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Recent open quantum system studies showed that quarkonium time evolution inside the quark-gluon
plasma is determined by transport coefficients that are defined in terms of a gauge invariant correlator of
two chromoelectric field operators connected by an adjoint Wilson line. We study the Euclidean version of
the correlator for quarkonium evolution and discuss the extraction of the transport coefficients from this
Euclidean correlator, highlighting its difference from other problems that also require reconstructing a
spectral function, such as the calculation of the heavy quark diffusion coefficient. Along the way, we
explain why the transport coefficient γadj differs from γfund at finite temperature atOðg4Þ, in spite of the fact
that their corresponding spectral functions differ only by a temperature-independent term at the same order.
We then discuss how to evaluate the Euclidean correlator via lattice QCD methods, with a focus on
reducing the uncertainty caused by infrared renormalons in determining the renormalization factor
nonperturbatively.
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I. INTRODUCTION

The scientific mission of relativistic heavy ion colliders
is to investigate properties of the deconfined phase of
nuclear matter in the high temperature regime, known as
the quark-gluon plasma (QGP). In current heavy ion
collision experiments, the QGP only lives for a short time
period (roughly 10 fm=c in the laboratory frame) and we
cannot directly measure its properties. Therefore, we use
probes such as particle multiplicities and azimuthal dis-
tributions, jets and hadrons containing heavy quarks to
indirectly study its properties. Various properties of the
QGP are encoded in terms of gauge invariant correlation
functions of field operators that often define transport
coefficients showing up in the time evolution equations
of the probes in the medium. Well-known examples include
the shear viscosity (defined as a correlator of stress-energy
tensors), the jet quenching parameter (a correlator of light-
like Wilson lines) and the heavy quark diffusion coefficient
(a correlator of two chromoelectric fields dressed with

Wilson lines). Since the QGP is a strongly coupled fluid,
nonperturbative determinations of these transport coeffi-
cients are crucial in our understanding of the QGP and
QCD at finite temperature. Common nonperturbative
methods include lattice QCD calculations and the holo-
graphic correspondence [1]. One can also extract these
transport coefficients from experimental data by solving in-
medium evolution equations (which can be model depen-
dent) for different values of the transport coefficients and
then performing a Bayesian analysis [2–6].
Recently, thanks to the advance in applying the open

quantum system framework to study jets [7] and quarkonia
[8–26] in the QGP (for recent reviews, see Refs. [27–30]), a
novel correlator of two chromoelectric fields dressed with
Wilson lines that determines transport properties of quar-
konium in the medium was constructed [12,20]. This
correlator for quarkonium transport is similar to but differ-
ent from the correlator defining the heavy quark diffusion
coefficient [31,32] in terms of the ordering of the fields
contained in the Wilson lines. Perturbative calculations in
Rξ gauge showed that the spectral function of the correlator
for quarkonium transport [33] differs from that for heavy
quark transport [34] by a temperature independent constant
at next-to-leading order (NLO). However, if both calcu-
lations had been performed in temporal axial gauge
(A0 ¼ 0), one would, at first sight, have concluded that
the two correlators were identical. This resulted in a puzzle:
Since both correlators are defined in a gauge invariant way,
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calculations with different gauge choices must give the
same result. This puzzle was resolved in Ref. [35], estab-
lishing the difference between the two correlators on a more
solid ground in QCD. Beyond NLO, the heavy quark
diffusion coefficient has been studied by using hard-
thermal-loop resummation [36], as well as nonperturba-
tively via the lattice QCD method [37–41] and the
AdS=CFT correspondence [31,42,43]. On the other hand,
a recent AdS=CFT calculation showed that the analog
quarkonium transport coefficients in N ¼ 4 supersymmet-
ric Yang-Mills (SYM) theory are zero [44], in stark contrast
to the heavy quark diffusion coefficient value of

ffiffiffi
λ

p
πT3 at

large coupling λ ¼ g2Nc ≫ 1. This difference is surprising
because the heavy quark and quarkonium transport coef-
ficients are defined by similar chromoelectric field corre-
lators. Therefore, it is well motivated to study the
quarkonium transport properties nonperturbatively in
QCD. It is also crucial and urgent, since quarkonium
production serves as an important probe of the QGP that
is produced strongly coupled in current heavy ion collision
experiments.
In this article, we discuss how to extract the quarkonium

transport coefficients from lattice QCD calculations of a
specific Euclidean chromoelectric correlator. The paper is
organized as follows: We will first review the quarkonium
transport coefficients in the real-time formalism in Sec. II,
which are defined in terms of a correlator of two chromo-
electric fields connected via an adjoint Wilson line. Then,
in Sec. III we will discuss the Euclidean version of the
correlator and how to relate it to its real time counterpart.
Next, in Sec. IV the setup of a lattice QCD calculation of
this Euclidean correlator will be discussed, with a focus on
how to renormalize it. Finally, we will conclude and present
our outlook in Sec. V.

II. QUARKONIUM TRANSPORT PROPERTIES

The quarkonium transport coefficients are defined in
terms of time-ordered chromoelectric field operators,
dressed with Wilson lines [12]:

κadj ≡ g2TF

3Nc
Re

Z
dthT Ea

i ðtÞWabðt; 0ÞEb
i ð0ÞiT

γadj ≡ g2TF

3Nc
Im

Z
dthT Ea

i ðtÞWabðt; 0ÞEb
i ð0ÞiT; ð1Þ

where hOiT ≡ TrðOe−βHÞ=Trðe−βHÞ, Ea
i is a chromoelec-

tric field, Wabðt; 0Þ denotes a time-like Wilson line in the
adjoint representation from t ¼ 0 to t, T represents the
time-ordering symbol, Nc ¼ 3 is the number of colors, and
TF ¼ 1=2 is the normalization of the fundamental repre-
sentation generator matrices. To simplify the notation we
have neglected the spatial coordinates, which are the same
for all the fields, and will do so throughout the paper, unless
the spatial coordinates are no longer the same. Both κadj and

γadj appear in the Lindblad equation describing the time
evolution of a heavy quark-antiquark pair (QQ̄) at a small
distance in the quantum Brownian motion limit [11,12]:

dρSðtÞ
dt

¼ −i½HS þ γadjΔhS; ρSðtÞ�

þ κadj

�
LαiρSðtÞL†

αi −
1

2
fL†

αiLαi; ρSðtÞg
�
; ð2Þ

where ρS is the subsystem density matrix of the QQ̄ pair,
γadjΔhS is the thermal correction to the vacuum QQ̄
Hamiltonian HS and Lαi denotes the relevant Lindblad
“jump” operators. Their explicit expressions are given in
Appendix A. The κadj parameter in the non-Hermitian part
of the Lindblad equation determines the rate of transition
between a QQ̄ pair in the color singlet state and that in the
color octet state, as well as wave function decoherence. On
the other hand, the γadj parameter in the Hermitian part of
the Lindblad equation controls the modification of the QQ̄
potential caused by the medium.
One way to interpret the integrations in Eq. (1) is as

Fourier transforms that convert the time domain to the
frequency domain. Consequently, the coefficients κadj and
γadj are the zero frequency limits of frequency-dependent
correlation functions. Moreover, their behavior at finite
frequency also turns out to be physically important. To
explain the physical meaning of these correlation functions
at finite frequency, we introduce path-ordered chromo-
electric field correlators [20,33]

½gþþ
adj �>ðtÞ≡ g2TF

3Nc
hEa

i ðtÞWacðt;þ∞ÞWcbðþ∞; 0ÞEb
i ð0ÞiT

½g−−adj �>ðtÞ≡ g2TF

3Nc
hWdcð−iβ −∞;−∞ÞWcbð−∞; tÞ

× Eb
i ðtÞEa

i ð0ÞWadð0;−∞ÞiT; ð3Þ
and consider their Fourier transforms ½g��

adj �>ðωÞ ¼R
dteiωt½g��

adj �>ðtÞ. The path-ordered version is more con-
venient to use at finite frequency and is consistent with the
time-ordered version: It has been shown that κadj ¼
½gþþ

adj �>ðω ¼ 0Þ [35]. We note that because of the explicit
operator ordering, only in ½gþþ

adj �> the adjoint Wilson lines

can be rewritten as Wabðt; 0Þ, which appears in the time-
ordered correlator shown in Eq. (1). Furthermore, one can
obtain the time-ordered correlator that enters the definition
of κadj and γadj by considering

½gTadj�ðtÞ≡ hT Ea
i ðtÞWabðt; 0ÞEb

i ð0ÞiT
¼ θðtÞ½gþþ

adj �>ðtÞ þ θð−tÞ½gþþ
adj �>ð−tÞ: ð4Þ

The path-ordered correlators at finite frequency appear in
the Boltzmann (rate) equation for quarkonium dissociation
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and recombination, which is derived in the quantum optical
limit of the open quantum system approach [20,33]:

dnbðt; xÞ
dt

¼ −Γnbðt; xÞ þ Fðt; xÞ; ð5Þ

where nbðt; xÞ is the density of the quarkonium state b at
time t, Γ denotes the dissociation rate and F represents the
formation of the quarkonium state b from a recombining
pair of unbound heavy quarks QQ̄

Γ ¼
Z

d3prel

ð2πÞ3 jhψbjrjΨprelij2½gþþ
E �>ð−ΔEÞ ð6Þ

F ¼
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3 jhψbjrjΨprelij2

× ½g−−E �>ðΔEÞfQQ̄ðt; x; pcm; xrel ¼ 0; prelÞ; ð7Þ

where a nonzero energy difference between the bound
and unbound states ΔE ¼ p2

rel=M þ jEbj determines how
the finite frequency dependence of the correlators appears in
the transition rates. HereM is the heavy quark mass and Eb
is the binding energy of the quarkonium state b. The
transition occurs via a color dipole interaction hψbjrjΨpreli
between a bound QQ̄ state jψbi and an unbound scattering
wave jΨpreli. fQQ̄ denotes the distribution of unbound heavy
quark pairswith center-of-mass positionsx andmomentapcm
and relative positions xrel ¼ 0 and momenta prel.
The chromoelectric field correlator for quarkonium

transport is different from that for heavy quark diffusion.
In particular, the heavy quark diffusion coefficient κfund and
an analogous quantity γfund (whose physical meaning has
not been explored for heavy quark transport) are defined by

κfund ¼
g2

3Nc
Re

Z
dthTrc½Uð−iβ −∞;−∞ÞUð−∞; tÞ

× EiðtÞUðt; 0ÞEið0ÞUð0;−∞Þ�iT
γfund ¼

g2

3Nc
Im

Z
dthTrc½Uð−iβ −∞;−∞ÞUð−∞; tÞ

× EiðtÞUðt; 0ÞEið0ÞUð0;−∞Þ�iT; ð8Þ

where Ei ¼ Ea
i T

a
F is the Lie algebra-valued chromoelectric

field, with the fundamental representation generator matri-
ces normalized as TrcðTa

FT
b
FÞ ¼ TFδ

ab. Also, Trc denotes
trace over color indices and Uðt; 0Þ represents a time-like
fundamental Wilson line from t ¼ 0 to t. The fundamental
Wilson line along the imaginary time at t ¼ −∞ indicates
the inclusion of the heavy quark effect on the thermal
density matrix of the whole system. It is noted that the
operators involved in the definition of κfund and γfund are
path-ordered. We want to emphasize that the crucial
difference between Eqs. (1) and (8) is not the

representations of the Wilson lines, but the different
orderings of the operators.

III. EUCLIDEAN CORRELATORS AND
TRANSPORT COEFFICIENTS

As is well known, lattice QCD methods can only
calculate correlation functions in Euclidean space and thus
cannot be applied directly to study the real-time correlators
defined in Eq. (3). In this section, we will introduce a
Euclidean version of the correlator for quarkonium trans-
port and discuss how to extract the quarkonium transport
coefficients from the evaluation of this Euclidean correla-
tor. As we will show, both the Euclidean correlator itself
and the method to extract the quarkonium transport
coefficients are different from the case of heavy quark
diffusion in subtle and important aspects. To make the
comparison more explicit, and also to take advantage of the
apparent similarities between them, we will first review
the extraction of the heavy quark diffusion coefficient from
the corresponding Euclidean correlator.

A. Heavy quark diffusion

The Euclidean correlator relevant for the heavy quark
diffusion case is given by [32]

GfundðτÞ ¼ −
1

3

hReTrc½Uðβ; τÞgEiðτÞUðτ; 0ÞgEið0Þ�iT
hReTrc½Uðβ; 0Þ�iT

;

ð9Þ

where β ¼ 1=T is the inverse of the QGP temperature and
h·iT ¼ Trð·e−βHÞ=Trðe−βHÞ, with H the Hamiltonian of the
QGP in the absence of any external color source. It has been
shown that the heavy quark transport coefficient can be
obtained from GfundðτÞ via [32,45]

κfund ¼ lim
ω→0

T
ω
ρfundðωÞ;

γfund ¼ −
Z

β

0

dτGfundðτÞ; ð10Þ

where the spectral function ρfundðωÞ is related to the
Euclidean correlator through1

GfundðτÞ ¼
Z þ∞

0

dω
2π

coshðωðτ − 1
2TÞÞ

sinhð ω
2TÞ

ρfundðωÞ: ð11Þ

This correlator is constructed such that the standard Kubo-
Martin-Schwinger (KMS) and analytic continuation rela-
tions hold as in textbook thermal field theory. Given an
analytic expression for GfundðωnÞ, with ωn ¼ 2πTn, n∈Z

1Our convention for the Fourier transform is OðωÞ ¼R
dteiωtOðtÞ.
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the Matsubara frequencies, one can extract the spectral
function by taking the real part2 of the retarded correlator
obtained by analytic continuation ωn → −iðωþ iϵÞ of this
Euclidean correlator. This has been done both at weak [34]
(QCD) and strong [31] (N ¼ 4 SYM) coupling. However,
at physical values of the coupling in QCD, the only tool
available at the moment is lattice gauge theory, and as such,
the reconstruction of the spectral function ρfund through the
relation (11) has received much attention in recent years
[41,46,47].
Comparatively, the theoretical treatment of quarkonium

transport coefficients has received less attention.Wenowaim
to fill in this gap, and subsequently, to provide a recipe to
determine these transport coefficients from lattice QCD
calculations. To this end, we need to first construct a
Euclidean version of the correlator for quarkonium transport
that can be calculated via lattice QCD methods, and then
explain how to extract the quarkonium transport coefficients
from the evaluation of such an Euclidean correlator. We will
answer these two questions in the following two subsections.
Details of the lattice calculation of the Euclidean correlator
will be discussed in the next section.

B. Euclidean correlator for quarkonium transport

To construct the Euclidean correlator for quarkonium
transport, we first note that because of the operator ordering
in the definitions (3), we can equivalently write

½gþþ
adj �>ðtÞ ¼

g2TF

3Nc
hEa

i ðtÞWabðt; 0ÞEb
i ð0ÞiT: ð12Þ

To perform the analytic continuation, it is best to explicitly
isolate the t dependence from the field operators and write it
purely in terms of time evolution factors. We let H be the
Hamiltonian of the thermal bath QGP in the absence of any
external color charge. When an external adjoint color charge
is present, the Hamiltonian of the thermal bath is given by
½H1 − gAc

0ð0ÞTc
adj�ab. The reason for the appearance of this

modified Hamiltonian can be seen from converting the
adjoint Wilson line back to the Schrödinger picture from
the interaction picture

e−iHtWabðt; 0Þ ¼
h
e−iðH−gAc

0
ð0ÞTc

adjÞt
i
ab
: ð13Þ

Equation (13) has the following physical interpretation:
during the time interval between 0 and t the QGP evolves
in the presence of an adjoint color charge, which is manifest
in the modification of the Hamiltonian by −gA0. It is

essentially a local modification to Gauss’s law,3 revealing
the presence of a color octet QQ̄ pair. Outside this time
interval the QGP evolves in the absence of external color
sources.
Using Eq. (13), one can write:

3Nc

g2TF
½gþþ

adj �>ðtÞ

¼ TrH½eiHtEa
i ð0Þ½e−iðH−gAc

0
ð0ÞTc

adjÞt�abEb
i ð0Þe−βH�

TrH½e−βH�
; ð14Þ

where the trace TrH runs over physical states of the QGP.
The analytic continuation is now direct, because all of the
time dependence is in the exponentials. We just set
t → −iτ, and identify the Euclidean gauge field A4 with
the Minkowski one by A0ð0Þ ¼ iA4ð0Þ, to find

½gþþ
adj �>ð−iτÞ

¼ g2TF

3Nc

TrH½eHτEa
i ð0Þ½e−ðH−gAc

0
ð0ÞTc

adjÞτ�abEb
i ð0Þe−βH�

TrH½e−βH�

¼ g2TF

3Nc
hEa

i ðτÞ
�
Pexp

�
ig
Z

τ

0

dτ0Ac
4ðτ0ÞTc

adj

��
ab
Eb
i ð0ÞiT

¼ g2TF

3Nc
hEa

i ðτÞWabðτ;0ÞEb
i ð0ÞiT

≡GadjðτÞ; ð15Þ

where P denotes path-ordering. That is to say, we have
proven that one of the real-time correlations we want to
evaluate is related to an Euclidean correlation function by
½gþþ

adj �>ð−iτÞ ¼ GadjðτÞ. We note that the absence of the
denominator term as in Eq. (9) is a result of the absence of a
Wilson line along the imaginary time direction at t ¼ −∞
in the definition of ½gþþ

adj �>. In quarkonium dissociation, the
initial state is a color singlet, whereas in heavy quark
diffusion, the initial state is in a color triplet representation,
whose effect appears explicitly in the initial thermal state.

C. Extraction of quarkonium transport
coefficients from Euclidean QCD

Now we discuss how to extract the quarkonium transport
coefficients from GadjðτÞ. Even though this correlation

2Many studies define correlation functions with an imaginary
unit prefactor, and there the spectral function corresponds to the
imaginary part of the retarded correlator, which has a factor of
1=2 compared with the spectral function defined by the difference
between the > and < Wightman correlators in frequency space.

3An interesting question one can ask of this expression is
whether we still have explicit gauge invariance. The answer is,
naturally, affirmative. However, this is not as easy to see when
considering time-dependent gauge transformations as it is for
time-independent gauge transformations. This is because the
Hamiltonian also changes if one considers time-dependent gauge
transformations, which is something to keep in mind when
quantizing the theory. We will not pursue this further here,
and we shall assume thatH is already determined. For a thorough
discussion on the quantization of gauge theories, we refer the
reader to Ref. [48].
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function has been studied in the past [49–51], its precise
connection to quarkonium transport has remained unex-
plored, until now. It turns out that neither Eq. (10) nor
Eq. (11) is valid for the quarkonium case. This is so because
Eq. (10) is a result of the standard KMS relation, which, as
we will show momentarily, is more complicated for the
quarkonium correlator. Furthermore, Eq. (11) relies on the
spectral function being odd in ω, which is crucially not true
for the quarkonium correlator, as we will discuss in what
follows.

1. KMS relation and nonodd spectral function

To explain the nonoddness of the spectral function for
quarkonium transport, we follow Ref. [33] to use the usual
proof of the KMS relation, plus the time-reversal operation
and find

½gþþ
adj �>ðωÞ ¼ eω=T ½g−−adj �>ð−ωÞ; ð16Þ

which is the necessary KMS relation for proper thermal-
ization of the internal degrees of freedom of the heavy
quark pair (their relative motion and internal quantum
numbers [52]). We then introduce the spectral function that
governs quarkonium transport as

ρþþ
adj ðωÞ ¼ ½gþþ

adj �>ðωÞ − ½g−−adj �>ð−ωÞ; ð17Þ

which, by definition satisfies ½gþþ
adj �>ðωÞ ¼

ð1þ nBðωÞÞρþþ
adj ðωÞ, with nBðωÞ ¼ ðeβω − 1Þ−1. We have

kept the superscripts “þþ” in the label of this spectral
function because we can also define

ρ−−adj ðωÞ ¼ ½g−−adj �>ðωÞ − ½gþþ
adj �>ð−ωÞ; ð18Þ

which contains the same information, and satisfies
ρ−−adj ðωÞ ¼ −ρþþ

adj ð−ωÞ.
Here comes the most important part: The spectral

function (17) is not odd in ω. In the standard thermal field
theory setup, we define ρðωÞ ¼ g>ðωÞ − g<ðωÞ where
g>ðtÞ ¼ hϕðtÞϕð0Þi and g<ðtÞ ¼ hϕð0ÞϕðtÞi, which are
related via g>ðωÞ ¼ g<ð−ωÞ in frequency space by time
translational invariance. This immediately leads to
ρðωÞ ¼ −ρð−ωÞ. However, the relation g>ðωÞ ¼ g<ð−ωÞ
is not true for ½gþþ

adj �>ðωÞ and ½g−−adj �>ðωÞ due to the path
ordering of field operators and the additional Wilson line
along the imaginary time in ½g−−adj �>. That is to say,
½g−−adj �>ðtÞ ≠ ½gþþ

adj �>ðtÞ. Therefore, we do not know how
ρþþ
adj ðωÞ transforms under ω → −ω a priori.
To see this more formally, one may also write the spectral

function as a spectral decomposition in terms of the
eigenvalues/eigenstates of H, denoted by fEn; jnig, and
those of ½H1 − gAc

0ð0ÞTc
adj�ab, denoted by fẼn; jñaig, where

a is interpreted as a component of the state, rather than a
label. With these definitions, it follows that

ρþþ
adj ðωÞ ¼

g2TF

3Nc

X
n;ñ

ð2πÞδðωþ En − ẼñÞjhnjEa
i ð0Þjñaij2

× ½e−βEn − e−βẼñ �: ð19Þ

There is no reason why this expression would be odd under
ω → −ω, because the energies En and Ẽn can (and will) be
different in general.
Indeed, explicit perturbative calculations at NLO show

that ρþþ
adj ðωÞ contains both ω-odd, which is the usual case,

and ω-even parts (see Appendix B). The final result
Eq. (3.66) shown in Ref. [33] is only for ω > 0, as
mentioned there. We have performed a similar calculation
for ω < 0 and found an ω-even part, which originates from
the diagrams (5, 5r, 6 and 6r) of Ref. [33], or diagrams (j) of
Refs. [34,45]

ΔρðωÞ≡ ðρþþ
adj ðωÞ − ρfundðωÞÞ ¼

g4TFðN2
c − 1Þπ2

3ð2πÞ3 jωj3;

ð20Þ

wherewe have also added a factor of 2 since the definition of
the spectral function shown in Eq. (3.66) of Ref. [33] differs
from Eq. (17) by a factor of 2 (see Eq. (3.28) therein).
To demonstrate the importance of the ω-even part, we

use it to recompute the difference between γfund and γadj at
the order of α2s

Δγ ≡ γadj − γfund ¼ −
16ζð3Þ

3
TFCFNcα

2
sT3; ð21Þ

where CF ¼ N2
c−1
2Nc

. This difference was first calculated in
Ref. [45]. Some algebra and use of the definitions for
½g��

adj �> leads to

γadj ¼ Im
Z þ∞

−∞
dtðθðtÞ½gþþ

adj �>ðtÞ þ θð−tÞ½gþþ
adj �>ð−tÞÞ

Δγ ¼ −
1

π

Z þ∞

−∞

dω
jωj ðθðωÞ þ nBðjωjÞÞΔρðωÞ; ð22Þ

where we have used ½g��
adj �>ðωÞ ¼ ð1þ nBðωÞÞρ��

adj ðωÞ and
used that they are translationally invariant in time. The piece
proportional to θðωÞ is a pure vacuum contribution that
vanishes in dimensional regularization. The second term
inside the integral, however, gives a thermal contribution:

Δγ ¼ −
4g4TF

3ð2πÞ4 π
2ðN2

c − 1Þ
Z þ∞

0

ω2dω

eω=T − 1

¼ −
16ζð3Þ

3
TFCFNcα

2
sT3; ð23Þ

which is exactly thedifferencegiven inEq. (21). This settles a
longstanding issue regarding the consistency of the gauge-
invariant chromoelectric correlators in the adjoint and

REAL TIME QUARKONIUM TRANSPORT COEFFICIENTS IN … PHYS. REV. D 108, 054024 (2023)

054024-5



fundamental representation, and verifies explicitly that the
spectral function relevant for quarkonium transport is quali-
tatively different from that for heavy quark diffusion. The
above discrepancyΔγ is explained precisely becauseρþþ

adj ðωÞ
is not odd in frequency.
With these theoretical foundations in hand, we can now

proceed to write down the formula analogous to Eq. (11),
which will allow for the extraction of κadj and γadj from the
evaluation of the Euclidean correlator GadjðτÞ.

2. Extraction formulas

Using the fact that GadjðτÞ is the analytic continuation of
½gþþ

adj �>ðtÞ to Euclidean signature, we can write

GadjðτÞ ¼
Z þ∞

−∞

dω
2π

e−ωτ½gþþ
adj �>ðωÞ

¼
Z þ∞

−∞

dω
2π

expðωð 1
2T − τÞÞ

2 sinhð ω
2TÞ

ρþþ
adj ðωÞ: ð24Þ

However, in contrast to Eq. (11), the integrand may not be
symmetrized with respect to ω because ρþþ

adj ðωÞ is neither
even nor odd. We note that, as one might suspect from
Eq. (15) and is apparent from Eq. (24), the analytic
continuation holds provided that 0 < τ < β. This is pre-
cisely the range where we discuss the calculation of Gadj in
the next section. A direct calculation using Eqs. (11), (20),
and (24) shows that

ΔGðτÞ≡GadjðτÞ − GfundðτÞ

¼
Z þ∞

−∞

dω
2π

expðωð 1
2T − τÞÞ

2 sinhð ω
2TÞ

ΔρðωÞ

¼ g4TFðN2
c − 1Þ

ð2πÞ3 πT4½ζð4; τTÞ − ζð4; 1 − τTÞ�

þOðg6Þ; ð25Þ

where ζðs;aÞ¼P∞
k¼0ðkþaÞ−s is the Hurwitz zeta function.

After extracting ρþþ
adj ðωÞ from the lattice QCD calculated

GadjðτÞ, which will be discussed in the next section, we can
obtain κadj and γadj as

κadj ¼ lim
ω→0

T
2ω

h
ρþþ
adj ðωÞ − ρþþ

adj ð−ωÞ
i

γadj ¼ −
Z

β

0

dτGadjðτÞ

−
1

2π

Z þ∞

−∞
dω

1þ 2nBðjωjÞ
jωj ρþþ

adj ðωÞ; ð26Þ

where the expression we have written for κadj makes it
manifest that only the ω-odd part of ρþþ

adj ðωÞ contributes to
it. [One can show this by using Eqs. (1) and (4).] We note
that γadj may be substantially more difficult to extract than

in the fundamental representation case. While the first term
is indeed the same as in the fundamental case by virtue ofRþ∞
−∞

dω
2π

ρþþ
adj ðωÞ
ω ¼ R β

0 dτGadjðτÞ, the fact that ρþþ
adj is not

necessarily odd under ω → −ω means that the last term
can contribute. Indeed, it does so in perturbation theory, as
demonstrated by our calculation of Δγ in Eq. (23). There is
even an additional complication in that the 1 in 1þ 2nB of
the second line will usually generate ultraviolet divergences
that have to be regulated analytically (e.g., by dimensional
regularization). Furthermore, the first term may also require
regularization for the integration regions where τ ≈ 0; β.

IV. LATTICE QCD DETERMINATION
OF GadjðτÞ AND RENORMALIZATION

In this section, we discuss how to perform a lattice QCD
calculation of Gadj and extract ρþþ

adj . We will first show a
discretized version of Gadj and then discuss how to renorm-
alize the lattice QCD result when taking the continuum
limit. Finally we will give a fitting ansatz to extract ρþþ

adj

from the calculated Gadj, which can then be plugged into
Eq. (26) to obtain the quarkonium transport coefficients.

A. Lattice discretization

The main ingredient we require in order to construct a
lattice formulation of the correlator that determines quar-
konium transition rates is a discretized formula for the
gauge field strength Fμν ¼ ∂μAv − ∂νAμ − ig½Aμ; Aν� in
terms of link variables UμðnÞ ¼ expðiagAμðnÞÞ:

½ΔU�μνðnÞ ¼ U−νðnþ ν̂ÞU−μðnþ μ̂þ ν̂ÞUνðnþ μ̂Þ
×Uνðnþ μ̂ − ν̂ÞUμðn − ν̂ÞU−νðnÞ − 1

¼ 2iga2FμνðnÞ þOða3Þ: ð27Þ

This discretization is different from the standard square
plaquette. We chose this one because it makes the operator
symmetric around the Wilson line direction, as shown in
Fig. 1. One can then write an expression purely in terms of
link variables for the correlator:

Gadjðτ; aÞ ¼
ð−1Þ

12a4Nc

�
Trc

�� Y0
n¼nτ−1

U†
0ðnÞ

�
½ΔU�τiðnτÞ

×

�Ynτ−1
n¼0

U0ðnÞ
�
½ΔU�ð−τÞð−iÞð0Þ

	

E

; ð28Þ

where τ ¼ anτ, and the products are ordered in such a way
that the lower limit of the index labels corresponds to the
operator that is most to the right in the product, and the
upper limit to the one that is most to the left. A graphic
representation of the correlator can be found in Fig. 1.
The average h·iE represents the expectation value under
the measure defined by the Euclidean lattice path integral,
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i.e., hOiE ¼ 1
ZE

R
DU expð−SE½U�ÞO½U� where ZE ¼R

DU expð−SE½U�Þ.

B. Renormalization and infrared renormalon

The bare chromoelectric correlator Gadjðτ; aÞ can be
evaluated by the lattice method explained above. For
physical quantities, the lattice calculation result needs
proper renormalization. Since the operator involves a
Wilson line, it is expected that Gadjðτ; aÞ contains a linear
divergence (which has not been explicitly checked and
should be done so in the future via, e.g., a calculation in
lattice perturbation theory), in addition to the usual loga-
rithmic divergence. Therefore, we renormalize the bare
correlator via

GR
adjðτ; μÞ ¼ Zðμ; aÞeδm·τGadjðτ; aÞ; ð29Þ

where Z stands for the renormalization factor for the
logarithmic divergence of the composite operator, with μ
the renormalization scale and δm the mass renormalization
associated with the self energy of the Wilson line. It has
been shown that this form of the renormalization factor for
the nonlocal operator is consistent with the fact that when
the nonlocal operator is expressed as a weighted sum of
local lattice operators, they mix in the renormalization
group flow [53]. In this work, we will not address the
potential mixing between similar correlators with different
Wilson line paths connecting the two chromoelectric fields.
A NLO calculation of the real-time partner of Gadj, i.e.,

½gþþ
adj �> has shown that [33]

Z0 ¼ 1þ 0

ϵ
þ finite terms at g2 þOðg4Þ; ð30Þ

where we used Z0 to distinguish the renormalization factor
for ½gþþ

adj �> from the Z for Gadj. The “0” coefficient of the
1=ϵ term emphasizes that ½gþþ

adj �> has no logarithmic
divergence at NLO. The calculation was performed in
the continuum by using dimensional regularization. The
divergent term should be the same in the dimensionally

regularized and lattice regularized perturbative calculations.
Only the finite terms can be different. If wewant to obtain the
renormalized result in the MS scheme, the finite difference
between the lattice scheme result and the MS result should
still be accounted for. In the case of Gfund, the difference is
known at NLO [54]. We leave the calculations of Z for the
Euclidean Gadj in both schemes to future studies. (As can be
seen by comparing to Ref. [54], such calculations are
research projects on their own.)
Since the δm term is associated with the self energy of

theWilson line, one can use lattice perturbative calculations
to determine it, but the uncertainties are expected to be
large due to infrared renormalons. In particular, δm is
expected to be of the form

δm ¼ m−1ðaΛQCDÞ
a

þm0ðΛQCDÞ; ð31Þ

where m−1 is constant at leading order in lattice perturba-
tion theory, but it has a residual dependence on a at higher
orders via, e.g., aΛQCD due to renormalization effects. On
the other hand, m0 is independent of the lattice spacing a,
but it is scheme dependent as well. (Both m−1 and m0 also
depend on the other mass scales of the theory, if there are
any.) The infrared renormalon ambiguity leads to an
uncertainty in summing the perturbative series for m−1,
which is compensated by the same uncertainty in determin-
ing m0. The fact that both m−1 and m0 are scheme
dependent is reflected in the systematic uncertainty of
fitting the a dependence from lattice calculations at small a,
as shown in the recent study on renormalizing the quasi
parton distribution function (quasi-PDF) [55].
Herewediscuss a strategy to reduce the uncertainty caused

by the infrared renormalons in determining the renormaliza-
tion factor δm by using lattice QCD calculation results,
which is motivated by the recent work on self renormaliza-
tion of the quark quasi-PDF [55,56]. The first step is to fit
m−1 from the a dependence of Zðμ; aÞGadjðτ; aÞ when a is
small for some τ. Different choices of τ are expected to give
the same fitting result, as long as we maintain τ ≫ a to have

FIG. 1. Lattice discretization of the chromoelectric field correlator. The electric field insertions are constructed by taking the difference
between the products of gauge links over the blue and red contours at the ends of the light blue contours, which represents an adjoint
Wilson line. In this setup, the adjoint Wilson line is equivalent to two antiparallel fundamental Wilson lines.
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negligible lattice artifacts). Due to the unknown nonpertur-
bative dependence of m−1 on a, different parametrizations
may be used in the fitting and they do not lead to the same
result necessarily, which reflects the scheme dependence of
m−1. Then we define GR0

adjðτ; μÞ≡ Zðμ; aÞem−1τ=aGadjðτ; aÞ,
i.e., we only absorb the extracted a-dependent linear diver-
gence and the logarithmic divergence into the renormaliza-
tion factor and perform an operator production expansion
(OPE) at small τ (i.e., β ≫ τ but we still require τ ≫ a)

GR0
adjðτ; μÞ ¼ e−m0τ

X
n

CnðαsðμÞ; μτÞτnhOniRTðμÞ

⟶
τ→0 ð1 −m0τÞ

X
n¼0;1

Cnτ
nhOniRT þOðτ2Þ; ð32Þ

where On denotes the local operators in the OPE and
hOniRTðμÞ represents their renormalized expectation values
at the same temperature T. The expectation values ofOn can
be calculated by standard lattice QCD methods and renor-
malized perturbatively by calculating the corresponding
logarithmic renormalization factors via lattice perturbative
calculations, in the sameway as it is done for the logarithmic
renormalization factor Z for Gadj. These local operators do
not involve Wilson lines and thus do not have linear
divergence, so it is expected that their renormalization is
insensitive to the effects from infrared renormalons. The
local OPE operators that may contribute include

O0∶ 1;TrcðF0iF0iÞ;TrcðFijFijÞ; mqq̄q

O1∶ eρTrcðF0iDρF0iÞ; eρTrcðFijDρFijÞ; eρmqq̄Dρq; ð33Þ

where eρ is a unit vector along the spacetime direction ρ. The
short-distance Wilson coefficients Cn can be calculated in
perturbation theory at the scale μ ¼ 1=τ. The calculation of
these coefficients is an active area of research [57,58]. In
practice, we can determinem0 via Eq. (32) by calculating the
lattice renormalized GR0

adjðτ; μÞ and hOniRTðμÞ. With m0

determined, we can obtain GR
adjðτ; μÞ from GR0

adjðτ; μÞ by
including the renormalization factor associated with m0. As
suggested in Ref. [56], to reduce the uncertainty caused by
the infrared renormalons, one resums the leading infrared
renormalons inCn by regulating the renormalon poles in the
Borel space and applying the inverse Borel transformation.
As shown therein, this strategy removes a large uncertainty in
the determination of the quark PDF. We expect a similar
uncertainty reduction to happen for the determination ofGR

adj

by using this strategy.
After determining the renormalized GR

adj in the lattice
regularization, we can convert it into the MS scheme if we
know the difference between the perturbative results of the
logarithmic divergence in these two schemes. As part of the
conversion process, one has to take care of the fact that in
dimensional regularization with d ¼ 4 − ϵ and ϵ → 0, the

linear divergence is absent. Any residual finite terms from
this linear divergence are accounted for through m0 in the
OPE matching.

C. Fitting Ansatz for ρ+ +
adj

Once we obtain the renormalized GR
adj, we can use

Eq. (24) to fit the spectral function ρþþ
adj . Since we only

have a limited number of data points in τ, we need a fitting
ansatz. One ansatz that has been used in the lattice studies
of the heavy quark diffusion coefficient is of the form [46]

ρþþ
adj ðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2IRðωÞ þ ρ2UVðωÞ

q
; ð34Þ

where ρIR and ρUV represent ansatzes in the small and large
ω regions, respectively. We will construct ansatzes moti-
vated from perturbative studies.
The large frequency behavior of ρþþ

adj ðωÞ is determined
by Eq. (20) and ρfundðωÞ, which may be read off from
Ref. [34]. Explicitly,

ρþþ
adj ðωÞ ¼ω≫T g2TFðN2

c − 1Þω3

3ð2πÞNc

×

�
1þ g2

ð2πÞ2
��

11Nc

12
−
Nf

6

�
ln

�
μ2

4ω2

�

þ Nc

�
149

36
−
2π2

3
þ π2sgnðωÞ

�
−
5Nf

9

�	
þOðg6Þ; ð35Þ

where Nf is the number of light (massless) quark flavors in
the theory. It was shown in Ref. [34] that up to Oðg4Þ, the
leading temperature-dependent contributions at large fre-
quency go as T4=ω, which are omitted in Eq. (35) since
they are subleading.
On the infrared side, one needs to use the hard thermal

loop effective theory to capture the behavior of correlation
functions when jωj ≲ gT ∝ mD, where mD is the so-called
Debye mass of the QGP, given (perturbatively) by
m2

D ¼ g2T2ðNc
3
þ Nf

6
Þ, which quantifies color-electric

screening in a thermal plasma. To see the difference
between the ρfund and ρadj in the small ω region, one needs
to consider the same type of diagrams that led to the
difference shown in Eq. (20), which has a prefactor of g4,
meaning that the dominant corrections in the regime jωj ≲
mD will be of order g4m2

Djωj ∝ g6T2jωj. This means that
we cannot make quantitative statements by considering
only the 1-loop diagram that leads to Eq. (20) (replacing the
propagators with their HTL-resummed counterparts), as we
can get competing effects from 2-loop diagrams in QCD,
which contribute at order g6. In practice, one would also
need to calculate these 2-loop diagrams to be able to match
the HTL result to full QCD. We will leave such calculations
to future studies. Here we only list the leading contribution
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in the infrared regime, which can be written in terms of the
well-known heavy quark diffusion coefficient κfund at NLO:

ρþþ
adj ðωÞ ¼ω≪gT

ρfundðωÞ ¼ω≪gT κfundω

T
þOðg6Þ; ð36Þ

where κfund is given by [36,59]:

κfund ¼
g4TFðN2

c − 1ÞT3

9ð2πÞNc

×

��
Nc þ

Nf

2

��
ln

2T
mD

þ 1

2
− γE þ ζ0ð2Þ

ζð2Þ
�

þ Nf

2
ln 2þ NcmD

T
C

�
þOðg6Þ; ð37Þ

with C ≈ 2.3302, as given in Ref. [59]. The fact that the
low-frequency limit of the adjoint and fundamental corre-
lators do not differ up to this order had already been noticed
in Ref. [59].
Motivated by the above perturbative analyzes, we

suggest to use Eq. (35) as ρUV in the fitting ansatz (34)
and use κadjωþ cjωj to parametrize ρIR with c some
constant that does not contribute to κadj. The appearance
of the cjωj term in ρIR is a crucial difference from the case
of the heavy quark diffusion coefficient and is motivated by
perturbative calculations shown in Sec. III C 1. The fitting
of ρþþ

adj will not only provide the quarkonium transport
coefficient κadj, but also the frequency dependence of ρþþ

adj ,
which is important to evaluate γadj, as well as the frequency-
dependent correlators g��

adj ðωÞ that determine the quarko-
nium dissociation and recombination rates.

V. CONCLUSIONS

In this paper, we explained how to determine the real
time quarkonium transport properties from a Euclidean
chromoelectric field correlator. This determination requires
to reconstruct a spectral function in a way that is different
from more intensively studied spectral function
reconstruction problems, such as the one required for the
extraction of the heavy quark diffusion coefficient. The key
results are shown in Eq. (26). We then discussed the lattice
determination of the Euclidean correlator, and in particular,
a method to reduce the uncertainty caused by infrared
renormalons in obtaining the renormalization factor for the
linear divergence of the correlator. This method is quite
involved and several perturbative calculations needed to
implement the method are left to future studies, such as the
lattice-regularized perturbative calculation of the logarith-
mic renormalization factor Z in Eq. (29) and the Borel-
resummed calculation of theWilson coefficients in the OPE
(32). Our work paves a way toward a nonperturbative
determination of the quarkonium transport properties in the
QCD hot medium, which generalizes the use of a weakly

interacting gas of quarks and gluons as a microscopic
model of the QGP in Boltzmann (rate) equations [60–63]
for quarkonium to the strongly coupled case. This not
only deepens our understanding of the QGP and quarko-
nium production in heavy ion collisions, but may also
provide insights for studies of exotic heavy flavor produc-
tion [64–66] and dark matter bound state formation in the
early universe [33,67–69].
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APPENDIX A: DETAILED EXPRESSIONS IN THE
LINDBLAD EQUATION

Here we write out explicitly each term in the Lindblad
equation (2) introduced in the main text, which can be
found in the literature, e.g., in Ref. [24]. The density matrix
is assumed to be block diagonal in the color singlet and
octet basis

ρSðtÞ ¼
�
ρðsÞS ðtÞ 0

0 ρðoÞS ðtÞ

�
: ðA1Þ

The Hamiltonian and its thermal correction are given by
[CF ¼ ðN2

c − 1Þ=ð2NcÞ]

HS ¼
p2rel
M

þ
�− CFαs

r 0

0 αs
2Ncr

�
;

γadjΔhS ¼
γadj
2

r2
�
1 0

0 N2
c−2

2ðN2
c−1Þ

�
; ðA2Þ

The Lindblad operators are given by
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L1i ¼
�
ri þ

1

2MT
∇i −

Nc

8T
αsri
r

��
0 0

1 0

�

L2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N2
c − 1

s �
ri þ

1

2MT
∇i þ

Nc

8T
αsri
r

��
0 1

0 0

�

L3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

2ðN2
c − 1Þ

s �
ri þ

1

2MT
∇i

��
0 0

0 1

�
; ðA3Þ

where i ¼ x, y, z.

APPENDIX B: CALCULATION DETAILS OF
SPECTRAL FUNCTION DIFFERENCE

As explained in the main text, the difference between the
spectral function for quarkonium transport and that for
single heavy quark transport is given by the diagrams (j) in
Refs. [34,45], or (5), (5r) in Ref. [33]. The diagrammatic
representation of their difference in real time in terms of
Wightman functions was given in Ref. [35], where gauge
invariance was also examined.
Following the calculation details of Ref. [33], we find

that the difference between these two spectral functions is
given by

ρþþ
adj ðωÞ − ρfundðωÞ ¼

Z
p;k

TF

3Nc
g4NcðN2

c − 1Þ2πδðk0Þ½gμνðp − 2kÞδ þ gνδðk − 2pÞμ þ gδμðpþ kÞν�

× ðp0giδ0 − pig0δ0 Þððp0 − k0Þgiν0 − ðpi − kiÞg0ν0 ÞRe
n
½ρðpÞ�δ0δ½DTðp − kÞ�νν0 ½DTðkÞ�μ0

− ½DTðpÞ�δ0δð½D>ðp − kÞ�ν0ν½D>ðkÞ�0μ − ½D<ðp − kÞ�ν0ν½D<ðkÞ�μ0Þ
o
; ðB1Þ

where p0 ¼ ω. By using the thermal (KMS) relations between the free propagators D>;D<;DT and ρ, this can be further
simplified to

ρþþ
adj ðωÞ − ρfundðωÞ ¼

Z
p;k

TF

3Nc
g4NcðN2

c − 1Þ2πδðk0Þ½gμνðp − 2kÞδ þ gνδðk − 2pÞμ þ gδμðpþ kÞν�

× ðp0giδ0 − pig0δ0 Þððp0 − k0Þgiν0 − ðpi − kiÞg0ν0 Þð−1Þ½ρðpÞ�δ0δImf½DR�νν0 ðp − kÞgImf½DR�μ0ðkÞg:
ðB2Þ

In our convention, the free propagators in Feynman gauge are given by

½ρðpÞ�μν ¼ ð−gμνÞð2πÞsgnðp0Þδðp2Þ ½DRðpÞ�μν ¼
−igμν

p2 þ i0þsgnðp0Þ
; ðB3Þ

and using them to calculate the difference, one arrives at

ρþþ
adj ðωÞ − ρfundðωÞ ¼

Z
p;k

TF

3Nc
g4NcðN2

c − 1Þð2πÞδðk0Þð2πÞsgnðωÞδðp2ÞP
�
2dω3 − 2ωðp − kÞ2

k2ðp − kÞ2
�
: ðB4Þ

In dimensional regularization, ðp − kÞ2 may be exchanged by ω2 because
R
k

1
k2 vanishes. Then, setting d ¼ 3, this integral

becomes

ρþþ
adj ðωÞ − ρfundðωÞ ¼

TF

3Nc
g4NcðN2

c − 1Þjωj3
Z
p;k
ð2πÞδðp2ÞP

� ð−4Þ
k2½ω2 − ðp − kÞ2�

�
: ðB5Þ

The explicit calculation of this integral is equivalent to the one presented in the Supplemental Material of Ref. [35]. The
final result is

ρþþ
adj ðωÞ − ρfundðωÞ ¼

TF

3Nc
g4NcðN2

c − 1Þjωj3 π2

ð2πÞ3 ¼
g4TFðN2

c − 1Þπ2
3ð2πÞ3 jωj3; ðB6Þ

as claimed in the main text.
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It is noteworthy that the difference between the spectral
functions, as given in Eq. (B2) may also be used in
conjunction with HTL-resummed propagators to explore
the value of the difference (a modification to the gluon
3-vertex is also necessary, according to the HTL effective

theory Feynman rules. They can be found in Ref. [70].).
However, as discussed in the main text, a full fixed-order
calculation atOðg6Þ, which is the leading contribution to the
difference in the small frequency domain, also requires
considering 2-loop diagrams, which wewill not pursue here.
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