γ½Ās; Ās�
¼ Γ½Amin½Ās�; Ās�
¼ Γ½Amin½Āmin�; Āmin�; ð70Þ

where we have successively made use of Eq. (64),
the definition of Āmin, followed again by Eq. (64) and
Eqs. (66), (68). It follows that Amin½Āmin� ¼ Āmin which
means that Āmin is self-consistent.31

It is important to stress that this last argument relies
on the existence of at least one self-consistent background.
If the family of background gauges zĀ½A� is such that

zĀ¼0½A� does not break color symmetry explicitly, then
we know that Ā ¼ 0 is self-consistent because we do not
expect color invariance to break spontaneously either,
ensuring that Amin½Ā ¼ 0� ¼ 0 ¼ Ā. We shall comment
further on this point below.
We have thus arrived at a formulation of the thermody-

namical observables that relies only on the minimization of
the functional Γ̃½Ā�. This shows that, for the purpose of
determining the free-energy and the related thermodynam-
ical observables (including the transition temperature),
working with Γ̃½Ā� is equivalent to working with Γ½A; Ā�
and thuswithΓc½A�. In particular, as long as center symmetry
is not broken, one of the minima of Γ̃½Ā� should be located at
the center-invariant configuration Ā ¼ Āc, just as the mini-
mum of Γc½A� should be located at A ¼ Āc. Right above the
transition, the minimum of Γ̃½Ā� and the minimum of Γc½A�
should simultaneously depart from Āc (since the self-
consistent backgrounds are the minima of Γ̃½Ā�) thus
providing two a priori equivalent identifications of the
transition.
Coming back to the presence of a trivial self-consistent

background Ā ¼ 0 at all temperatures, this seems in conflict
with the ability of Γ̃½Ā� of probing the transition. Indeed,
since there should be a minimum of Γ̃½Ā� at the noncenter-
symmetric configuration Ā ¼ 0 at all temperatures, one may
wonder how it is possible to conclude to the presence of a
center-symmetric phase at low temperatures. In fact, what
matters is that, in this range of temperatures, there is another
minimum Ās located at the center symmetric point Āc. That
Ā ¼ 0 is always aminimumof Γ̃½Ā� is expected since, at least
in the absence of approximations or modeling, the free-
energy is background independent and should be equally
computable in the absence of background. This leads
precisely to the fact that Γ̃½Ā ¼ 0�, which is nothing but
the free-energy Γ½Amin½Ā ¼ 0�; Ā ¼ 0� as computed in the
no-background gauge, needs to have the same depth as any
otherminimumof Γ̃½Ā�. Aswewill see below, in the presence
of approximations [which typically break (68)] and even
though Ā ¼ 0 remains a self-consistent background, it is not
anymore a minimum of Γ̃½Ā�, which, in a sense, lifts any sort
of ambiguity regarding the choice of minimum of Γ̃½Ā�.

C. In practice

The equivalence between Γ½A; Ā� and Γ̃½Ā� relies on the
central identity (68). However, as we have mentioned
above, this identity is difficult to maintain in the presence
of the approximations and/or the degree of modeling
required by most approaches. We have already seen that
this compromises the use of Γ½A; Ā�with an arbitrary choice
of Ā, and favors the choice Ā ¼ Āc. From Eqs. (69)
and (70), it becomes clear that this compromises the use
of Γ̃½Ā� as well. Indeed, although Γ̃½Ā� shares similar
properties as Γc½A� with respect to center-symmetry, in

31The previous results can be easily understood from the
following geometrical picture. The collection of pairs
ðAmin½Ā�; ĀÞ defines a submanifold of the space ðA; ĀÞ. If
Eq. (68) holds, this submanifold represents a “flat valley” for
Γ½A; Ā� seen as a functional of both A and Ā. In other words, the
points in this submanifold are minima of Γ½A; Ā� in ðA; ĀÞ-space.
Now, self-consistent backgrounds are just the crossings of this
flat valley with the submanifold ðĀ; ĀÞ. They are then minima of
Γ½A; Ā� in ðA; ĀÞ-space satisfying A ¼ Ā and then minima of
Γ̃½Ā�. Reciprocally, if there exists at least one self-consistent
background, that is one crossing of the flat valley with the
submanifold ðĀ; ĀÞ, then any minimum of Γ̃½Ā� has the same
depth than this self-consistent background and it should then
belong to the flat valley while being such that A ¼ Ā. It is thus a
self-consistent background.
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particular its minima Āmin are also order parameters, the
very rationale for using these minima heavily relies on
(68).32 This implies that, even though Γ̃½Ā� and Γc½A� both
provide favorable frameworks to identify the deconfine-
ment transition, the results for the transition temperature
could differ and the ones based on Γc½A� should be more
reliable.
To date, there is no continuum approach where (68) is

exactly fulfilled and thus where the practical use of Γ̃½Ā� is
entirely justified.33 For instance, there is no rigorous deri-
vation of the Gribov-Zwanziger action for background
gauges at finite temperature. There exist models, such as
the one proposed inRef. [60],which restrict to self-consistent
backgrounds to provide effective descriptions of the
Polyakov loop potential, but they do not necessarily ensure
the background independence of the partition function.34 The
same is true for the background field Curci-Ferrari (CF)
model for which δΓ½Amin½Ā�; Ā�=δĀ vanisheswhen evaluated
for a self-consistent background but does not vanish a priori
for an arbitrary background [32].35 This also applies a priori
to nonperturbative continuum approaches that take as their
starting action the Faddeev-Popov action. The need for a
mass subtraction term [21–23] in order to deal with quadratic
divergences can potentially jeopardize the background inde-
pendence of the partition function.
On the other hand, the approach thatwe are proposing here

does not suffer from this problem. Indeed, being based on the
use of a regular Legendre transform, it does not rely on (68).
Its predictions are then more reliable and, as we have argued
above, potentially testable on the lattice. We mention,
however, that the comparison with lattice results may be
spoiled by other subtleties of the gauge fixing in the
continuum. In particular, with the notable exception of the
Gribov-Zwanziger approach which restricts the functional
integrals to first Gribov region, the continuum gauge fixings
very often do not guarantee the positivity of the gauge-fixed
measure which can potentially spoil the relation between the
limit of zero sources and the minimization of the effective
action and thus the comparison to the lattice.36 The situation
on the lattice is also subtle due to the presence of Gribov
copies that spoils the analyticity of the effective action [62]
and could compromise the testing of certain continuum

properties that rely on derivatives of the effective action. One
such property is precisely the appearance of zero modes in
the inverse SU(2) propagator which in the continuum is
nothing but the Hessian of the effective action. However, if
the analyticity violations are mild enough, one may expect a
signal at the transition, either as a (sharp) peak of the
susceptibility [63], or even a divergence located in the
vicinity of the transition. Gribov copies could have even
more pernicious effects when implementing symmetric
gauge fixings on the lattice but we leave these considerations
for a future study.

D. Vertex functions in the self-consistent approach

We have not yet discussed the vertex functions in the
presence of self-consistent backgrounds. There is a good
reason for this that we would like to clarify now. The point
is that the self-consistency condition (66) possesses various
solutions and, if one wants to define a self-consistent
background gauge, one needs to specify which solution
is chosen (at each temperature).
We have seen for instance that Ā ¼ 0 is always a solution

to (66) in the case where the no-background gauge does not
explicitly break color invariance. There are in fact many
other solutions that one can construct. Indeed, given a
particular solution Ās (which could be Ā ¼ 0), one can
generate infinitely many other solutions by considering ĀU

s

with U∈G.37 All the solutions ĀU
s that stem from a given

Ās could/should be associated to the same gauge since the
corresponding correlation functions are trivially related to
each other (as one deduces by following a similar argument
as in Sec. VII D but with U∈G).38 However, there are
various inequivalent families of solutions ĀU

s . In the
absence of approximations, we expect typically two such
families, the one stemming from Ā ¼ 0 and the one
stemming from Ā ¼ Āc at low temperatures. Since Ā ¼ 0
corresponds already to the no-background gauge, it seems
natural to define the self-consistent background gauge
using the other family of solutions to (66) which we denote
Ās from now on.
Now, because this Ās becomes equal to Āc in the confining

phase, this definition of the self-consistent background gauge
coincides with the center-symmetric gauge in this phase, and
any conclusion about a given vertex function in one gauge
applies to the other gauge as well. For instance, the appear-
ance of a zero-mode in the SU(2) two-point function at Tc in

32We stress here that the problem lies not only in whether
Γ½Amin½Āc�; Āc� gives the same result as Γ½Amin½Ās�; Ās� but also in
whether the self-consistent backgrounds Ās can be identified with
the minima Āmin of Γ̃½Ā� in the first place.

33Besides, were it justified, it would become equivalent to
using Γc½A�.

34For recent new developments, see Ref. [61].
35We are currently investigating a way to cure this problem

within the CF model.
36It should be stressed, however, that the expected generation

of a gluon mass has the capability to suppress contributions
beyond the first Gribov region and thus to maintain to some
extent the relation between the limit of zero sources and the
minimization of the effective action.

37We have seen above that AU
min½Ā� is a minimum of Γ½A; ĀU�. It

follows that ĀU
s ¼ AU

min½Ās� is a minimum of Γ½A; ĀU
s � and thus

ĀU
s is also a solution to (66), as announced.
38In particular, in the phase with broken symmetry where Ās

and ĀU
s (with U a nontrivial center transformation) represent

distinct center vacua, these different versions of the correlation
functions correspond to the vertex functions in each of those
vacua, but should be considered as correlation functions in the
same gauge.
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the center-symmetric gauge (associated to the continuous
natureof the transition in this case) should also be imprinted in
the two-point function evaluated in the self-consistent back-
ground gauge. In contrast, in the deconfined phase, Ās ≠ Āc
and the two gauges are different, so the vertex functions are
expected to be different as well.
The previous discussion is an idealization, however,

since, in the presence of approximations or modeling, the
situation is more delicate. Due to the nonexact fulfilment
of (68), there can appear more families of solutions to (66)
which introduce an ambiguity when defining the self-
consistent background gauge. Within the Curci-Ferrari
model, for instance, it is found that only one such family
corresponds to a minimum of Γ̃½Ā� and it is natural to
choose it as our definition of the self-consistent background
gauge. This is the choice that was made for instance in [63].
Nonetheless, because of the loss of (68) there is no reason
for the minima to be in one-to-one correspondence with the
self-consistent backgrounds and it is found that, in the
range ½T̄c; Tc�, where T̄c and Tc > T̄c denote the transition
temperatures as obtained respectively from Γ̃½Ā� and Γc½A�,
while the minimum of Γ̃½Ā� has already moved away from
Āc, the configuration Ā ¼ Āc is still a self-consistent
background. This implies that the vertex functions in the
explicitly symmetric gauge and in the self-consistent
background gauge, although they should in principle
coincide up until the transition, differ in practice in the
range ½T̄c; Tc�. This explains why the zero-momentummass
defined in [63] never reached zero whereas the one defined
within the explicitly symmetric gauge vanishes [47]. This
adds to the fact that the choice of the explicitly symmetric
gauge should be more sound than that of the self-consistent
Landau gauge.

E. Hosotani mechanism

The self-consistent background framework is also the
one used in Ref. [36] to discuss the Hosotani mechanism. In
Sec. II E, we have already explained that the classification
of phases found in Table I of that reference, and based on a
certain degree of breaking of gauge invariance, is different
from the one that we put forward in this paper and
according to which any gauge-field configuration is com-
patible with gauge invariance, in the sense that the
invariance under a symmetry at the level of gauge-field
configurations needs always to be defined modulo gauge
transformations.
Nevertheless, the classification in Table I of Ref. [36] has

a nice interpretation in terms of the Weyl chambers, each
phase corresponding to either the vertices, edges or interior
of the Weyl chambers. The question is now whether a phase
transition could occur between these various phases. We
stress that this would not affect our interpretation about
gauge symmetry not being broken but this could leave
some imprint on the free-energy in the form of an

irregularity. This question has been investigated within
the Curci-Ferrari model at one- and two-loop order in the
self-consistent background framework and also at one-loop
order within the center-symmetric background framework.
At one-loop order of the self-consistent background

approach, a transition from phase C to phase A is indeed
found above the center-breaking transition. However, it is
also found that this transition is washed out by two-loop
corrections, whereas the center-breaking transition
remains [32]. This seems to indicate that the transition
from phase C to phase A is an artefact of the one-loop
calculation. The situation is even cleaner in the center-
symmetric background framework where no trace of such
type of transition is seen at one-loop order.

F. Higgs mechanism

In the case of the Higgs mechanism, the effective action
within a given gauge writes Γ½A;ϕ�. If the gauge is chosen
not to break global gauge transformations, we may restrict
to A ¼ 0 and define Γ½ϕ�≡ Γ½A ¼ 0;ϕ� with Γ½U0ϕ� ¼
Γ½ϕ� for any constant U0, which, in this work, we interpret
as part of the group G0 of gauge transformations.
The question is now whether a nonzero minimum of Γ½ϕ�

should be interpreted as the breaking of the symmetry, as it
would in the case where Γ½ϕ� corresponds to the effective
action of a physical spin system. As we already discussed in
the classical case, the answer to this question is negative
because, in the case of the gauge system, symmetries
should always be thought modulo gauge transformations
and, in this sense, any configuration, even one with ϕ ≠ 0,
is compatible with the gauge symmetry.
The difference with the usual case of a scalar theory

associated to a physical spin system is that we have here no
way to build a physical source term that would select one
preferred direction for the nonzero ϕ. They can thus be
selected through a modification of the gauge fixing but not
through the use of physical source terms unlike what
happens with physical spin systems. These distinct direc-
tions should be seen as possible gauge choices that would
further reduce the global gauge freedom. This happens for
example in the ’t Hooft gauges, see Ref. [64].
One could still argue that a nonzero ϕ points to the

presence of multiple vacua connected by global gauge
transformations and thus to a Nambu-Goldstone realization
of the symmetry. However, just as we did above for Γ̃½Ā�,
the symmetry Γ½U0ϕ� ¼ Γ½ϕ� allows one to define the
effective action directly on the global orbits Φ ¼
fU0ϕ; withU0 globalg as Γ½Φ�≡ Γ½ϕ� for ϕ∈Φ. From
this perspective, there is always only one vacuum, as given
by the global orbit Φ that minimizes Γ½Φ� and the
symmetry is realized in the Wigner-Weyl sense. Similar
conclusions have been obtained in Refs. [34,35] through
explicit calculations, even though the premises slightly
differ from the ones considered in this work (specially the
fact that we consider color rotations as redundancies).
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Another question that comes to mind is what is the nature
of the quantum state jϕi that would be associated to a
minimum at ϕ ≠ 0. Should one conclude that the system
explores states which violate color neutrality? Not neces-
sarily, as we now speculate. Indeed, for the very same
reason that a given state is described in terms of a global
orbit Φ ¼ fU0ϕ; withU0 globalg that stems from ϕ, what
really would describe the corresponding quantum state
is the collection of all U0jϕi stemming from that
particular jϕi. In a certain sense, this would be a non-
Abelian generalization of the notion of rays in Quantum
Mechanics.39 No matter what phase the system would be in,
the states would be color neutral for the associated rays are
color rotation invariant by construction.40 The nontrivial
question would be how the system could transition from a
phase where the representatives of the ray are themselves
color neutral, to a phase where they are not color neutral.
We leave these interesting questions together with a

thorough investigation of the notion of non-Abelian rays
for a future work. Let us mention, however that this notion
also allows one to lift one ambiguity related to the
definition of the Polyakov loop. The latter is gauge-
invariant. Yet, it seems to be associated to a colored object,
a static test quark. One way to avoid the paradox would be
to associate the Polyakov loop to the corresponding non-
Abelian ray which is color neutral even though its repre-
sentatives are not. In other words, the Polyakov loop is not
associated to a colored object within a particular color state
but, rather, to the corresponding color representation.

IX. CONCLUSIONS

Within the context of non-Abelian gauge theories, we
have investigated the impact of gauge fixing, which
deals with the (unphysical) gauge symmetries of these
theories, on possible other (physical) symmetries. This
impact can take two different forms. First, in the
presence of approximations, the symmetry constraints
on observables are not explicit in all gauges. Second,
with or without approximations, the physical symmetries

are not necessarily explicit at the level of the gauge-fixed
correlation functions.
Using the example of center symmetry at finite temper-

ature, we have analyzed the origin of these inconvenient
features within a very large class of gauges that contains the
well known cases. We have also introduced the notion of
symmetric gauge fixings for which these problems are
absent. In particular, within such gauges, the correlation
functions reflect explicitly the physical symmetry under
scrutiny and can then serve as order parameters for the
potential breaking of the latter. We have shown how to
explicitly construct symmetric gauge fixings from back-
ground gauge fixings andwe have compared our approach to
the standard one based on the use of self-consistent back-
grounds, pointing out the main differences and emphasizing
why our new proposal should be more robust.
Although peculiar to the finite temperature case (or more

generally to situations that involve compact dimensions),
center symmetry possesses already the general features that
allow one to extend the present discussion to other physical
symmetries in the presence of unphysical degrees of
freedom. In this respect, the important notion is that of
invariance modulo gauge transformations. Not only does it
underlie the whole construction in the present work, but it
also allows one to (re-)interpret some of the transitions that
can occur within gauge theories without invoking the
conceptually annoying “breaking of a gauge symmetry”.
This point has been illustrated using various examples.
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APPENDIX A: PHYSICAL SYMMETRIES
AND GAUGE FIELDS

Let us now see how the discussion in the main text
extends to any physical symmetry, beyond the particular
case of center symmetry.

1. Symmetries on field space

Take a formal symmetry group T . Its action on the space
of gauge-field configurations is defined in terms of a
representation. This means that, to each T ∈ T , one
associates a transformation A ↦ AT that reflects the group
structure as

ðAT1ÞT2 ¼ AT2T1 : ðA1Þ

Without loss of generality, we can assume that the so-
obtained group of transformations on field space is in
one-to-one correspondence with the group T , so that it
can be identified with it. If this is not the case from the
start, one can always replace T by its quotient with the

39Note that the physics would not depend on the particular
representative, jϕi or U0jϕi, chosen within the ray. This is
because observables are represented by operators that commute
with gauge transformations and in particular with global gauge
transformations, OU0 ¼ U0O. It follows that

hϕjU†
0OU0jϕi ¼ hϕjU†

0U0Ojϕi ¼ hϕjOjϕi:

In this sense, the non-Abelian color charge states would not be
observable but only the associated color representation. In the
Abelian case, the charge state is observable since it coincides with
the representation and can be associated directly to the rays.

40We are here considering a gauge that respects color rotation
invariance. In a gauge that would break color rotation invariance,
we would have access only to one representative within each ray.
The other representatives would describe the same state in color-
rotated versions of the original gauge.
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(normal) subgroup associated with the identity trans-
formation on field space and the correspondence then
becomes one-to-one.
One example is of course the group of gauge trans-

formations G0. The subgroup of G0 that maps onto the
identity transformation in field space is easily seen to
correspond to constant color rotations of the form
U0 ¼ ei2πk=N1.41 In what follows, we assume that G0 has
been quotiented by this subgroup.

2. The case of physical symmetries

In the case of a physical symmetry, the representation of
T on field space should obey a few additional properties
which we now identify.
Recall first that two gauge-field configurations A and

AU0 related by a gauge transformation U0 ∈G0 represent
one and the same physical state. A physical transformation
T should then be such that AT and ðAU0ÞT also represent the
same state. Therefore, there should exist a gauge trans-
formation U0

0 ∈G0 such that

ðAU0ÞT ¼ ðATÞU0
0 : ðA2Þ

Equivalently, this means that the action of the symmetry
group on field space can equally be seen as an action on the
space of G0-orbits. This is expected because the latter
represent the physical states and, therefore, a physical
symmetry should act directly on them. In other words, to
each T ∈ T , one can associate a transformation A ↦ AT

on the space of G0-orbits.
The condition (A2) is however not enough to character-

ize a physical symmetry group.42 This is because, among
the field space transformations A ↦ AT , there could be
some, other than the one corresponding to the identity of T ,
that coincide with gauge transformations A ↦ AU0 . In this
case, the subgroup of T associated with the identity
transformation on orbit space is nontrivial and, in order
to identify the actual physical symmetry group, one needs
to quotient T by this subgroup.
For instance, in the discussion in the main text, we

started from a group T ¼ G that, although it obeys (A2), is
not physical for it contains a nontrivial subgroup G0 whose
associated transformations on orbit space are all the identity
transformation. The physical symmetry group is then G=G0

in this case.

3. Extension of physical symmetries

In the previous section, we followed a top-down
approach: starting from a group of symmetries that obeyed

the condition (A2), we identified the associated physical
group of symmetries by removing any gauge redundancy.
Sometimes, it is convenient, instead, to consider a bottom-
up approach: starting from a physical symmetry group, one
enlarges it to include all possible gauge redundancies.
The construction is again based on the property (A2).

Since we quotiented G0 by its center, U0
0 is uniquely

determined in terms of A, U0 and T. In what follows,
we assume that it depends only on U0 and T and not on A.
It is shown in this case that U0

0ðU0; TÞ is compatible with
both the group structure of G0 and the group structure of T .
For instance

ðAU0ÞT1T2 ¼ ððAU0ÞT2ÞT1

¼ ððAT2ÞU0
0
ðU0;T2ÞÞT1

¼ ððAT2ÞT1ÞU0
0
ðU0

0
ðU0;T2Þ;T1Þ

¼ ðAT1T2ÞU0
0
ðU0

0
ðU0;T2Þ;T1Þ; ðA3Þ

and so

U0
0ðU0; T1T2Þ ¼ U0

0ðU0
0ðU0; T2Þ; T1Þ: ðA4Þ

Moreover,

ðAU01U02ÞT ¼ ððAU02ÞU01ÞT
¼ ðððAU02ÞTÞU0

0
ðU01;TÞ

¼ ððATÞU0
0
ðU02;TÞÞU0

0
ðU01;TÞ

¼ ðATÞU0
0
ðU01;TÞU0

0
ðU02;TÞ; ðA5Þ

and so

U0
0ðU01U02; TÞ ¼ U0

0ðU01; TÞU0
0ðU02; TÞ: ðA6Þ

In this case, the general theory of semi-direct products of
groups, allows one to enlarge the group T into the semi-
direct product G≡ T ⋉ G0 whose group law is defined as

ðT1; U01ÞðT2; U02Þ ¼ ðT1T2; ðU0
0Þ−1ðU01; T2ÞU02Þ ðA7Þ

and follows from

ðððAU02ÞT2ÞU01ÞT1 ¼ ðððAU02ÞðU0
0
Þ−1ðU01;T2ÞÞT2ÞT1

¼ ðAðU0
0
Þ−1ðU01;T2ÞU02ÞT1T2 : ðA8Þ

One application of this type of extension is that a given
gauge fixing z½A� might not be invariant under the original
physical group T . After extending T into G≡ T ⋉ G0, and
even though z½A� is not invariant under G, it could turn out
to be invariant under certain representatives of each of the
classes of G=G0, that is invariant under T modulo G0.
Take for instance a background gauge in which the

background is the vector potential A⃗ðx⃗Þ ¼ ðx⃗ × B⃗Þ=2,
already discussed in the main text. The gauge fixing is

41Those should not be mistaken with center transformations.
42In fact, the condition also applies to the transformations in

G0: if T is a gauge transformation, we can write ðAU0ÞT ¼ ATU0 ¼
ATU0T†T ¼ ðATÞU0

0 with U0
0 ¼ TU0T†.
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not invariant under the group of translations, but it is
invariant under translations modulo gauge transformations.

APPENDIX B: CONDITIONAL GAUGE FIXINGS

Here, we discuss the specific case of conditional gauge
fixings as given by Eq. (18).43 The question that we would
like to address is under which conditions a given gauge-
fixing functional F½A� leads to a functional z½A�, see
Eq. (15), that is symmetric in the sense of Eq. (44). We
refer to that particular type of conditional gauge fixings as
symmetric conditional gauge fixings.

1. Necessary condition

FromEqs. (15) and (18), we see that a necessary condition
for Eq. (44) to hold true is that δðF½A�Þ and δðF½AU�Þ have the
same support in field-space, with U any of the transforma-
tions appearing in Eq. (44). In other words,

∀U∈G=G0; ∃U∈U; F½A�¼0⇒F½AU�¼0: ðB1Þ
We stress that this condition imposes strong constraints on
the looked-after gauge-fixing functionals F½A� for it means
that the set of gauge-field configurations obeying F½A� ¼ 0
should be invariant under specific (that is not all) trans-
formations U in each class U ∈G=G0.
We also note that, similarly to the discussion in the

previous subsection, a criterion such that

∀U∈G; F½A� ¼ 0 ⇒ F½AU� ¼ 0 ðB2Þ
makes not much sense because it implies that, given a
gauge-field configuration A obeying the gauge-fixing
condition, all the gauge-field configurations in the same
G0-orbit obey the condition as well, in contradiction with
the fact that F½A� should fix the gauge (up to possible
Gribov copies). The same is true for the requirement

∀U∈G − G0; F½A� ¼ 0 ⇒ F½AU� ¼ 0; ðB3Þ
which is easily seen to imply (B2) and thus leads again to a
dead end.

2. Sufficient condition

In the absence of Gribov copies, the condition (B1) is not
only necessary but also sufficient for Eq. (44) to hold true.
Indeed, for any transformation U appearing in Eq. (B1), we
have

ρ½AU� ¼ αðAÞρ½A� ðB4Þ
where αðAÞ depends only on the G0-orbit to which A
belongs and does not vanish on any orbit. It follows that

z½AU� ¼ ρ½AU�R
G0
DU0 ρ½ðAUÞU0 �

¼ ρ½AU�R
G0
DU0 ρ½AU0U�

¼ ρ½AU�R
G0
DU0 ρ½ðAU−1U0UÞU�

¼ αðAÞρ½A�R
G0
DU0 αðAÞρ½AU−1U0U�

¼ ρ½A�R
G0
DU0 ρ½AU0 � ¼ z½A�; ðB5Þ

where we have used that AU−1U0U is in the same G0-orbit
as A and we have performed the change of variables
U0 → UU0U−1.

3. Gribov copies

In the presence of Gribov copies, one needs to add extra
conditions in order to find a necessary and sufficient set of
conditions for Eq. (44) to hold true.
Before finding this set of conditions, let us show the

following useful result, which is in fact valid for any ρ½A�
satisfying (14): z½AU� ¼ z½A� iff Eq. (B4) holds true, with α
possibly depending onU, in addition toA. We have already
shown one side of the equivalence, so let us show the other
one. Assume that z½AU� ¼ z½A�. Then

ρ½AU� ¼ αðA;UÞρ½A� ðB6Þ

with

αðA;UÞ≡
R
G0
DU0 ρ½ðAUÞU0 �R
G0
DU0 ρ½AU0 � ; ðB7Þ

which we still need to show to depend only on the orbit
of A and that it does not vanish on any orbit. To this
purpose, we write

αðAU0
0 ; UÞ ¼

R
G0
DU0 ρ½ððAU0

0ÞUÞU0 �R
G0
DU0 ρ½ðAU0

0ÞU0 �

¼
R
G0
DU0 ρ½AU0UU0

0 �R
G0
DU0 ρ½AU0U0

0 �

¼
R
G0
DU0 ρ½AU0UU0

0
U−1U�R

G0
DU0 ρ½AU0U0

0 �

¼
R
G0
DU0 ρ½AU0U�R

G0
DU0 ρ½AU0 � ¼ αðA;UÞ; ðB8Þ

as announced. That αðAÞ does not vanish follows from the
left condition in (14).

43We shall later discuss the inclusion of a possible weight
functional w½A�.
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We can now determine a set of necessary and sufficient
conditions for (B4). Clearly, if the latter holds true, then
ρ½A� and ρ½AU� have the same support which means
that Eq. (B1) holds true. With this in mind, we can expand
the ρ½A� and ρ½AU� distributions along a given orbit
A ¼ fAU0 jU0 ∈G0g. We find44

ρ½AU0 � ¼
X
i

					 det δF½A
U0 �

δU0

				
UðiÞ

0
ðAÞ

					
−1

δðU0 − UðiÞ
0 ðAÞÞ ðB9Þ

and

ρ½ðAU0ÞU� ¼
X
i

					 det δF½ðA
U0ÞU�

δU0

				
UðiÞ

0
ðAÞ

					
−1

× δðU0 − UðiÞ
0 ðAÞÞ: ðB10Þ

Using Eq. (B4) once more, we find that the ratio			 det δF½ðAU0 ÞU �
δU0

			
UðiÞ

0
ðAÞ

			−1			 det δF½AU0 �
δU0

			
UðiÞ

0
ðAÞ

			−1 ðB11Þ

equals αðA; UÞ and thus does not depend on i.
Reciprocally, if we assume that ρ½A� and ρ½AU� have the
same support and that the ratio (B11) does not depend on i,
it is easily seen that ρ½A� obeys (B4).
We have thus found that the general criterion for a

conditional gauge fixing F½A� ¼ 0 to be symmetric is that
(1) in each class U ∈G=G0, one can find a transformation U
that leaves the set of solutions to F½A� ¼ 0 globally
invariant, and (2) that the ratio (B11) does not depend
on i in the case where Gribov copies are present. In this
latter case, let us also recall that the implementation of the
conditional gauge fixing as a gauge fixing on average can
be more generally done using

ρ½A� ¼ w½A�δðF½A�Þ: ðB12Þ

In this case, the ratio to be considered is

w
h
ðAUðiÞ

0
ðAÞÞU

i
w
h
ðAUðiÞ

0
ðAÞÞ
i
			 det δF½ðAU0 ÞU �

δU0

			
UðiÞ

0
ðAÞ

			−1			 det δF½AU0 �
δU0

			
UðiÞ

0
ðAÞ

			−1 : ðB13Þ

In particular, suppose that one finds a gauge-fixing
functional such that

F½AU� ¼ UF½A�U† ðB14Þ

for a certain U in each class U ∈G=G0. Then

δFa½ðAeiθU0ÞU�
δθb

¼ Uaa0 δF
a0 ½AeiθU0 �
δθb

; ðB15Þ

where Uab is the adjoint representation of U. Since
detU ¼ 1, we have

det
δFa½ðAeiθU0ÞU�

δθb
¼ det

δFa½AeiθU0 �
δθb

ðB16Þ

and the condition (B11) is satisfied. That (B1) applies is
also easily checked. It follows that the gauge-fixing func-
tional z½A� associated to F½A� is center-symmetric. One
explicit example of such type of gauge fixing conditions is
the center-symmetric background Landau gauge [47]

F½A�≡Dμ½Āc�ðAμ − Āc;μÞ ðB17Þ
with Dμ½Ā�≡ ∂μ − i½Āμ; � and Āc and center-symmetric
background.

4. Orbit-dependent transformations

As already mentioned above, the condition (B1) imposes
strong restrictions on the possible gauge fixing functionals
F½A� that lead to a symmetric gauge fixing in the sense
of (44). In fact, it constrains the space of solutions of the
condition F½A� ¼ 0 to be stable under certain transforma-
tions U in each of the classes U ∈G=G0. This means
actually two things: first, the solutions that are found along
one orbit A and along the transformed orbit AU are
pairwise-related by the same transformation U∈U, and
second, if we choose two other orbits Ã and ÃU , the
corresponding solutions to F½A� ¼ 0 are related yet by the
same transformation U.
This condition should not be mistaken with the property

∀U∈G=G0; ∀ AjF½A� ¼ 0; ∃UðAÞ∈U; F½AU� ¼ 0:

ðB18Þ
Although it might look similar to (B1), the condition (B18)
is a mere consequence of the natural assumption that the
gauge fixing condition F½A� ¼ 0 should intersect each G0-
orbit at least once, and, therefore, applies to any sensible
gauge fixing condition, be it symmetric or not.
There is however one case where (B18) implies a

generalized version of (44) that might allow one to make
the symmetry explicit. In the absence of Gribov copies, one
can indeed define an orbit dependent transformation UðAÞ
(not uniquely defined) which connects the configuration in
a given orbit to that in the transformed orbit. Under this
transformation, we can again write

ρ½AUðAÞ� ¼ αðAÞρ½A� ðB19Þ

44Here, δðU0 − V0Þ is a somewhat formal notation for the delta
distribution on the group such that

R
G0
DU0δðU0 − V0Þf½U0� ¼

f½V0�. A more explicit form of Eqs. (B9)–(B10) can be obtained
by locally considering a chart U0ðθÞ on the Lie group manifold
and expressing ρ½AU0ðθÞ� as a sum of δðθ − θðiÞðAÞÞ’s.
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from which we deduce that z½AUðAÞ� ¼ z½A�. Since z½A� is
given by Eq. (23), this rewrites

δðF½AUðAÞ�Þ
				 det δF½ðAUðAÞÞU0 �

δU0

				
U0¼1

				
¼ δðF½A�Þ det

				δF½AU0 �
δU0

				
U0¼1

				: ðB20Þ

It follows that the gauge-fixed functional integrand is
invariant under this orbit dependent transformation.
However, two questions remain to be answered to

qualify this as a symmetry. First, the Jacobian of the
transformation is nontrivial a priori since UðAÞ changes
as one considers infinitesimal variations of the gauge field
that are not taken along the corresponding orbit. This would
need to be investigated further. Another potential problem
is that only the product of the two factors in Eq. (23) is
invariant, and not each factor separately. In practice, these
factors are interpreted very differently, as an integral over
the Faddeev-Popov ghost and antighost fields on the one
hand, and as an integral over the Nakanishi-Lautrup field
on the other hand. The symmetry (B20) might be very
nontrivial in terms of these fields and fragile to approx-
imations (not to mention that the rewriting neglects the
presence of the absolute value around the determinant).
Finally, let us mention that an orbit dependent trans-
formation such as UðAÞ cannot be used a priori to derive
constraints on the generating functionals W½J�=Γ½A� or on
the corresponding correlation/vertex functions. This is
because the transformation depends on the dynamical field
(through the corresponding orbit) which serves as an
integration variable under the functional integral.
Interestingly enough, in the lattice implementation of

conditional gauge fixings (with or without Gribov copies),
it is precisely the property (B18) and, in a certain sense,
also an orbit-dependent transformation, that allows one to
ensure that the symmetry constraints at the level of the
observables are explicit. Indeed, in the case of a conditional
gauge fixing, the lattice selects one copy per orbit. This
allows one to define an orbit dependent transformation
that connects the copy on a given orbit to the copy in
the transformed orbit under a certain U ∈G and, thus to
relate the selected links with compensating values of the
Polyakov loop. For the same reason as above, however,
even on the lattice, the condition (B18) is not enough to
imply symmetry constraints on the vertex functions.

APPENDIX C: OTHER SYMMETRIC
GAUGE FIXINGS

In the main text, we have explained how to construct
center-symmetric gauge fixings by combining background
gauges and the notion of center-symmetric backgrounds.
Here, we would like to investigate other possibilities and
see whether or not they are viable.

1. Center averaging

Consider a gauge fixing on average z½A� which, for
simplicity, we assume to be invariant under color rotations
of the form eiθ

jtj . A priori, there is no reason for z½A� to
be invariant under center transformations. We will now
explain how, from z½A�, one can build another gauge fixing
on average z̄½A� that is center-invariant.
Consider a center transformation U1 ∈U1 of associated

center element ei2π=N and define

z̄½A�≡ 1

N

XN−1

k¼0

z½AUk
1 �

¼ 1

N

XN−1

k¼0

zUk
1
½A�: ðC1Þ

That z̄½A� defines a gauge fixing on average follows from
the fact that each zUk

1
½A� averages to 1 along any G0-orbit,

see the discussion in the main text.
Let us now investigate how the functional z̄½A� trans-

forms under U1. We have

z̄½AU1 � ¼ 1

N

XN−1

k¼0

z½AUkþ1
1 �

¼ 1

N

XN
k¼1

z½AUk
1 �

¼ z̄½A� þ 1

N
ðz½AUN

1 � − z½A�Þ: ðC2Þ

We thus see that, if we were able to arrange for
z½AUN

1 � ¼ z½A�, then we would have z̄½AU1 � ¼ z̄½A� and
so, even though z½AU1 � ≠ z½A�.45
To achieve this, let us chooseU1 such that it transforms a

given Weyl chamber into itself. In particular, it leaves the
confining configuration Ac in that Weyl chamber invariant.
It is easily argued that UN

1 ∈G0 leaves each element of the
Cartan subalgebra invariant46 and thus it is a color rotation
of the form eiθ

jtj . Since we have assumed that z½A� is
invariant under such rotations, we have z½AUN

1 � ¼ z½A� and

45If z½AU1 � ¼ z½A�, there is no need to construct z̄½A� which in
fact coincides with z½A�.

46It is useful to associate to each element of the Weyl chamber,
the corresponding value of the Polyakov loop. In particular, the
vertices of the Weyl chamber are associated to the various center
elements ei2πk=N . Now, under the transformation U1, the Poly-
akov loop is multiplied by ei2π=N which allows one to characterize
the corresponding transformation on the Weyl chamber. The same
applies for UN

1 and because the Polyakov loop does not change in
this case, we know that the corresponding transformation leaves
the vertices invariant. But this transformation is an isometry
acting on a space of dimension N − 1. If it leaves N − 1 linearly
independent vectors invariant, it has to leave all points of the
Weyl chamber invariant.
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z̄½A� is center-invariant as announced. In what follows, it
will be convenient to take U1 of the form [31,44]

U1ðτÞ ¼ ei
τ
βs

jtjW; ðC3Þ

with some particular choices of sj and W whose specific
form is not needed here.

2. Generating functional

As we have discussed in Sec. VI, the generating func-
tionals Wz̄½J� and Γz̄½A� obey the symmetry constraints that
reflect the center-symmetry of the system. The question is
now whether these functionals allow one to discuss the
breaking of the symmetry.
To investigate this question, we first derive the relation

between Wz̄½J� and Wz½J�. We write

eWz̄½J� ≡
Z

DAz̄½A�e−SYM½A�þJ·A

¼ 1

N

XN−1

k¼0

Z
DAz½AUk

1 �e−SYM½A�þJ·A

¼ 1

N

XN−1

k¼0

Z
DAz½A�e−SYM½A�þJ·A

ðUk
1
Þ†

¼ 1

N

XN−1

k¼0

e
i
gJ·ðUk

1
Þ†∂Uk

1

Z
DAz½A�e−SYM½A�þJ

Uk
1 ·A

¼ 1

N

XN−1

k¼0

e
i
gJ·ðUk

1
Þ†∂Uk

1eWz½JU
k
1 � ðC4Þ

that is

Wz̄½J� ¼ ln

 
1

N

XN−1

k¼0

e
i
gJ·ðUk

1
Þ†∂Uk

1eWz½JU
k
1 �
!
: ðC5Þ

Suppose now that z½A� is translation invariant. Using the
assumed invariance of z½A� under color rotations of the
form eiθ

jtj , and the particular choice (C3), it is then argued
that z̄½A� is also translation invariant. Moreover, if we take
the source J constant and along the diagonal part of the
algebra, the same holds for JU

k
1. In this case bothWz̄½J� and

Wz½JUk
1 � scale like the volume in the infinite volume limit.

Introducing

wz̄½J�≡ lim
V→∞

Wz̄½J�
βV

ðC6Þ

and

wz½J�≡ lim
V→∞

Wz½J�
βV

; ðC7Þ

we thus find

wz̄½J� ¼ Maxk

�
i
g
J · ðUk

1Þ†∂Uk
1 þ wz½JUk

1 �
�

ðC8Þ

where J · ðUk
1Þ†∂Uk

1 does not involve an integration over
spacetime.

3. Discussion

The question is now whether one can study the confine-
ment/deconfinement transition with the gauge fixing iden-
tified in the previous section. Let us consider the simple
case where the original gauge fixing is color rotation
invariant and take the SU(2) group. In this case, we can
choose U1 ¼ iσ2e−iπτ=βσ3 and then

wz̄½J3� ¼ Maxðwz½J3�; 2πJ3 þ wz½−J3�Þ: ðC9Þ

Since we are interested in the limit J3 → 0, we need to
compare the functionswz½J3� and w̃z½J3� ¼ 2πJ3 þ wz½−J3�
in the vicinity of J3 ¼ 0. We have wz½0� ¼ w̃z½0�. Moreover,
since z is color invariant, we have w0

z½0� ¼ 0 and
w̃0
z½0� ¼ 2π. Thus, in the vicinity of J3 ¼ 0, we find

wz̄½J3 > 0� ¼ w̃z½J3�
wz̄½J3 < 0� ¼ wz½J3�: ðC10Þ

This means that wz̄½J3� presents a cusp at J3 ¼ 0 for any
temperature (even at low temperatures) and w0̄

z½J3 ¼ 0þ� ¼
2π while w0̄

z½J3 ¼ 0þ� ¼ 0. This example illustrates that
having a symmetric gauge fixing is not enough for the
gluon one-point function to serve as a probe for the
deconfinement transition.
We stress that this conclusion applies even in the case

where the original gauge-fixing z½A� is completed in the
infrared using the Curci-Ferrari model. In contrast, similar
type of modeling applied on the center-symmetric Landau
gauges discussed in the main text does allow to identify the
transition from the gluon one-point function [47]. This
plays thus in favor of the center-symmetric Landau gauges.

4. Yet another possibility

Another possibility is to introduce the following
functional

W½J� ¼ 1

N

XN−1

k¼0



i
g
J · ðUk

1Þ†∂Uk
1 þWz½JUk

1 �
�
: ðC11Þ

Because Wz½J ¼ 0� is the free-energy F of the system,
we have

W½J ¼ 0� ¼ 1

N

XN−1

k¼0

Wz½J ¼ 0� ¼ F ðC12Þ

which then gives also access to the free-energy. Moreover
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W½JU1 � ¼ 1

N

XN−1

k¼0



i
g
J · ðUkþ1

1 Þ†ð∂Uk
1ÞU1 þWz½JUkþ1

1 �
�

¼ 1

N

XN−1

k¼0



i
g
J · ðUkþ1

1 Þ†∂Ukþ1
1 þWz½JUkþ1

1 �
�

−
1

N

XN−1

k¼0

i
g
J ·U†

1∂U1

¼ W½J� − 1

N

XN−1

k¼0

i
g
J ·U†

1∂U1; ðC13Þ

which is a symmetry constraint similar to (46). In the last
steps, we have used that UN

1 is a color rotation of the form
eiθ

jtj and we have again assumed that z½A� is invariant under
such rotations.

Consider again the SU(2) case and assume that z is color
invariant. After dividing by the volume in the infinite
volume limit, we have

w½J3� ¼
1

2
ðwz½J3� þ 2πJ3 þ wz½−J3�Þ: ðC14Þ

Now, because wz½J3� has no cusp at J3 ¼ 0 since w0
z½0� ¼ 0,

neither has w½J3�, and we find

w0½0� ¼ 1

2
ðw0

z½0� þ 2π − w0
z½0�Þ ¼ π: ðC15Þ

This time the minimum is always in the symmetric
configuration and thus cannot serve as a probe for the
deconfinement transition.
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