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We study the isotropization and thermalization of heavy quarks in a non-Markovian medium in high-
energy nuclear collisions. In particular, we analyze the case of a nonstationary medium with a noise whose
time correlator decays as a power law (heavy-tailed noise). We assume the correlations decay with an
exponent β − 1, 0 ≤ β < 1; we treat β as a free parameter. We analyze the effect of memory on the
thermalization and isotropization of heavy quarks in the medium via a generalized Langevin equation. In
general, we find that memory slows down the dynamics of heavy quarks; moreover, thermalization and
isotropization happen on the same timescale once a realistic initialization is considered. We also find that,
while the effect on charm quarks can be relevant, beauty quarks are hardly affected by memory in the quark-
gluon plasma phase. Finally, we comment on the effect ofmemory on the estimate ofDs of charm and beauty.
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I. INTRODUCTION

The ultrarelativistic collision experiments performed at
the Relativistic Heavy Ion Collider and LHC confirm the
existence of a locally equilibrated state of free quarks and
gluons known as quark-gluon plasma (QGP) [1–3]. The
formation of QGP is a consequence of preequilibrium
effects that happen to occur just after the collision of high-
energy nuclei. It is assumed that immediately after the
collision, the dynamics is that of dense color-electric and
color-magnetic fields, namely, the Glasma [4–6] and later,
it decays to a system of strongly interacting quarks and
gluons, which we call the QGP. The expansion of QGP
continues to unbound states of hadrons after which chemi-
cal and kinetic freeze-outs take place and the particles fly
toward the detectors [7,8].
The dynamics of QGP is governed by light quarks and

gluons, along with few heavy quarks. The heavy quarks
(HQs) [9–22] are formed very early in the collision
experiments and are considered to be effective probes to
study the evolution of QGP and Glasma as well. Their large
masses m lead to their early production in the medium,

τprod ∼ 1=m, hence they can witness the entire evolution of
the system from the very beginning of the medium
formation. HQs approximately undergo a Brownian motion
in a medium of light quarks and gluons [23] and their
dynamics can be studied within the framework of Langevin
and Fokker-Planck equations, where the interaction is taken
care of in terms of diffusion and drag coefficients [23–35].
In the vast majority of the studies related to HQs in QGP,

the effects of memory are ignored [17–38]. However, it is
plausible to assume that correlations of the forces that act on
HQs within the whole evolution of the fireball exist, in
particular, when the system approaches the phase transition;
moreover, these correlations certainly exist in the early
stage, due to the arrangement of the strong gluon fields in the
form of correlated domains in the transverse plane [39–41].
Several recent studies [42–52] indicate that the memory
effect plays an important role. It was shown in [53] that, even
when the memory time is of the order of 1 fm=c, this might
have an impact on observables related to HQs, for example,
the nuclearmodification factor. In [53], a specific formof the
noise correlationswas assumed, namely, an exponential one,
which is characterized by a memory time τ that sets up the
scale for the decay of the correlations; there it was also
shown that the evolution of HQs is unaffected by memory
when their evolution time is much larger than τ.
The purpose of our study is to extend the study of [53] to

the case in which the correlations decay with a power law.
Such power law correlations appear in different contexts in
many areas of physics and chemistry [54–57] and usually
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appear in the presence of strong correlations in the medium:
it is therefore worth studying their potential effects on HQs
in QGP as well. Different from the case study of [53], we
find that HQs can be affected by the presence of correla-
tions even in the late stage of the evolution. In particular, in
this study we analyze momentum isotropization and
thermalization of HQs in a QGP bath and quantify the
effects of memory on these processes. We can anticipate
our results here, namely, that not only the presence of
memory delays both thermalization and isotropization, but
also that the specific form of the noise correlations affect
the late time evolution of the system. We estimate the
thermalization time of HQs in a bath with memory, both for
charm and beauty quarks, finding that charm quarks are
more affected than beauty quarks. Finally, from the
estimate of the thermalization time, we evaluate the effect
of memory on the spatial diffusion coefficient Ds.
The plan of the article is as follows. In Sec. II, we present

the formalism and explain how the power law processes are
implemented. In Sec. III, we present our results. Finally, in
Sec. IV, we summarize our conclusions.

II. FORMALISM

A. Noise with power law memory

In this section, we discuss the method to implement a
long-tailed noise whose correlations decay as a power law.
We introduce the process

hðtÞ ¼ ffiffiffi
κ

p ffiffiffi
β

p
τβ

Z
t

0

ðt − uÞβ−1ξðuÞdu; ð1Þ

where 0 < β < 1; ξ is a standard Gaussian noise with zero
average and time correlations given by

hξðt1Þξðt2Þi ¼ τδðt1 − t2Þ: ð2Þ

We note that Eq. (1) is proportional to the Riemann-
Liouville fractional integral of ξ of order β: in fact, besides
the overall constant, the process h in (1) corresponds to the
formal solution of the fractional Langevin equation
Dβh ¼ ξ, where Dβ denotes the fractional derivative of
orderβ.We introduce the free parameter τ, with dimensionof
time, so τ−β in front of the integral in Eq. (1) balances the
dimension of the integral itself, giving a dimensionless h,
and τ balances the dimension of the δ function in Eq. (2) to
give a dimensionless ξ. We will show later that τ sets the
timescale in the decay of the correlations of h, while β fixes
the power law at which correlations decay. The overall

ffiffiffi
β

p
is

added for later convenience, to simplify the expressions of
the correlator of the noise and of the momentum broadening
in the purely diffusive motion. Finally, κ ¼ 1=8.44 is
introduced to reproduce the momentum spreading of the
memoryless processes in the limit β → 0, see Sec. II C
and Fig. 1.

The definition (1) has to be understood in the sense of the
Itô calculus, namely, it corresponds to

hðtNÞ ¼
ffiffiffiffiffi
βκ

p
τβ

Δt
XN−1

i¼0

ðtN − tiÞβ−1ξðtiÞ; ð3Þ

where we assume that the process happens from t0 ¼
tinitialization to tN ¼ t in N time steps, each of width
Δt ¼ ðtN − t0Þ=N, hence ti ¼ t0 þ iΔt. By virtue of
Eq. (2) it is easy to prove that the time correlations of h
are given by

hhðt1Þhðt2Þi¼ κτ−2βþ1β

Z
tmin

0

ðt1−uÞβ−1ðt2−uÞβ−1du; ð4Þ

where tmin ¼ minðt1; t2Þ. The integral on the right-hand
side of Eq. (4) can be expressed in terms of an incomplete
Euler beta function, namely,

hhðt1Þhðt2Þi ¼ κτ−2βþ1βðt1 − t2Þ2β−1ð−1Þ−βBZðβ; βÞ; ð5Þ

with Z ¼ −t2=ðt1 − t2Þ and

BZðx; yÞ ¼
Z

Z

0

ux−1ð1 − uÞy−1du: ð6Þ

It is easy to see that for t1 ≫ t2 the correlator (4) decays as a
power law. In fact, in the limit t1 ≫ t2 the factor ðt1 − uÞ in
the integral in Eq. (4) can be replaced by t1, so that

FIG. 1. hp2i versus time for a one-dimensional purely diffusive
motion, for several values of β, D ¼ 0.2 GeV2=fm, and
τ ¼ 1 fm=c. We used 1=κ ¼ 8.44 in Eq. (4). For comparison,
we show hp2i ¼ 2Dt that would be obtained in the memoryless
case. Note that the black solid line and the orange diamonds
almost overlap.
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hhðt1Þhðt2Þi ≈ κτ−2βþ1βtβ−11

Z
t2

0

ðt2 − uÞβ−1du

¼ κ

�
t1
τ

�
β−1

�
t2
τ

�
β

: ð7Þ

We note that β > 0 is enough to ensure the convergence
of the integral above. Thus, for fixed t2, the correlations
of the process (1) decay for t1 ≫ t2 with the power law
1=t1−β1 ≈ 1=ðt1 − t2Þ1−β: the smaller β implies the faster
decay of correlations. Since time correlations in h exist, we
say that this process has a memory; moreover, since the
time correlations decay with a power law, we say that the
process is characterized by a long-tailed memory, to
distinguish it from the processes studied before in which
the correlations are damped exponentially. Sometimes
these processes are called heavy-tailed processes, to
emphasize that the correlations of the noise do not decay
exponentially with time. We also note that the correlator
does not depend on t1 − t2 but on t1 and t2 separately. This
will lead to a nonstationary Langevin equation in the next
section.
The δ function in Eq. (2) has to be understood as

δt1;t2=Δt. Consequently, it is convenient to rescale ξ as

ξðtÞ ¼
ffiffiffiffiffiffi
τ

Δt

r
ζðtÞ; ð8Þ

so that ζ is generated at each time step according to

hζðt1Þζðt2Þi ¼ δt1;t2 : ð9Þ

By virtue of the rescaling (8), we can rewrite Eq. (3) as

hðtNÞ ¼ τ−βþ1=2
ffiffiffiffiffiffiffiffiffiffi
κβΔt

p XN−1

i¼0

ðtN − tiÞβ−1ζðtiÞ; ð10Þ

where ζðtÞ corresponds to white noise with variance equal
to 1.

B. Generalized Langevin equation

In our study, we couple the noise h discussed in the
previous subsection to heavy quarks via a generalized
Langevin equation: for simplicity, we present the formu-
lation of a one-dimensional motion, while actual numerical
calculations will be run for the three-dimensional case.
The Langevin equation for momentum p reads [58–68]

dpðtÞ
dt

¼ −
Z

t

0

dt0γðt; t0Þpðt0Þ þ ηðtÞ; ð11Þ

where the integral term represents the dissipative force and
ηðtÞ is the thermal noise in a bath at the temperature T. We
note that we assume the dissipative kernel γ is a function of
both t and t0: this is called an irreversible generalized

Langevin equation [58–69], as it generalizes the Langevin
equation to the motion of probes in nonstationary baths that
are characterized, for example, by time and/or space
changes in the bath temperature. In heavy ion collisions,
modeling a γ ¼ γðt; t0Þ could be relevant, because the
medium evolution is not invariant under time translations
even though the system is locally in thermal equilibrium.
Following the notation of [53] we assume that ηðtÞ in

(11) satisfies

hηðtÞi ¼ 0; ð12Þ

hηðt1Þηðt2Þi ¼ 2D
gðt1; t2Þ

2τ
; ð13Þ

where D is the diffusion coefficient and g is a dimension-
less function that defines the correlation of the noise; the
factor 1=2τ in Eq. (13) is introduced to balance the
dimension of D so that the dimensions of the left- and
the right-hand sides of the equation match. In the case of a
Markov process, gðtÞ=2τ ¼ δðtÞ. We put

ηðtÞ ¼
ffiffiffiffi
D
τ

r
hðtÞ; ð14Þ

where h is the process introduced in Sec. II A. Hence,

hηðt1Þηðt2Þi ¼
D
τ
hhðt1Þhðt2Þi; ð15Þ

where the correlator on the right-hand side is given by
Eq. (4). The comparison with Eq. (13) gives

gðt1; t2Þ ¼ hhðt1Þhðt2Þi: ð16Þ

In terms of h, the Langevin equation (11) becomes

dpðtÞ
dt

¼ −
Z

t

0

dt0γðt; t0Þpðt0Þ þ
ffiffiffiffi
D
τ

r
hðtÞ: ð17Þ

The time-discretized version of this equation reads

Δp ¼ −Δt
Z

t

0

dt0γðt; t0Þpðt0Þ þ
ffiffiffiffi
D
τ

r
hðtÞΔt: ð18Þ

The dissipative term in Eq. (18) has to be understood as an
Itô integral; we can then rewrite Eq. (18) as

pðtNÞ ¼ pðtN−1Þ − Δt
XN−1

k¼0

γðtN; tkÞpðtkÞΔt

þ
ffiffiffiffi
D
τ

r
hðtNÞΔt; ð19Þ

with t0 ¼ tinitialization, tN ¼ t, and tN−1 ¼ tN − Δt.
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We define the kernel of the dissipative force as

γðt; t0Þ ¼ D
EðtkÞT

hhðtÞhðt0Þi
τ

; ð20Þ

where we took into account the rescaling (14); we put
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and m is the heavy quark mass. The

definition (20) is inspired by the Einstein relation between
the drag and the diffusion coefficient in a medium
[23,64,70,71]. Equations (10), (19), and (20) represent
the whole process we implement in our study.
When we compare the results of the process pðtÞ in

Eq. (11) with a memoryless process, we replace

gðt1; t2Þ
2τ

→ δðt1 − t2Þ ð21Þ

in Eq. (13); hence correlations of the noise in this case read

hηðt1Þηðt2Þi ¼ 2Dδðt1 − t2Þ ¼
2D
Δt

δt1;t2 : ð22Þ

Instead of Eq. (20), we then have

γðt; t0Þ ¼ 2D
ET

δðt − t0Þ≡ 2γδðt − t0Þ; ð23Þ

the overall 2 on the right-hand side of the above equation
takes into account that the integration over t0 in (17) is over
the range ð0; tÞ, so the δ function has its support at the upper
integration limit, and

Z
t

0

dt0δðt − t0Þ ¼ 1

2
: ð24Þ

Hence, Eq. (11) becomes

dpðtÞ
dt

¼ −γpðtÞ þ ηðtÞ: ð25Þ

Adopting the standard rescaling of the noise

ηðtÞ ¼
ffiffiffiffiffiffiffi
2D
Δt

r
ξ; ð26Þ

we can rewrite Eq. (25) as

Δp ¼ −γpΔtþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DΔt

p
ξ; ð27Þ

where ξ is a Gaussian noise with hξi ¼ 0 and hξ2i ¼ 1.

C. Purely diffusive motion and determination of κ

It is useful to compute the evolution of hp2ðtÞi in a
purely diffusive, one-dimensional motion,

dpðtÞ
dt

¼ ηðtÞ; ð28Þ

with hηðtÞi ¼ 0 and

hηðt1Þηðt2Þi ¼
D
τ
hhðt1Þhðt2Þi; ð29Þ

in agreement with the discussion in the previous subsec-
tion. For the purpose of the present section, it is enough to
assume that the initial momentum is p0 ¼ 0: if p0 ≠ 0 then
hp2ðtÞi should be replaced by hðpðtÞ − p0Þ2i. From (28) we
have

hp2ðtÞi ¼ D
τ

Z
t

0

dt1

Z
t

0

dt2hhðt1Þhðt2Þi: ð30Þ

In the above integral, the correlator to be used is given
by Eq. (4).
In Fig. 1 we plot hp2i versus time for several values of β,

D ¼ 0.2 GeV2=fm, and τ ¼ 1 fm=c. The value of D has
been chosen in agreement with the perturbative quantum
chromodynamics (pQCD) value at T ¼ 1 GeV. We note
that initially, for higher β, slower diffusion occurs. On the
other hand, for t ≫ τ the trend is inverted and larger β
implies a faster diffusion. In particular, for the smallest
value of β shown in the figure, hp2ðtÞi evolves almost
linearly with time, in agreement with our previous dis-
cussion, while for larger β the hp2ðtÞi increases with a
power of time larger than 1. We also note that for β → 0 the
momentum broadening agrees with the one that would be
obtained in a bath without memory, namely, hp2i ¼ 2Dt: as
we show later, this result is independent of τ.
We were able to extract an approximate analytical

expression for the time dependence of hp2ðtÞi: using
Eq. (7) on the right-hand side of Eq. (30), we get

hp2ðtÞi ¼ κD
τ
τ−2βþ1

Z
t

0

dt1

Z
t1

0

dt2t
β−1
1 tβ2

þ κD
τ
τ−2βþ1

Z
t

0

dt1

Z
t

t1

dt2t
β−1
2 tβ1; ð31Þ

where we used the fact that the form (7) stands for t1 > t2,
so a similar result needs to be used for the case t2 > t1 in
(30). Performing the elementary integration, we then have

hp2ðtÞi ¼ 2κD
1þ 3β þ 2β2

�
t
τ

�
2β

t: ð32Þ

In Fig. 2 we compare the result (32) with the full calculation
(30) on a log-log scale. We note that the approximation (32)
does not work well for small values of β, while it works
pretty well for β ≈ 1. However, it is remarkable that the
slopes of the approximate and exact solutions agree with
each other in the whole range of β. Hence, while Eq. (32)
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cannot be used to estimate quantitatively hp2ðtÞi in the
whole range of β, it is still useful to extract the time
dependence of hp2ðtÞi.
We note from Eq. (32) that parametrically hp2ðtÞi ∝

ðt=τÞ2βt. For t ≪ τ the momentum diffusion with β → 1 is
quite slower than the one with β → 0: higher correlations in
the noise slow down momentum broadening in the early
stage in agreement with [53]. At later times, t ≫ τ, Eq. (32)
suggests that increasing β results in a faster momentum
broadening. This is confirmed by the results shown in
Fig. 1 in which the data with large β overshoot those with
small β for t ≫ τ. We also note that the asymptotic result
(32) implies that for β → 0 the momentum broadening is
independent of τ. Hence, it seems appropriate to state that,
in the β → 0 limit, we recover the momentum diffusion of a
memoryless process.

III. RESULTS

In this section, we present our results on momentum
randomization, isotropization, and thermalization of HQs.
For illustrative purposes, we first consider a simplified
initialization. Then, we show the impact of memory for the
more realistic diffusion coefficients, borrowed from pQCD
[72,73] and by a quasiparticle model (QPM) [74,75] for
several values of T. In the QPM the bulk corresponds to a
bath of quasiparticles, that is, quarks and gluons, with
temperature-dependent masses. All the results have been
obtained by solving Eq. (19), hence taking both diffusion
and drag into account.

A. Momentum randomization

In the upper panel of Fig. 3 we plot hpxpx0i in units of
p2
x0, where px0 denotes the initial value of px, versus time

for three values of β, for τ ¼ 1 fm=c, at T ¼ 1 GeV and
D ¼ 0.5 GeV2=fm; the results for hpypy0i and hpzpz0i are
similar. The value of D is about the magnitude of the
average diffusion coefficient derived from pQCD at the
same temperature and rescaled by the k factor that gen-
erates RAAðpTÞ which agrees with experimental data in
realistic simulations [75]. In the nonrelativistic limit,
hpxpx0i is proportional to the autocorrelation function of
velocity, which is largely studied in models of stochastic
processes with memory kernels. hpxpx0i allows us to study
how correlations of momentum with the initial condition
are washed out by the interactions of the particle with the
bath. For comparison, in this figure we also show one result
obtained assuming an exponential memory kernel that
follows the implementation of [53], with a memory time
τ ¼ 1 fm=c and the same value of D. In Fig. 3 we also
show the result for a the calculation for a bath without
memory, characterized also by an exponential decay. We
note that for the noise with the exponential kernel the
behavior of the correlator follows that of the memoryless
process, besides a small delay in the very early stage. On
the other hand, the behavior of the correlator for the bath
with the noise in Eq. (1) is somehow different. For the small
β ¼ 0.2, we find no big qualitative difference between the
memoryless and the exponential cases, besides some delay
of the momentum randomization: this is not very surprising
since we already discussed in the previous section that, for
β → 0, the correlations of the noise decay quickly. For
larger β, hpxpx0i develops oscillations, signaling that the
randomization of momentum is nontrivial. It is likely that
these oscillations are related to a continuous energy
exchange between the bath and the HQ, as it becomes
evident from the results on the kinetic energy that we show
later. The qualitative behavior of hpxpx0i that we found is
in agreement with previous model calculations of the

FIG. 2. hp2i versus time for a one-dimensional purely diffusive
motion, for three different values of β, D ¼ 0.2 GeV2=fm, and
τ ¼ 1 fm=c. The asymptotic form corresponds to Eq. (32). Note
that the green squares and the thin orange line overlap.

FIG. 3. hpxi versus time for three values of β, τ ¼ 1 fm=c,
p0 ¼ 1 GeV, at T ¼ 1 GeV and D ¼ 0.5 GeV2=fm. For the
exponential memory (exp memory) calculation, we used
τ ¼ 1 fm=c.
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velocity autocorrelation function in the nonrelativistic limit
[76]: in the latter reference, a different memory kernel was
used; nevertheless, the trend of the correlator is similar in
the two calculations, including the fact that enhancing the
correlations of the noise results in wider fluctuations
of hpxpx0i.

B. Thermalization for a simple initialization

Momentum randomization is not enough to make state-
ments about thermalization: in fact, one should also check
that the kinetic energy per particle of the HQs corresponds
to the average value expected from a thermal distribution at
that temperature Keq given by

Keq ≡
R d3p

ð2πÞ3 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
−mÞe−

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
=T

R d3p
ð2πÞ3 e

−
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
=T

: ð33Þ

Keq can be computed analytically for any value of T and m
by using standard integral representations of the modified
Bessel functions, that lead at

Keq ¼ 3T

�
1 −

m
3T

þ m
3T

K1ðm=TÞ
K2ðm=TÞ

�
: ð34Þ

In the nonrelativistic limit Keq ¼ 3T=2, while in the
ultrarelativistic case Keq ¼ 3T.
In this subsection, in order to emphasize the qualitative

effects of memory on thermalization, we analyze a simple
initialization corresponding to pT ¼ 1 GeV and pz ¼ 0:
the latter corresponds to the midrapidity region of realistic
collisions. In Fig. 4 we plot K ≡ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
−mi in units

of Keq versus time obtained by our calculations for
three values of β, τ ¼ 1 fm=c, at T ¼ 0.25 GeV and
D ¼ 0.1 GeV2=fm, in agreement with the coefficient
computed within the QPM at p ¼ 1 GeV at the same
temperature. Moreover,Keq ≈ 0.44 GeV corresponds to the
equilibrium value for T ¼ 0.25 and m ¼ 1.5 GeV. For
comparison, we also plot K=Keq for a memoryless process
and for a process with an exponentially decaying memory,
as we did in Fig. 3.
We note that, for the two smaller values of β in Fig. 4,

the average kinetic energy approaches Keq within the time
range explored, meaning that the HQs eventually thermal-
ize with the medium; we also note that increasing β from
0.2 to 0.5 results in a few oscillations of K=Keq. On the
other hand, we note that for β ¼ 0.9 the average kinetic
energy of the HQs remains smaller than Keq, meaning that
in this case thermalization is not complete, due to the
correlations of the noise. In contrast, the memoryless and
the exponential bath lead eventually to thermalization. We
leave the estimate of the thermalization time to the case of
realistic initialization in the next subsection: here it is
enough to remark that our results suggest that memory in
the bath results in the slowing down of thermalization
of HQs.

C. Thermalization time for realistic initializations

In the previous subsection, we illustrated the effects of
memory on thermalization for charm quarks, using a
simplified initialization. In this subsection, we quantita-
tively study the thermalization time τtherm of charm and
beauty, first focusing on its dependence on D. Different
from the previous subsections, here we initialize HQs by
means of the realistic fixed order + next-to-leading log
(FONLL) distribution [77,78],

�
dN
d2pT

�
FONLL

¼ x0
ð1þ x3p

x1
T Þx2

; ð35Þ

where the parameters are x0 ¼ 20.2837, x1 ¼ 1.95061,
x2¼3.13695, x3¼0.075166 for charm and x0¼0.46799,
x1 ¼ 1.83805, x2 ¼ 3.07569, x3 ¼ 0.030156 for beauty.
When the bath has no memory, the thermalization time
is estimated by studying the decay of one component of
the momentum of HQs: in this case, px ¼ p0e−γt with
τtherm ¼ 1=γ. See Fig. 3. When the bath has memory, this
definition of τtherm does not seem to be appropriate, because
the average of the components of p fluctuate, see again
Fig. 3. Furthermore, more generally, we have already seen
that thermalization is delayed with respect to the memory-
less case for which τtherm ¼ 1=γ.
In order to estimate τtherm in this case, we proceed as

follows. We first compute hpTi of HQs corresponding to
the initialization in Eq. (35) and assume pz ¼ 0 to mimic
the midrapidity region of the collisions. Then, we prepare

FIG. 4. K=Keq versus time for τ ¼ 1 fm=c, at T ¼ 0.25 GeV
and D ¼ 0.1 GeV2=fm. Initialization corresponds to pT ¼
1 GeV and pz ¼ 0. The value of D was chosen in agreement
with the diffusion coefficient computed within the QPM at the
same temperature and p ¼ 1 GeV. Keq ¼ 0.44 GeV.
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an initialization with px0 ¼ hpTi, py0 ¼ 0. For a given D
and T, we compute τtherm for the bath without memory by
fitting hpxi with an exponential function px ¼ px0e−t=τtherm ,
then we compute ϒtherm ≡ K=Keq at t ¼ τtherm; we repeat
the procedure for other values of D at the same T. We find
that the value of ϒtherm is not very sensitive to the value of
D, and that τtherm ≈ 1=γ ¼ hEiT=D, where hEi denotes
the initial average energy of HQs from the distribution (35).
We then use ϒtherm at that T to estimate τeq for the bath
with memory for each value of D, by identifying in the
latter case the thermalization time with the time at which
K=Keq ¼ ϒtherm.
In Fig. 5 we plot τtherm versus D for charm quarks at

T ¼ 0.3 GeV; we checked that the behavior is qualitatively
similar for other temperatures as well as for beauty quarks.
For the bath with memory, we show the data for the case
β ¼ 0.5 only, since the other cases are qualitatively similar.
As already mentioned, for the bath without memory, we
find τtherm ≈ hEiT=D, in agreement with the fluctuation-
dissipation theorem (FDT). For β ¼ 0.5 we find τtherm ∝
1=Dα with α ≈ 0.5. In order to quantify the effect of
memory on τtherm, we consider the phenomenologically
relevant D within the QPM model at p ¼ 0, namely, this
gives D ¼ 0.13 GeV2=fm at T ¼ 0.3 GeV (k factors
included). With this value of D, for the bath without
memory, we get τtherm ¼ 6.9 fm=c at T ¼ 0.3 GeV, while
for the bath with memory, we get τtherm ¼ 11.4 fm=c at the
same temperature.
In Fig. 6 we plot τtherm versus T for charm (upper panel)

and beauty (lower panel). At each temperature, the dif-
fusion coefficient is that of the QPM model computed at
p ¼ 0. For the sake of comparison, we also plot the blue
circles corresponding to

τtherm ¼ mT
D

; ð36Þ

that amounts to replacing E by m in the FDT (23). We note
that already taking into account the initial average kinetic
energy of the HQs amounts to an increase of τtherm in
comparison with the result that we would get if we defined
τtherm by virtue of Eq. (36). Finally, the maroon squares
correspond to τtherm for the medium with memory; for the
sake of concreteness, we only show the results for β ¼ 0.5.
In this case, τtherm was defined by comparing K=Keq in the
cases with and without memory as explained above. We
note that the effect of memory is to increase the thermal-
ization time of HQs; the difference between the cases with
and without memory increase with temperature and is
milder for beauty quarks.

FIG. 5. τtherm versus D for charm quarks at T ¼ 0.3 GeV.
Green diamonds correspond to the bath without memory, while
maroon squares correspond to that with a power law memory
with β ¼ 0.5.

FIG. 6. τtherm versus T for charm (upper) and beauty (lower).
Maroon squares correspond to the thermalization time obtained
with memory for β ¼ 0.5. Green diamonds denote the memoryless
thermalization time computed by fitting pxðtÞ by px ¼ p0e−t=τtherm.
Finally, blue circles correspond to τtherm ¼ 1=γ, with γ computed
by Eq. (23) in which we replaced E by m.
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We can define an effective spatial diffusion coefficient
D�

s by virtue of the relation

D�
s ¼

T
hEi τtherm; ð37Þ

where hEi denotes the initial average energy of the HQs;
the definition (37) gives back the commonly used Ds ¼
T3=D when τtherm ¼ mT=D and hEi is replaced by m. In
Fig. 7 we plot 2πTD�

s versus T for charm and beauty
quarks. Results are shown for the memoryless case as well
as for the memory case. We note that the memory in the
bulk leads at the increase ofD�

s ; the effect is more important
for the charm quarks, and the discrepancy between the
results obtained with and without memory increases with
temperature.
Summarizing, the meaning of the results collected in

Fig. 7 is that, due to memory effects, the system appears to
have a larger D�

s. It can delay the formation of the RAAðpTÞ
with memory. To reproduce the same RAAðpTÞ with
memory as of the case without memory, one needs to
reduce the magnitude of D�

s . Consequently, if one tries to
get the spatial diffusion coefficients that fit the experimen-
tal data discarding the memory, then one gets larger values
of Ds with respect to the real ones. However, it is
interesting that for beauty quarks this effect appears to
be negligible between Tc and 3Tc even considering strong
memory β ¼ 0.5. This is another feature that makes the
extraction of DsðTÞ for beauty quarks more solid (and
directly comparable to lattice QCD).

D. Momentum isotropization

We close this study by briefly analyzing the isotropiza-
tion of the heavy quarks. In the midrapidity region of

realistic collisions, HQs are produced with a finite aver-
age pT and pz ≈ 0: the initial condition is therefore
anisotropic in momentum, but the interaction of the HQs
with the bath might lead to momentum isotropization. We
quantify the momentum anisotropy by introducing an
eccentricity εp as

εp ¼ hp2
T − 2p2

zi
hp2

T þ p2
zi

: ð38Þ

In Fig. 8, we plot εp versus time for the memoryless process
and for the power law memory process with β ¼ 0.5.
Initialization corresponds to the FONLL distribution with
pz ¼ 0. Time is measured in units of the thermalization
time for the two cases, which corresponds to τtherm ¼
8.3 fm=c for the memoryless case and τtherm ¼ 11.76 fm=c
for the power law memory case. Moreover, we used T ¼
0.3 GeV and D ¼ 0.09 GeV2=fm corresponding to the
diffusion coefficient computed within the QPM at the
same temperature and p ¼ 0 GeV, in agreement with
the value used in the previous subsection to compute the
thermalization time. We checked that, for other values of β,
εp qualitatively behaves similarly.
Initially εp ¼ 1, since pz ¼ 0; however, interactions with

the medium lead to εp → 0, namely, to momentum iso-
tropization. Assuming that a fair amount of isotropization
takes place when εp ¼ 0.2, we find that isotropization time
τiso is τiso ≈ 2.54τtherm for the memoryless case, while
τiso ≈ 2.76τtherm for the β ¼ 0.5 case. We conclude that,
although memory delays both thermalization and isotrop-
ization, τtherm and τiso lie in the same ballpark.

FIG. 7. 2πTD�
s versus T for charm and beauty quarks. Open

symbols correspond to calculations for the memoryless bulk,
solid symbols represent calculations for the bulk with long-tailed
memory with β ¼ 0.5.

FIG. 8. εp versus t=τtherm, at T ¼ 0.3 GeV and D ¼
0.09 GeV2=fm. Initialization corresponds to the FONLL distri-
bution and pz ¼ 0. The value ofD was chosen in agreement with
the diffusion coefficient computed within the QPM at the same
temperature and p ¼ 0 GeV.
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IV. CONCLUSIONS AND OUTLOOK

We studied the effects of a power law correlated noise on
momentum randomization, isotropization and thermaliza-
tion of HQs in a thermal bath. Our work is related to the
problem of HQs in relativistic nuclear collisions, in which
HQs themselves diffuse and lose energy in the QGP, as well
as in the very early stage in which the dynamics of the bulk
is dominated by a dense gluon system. This work is a
follow-up of [53] in which the same problem was studied,
only with the exponential correlator of the random force: in
the present work, we focused on a power law correlator.
The noise with the desired correlations h was generated by
a convenient superposition of Gaussian white noises, see
Eq. (1). In this definition, two parameters enter: τ, the
memory time, which sets the timescale at which correla-
tions decay [see, for example, Eq. (7)], and β, which
changes the power law of the decay of the correlator, see
again Eq. (7). Increasing β from 0 to 1 results in the slower
decay of the correlator at large times; hence, in some sense,
increasing β while keeping τ fixed amounts to having a bath
with more persistent memory. The interaction of the heavy
quarks with the bath at a fixed temperature was modeled by
a generalized Langevin equation, in which the random
force η is assumed to be time correlated and the dissipative
kernel is defined by a FDT-like equation.
We studied momentum randomization, thermalization,

and momentum isotropization of HQs by using the whole
Langevin equation (11). Initializing HQs with the particular
initial condition px ≠ 0, py ¼ pz ¼ 0, we found that the
qualitative behavior of hpxi with the power law memory
can be quite different from the memoryless case: in fact, the
exponential decay expected in the latter case is replaced by
damped oscillations in the former case, and the oscillations
become more persistent by increasing β. This is in agree-
ment with our general understanding, since increasing β
results in injecting more correlations in the random force,
hence an HQ needs more time to forget about its initial
condition. Our results show that momentum randomization
is not a trivial process when HQs interact with a medium
with power law memory.
We found that memory slows down thermalization and

momentum isotropization of the HQs. Thermalization
times are increased by memory: this leads to the increase
of the spatial diffusion coefficient. We found that the effect
on charm quarks is substantial, while that on beauty quarks

is smaller. This is probably due to the fact that, in general,
the thermalization times of beauty quarks are larger than
those of charms, hence for the former the correlations of the
noise have enough time to decay before thermalization sets
in. We also found that momentum isotropization is slightly
delayed by memory; however, isotropization times starting
with the FONLL distribution are in the same ballpark as the
thermalization ones.
In the memoryless case, the thermalization time τtherm is

∝ 1=D; on the other hand, in the case of the non-Markovian
dynamics, the dependence of τtherm on D is different. In
particular, for β ¼ 0.5 we found τtherm ∝ 1=D0.5. This leads
to the increase of τtherm due to memory, which we
quantified to be on the order of 30% for the charm quarks
for temperatures between Tc and 3Tc. Interestingly, the
impact of memory on τtherm of beauty quarks is damped in
the same range of temperatures in the QGP phase.
This work paves the way to more realistic implementa-

tions, which should include a proper initial geometry as
well as an expanding medium. In the future, it will be
relevant to investigate if the relation between RAA and v2 is
modified by a non-Markovian dynamics and to quantify
the potential effects on observables for both charm and
beauty quarks. We believe that memory has a potential
effect on observables. Following [53] we expect that
memory delays the formation of the RAAðpTÞ; conse-
quently, given a diffusion coefficient and a time interval,
memory will keep the values of RAAðpTÞ higher. This
implies that one would need a higher momentum diffusion
coefficient D or, equivalently, a smaller Ds in order to
reproduce the experimental RAAðpTÞ. In other words,
neglecting memory and fixing the transport coefficients
in order to reproduce data would lead to an overestimate of
Ds. We aim at discussing in detail these problems in future
publications.
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