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The generating functional W¥[J ] of Euclidean correlators of twist-2 operators in SU(N) Yang-Mills
theory admits the 't Hooft large-N expansion: WE[Jo] = WE _ [Jo] + WE [Jo] + - - -. Nonperturba-

sphere
tively, Wﬁ)here [Jo] is a sum of tree diagrams involving glueball propagators and vertices, while WE ([ o] is

a sum of glueball one-loop diagrams. Moreover, it has been predicted that WE [/ ] should admit the

structure of the logarithm of a functional determinant summing glueball one-loop diagrams. We work out in
a closed form the ultraviolet (UV) asymptotics of WE, __[Jp, 4] ~ WE [Jo,4] and WE_ ([Jo, 4] ~

sphere asym sphere
Wfsym worus [ J 0 4] in the coordinate representation as all the coordinates of the correlators are uniformly
rescaled by a factor A — 0. The calculation is performed in two steps. First, extending our previous work,
we compute—directly from its functional-integral definition as a Gaussian integral—the generating
functional of the conformal correlators Weont[Jo] = Weont sphere [ 0] + Weont torus[Jo] to the lowest
perturbative order of all the twist-2 operators with maximal spin along the p, direction, in both
Minkowskian and—by analytical continuation—Euclidean spacetimes. Thus, we provide a purely
perturbative explanation as to why W[/ o] has the structure of the logarithm of a functional determinant.
Second, by means of a careful choice of the renormalization scheme that reduces the mixing of the above
operators to the multiplicatively renormalizable case to all orders of perturbation theory, we lift the
generating functional of the Euclidean conformal correlators WE .

renormalization-group improved correlators Wiim[Jo, 4] = Wit ohere

[Jo] to the generating functional of the
0. A + Whiym torus[J 0. 4] that
inherits the very same structure of the logarithm of a functional determinant. Remarkably, we verify the
above prediction that W, s [/ 0. AJ—being asymptotic in the UV to W[/ o, A]—admits the structure
of the logarithm of a functional determinant as well. Hence, the computation above sets strong UV
asymptotic constraints on the nonperturbative solution of large-N Yang-Mills theory, and it may be a

pivotal guide for the search of such a solution.
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I. INTRODUCTION, PHYSICS MOTIVATIONS,
AND CONCLUSIONS

The generating functional WE[J o] = WE[J g, J5, Js, J5]
of Euclidean connected correlators of single-trace gauge-
invariant twist-2 operators in SU(N) Yang-Mills (YM)
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theory admits the ’t Hooft large-N expansion [1] in powers
of L
N

WE[JO] :Wg)here[‘]O] +Wtb(:)ms[‘]0] +oe (1)

Perturbatively, in terms of the ’t Hooft gauge coupling ¢*> =
Ngiy [11, Wg)here [J/o] contains a sum of Feynman diagrams
that—in the 't Hooft double-line representation—have the
topology of a punctured sphere, while WE [/ ] includes
diagrams that have the topology of a punctured torus, the
punctures arising in both cases from the insertion of the
sources J» dual to the twist-2 operators O.

Alternatively, Wi, .[Jo] may be defined as a sum of
planar diagrams [1] and WE,[J»] as a sum of leading-
order (LO) nonplanar contributions.

Published by the American Physical Society
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Nonperturbatively, in terms of the renormalization-group
(RG) invariant scale Ay, Wsphere [Jo] is a sum of tree
diagrams [2] involving glueball propagators and vertices,
while WE_ ([Jo] is a sum of glueball one-loop diagrams,
both arising from the effective description of the—yet to
come—nonperturbative solution of large-N YM theory as a
theory of an infinite number of weakly coupled glueballs
with coupling of order v [1-3].

Moreover, on the ba51s of the existence of a non-
perturbative glueball effective action, it has been predicted
[4] that WE [Jo] should admit the structure of the
logarithm of a functional determinant summing glueball
one-loop diagrams.

Presently, nothing is known quantitatively on the struc-
ture of quhere[ o] and WE_ [Jo] nonperturbatively.
Hence, one of the aims of the present paper is to put
strong quantitative constraints on the aforementioned
nonperturbative structure by working out in a closed form
the ultraviolet (UV) asymptotics of WE . [Jo,4] ~
WaEsym sphere [JOv ] and Wtorus [J(?? ] Wasym torus [JO’ ’1] in
the coordinate representation as all the coordinates of the
correlators are uniformly rescaled by a factor A — 0. This is
achieved in two steps:

(I) The efficient computation in a closed form of
the generating functional of conformal correla-
tors Wconf [‘] 0} Wclzsonf sphere [‘]O] + Wconf torus [JO]
of twist-2 operators to the lowest order of perturbation
theory.

(I) The  RG-improvement  from Wcont Vol =
Wchnf sphere [‘] O] + Wconf torus [‘]0] to Wasym [‘](9’ '1] -
WE i sphere M 05 4] + Wikym torus[J 05 4], Which is ob-
tained by standard RG methods in combination with
a new technique [5] that reduces the operator mixing
of twist-2 operators to the multiplicatively renorma-
lizable case to all orders of perturbation theory.

We describe the steps (I) and (IT) in more detail as follows.

Recently, we have computed [6] to the lowest perturba-

tive order in YM theory n-point conformal correlators
in the coordinate ngzf(xl, ...,X,) and momentum

Gﬁgl)lf( Pi1.....P,) representation of the gauge-invariant
twist-2 operators with maximal spin along the p, direction,

Euclidean spacetimes.

Specifically, we have calculated the n-point conformal
correlators of the balanced @,0 and unbalanced S,S
operatorsl with collinear twist 2 [6] in their separate sectors
and the three-point correlators in the mixed sector as well.

'In our terminology ‘“‘unbalanced” and “balanced” refer to
either the different or equal numbers of dotted and undotted
indices that the aforementioned operators, respectively, possess in
the spinorial representation. Unbalanced operators are referred to
as “asymmetric” in [7] and “anisotropic” in [8].

We have also reconstructed [6] from the n-point conformal
correlators in each separate sector the corresponding gen-
erating functionals, Fconf [] Ovj CD} = 1—‘conf sphere [] @7j @] +
T conf torus [j(UH J@} and Fconf[jS’ J§] = I'cont sphere [jSv j§]+
T eonf torusljs» js)» in both Minkowskian and Euclidean
spacetimes and in both the coordinate and momentum
representations that turn out [6] to have the structure of
the logarithm of functional determinants.

We have pointed out [6] that the rationale behind the
generating functionals L cont torus [J 0. J 0} and I cont torus [J s+J §]
being the logarithm of functional determinants is the pre-
diction [4] that the LO nonplanar contribution to the non-
perturbative effective action [4] should have the structure of
the logarithm of a functional determinant that sums the
glueball one-loop diagrams. Hence, in relation to the above
computations, the aim of the present paper is fourfold.

First, as opposed to the aforementioned nonperturbative
argument, since the computation of the n-point conformal
correlators is by Feynman diagrams [6], we find a pertur-
bative reason as to why the corresponding generating
functionals I'co[jo. jo) and Teoneljs, js] are the logarithm
of functional determinants [6]: As all the aforementioned
collinear twist-2 operators are quadratic in the gauge field
in the light-cone gauge to the lowest order of perturbation
theory, the functional integral that defines their generating
functional W,q,¢[Jo] is Gaussian and leads to a functional
determinant involving the corresponding sources J .

Then, once some technical difficulties are properly
understood, a tedious but straightforward computation
shows that the functional determinants I'.o¢[jo. jg| and
TeontlJs, js] worked out in [6] actually arise from their very
definition as Gaussian functional integrals W ou[Jo. /)
and Wont[/s, Js] in the present paper.

Second, our new method to compute the generating func-
tional W[/ o] allows us to produce a vast generalization of
our previous computations. For example, we calculate the
generating functional W ¢[Jo./g.Js.Js] in the mixed
balanced/unbalanced sector” in YM theory, verify by means
of it our previous computation of the mixed three-point
correlators [6], and compute the mixed four-point correlators.

Besides, the same technique will allow us to compute
in the future—as the logarithm of a functional (super)
determinant—the generating functional of the lowest-order
conformal correlators of the collinear twist-2 operators in
N=1724 supersymmetric (SUSY) YM theory, QCD and
N =1 SUSY QCD—the superdeterminant arising in the
supersymmetric cases.

Remarkably, the very same technique also applies to all
the possibly higher-twist operators that are quadratic [7] in
the elementary fields in the light-cone gauge to the lowest
order of perturbation theory in all the above theories.

In [6] we could not compute the n-point correlators with
n >3 in the mixed balanced/unbalanced sector by means of
Feynman diagrams because of their complexity. As a consequence
we could not reconstruct I'eoi¢[jo. g Js. js) from the correlators.
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Third, we work out the UV asymptotics of the Euclidean
nonpertubative n-point correlators in a certain renormaliza-
tion scheme described below. The computation is based on
both our lowest-order calculation of the Euclidean conformal
correlators and its improvement by means of the RG.

Generally, collinear twist-2 operators O, with maximal
spin projection s; > 2 mix under renormalization with total
derivatives of the same operators with lower spins, so that
an explicit evaluation of the RG-improved asymptotics of
their Euclidean n-point correlators in the MS renormaliza-
tion scheme would require the asymptotic estimate—that
seems practically impossible—of the product of the sum of
O(s;) terms for each O, occurring in the n-point corre-
lators because of the triangular nature of their renormalized
mixing matrix Z(, not to mention that in general Z(?) is
actually only known to two loops [9-11] in perturbation
theory and not in its RG-improved form.

Recently, a differential-geometric approach to operator
mixing in massless QCD-like theories has been proposed
[5] precisely to overcome the above difficulty. Specifically,
it has been determined under which conditions a renorm-
alization scheme exists where each Z(*) may be set in a
diagonal canonical form that is one-loop exact to all
perturbative orders—according to the nonresonant diago-
nalizable ;—2 case (I) [5]. Moreover, it has been verified [12]

that the balanced collinear twist-2 operators belong to the
case (I), and we show in the present paper that this is also
the case for the unbalanced ones.

Remarkably, in such a scheme the needed terms for the
asymptotic evaluation of the n-point correlators reduce to just
one, since in this scheme the operators are multiplicatively
renormalizable and in general their correlators do not vanish
to the lowest order of perturbation theory. The nonresonant
diagonal scheme may also apply to the collinear twist-2
operators in QCD and its supersymmetric extensions above.

Fourth, we employ the UV asymptotics of the Euclidean
n-point correlators in the nonresonant diagonal scheme to work
out the corresponding generating functional W, [J.4] that
also turns out to be the logarithm of a functional determinant.
In fact, after a suitable rescaling of the operators, it may be
decomposed for large N into the sum of the generating
functionals of the planar Wi ... [/ 0, 4] and LO nonplanar
asymptotic correlators Wfsym worus [0 4], which has the struc-
ture of the logarithm of a functional determinant as well.

This is our last—and perhaps most remarkable—step.
Indeed, according to the prediction in [4] the nonperturba-
tive glueball one-loop generating functional WE [/, 4]
should have the structure of the logarithm of a functional
determinant and as a consequence W torus [/ 0» 4] should
inherit the very same structure as well.

In a forthcoming paper we will further investigate the
above nonperturbative interpretation. In any case the

generating functionals of planar Wi . ..[Jo. 4] and

*In both cases numerically up to s = 10*.

LO nonplanar asymptotic correlators W m torus [/ 0+ 4]
set strong UV asymptotic constraints on the nonperturbative
solution of large-N YM theory and may be a pivotal guide
for the search of such a solution.

II. PLAN OF THE PAPER

In Sec. IIl we compute the generating functional
WeontlJ o] = Weont[J0s g Js» J5] in the coordinate repre-
sentation of all the correlators of collinear twist-2 operators
(Appendix B) to the lowest order of perturbation theory from
the YM functional integral in Minkowskian spacetime.

In Sec. IV we restrict Weone[Jo,Jg. Js,Js] to the
generating functionals in the separate balanced and unbal-
anced sectors, Weone[Jo, Jg] and Weone[Js. Js], and con-
nect them to the generating functionals, I.o¢[jo. jg] and
TeontlJss Jjs)» previously computed in [6] directly from the
corresponding correlators, finding perfect agreement.

In Sec. V we work out the generating functional
Weont[J o] in the momentum representation involving both
its explicit expansion and a compact representation by
means of the Gegenbauer polynomials.

In Sec. VI we calculate the three- and four-point
correlators in the mixed sector from We,n¢[Jo]. The result
agrees with our previous computation [6] of the mixed
three-point correlators.

In Sec. VII we recall some recent results [5] on operator
mixing and apply them to work out the UV asymptotics in
the coordinate representation of the Euclidean n-point
correlators of collinear twist-2 operators in the aforemen-
tioned nonresonant diagonal scheme [5].

In Sec. VIII we compute the generating functional in
the coordinate representation of the RG-improved correlators
in Euclidean spacetime Wi [Jo, 4] = Wi cnere M0 A1+
Wzl;:sym torus [J 0> )']

In Appendix A we compute the functional determinant
that leads to the generating functional W yu¢[J o).

In Appendix B we recall the definition of the standard
basis [6] of collinear twist-2 operators and describe its
conformal properties to the leading and next-to-leading
perturbative order.

In Appendix C we compute the normalization of the two-
point conformal correlators employing the properties of the
Gegenbauer polynomials.

In Appendix D we verify that the three-point correlators
up to s =4 are—indeed—a linear combination of the
structures implied by the conformal symmetry.

III. GENERATING FUNCTIONAL W,,,; OF THE
MINKOWSKIAN CONFORMAL CORRELATORS
FROM THE YM FUNCTIONAL INTEGRAL

The Minkowskian YM action is

1
SYM = —5/ d4XTI'FHDFﬂV, (2)
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where

F,=0A -0A,+i—=
7 \/]v

(A A, (3)
and
Ay = AT (4)
with the Hermitian generators of the SU(N) Lie algebra
[Ta Tb] fabCTC (5)
in the fundamental representation normalized as

5ub

Tr(T9T?) = 5 (6)

and ¢> = Ng3y, the ’t Hooft coupling [1]. We set

Vo+V; Vo—V;3
V.= , V_= =,
2 V2
Vi+iVv - -V
V= $, p=1"" (7)
V2 V2
for a vector V.. We choose the light-cone gauge
A, =0. (8)

After integrating out A_, the YM action in the light-cone
gauge reads [13]

SYM(A,A):—/AaDAa
+ 2% Fbe (A9, AP90T AC + A9, AP99T AC)

7

4 2Nfabcfadeail (Aba+AC)0J_rl (Ada+Ae>d4x
9)
The vacuum expectation value (VEV) of a product of local

gauge-invariant operators O;(A) that do not depend on
A_ reads

<01 (xl) e On(xn)>

1 - i
= Z/DA'DAelSYM(A‘A)Ol(Xl) te On (xn)' (10)

To the leading perturbative order it reduces to

(O1(x1) -+ Op(x4))
:%/DADAe—ifd4anDAa01(xl)_..(’)n(xn) (11)

with

3
O=g"0,0, =03 - o, (12)
i=1

where we employ the mostly minus metric ¢* in
Minkowskian spacetime [6]. The corresponding generating
functional reads to the leading order

Zconf[JO]
1 - 4x_a a
ZZ/DADAe Jatshema exp (/ d4xzi:JOi(9,->.
(13)

A. Standard basis

The collinear twist-2 operators in the standard basis [6]
are (Appendix B)

0, = 3 AV 5 (7. T )A"(),

0, = %Aa H (3. )A (),

s, —#Aﬂ( VA3, T A ).

S = AV T W, ()

where s =2,4,6, ... for O,, S, and S,, s = 3,5,7, ... for
@)S, the sum over repeated color indices is understood, and [6]

3 — =
(04, 04)
F
5 —
:3 (la +la )‘ 2C§_2<%)5)+
p) p)
. (3FS+3) Yzz
TG k42
x (=1)% 31“5”;“ (15)

for even spin, and

s2(04,04)
9,.-0
5 - —
— a+(za++la+)s—2cg_2<_,+ <_+> 0.,
04+ 0y
r3)I(s +3) S_zsz‘i(s)( s )
CTG)O(s+1) & \k)\k+2
x (—1)s-kg skt (16)

for odd spin. The corresponding generating functional of
conformal correlators to the leading order reads
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Zconf[J®7J®7J§’J§]

_ l/ DADAe" | d*xADar
Z

X exp (/ d4xZJ@S®S + J@XCDS +Js S + JSSS),
(17)

where the currents J, 0, Jg . J S, J 5, are defined to be zero for

s different from the spin of the corresponding operator.
Explicitly,

Zconf[‘]@vJ@’JSng]

— l/ IDA’DAe_ifdAXAUDAa
Z

1 - 5
e (E / d4xzj®.\-‘4a(x)y§—2(7+’ <5+)Aa (x)

The above functional integral is quadratic in the elementary
fields, and therefore it may be computed exactly. Employing
the symmetry properties of the Gegenbauer polynomials
(Appendix B)

1/- % — = p
0, 4 (A9, T et
FAY(T TR

GS—Z("’@) L (7. T A

we obtain

Zconf[‘]@’ J(fl)’ JS? Jg}

~a 3 — = P _ Ab
0 AWM (0.9 A ) 1 oo aw e (40)
1 - 3 — = - ——/DADAe A(x)
+Js, =AYV, (01, 9)A(x) z
V2
| (20)
5 — =
+Js —(=AYx) Vi ,(0 ., 0,)A%x) ). 18
5 A (0 T ) a
|
3 3 3
iD_%ZJ@,.®y§—2_%z-’®x®H§—2 —%ZJSy@yi—z
Mab = §ab § Z ’ 5 s > (21)
—%ZJ&@yi—z ’D_%ZJ@,\-‘X’yi—z*“%ZJO‘®H§—2
where we have introduced the symbol ® to imply that the right and left derivatives do not act on the sources J.
Hence, performing the Gaussian integral we get
ZeonilJ0: T3, s, J5] = Det3(M), (22)

where the above determinant—up to a trivial normalization factor—is computed in Eq. (A7). Hence, the generating

functional of the connected correlators reads

Wconf[JG’ J@,]§,J§] = lOg Zconf[J(I)?J@’JS?JS]

1 1 s
= —ElogDet<I +§i|:|_l.,@\_ ® y%_z +

1 1 s
— 5 log Det <I +3 0o, ® V2,

1

1 5

5 i0s ® H§_2>

1 1 1 5 1 s \7!
—ElogDet {I ~3 (I%—Eiﬂ‘lf@x ® yz_z —EiD‘IJ@\ ® H%—z)

s 1 3 1 3 - :
s, @V (T4 5100, 8351070, @) i, @4

(23)

where 7 is the identity in both color and spacetime and the sum over repeated spin indices is understood.
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After rescaling the operators

/

Oi(x) =

N

N I(3)

so that their two-point correlators are of order 1 for large N,

1 21 (5)0
I'(s+3)

(s+1)

O, (x) (24)

we obtain more explicitly

NZ -1 e — —
, I T A B N I NG D)k
WeanVor- -5 5] g Det 1+ 2%( ) kH)(zfm 071U, + 90,1, )
N? - RS 3 \s—k—1 -1 3 \k+1
- logDet +N it (ioy) 07 (Jg, = Ja)(i 0 )
k=0
]V2 - 1 2 1 =2 N N ._) s—k—1: —1 ._) k+] -
- logDet (I — 2 I+Nk:0 i)\ kso (io,) i~ (Jg, = Jg)(i 0 )
512
X s, —k;—1 i~ IJ 15) ky+1
) X8

).
(122)

ERE

(&)
E0

where [ is the identity in spacetime and we have already
performed the color trace. To obtain Eq. (25) we have
employed the definitions in Egs. (15) and (16), and

(l)skla

ky +2

S3
k3

53
ky+2

Ss—k—1 —’s—k—1

019" 0 (26)

that follows from (minus) the propagator in the coordinate
representation [6]

1 1

B
4 |x — y|? —ie :

Hx =) (27)

IV. CONNECTION OF W,,,; WITH THE
GENERATING FUNCTIONALS T,

Remarkably, Won[Jo. /g, Js.Jg| is the generating
functional of all the Minkowskian conformal correlators
that extends the generating functionals in the separate
balanced and unbalanced sectors obtained [6] by guessing
their structure from the perturbative computation of the

|

2_
Leontljo jol = = log Det (fxlk],szkzé“)( )+ Dy,
N> -1 (4) —1
- 10g Det 5s]k1,s2k25 (x - y) + Ds1k1,32
21
Fconf[.]Sv Jg} = log Det (551]{],52/(25(4)( /d4

1iD_1J§§3<"5}+)k3+1}v

-1
. —_ IH
PO o, 00, )69 )

(25)

|

corresponding n-point correlators. However, even restrict-
ing to the separate balanced and unbalanced sectors, the
connection with the approach in [6] is not immediately
visible. Indeed, the connected generating functionals in the
separate sectors read [6]

2 _

.. 1 . .
Fconf[]@’J@] = logDet(]I—l—D ]]@ +D ]]@))

2 _

1
log Det(I + D~ 'jg — D71jg),

2
-1
log Det(I — 2D js D7)

Fconf[jSv ]§] = - (28)

in Minkowskian spacetime, where I is the identity in both
spacetime and the discrete indices defined below. By
making manifest the spacetime and discrete-indices
dependence in the kernels of the integral operators above,
Eq. (28) reads in the coordinate representation [6]

L (& =)o

s2kp

0)+Jo,,,0)

ky (x =y) o

Zpslkl sk\X

)=, 0.

s2kp

I, D =) 0)). - (29)
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where, by a slight abuse of notation, we have displayed as
arguments of the determinants the corresponding integral

kernels, with [6]
ir(3)r(s1 +3) <S1 >< 52 )
8z T(5)T(sy +1) \ky ) \ky +2
1
—0 si—kitky __ ©
X ( Jr) |x _ y|2 —ie

Dsllkl szkz( y) =
(30)

Equivalently, we may employ the modified kernel

~ 1 T(3)(s; +3) <sl>< ) )
D 1 _ -~ 7 " @ 7
siksok, (X =) 82 T(5)I(s1 + 1) \ky / \kp +2

1

X (—=i0 s1—ki+ky
( l+) |x—y|2—l€

(31)

It gives origin to the same correlators, since it differs from
Dj sk, (X —¥) by the factor i™817% that cancels in the
loops.

The currents jo , are dual to the component operators
Oy, that are employed to construct the conformal operators

O, [6]:

1
Os = Z Osk (32)
k=0

with [/ = s — 2 for the standard basis. Consequently, the
n-point correlators satisfy [6]

Wconf[JG’ 0,0, 0] = (

. —_ QH
O (g = x)Jo, (%2) (i 0 4

l
n 5
—T iol.
(xn) conf[.]O]

- (33)
k=0 6] Osty

i=0%io,,, (x1)

Hence, we should demonstrate that

Z(S 5()( )Fconf[j(?]

snkn

= s X Wconf[‘]O] (34)

with the functional derivatives computed at jo = 0 and
Jo, = 0, respectively. While I'cy¢[jo] involves determi-
nants of integral operators formally of Fredholm type, the
functional-integral computation of W, .[Jo] involves
determinants of quadratic forms that originally arise from
their very definition in Eq. (23) by employing both left and
right derivatives in Egs. (15) and (16). This is the source of
some technical complications that we resolve momentarily
creating a dictionary that relates Wonr[Jo] t0 Teont[jo)-

A. An example of the dictionary

We choose as an example the generating functional
Weont[Ja, 0,0, 0] restricted to the balanced operators with
even spin in the standard basis. We formally expand the
logarithm of the functional determinant:

d4xl§ Z;( ><k1+2> ' (;ﬁ)(k,siz)

( () +)S1

RO (= x3) g, () (10 )t

3

Yt

X (19 )kl (= 2o, (1) (10 ),

(35)

where, by a slight abuse of notation, k; is actually a short notation for k. By combining together the above derivatives with

respect to the same coordinate, we get

Wconf [J(Uh 0» 0’ 0} d4x1

T(3)0(sy +3)  T(3)I(s;+3)
r(5)(s;+1) T(5)(s;+ 1)
X (i?x;)sfkﬁk‘im_l(xz - x3)J@S2 (x3) -+ x

We redefine the spin labels that we sum over, s1k; = 2k, $2ky = $3k3, ...,

d4x,§ Z( ><k1+2> ' (iﬁ)(k,ilrz)

(igxr)sl_kﬁk’im_l(xl = x3)Jo, (x2)

(i?fr)sl_kﬂ»kl*l il:‘_l (X[ — X >J®l‘[ (Xl).

1

(36)

Sl—lkl—l = Slkl, Slkl — Slkl, to get

054023-7
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) S Sy
WeontlJ0,0,0,0] = IZ; 57 /d4x1 d4x/Z Z( ><k1+2> : <kz><kl+2>

siky sik;

O +3) TOIN(s+3) = oo
F(S)F(Sl ¥ ) ”F(S)F(Sj—{-l)(laxr) k le l(xl XZ)J@.\Z(XZ)
X (10 )5 i (xy = x3) o, (x3) -+ X (10 ) R8I0 (v = xy Mo, (1) (37)

Further redefining the labels of both the spin and the coordinate, x;s;k; = x;_;128,_;.2k;_;,» for 2 < i < [, keeping x5,k
fixed, we obtain

anf{J@,o,o,O}=<N2—1>i(2},)1/d“xl CEDDE Z( ><k1+2> ' <Z><k,s+lz>

sk sik;

X (10 o ) e RaO (o — xpy)o, (xmy) e X (10 )R RO (1 = xy) o, (%)

X (i?x;)sl_kﬁkzim_l(xz —x1)Jo, (x1). (38)
Employing

OO (g = xy) = (=1 Rt R g T (= ) = (=03 )RR (v — ) (39)
we get
WenilJ0.0.0.0] = (8> - ) 3 C zl)l/d“’” iy Z( )( ) ' (s,)( . )
2] el ki +2 ki) \k+2

TR R T -

x (= 15))# iRt O (g = 2o, (o) e X (—iﬁx;)sz_kﬁkﬁm_l(xz —x3)Jo, (x2)

X (=00 )Rk (1) = xp) o, (1)) (40)

Rearranging the position of the various factors, we finally obtain

S Sy Sy
Wconf[‘]‘D’O’O 0 (N2 Z le d4XI d4xzz Z( ) <k1 +2> ' <k1> <kl +2>

=1 siky sik;
(5)F(s1 +1) T(5)(s;+1)

x (= 15)}( )Rt (2 = x3)J 0, (x3) - X (—iﬁx,t,)s”‘_kl"+k’iD_1(x1—1 —x1)Jo, (x1)
0,

(=10 Ri ) (31 = 32)o, ()

X (= ) (g — ) o, (x1). (41)

Given the corresponding expansion for ['coy¢[jg, O]

- 1 S S S
Ceontlios N2 -1) Xy ---d*x .
o.0 < 2’1 / a ’Zsl,ﬂ Z( )(k1+2> (k,)<k1+2>

s1k;
r(3)C(s; + 3) ra3rs,+3), . s s
.. —i0 - )1—kithk -1 -
(5)F(s1 - ) NGOE: 1)( i x1> 07 (x xz)]@TZkz( x2)
x (—l@x;)sz k2+k3i|:]—l(x2 _ x3)j®s3k3 (x3) Lo X (_l'ax;l)sz-l—kz-ﬁk/i[l (xl 11— xl)J@Sm( 1)
x (_iax]*)ﬂ_kﬂrkl l‘D—l( — xl)jo)”kl (xl), (42)
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it is clear that the functional derivatives of the two objects in Egs. (41) and (42) yield the very same result, so that Eq. (34) is

proved.

B. Dictionary in the general case

The dictionary in the general case is constructed as follows. We expand the traces of the logarithms in Eq. (23)

N2 = 1N (-1)"
Jo. g Js, Jg| = ———
Wconf[@ oYSs §] D) S n
N2 =1 & (=1)"

2 n

n=1

1 5 5 n
—Tr <§ il:‘_l (J@S ® yi_z + J@,Y ® Hzg_2>)

1 3 )Y
Tr (5 i0-! <J@y ®YV. ;=75 ® H§_2)>

N—-1&1_[1 1 5 5 -1
-+ ) ;;TI‘{E <I+§l|:| 1<J@S®y§_2—J®S®H§_2>>

3 1 S 5 -1 5 n
X iD—ngﬁ ®V: <I+EiD‘1 (J@Q ®Y,2+Js, ® H§2_2>> i0s, ® y;_z} . (43)

Further expanding

1 : A
(1 +5i07(Jo, ® Vi, £, ® Hi-z)) =

we obtain

1 5 5 n
>0 (500, © 26, ©300)) @

n=0

N -1 (=" 1. -1 3 3 !
Wconf[JG’Jﬁ’JS’Jg] = Z Tr Ell:‘ (JO\- ® ys—2 +‘]®: ® HS—Z)

2 n

n=1

N =1 (=D)" (1. 3 3
+ > Tr (TD '(Jo,® V=V, ® Hs—z))

2

n=1 n

N2_1 LS 1 1 © m 1 1 % %
-2 Z;Triz(‘])' 107 o, ® Vi, = o, ® Hiy)

n=1 m;=0

3 = 1 5 5 my 5
X Z.D_IJS)_] ® :)}il_2 Z (_l)mz <§ il:‘_l <J®S2 ® y§2_2 + JO:Z ® Hiz—Z)) iD_1J§S3 ® y§3_2
nmy=0

Though the above expansion looks complicated, it suffices
to observe that a generic term of the expansion has the
structure

T~ 'yyia-tyyio-tyyigd-t...
x IO~ YUHO-UHO- RO - O~y gy,
(46)

where the trace Tr includes all the objects to its right.
Therefore, the left derivatives in the products of
iO~' i~ or i0-"HilJ~" may be rearranged thanks to
the cyclicity of the trace to build the corresponding kernels
of integral operators that only involve the right derivatives
acting on the same i[1~!, as in the previous example of the

ny

n

(45)

dictionary. Analogously, after a suitable relabeling of the
indices, the contribution of each trace to the generating
functional may be rewritten in a form that matches the
corresponding structure in terms of the kernel D~! and the
currents jo dual to the component operators Og.

C. Generating functional I'; ¢

Hence, the construction above may be condensed into
the single formula

2

Fconf[j(bvj@’jSng] = )

logDetM  (47)

with

054023-9
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B <]1 + Do +D s V2D s > (48)
V2D jg I+D"jo=DJg
and
b _PTON+3) (5 (%
s1kp.s2ky 2 F(S)F(S] + 1) kl k2 +2
X (—0+)X'_k‘+k2iD‘l. (49)

Equivalently, we may employ the modified kernel in
Eq. (31). The above determinant reads (Appendix A)

Fconf[j@7j0’j§vj§]

N? —
=——5Trlog I+D'jo+Djg)

2

Trlog I+ D 'jg —D7jg)

2

Trlog[l = 2(I+ D~ ljg — D ljg)™!
x D7 js(I+ D jo + D j5) ' D' js]. (50)

The generating functional immediately reduces—by setting
the corresponding sources to zero—to the generating func-
tionals in the separate balanced and unbalanced sectors [6]

Fconf[j()’j@] = Fconf[jCD’j@’ O’O]
2

=-—3 Trlog (I+ D7 'jo — D'jg)

2

Trlog (I+ D 'jg + D7 'jg)
(51)

and

Fconf[j&jg] = 1—‘conf[o’ 0, jS’jS]
2

= Trlog (1-2D7'jsD7'js). (52)

Moreover, the generating functional of the Euclidean corre-
lators reads

Ffonf[jOE’j@)E’jSE*.ng]
2

= = Trlog (I + Diljor + Dgljge)

2

Trlog (I+ Dg'jor — Dg'jgr)

2

Trlogl — 2(I+ Dg! jge — D7 jge)™!

x Dy jse (L + Dg'jor + D' jge) ' Dl jse] (53)

with [6]
Dglslkl,ssz
_ (=i)f=%T(3)0(s; +3) (Sl) ( 52 )as,—k]Jrsz_]
2 TG+ 1) \k ) \ky+2)
(54)
obtained by Wick rotation [6]
K0+ x? x4 i
xt = - —ix? = —i , 55
7 NG (55)
where
3
A=6,00,=0+) o (56)
i=1
and [6]
1 1
Al x—y)=—-—— 57
W)= Gy 7

Equivalently, we may employ the modified kernel:

LR T g P
E siki.s:k; 2T (5)C(s;+1) ky ky+2 ) .

(58)

V. GENERATING FUNCTIONAL IN THE
MOMENTUM REPRESENTATION

The generating functional in the momentum representa-
tion is defined by the functional integral

ZCOnf[JO] = /DA'DAe—ifd“anDAa
X e / d*p ZJ (=p)O.(p) 59)
X el _ ‘ .
P (271')4 - O p i\p
Correspondingly, the correlators read

<Osl (pl) e Os,,(pn)>

— (2,[)4#...

T 4
5o (pr) 2

Wcon‘J .
5"0 (_pn) f[ O]

Sn

(60)

054023-10



UV ASYMPTOTICS OF n-POINT CORRELATORS OF ...

PHYS. REV. D 108, 054023 (2023)

Employing the dictionary we get as well

<Os1 (pl) U Osn (pn)>

= Z (2m)*
Z(Zn’

djo ‘m( sjo, , (—p1)

% r..lol. (6l
](’)Y"k”( pn) f[.]O] ( )

A. Generating functional as a Fredholm determinant

To find the explicit form of the generating functional in
the momentum representation we choose again as example

Fonlio] = —(N? — 1) log Det (as]k].szkw (x—y)

+ Dk ks (¥ = V)0, (y)>, (62)
where the argument of the determinant is the kernel

Kslkl,szkz(xvy>
=34,k 52k 0 (x = Y)+ D5 s, X =¥)Jo

(v) (63)

s2ko

of the integral operator

Wslkl ( / s1ky,s2ko ()C y)¢szk2 (y)d4 (64)

s2ky

To obtain the kernel in the momentum representation [6]
we perform the Fourier transform of the left-hand side
(LHS)

V(@)= [ (e

=3 [ Ko )b )iy (65

s2ky

and write the right-hand side (RHS) in terms of the Fourier-
transformed fields

Wslkl / sk s;kz(x y)¢52k2(p) lpye g

Saky
d*p

(2m)*
Substituting the kernel in Eq. (63)

x d*xd*y

(66)

Wk (q) / skrsaks 00 (X = ¥) gk, ()P €74

s2ky

+ D s (6 = Vo, (V) sk, (p) e e

soky
d*p

d*xd* ,
X d*x y(zﬂ)4

(67)

we get
d*p
(27)*

Wer (4) = / s, (2059 (p = @)boi ()

s2ky

S [ D= W, ) )

vzkz
ipy —iqx A g4 d'p
X e'PYe ' dxdy(zﬂ_)4. (68)
The second line in the above equation becomes
/Ds,kl s7k2 )J@xm( )¢s2k2( )
soko
4 4 4
% eik,v(x—y)eik2~yeipvye—iq~xd4xd4y d'p d’ky d’ky
(2z)* (2m)* (22)*
(69)
that reduces to
d*p
/ Slkl szz Osyky (6] p)(ﬁszkz( >W (70)

s2ky

Therefore, the kernel in the momentum representation is

Ky k5t (012 G2) = 85,1, 501, (27)*6W (g1 = q2)

+ D;,]k,,szkz(éh)jq)% (@1 —q2)  (71)
that defines the integral operator
d*q,
lllslkl(ch) / siky, vsz(QIvQZ)¢s2k2(QQ) (2 ) (72)
Sako
with
_ T3 (s;+3) (51 S
D7 () _ TR0, +3)
141522 2T05)C(s; +1) \ k, ky+2
—i
i itk 73
X (mip ) (73)
Equivalently, we may employ the kernel
,_1 ( ):11“(3)F(s1+3)<s1>( 52 )
sl 2SI (s + 1) \ky ) Ny +2
s1—ki+ky =i
_— 74
P e (74)

Hence, the generating functional in the momentum repre-
sentation reads [6]

Peonrljo) = —(N? — 1) log Det (5 (2269 (g1 - g»)

+ Dsllkl sqk,(QI )]@\zk2 (g1 - 612))- (75)
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To obtain the correlators we expand the generating functional

, (=) dlq dg, . .
rCOHf[]@] = _(N2 - 1) Z (2”)14 o (271')4 ; t ZkDSl]klv"zkz(QI)‘]@.\‘zkz (ql - qZ)

1

X Dszkz s3k3 (qZ)J@ !

(@2=a3) - x Dy 1, (@n)io, , (40— a1)-

53k3

We change variables defining p; = ¢; — ¢;,; with ¢,,; = ¢ that automatically ensures > ", p;, =0

91 = 4n — Pn>
92 =491 —P1 =49, — Pn— P1>
43 =42 — P2 =49, — Pn— P2~ P1>

n—2
4n-1 = 4n — Pn — Zpi’
i=1

4n = 49pn-1 — pn—l,

(76)

(77)

so that, setting ¢, = ¢ and inserting in the RHS of Eq. (76) the integral [ (‘254 (27)*6W (py + py + -+ + p,) to keep p,

while enforcing > 7 | p; = 0, we obtain

© n+1 d4P1 d Pn . d4
Fconf[]@ Z /(277:)4” (277:) (271') s (P1+P2+...+pn / 42

n=1 s1ky

> D5k (@ = Pudio,,, (P)Dk o (@ = P1 = Pdio, (P2) -+ X D3k ok (@)o,, (Pa)-

Snkn

Moreover, making the substitution p; - —p;, we get

r ; Z (=)™ [ d*p d*p, d4
o] = ~(V* —1) / vl 7)Y (p1 + py+ -+ pa) > -
conf |JO n (2 )4 (2 )4 1 2 4S]k]

n=1

Zps]kl ok (4 + Pn)]@xm(—Pl)D;lkz_s;k_z(q +p1+ pa)io,, (=P2) - X D;n]k,,,slkl (LI)J'@W1 (=Pn)-

s3k3

Explicitly, by Eq. (74)

00 n d4q d4p d4pn
Fcont[]@ - 1 Z Z / 4 1 “'(2”)4 (27[)45(4)(p1 +p2+"'+pn)

r<s1+3>F<3>,,,r<sn+3>r<3>“im§(sl>( 1 > ()( 5, >
F(S)F(S] + 1) F(S)F(Sn + 1) k]:() k”:() kl kl + 2 kn kn + 2
s1—ky+k sy—ko+k . §,—k,+k
. _lq+pn112. _lq+p+pn223 . _lqnnl
X jo, ., (=Pn) Gtpr g (py et PRy X o, (=Pnt) —
lg + pal” +ie 7720 g+ p1 4 pal* + ie |q|” + ie
We now relabel p,, = p{, p1 = Pas --+» Pni = Pn SO that
) d* a d'py  d'p,
rconf[]@] - (N2 2n Z / 271_ TRRr (271_)4 (277,')45(4)(p1 +pyt+c+ pn)
Sy
Xr(sl+3>r(3)“_r(s,,+3>r(3>§_ﬁi<sl>( 51 ) (s)( Sn )
rC5)C(sy+1) TO)I(s,+ 1) & E\ki/\k+2 k, ) \k,+2
—ki+k sy—ky+k . s—k,+k
. —i(g+p)i" —i(g+tpi+p)i —igy ™
X — - X W) — .
o TP i 1o TP T, i o TP
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We employ Eq. (61) to obtain the correlators

<2F(5)F(51 + 1>> N <2F(5)F(s,, +1)
T(3)(s; +3) T(3) (s, + 3)

) (©,,(p1) -0y, (p))

92 w2/ s s S
(N2 )R D (4t p ) S (l)( ! )()( " )
(N? = 1)(2n)*i"89) (p, p)kz_:() kz_:o o ) sn L
! -
—ko(1) ko2 So2)=ko(2) ko3 So(n=1)~Ko(n-1)TKs(n
/ +q) 7" (o) + Poy + @)Y (lepa +q)
n&r) 2z Ipnm +qf |Pott) + Po2) +al? | 2211 poty + 4l
So(n _kzr n +ko' 1)
(g)"r et Hea
“E (82
|
that coincide with the computation in [6]. More generally,  with
the generating functional in the momentum representation s P -
reads from Eq. (50) with the kernel in the momentum > (04,0,)=0,(i0,+i0,)?
representation defined by Eq. (73) or Eq. (74). - =
xCi, <i+ — i+> 5>+ (86)
B. Generating functional as determinant of a quadratic ‘ d,+ 0.,
form in terms of the Gegenbauer polynomials )
. . . . Expanding Eq. (85) we get
Alternatively, we write the generating functional employ-
ing the functional-integral definition in Eq. (25) with (minus) W) . [J5.0,0,0]
the propagator in the momentum representation = (1)
i -1) _n /d4x1~-d4x,,
07 (p) = (83) Z 2'n Z
|p| + e 5 — —
. _] Yy
and correspondingly > 7 (x — XZ)J‘% (42) ® Y, 032 03 )
: ky+hky ;-1 ky+ky ;-1 i1-1 ; 9.9
(i0, )*~h+kiO1 (p) = (—p, )s~htiO1(p).  (84) x i (x, —)cl)J@,S1 (x1) ® Vi 0+ 0x]+)
In fact, especially in the conformal setting (Appendix B), (87)
it may be convenient to express the generating functional . .
. .S . Employing the Fourier transformed sources and propagators
in a more compact—but more implicit—form in terms of
the Gegenbauer polynomials. For example, the analog of d*q . —i
Eq. (62) reads 07 (x; = x)) = /—4‘3”]'()("_}(]) 2
a (27) lq|* + ie
1 -1 % d4p .
Weont/0,0,0,0] = —log Det( T + 3110, @ V., Jo, (x) = / e o, (1) (88)
(85) we obtain
J
> d'p, d'p,d'q, d'q
Weont[/0,0,0,0] = d*x, - d*x ,1/ < =
o Z 2 SZ f en' ) 2t )
x e~ X1 (@=a1=p1) p=ix2(q1=q2=p2) p=ix3-(42=43=P3) .. . % _ixn'(qn—]_qn_pn)_—ij
e e e e |q1|2—|—i€ o, (p1)

noch (et _ 55-2 (3 Q2++6I3+
X q (‘]2 —q1 )-2 2C2?_ ( >C]2 —Jo (pQ)q2 (q3 —q, ) C? 22 T g,
o i 2 d2+ —4q1+ +|Q2|2+l€ A " BT\ Gs — Qo "
i g 9n+ +qn—1+> —i
X5 n— - n+ —Yqn— =22 _ —J R
|qn—l|2+i€ O (p l)q'l Pr(th B ]+) o 2<qn+_qn—l+ qn+‘QI1|2+l€ s (p )

3
2
s1—2

-2

qi1++q
anJr(QIJr_anr)S] (M

qd1+—49n+

)C]]+

054023-
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that, grouping together the g;, on the left and right of the Gegenbauer polynomials, we rewrite as

- (=D)" d'p,  d'p, d'q)  d'q
WeontlJ0,0,0,0] = /d4x d*x / & &
contl/o n:l 2"n Z a @en)*  (@otent (22
—ig?
x e~ X (@n=a1=p1) p=ix2(a1=02=P2) p=ix3:(02=43=P3) . . . x @~ ¥u(dn-1=Gn=Pn) LJF.JQ (p1)
g1 [* +ie”

.
Gy T q1\ 95, 5320 QD+ q34
X (ot — q14)"" 2C2_ ( > —Jo, (P2)(q31 = q2:)"7°C, |
" * 22\ Gor — 1y ) o + ie” - - 2\ sy — @oy

lqn 1+ 5. 2,5 Gnt + Guo1y _iquw
X ————Jo. (Pn-1)(@ns = qu14 )" C _ —Jo, (Pn)
|G|+ de” Do T 2N\ Gns = Guory ) g +ie” D"
+
X (qrs — gn ) 2C (—q“ ""*) (90)
QI+ Qn+

Integrating over the coordinates and momenta we get

q91 =4y — P1>
942 =41 — P2=4y, — P1— P2
43 =492 —P3 =4, — P1 — P2~ P3>

qn-2 = 4n-3 — Pn-2 = 4n — th

n—1

9n-1 = 4n-2 — Pn-1 ZQn_ZPi' (91)
i=1

The last integration enforces > 7 | p; = 0, so that, inserting in the RHS of Eq. (90) the integral f d pn e (27)40@ (p, +
pa+ -+ p,) to keep p,, we obtain

= (=1)" d*q d*‘p, d'p
J0,0,0,0] = —1§ § . L (27)*s®
Wconf[ 0 2"7’1 ..... / (2”) (27[)4 (2”) ( ﬂ) (pl + p2 + + pn)

—l(q—p1)+ a3 (29 —piy\ —ilg—pi—pa)i
X ———>——Jg (p1)(=p1+)"*C; _ —Jo,_(P2)
lg— pi? +ie” ™ " SN —piy Jlg—pi—paf +ie” ™2

2q, =2p1 —pas\ —il@—p1—P2— P3)%r
X (=pa)2C ( o (p3)
- 272 —pas lg—p1—pa— 3 +ie” ™

29, =2p1 =2py — 3 —iq3
X (=p3, )52 C a a a P)ox——
( p3+) s;—2< _p3+ |q|2+l€ O, (pn)

5 2 2
X (_p”+)s”—2cén_2< q+ — Xitpl Pit — pn+> (92)
n+

with g, = ¢. Finally, substituting p; - —p; we get
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d4q d4p1 d4 .
Wconf[‘]@vo 0, O 1)2 2y z : (2 )4 (2ﬂ) 6 (pl +p2+"'+pn)
—i(g+pi)3 24 (24++p1+> —i(g+pi +p2)}
—— - e CE —Jo_ (-
g+ piP + ie @Sl( p1)(P1+) 512 Py g+ p1 + pal + ie @52( p2)
woagd (244 +2p1 + o\ —i(g+ Pyt pat pa)?
N e R ),
P2+ lg + p1+ p2+ psl” +ie
< (ps, o (2 B P ) S, (-,
P3+ lg|* + ie
4 (290 23007 iy + Py
(172G (T2 LE e (©3)
Pn+
We verify the equivalence with the dictionary expanding the Gegenbauer polynomials
s—2
03 21++p+> ['(s+3)r'(3) (S>< s ) . i
C = 51+ 94
er S—2< p+ F(S)F(S+ 1); k k+2 +( p)+ ( )
according to their definition (Appendix B)
s Ar(3) <2/ s s —1\* 1 5=k=2
A= igrr () (e 2) (57) (5) 09
TG)C(s+ 1) &=\ k) \k+2 2 2
and substituting back in Eq. (93)
(=) d‘q d'p,  d'p,
WeanilJ.0.0.0] = (V2 = 1) [ i S @t a (py 4 pat 4 pa)
2w 2 [ o o
XF(sl+3)F(3).“F(sn+3)F(3)S]Z_2“.S"Z_2<s1>( 51 )(s)( Sn )
F(S)F(Sl + 1) F(S)F(sn + 1) k=0 k=0 kl kl +2 kn kn +2
. s1—ky+ky $2—ky+k3 i oStk
—i(g+p —i(g+p+p —iq
SN S L et D iy R bl e RSO A o
lg + pi|* +ie |g + p1 + po|* +ie lq|* + ie

that essentially coincides with Eq. (81).

VI. MIXED THREE- AND FOUR-POINT CONFORMAL CORRELATORS

We employ the generating functional to calculate the three- and four-point correlators in the mixed balanced/unbalanced
sector.

A. Three-point correlators in Minkowskian spacetime

The generating functional of the mixed O, S, and S correlators reads

-1
Trlog[l - 2(I+ Do) ' D~ js(I+ D 'jo)™' D js]. 97)

Fconf[j®707j§7j§] = -

Only two terms contribute to the mixed three-point correlator (O; (x)S;, (¥)S;,(2))

054023-15



BOCHICCHIO, PAPINUTTO, and SCARDINO PHYS. REV. D 108, 054023 (2023)

2
: .. -1 e N N
Ceontljo. 0. js. js| = 2Tr[(I4 D7 jo) ' Dl js(I+ Do) ' D7l js] +
N2_1 —1 - —1 —1 - —1 -
= 2Tr[(I-D ' jo)D ' js(I =D o)D" js] +
N2 -1 N2 —

1
= S 2TH(D oD 5D ) =~ 2TH(D D oD ) e (98)

Hence,

S1—2 $5—2 532 S 5

(©, (08,0080 =2 > D 5

=0 k> =0 k= JGW J&zk2 (y)dJs

Fconf[ijjO’ Js» ]§]
(2)

s3k3

N -1 §51—2 §5—2 53—2 5 5 5 /
= — 2 - - d4x1d4x2d4x3
2 klz:% kzz::o ,(32::0 6]@s1k1 (x) 5]5%2 ) 5]§% (2)
B Z Z Z{ S 362)J'®:,2k,2 (%2) Dy gy, (%2 = x3)jss,3k,3 (03) Dy g (63 = xl)jg"’lk’l (x1)
k/] /1 k/ / k/ / T T
+ DS K s, k,( 1= 2)J§,7 ,z(xz)Ds_lek/z,Sgkg (x, = 363)]'@%,43 (x3)DS_§1’<’3,S’1’<’1 (x3 = Xl)]'ss/],/l (x1)
s1—2 $H— -2
= _(N2 - 1 Z Z Z |: Slkl $2ka x y)D52k2 s3k3 (y )Dszlkz sk (Z - x)
20 =0 ks=0

+ D;zlkz,sﬂq (y - Z)D;11{3,‘Y|k] ( )Dvllkl s2ky (x - y)

=2 552 53—
:_2(N2_1 ZZZ ‘lkl s2ky x y)Dﬂzkv Wks(y Z)D;31k3~~“1kl(z_x)' (99)
=0 ky=0 ky=
Employing Eq. (30), we obtain
S 1 2 3N2_1-s+s+s s1+52+s
(O, (x)Ss, (¥)Ss,(2)) :_m2 M g 3200 (51 + 1) (51 4+ 2) (52 + 1) (52 +2) (53 + 1) (53 +2)
029728572 /g s s s S >< s )
1 1 2 2 3 3
X
222 () ) () GG

=yt (=g
(lx = yP)5 Ktk ([y — g2yt iRty

X (Sl _kl +k2)!(s2 —kz +k3)!(.§‘3 —k3 +k1)'

(e =x)2o™
e =y tihath (100)

that agrees with [6]. We also infer from the generating functional that [6]

(0y,(%)S,, ()84, (2)) = 0. (101)
Indeed,

2 _

.. 1 N e Nl
Ceont[0. jg- s js] = — Trlog[l - 2(I—- D' jg) ' D js(I+ D' jg) ' D js] (102)

contributes two terms linear in jg with opposite signs that cancel each other.
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B. Four-point correlators in Minkowskian spacetime

Only three terms contribute to the mixed four-point correlator (Oy, (x1)0y, (x2)S,, (x3)S;, (x4))

2
. . -1 . s ol "y y L el el s
TCeontljo, 0, s, js| = 2Tr[(1—-D ' jo + D71 joD ' jo))D ' js(l =D ' jo + D' joD ' jo)D ' js] +
N2_1 —1 —1 - —1 —1 N2_1 —1 —1 —1 —1
= 2Tr(D ' joD 7' jsD ' jo D7 js) + 2Te(D ' jo D' joD ' js D7 js)
N2_1 —1 —1 —1 —1
+ 2Tr(DjsD ' joD ™ joD7ljs) + -+ -. (103)
Hence,
S1—2 55—2 53—2 54— 5 5 5

(O, (x1)0y, (x%2)Sy, (x3)Sy, (x4)) . . . Ceontlios o Jss Js]
! » " klzo,;),;),;) -]®:1k1 (x1) 8jo,,, (x2) 8js, , (x3) Ojs , (xa) °

S1—=2 $5=2 §3—2 s54—2 S S 5 5
k=0 ky=0 k3=0 k,= 05.]@”/(] (xl) 5j®x2k2 ('xz) 5j§s3k3 ()C3) 5j§3.4k4 (X4)

/ d4y1d4Y2d4)’3d4)’4Z Z Z Z

krs/ / k! / / /

[D;llkll’slzk; (= Y2)j®.\,,2k/2 (yz)D;,z'k,Z’S% (v2 — )’3)J§x, Y (v3)
X D a3 = Yadioyy (va) Do i (0 = 1), (1)
+ Dy gk/z(yl Y2)J®A.rz,{/2 Y2 _g 54K g(y2 _y3)]®lgk; (v3)

(va =y1)js,, 1)

xi;ki; /lk/l ‘1
+ Ds X s krz (yl yZ)ng/zk/z )’2 k’ S/ k’ (y2 y';)]g‘gk; (y3)
-1 . 1 .
. Ds’gkg.sgk; (v3 = y4)]§% (y4)Ds;kg,s’lk; (ya = )’1)J§J,lk/l ) |- (104)

Performing the functional derivatives and employing the symmetry properties of the Gegenbauer polynomials (Appendix B),
we get

<®Sl (x1)®52(x2>§ss <x3)§54(x4>> = i i i i 0 é é S

k=0 ky=0 k3=0 k,=0 5.].@”1(1 (xl) 5j®:2 (.X'z) 5J§ 53k3 ('x3) 5‘15\ 4ky

( )Fconf[j®7j®vj8’j§]
S1—2 §5—2 532 542

- -1 Z Z Z Z Z |: Sskz So(1)Ko(1) - xg(l))p;il)ka(l)-s4k4 (x"(l) - X4)

—0 k=0 k3—0 ky—0 6EP,

— _ _] _ _
x Dv4k4 Se(2)ka(2) (x4 XU(Z))DS,f(z)kn(z),&/%( o(2) xz) + 2DY3’<3 So(1) Ko (1)<x3 x(’(l))

XD oy sarkory Ko) = Xo@) Doty ko ks Fo2) = %) Dy ot (¥4 = X3) |- (105)
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Explicitly,

FS)P(s +1D)IG)M(s,+ D)IG)M(s3+ 1) T(5)M(s4+ 1) -
2 F(3)F(si n 3) l—'(3)l"(sz A TG 13 T, 33 0 (510 (22)85, (1), (34)

zzzz( DRI R I N

0 ky=0 k3=0 ky=0
(x3—x (1))$_k3+k5(1)
x>y {(% — k3 + ko)) (So(1) = Ko1) + ka) (54 = kg + ko(2)) ! (So2) = Ko2) +k3)! T T
€P, (|x3 = x5 |%) o
(x (1) —X4)ff“)_kam+k4 (x4 5(2) )Yrkﬁk (x (2~ x3>sn(2)_k5(2)+k3
(lxa(l) _x4|2)s,j(,)—k,j(1)+k4+l (|x4 | )¥4 ky+ko()+1 (|x4_x | )s4 ky+k+1
+2(s3—k3+k0(1))!(s0(1) k +k())'( 6(2) — k (>+k4) ( k4‘|‘k3)
s3—k3+ky(, So(1)—ko(1) ko So(2)—ky(2) k. Sa—
(x3 (1))+2 TR () = Xe) 4T (xa(z) — )T (xS 106
(|x3 _ | )X'g k3 kg1 +1 <|x x6(2)|2)s,,(,)—k o(1) Hko2 (|x _ x4|2)s,,(2>—kr,(2)+k4+1 (|x4 _ x3|2)s4—k4+k3+1 ( )
that in the momentum representation reads
T(3)(sy +3)T(3)(sy + 3) T(3)[ (53 4+ 3) T(3)[ (s, +3) * 101/ 7o 2/ b3/ Fa
§1=2 §5—2 53-2 542 s s s s
=0 D@t ) () () 22 () ()
o nemrratip e S S (L)) (075) (0) (07
53—k So(1)—ko(1) k. So(4)—ko(4) kg
y <s4>( ) / [p3+q)3 T (93 + poy + @ (3 + Poty F P QT T
k) \ky+2) 55, Ips+q* +ie  |ps+ po) +ql* +ie |3 + Poty + Pa+ 4l

$o(2)—ky(2) k- —ky+k, () ko) Tko(2
()@ o+ @) (b poy + )T (s 4 Pogt)y + Po)  4)

|q|* + ie Ips+ql* +ie  |ps+pou)+4qlf +ie Py + Pot) + Poe) +al* +ie |q|* +ie
(107)

80(2)~Ka(2) FKs (q)s4—k4+k3:|
+

Similarly, we obtain

§1—2 $5—2 53-2 542
(0, (510, ()S,, (19)S, (k) = S-S S > 2 ° ° °

k1=0 k=0 k3=0 ks =0 5j®”k] (xl) 5j®52k2 ()Cz) 5j§s3k ( ) 5JSY 1k

( )Fconf[j()’j@’jSng]

§1—2 $,—2 53-2 542
|: s;k; S

BRI I B I

=0 ky=0 k3=0 ky=0 o€P,
(x4 = xa(Z))D;(z)k”(z),s3k3( 6(2) — x3) + 2Dx3k; Sk “)(x3 - xa(l))

(X3 - xa(l))D;t)k[,(]),‘mk‘t (¥o(1) = X4)

X D84k4§ z)k (2)

o Xo1) = Xo) Dyl ko saks Fo2) = %) D or, (¥4 = X3) |- (108)

Explicitly, in the coordinate and momentum representation, respectively,
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JLB)C(sy + 1) T(5) (s, + 1) T(5)C(s3 + 1) T(5)T(s4 + 1)
r(3)(s; + 3) I(3)(sy +3)T(3)(s3 + 3) ['(3)(s4+3)

g SRS ()2 )

k=0 ky=0 k3=0 ks=0

S4 Sq
X < ) ( ) Z {—(53 — ks + ko(1) ! (551) = ko) + ka) (54 = kg + kp(2)) ! (S5(2) = ko(2) + k3)!

<®s1 ('xl )@)sz (x2)SS3 (x3)§s4 (X4)>

2

k4 k4 +2 6EP,
(3 —x (l)>s+3_k3+k”<]) (Xs(1) —m)i’m_kﬁ(ﬁk“ (xg—x (2))ﬁ_k4+k”<2> (%o — xy)®” ~ko(a)+hs
(| — x0(1)|2)53—k3+kn<1>+1 (|x,,(1) - x4|2)sﬁ<1>—kﬁ<1>+k4+1 (g — x{,(2)|2)‘4 ky+ko(2 (|x4 — X | )$4= gtk +1
S3—k3+ky(1
(x3_x0] ) T
+2(53 = ks + ko1) 1 (551) = ko(1) + ko(2)) (So(2) = Ko2) + ka) (54 — kg + k3)! (= (|;)S2 e
Xy — X, So(1)—ko(1) Hko(2) Xy — X So(2)—ka(2)+ks 3 ss—ky-ths
= (2;)+ ko) Tho) 1 o) ih ko) That1 = x3)+-k k 1]’ (109)
(|x6 ) —x6(2>| )s(;(l) o(1) Tho(2)+ (|x6(2> _x4| )sg(z) o(2) kst (|x4 _x3| )s4 e

F(3)F(S1+3> (3)F(S2+3> (3)F<S3+3> (3) <S4+3) <@Sl(p1>®sz<p2)§s;(p3)§s4(P4)»

=(N2=1)(2z)**6W (p| + py+ p3 + pa) fffi( >(k1+2> <Iscz><k;2%> <Z>(k:j_2)

0kr=0k3=0ky=0

24

—k3+ko( (1) —ko(1) k. —kpa ko
)T (34 oy @) T T T (3 poqry + Patg) YOO

()2 o {”“"
ky ) \ky+2) 5, lps+aqlP+ie  |ps+poa)+ql*+ie |p3+pg<>+p4+q\2

So(2)—ko(2)+k s3—k3+ So(1)=ko(1)Fko @tk S4—
(@77 (p+a)) T (P H ey DT (P35 Poty F Pe) T () kﬁk‘*]
|q|* + i€ |p3+ql*+ie P35+ Por) +4q* +ie |P3+ Po(t) + Pox) T al* +i€  |q* +i€
(110)
C. Four-point correlators in Euclidean spacetime
In Euclidean spacetime we obtain as well
ot I'3)(s; + 1)T(3)C(sy + 1)T(5)C(s3 + 1) T(5)C(s4 + 1) (OF (x))OF (x,)SE (x JSE (x0))
T(3)(s; +3) F(3)F(s2 +3)T(3)I(s3 +3)T(3)(s, +3) " " : !
. 512 $p—2 §3—2 s4— S5 S5 53 53
- (9= ) g T ()G E)G)
(47[) Z:OI;JI;)I; k1+2 k2 k2+2 k3 k3+2
54 54 ! ! ' !
L) a2 D (53 = ks 4 ko)) (So(1) = Koty + ka) (54 = ks + ko2)!(002) = ko2 + k3)!
4 cEP,
s3=k3+ky(y )k sy—ky+k, ko) K
(23 — Xo(1) z (%(1 - x4)z ot (x4 — <2)) e (%(2) —x3) e
((x3 _x6(1>)2)s3—k3+k5(,)+1 ((xa( H —x4) ) )—ko(1) ks t+1 ((x4 —x o2 ))2)94—k4+k(,(2)+1 ((x4 _xl) )¥4—k4+k1+l
( )33 k3 t+ko(1)
o(l)/)z
+ 2(s3 = k3 + ko(1)) ! (S601) — o(2)) (85 2) + k) (54 = ky + k3)! (s — o <))2)Y3_k3+k i
So(1)—ko(1) ko So(2)—ko(2)tk s,
. (o(1) = Xo(2)): Ko Hhor2) (Xo(2) = X4): @Ko T4 (34 — x3)™ kyths a1
((Xa(1) = Xo(2))?) S0 R TR (x50 = x4)?) v TR HRHT ((0y — x3)%) s fathat
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and

T(5)T(s; + 1) T(5)0 (s, + 1) T(5)0(s3 + 1) T(5)T(sq + 1)

24 OF OF SE §E
ngum+$w$nh+@(a(h+$(@(M+$<ﬂm)%ﬁﬁkuﬁuﬁm
12 $p—=2 §3—2 s4—
4 ) S S3 S3
) G (o) () GG 6))
(477) Z););)kz ey +2) \ky )\ by +2 ) \ ks ) \ ks +2
S4 Sy4
<y ) 2 [ =K ko) o) = ko) k) (50 = ks + ko)) (So) = Koto) + Ks)!
4 4 + oc€P,
X3 = X401 ;3_1‘3'”‘6(1) X1y — Xa ;6(1)_]‘6(1)""]‘4 X4 = X0 Sa—katks(2) X,p(2) — X3 25(2)—k5(2)+k3
« () () (2)/)2 2)
((x3 _ xa(l))z)S3 k3+k( +1 (( 0_(1) _ x4)2)55(1)—k5(1)+k4+1 ((X4 —x (2))2)3‘4—](44”(0(2) +1 ((.X4 _ x1)2)54—k4+k1+1
( X3 — I)S; k3+k0(1)
+2(53 = k3 + ko(1)) ! (So(1) = ko(1) + ko(2)) ! (So(2) = ko) + ka) (54 — kg + k3)! -y
(o3 = xp1))?) s oo ®
o o = D A B C W) R i M COPUIVR i 12
((x(,(l) - x()_(z))2)S(r(l)_k(r(l)+ka(2)+l ((XU(Z) _ x4)2)sa(2)—ka(z>+k4+l ((xs — x3)2)x4—k4+k3+1 . (112)
|
VIL. UV ASYMPTOTICS OF EUCLIDEAN r-POINT o y(g)
CORRELATORS Ty )24 =0 (116)
dg  p(g)
A. Operator mixing .
The Euclidean n-point correlator at distinct points of with g = g(u) and
local renormalized operators O;(x) that mix under renorm- @ v(d
alization Z() = Pexp( 99 y(g') dg’). (117)
o) BY)

_ ) .
(O, (¥1) -+ Ok, (xa)) = Gy g, (xrs s xus i g(1)) - (113) - Hence, the corresponding UV asymptotics as A — 0 reads

satisfies the Callan-Symanzik equation Gl(("')'_k (Axps o A s (1)

~ szl‘ll(ﬂ) o .anjn( )ﬂ ZL IDO GCOzlfjl J ('xl’ ""xn>

(E:x 5 ) g+§:D@)G@%7 S
a=1

(118)

+ Z (ykla akz -k, + ykza(g)Gl((:lzlk:;"'k” . (n)
provided that G s (x1, ..., x,)—the conformal corre-
lators to the lowest order of perturbation theory—do not

“+ ka9 )G,((1> ) =0, (114) vanish.

The evaluation of the asymptotics above involves the
estimate of each term in Eq. (118) that in turn involves the
computation of the path-ordered exponential defining
Z;;(4) in Eq. (117). Both the computations are technically
challenging, even in the special case where y(g) is

where Dy, is the canonical dimension of O;(x) and y;;(g)
the matrix of the anomalous dimensions. Its solution reads

G,i’l') &, (AX1s o Axs i, g(u) triangular so that the expansion of the path-ordered

u exponential in Eq. (117) terminates to a finite order [14].

= sz] i (4)- L, (A)A~ 21 Po, Therefore, it is of the utmost importance to establish

Jrin whether a renormalization scheme exists where Z(4) is

« Gﬁl) " (X1 vees X3 s g(%)) (115) diagonalizable tq all perturbative orders. Inde.ed, in such a

scheme the sum in Eq. (118) would reduce to just one term

and the path-ordered exponential to just the ordinary

where in matrix notation exponential, as in the multiplicatively renormalizable case.
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B. Nonresonant diagonal renormalization scheme

The question above has been addressed on the basis of
the differential-geometric interpretation [5] of the operator
mixing in massless QCD-like theories to all orders of
perturbation theory that we summarize in the following.
We interpret a finite change of the basis of renormalized
operators in matrix notation

O'(x) = S(9)O(x) (119)

as a formal real-analytic invertible gauge transformation
S(g) that depends on ¢ [5]. Under the action of the
aforementioned gauge transformation, the matrix

A(Q)Z_%:§<;_?ﬁ““>’ (120)
associated with the differential equation for Z(1)
(5-40@)z() =0, (121)
99
defines a connection A(g)
A(9) = (40 + ZAg) (122)

with a regular singularity at g = 0 that transforms as

95(9)

A'(g) = S(9)A(9)S™"(9) + 3 S7'(g) (123

with
p=9_4 124
=% (9) (124)

the corresponding covariant derivative. Consequently, Z (1)
is interpreted as a Wilson line that transforms as

Z/(2) = S(g(u)Z(2)s™ (9(5)) (125)

for the gauge transformation S(g). Moreover, everything
that we have mentioned also applies by allowing the
coupling ¢ to be complex valued. It follows from the
Poincaré-Dulac theorem that [5], if any two eigen-

values 4;,4,, ... of the matrix /7;_(; in nonincreasing order
A1 > 4y, > -+, do not differ by a positive even integer

Ai—Aj=2k#0 (126)
for i < j and k a positive integer, then a formal holomor-
phic gauge transformation exists that sets A(g) in the
canonical nonresonant form [5]

7o 1
Al(g) =22

= 2
Pog (1 7)

that is one-loop exact to all orders of perturbation theory.
As a consequence, if in addition /y)fg is diagonalizable, Z(2)
is diagonalizable as well and its eigenvalues Zy (1) are
computed by [5]

700

with yop, the eigenvalues of y,. Correspondingly, in the
nonresonant diagonal scheme

(128)

G](:ll)kn (ﬂ'xl? --'v/lxn;,uv g(ﬂ))
Zo, (A)+Zo, (1) ,
~ ilDol Do, goZlfjlu-jn (1, x,) - (129)
provided that Gggif f (x1, ..., x,) does not vanish, with
7)) " 50 (”—) 5 1o (L)
0O IR v
loglog (4
1 g g( 2)
L (PR it (130)
Bo log (ﬂ%) By log (/1%)

where the second asymptotic equality holds within the
universal—i.e., scheme independent—Ieading and next-to-
leading logarithmic accuracy as 4 — 0.

To make the present paper self-contained we provide the
construction [5] of the nonresonant diagonal scheme to all
orders of perturbation theory under the above assumptions
starting from a generic renormalization scheme—for exam-
ple, the MS scheme.

The construction proceeds by induction on k = 1,2, ...
by demonstrating that, once A, and the first X — 1 matrix
coefficients A, ..., Ay4—;) in Eq. (122) have been set in
the canonical nonresonant form in Eq. (127)—i.e., A,
diagonal and A, ..., Ay;_1) = O—a formal holomorphic
gauge transformation exists that leaves them invariant and
also sets the kth coefficient A,; to 0.

The O step of the induction consists just in setting A
in diagonal form—with the eigenvalues in nonincreasing
order—by a global (i.e., constant) gauge transformation.

At the kth step we choose the holomorphic gauge
transformation in the form

Si(9) =1+ g*Hy (131)

with H,; a matrix to be found momentarily. Its inverse is
Sit(9) = (1 + ¢ Hy) ' =1 =g Hy + -+, (132)

where the dots represent terms of order higher than g?*. The
gauge action of S;(g) on the connection A(g) furnishes
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A'(g) = 2kg®"Hy (1 — ¢**Hy)™!

+ (14 g*Hy )A(g) (1 — g** Hyy) ™!

1
= 2k ' Hy (1 = g Hy) ™' + (1 + ¢ Hy) ~ (Ao + ZAan >(1 — g Hy)™!

= 2kg*"Hy (1 -

1
)+ (14 g Hop) ~ (Ao + ZAan

n=1

>(1 - Hy +--)

n=1

1
= 2kg* " Hy + (Ao + ZAan ) + g (HyAg — AgHu) +

n=1

= g2k_1 (2kH2k + H2kA0 -

where we have skipped in the dots all the terms that

contribute to an order higher than ¢?*~!, and we have set

(134)

1 k=1
Asp-1y(9) = g (Ao + ZAzngzn)
n=1

that is the part of A(g) that is not affected by the gauge
transformation S;(g), and thus verifies the hypotheses of
the induction—i.e., that A, ..., Ay;_) vanish.

Therefore, by Eq. (133) the kth matrix coefficient A,;
may be eliminated from the expansion of A’(g) to the order
g**! provided that an H,, exists such that

Age+ (2kH i+ HopAg—AgHo ) = A+ (2k—ad ) Ho =0
(135)

with adAOY = [Ao, Y]
If the inverse of ad,, — 2k exists, the unique solution for
HZk is

H2k = (adAO - 2k)_1A2k. (136)

Hence, to complete the induction, we should demonstrate
that, under the above assumptions, adA0 — 2k is invertible,
i.e., its kernel is trivial.

Now ad, — 2k, as a linear operator that acts on matrices,
is diagonal, with eigenvalues 4; — 4; — 2k and the matrices
E;;, whose only nonvanishing entries are (E as
eigenvectors.

The eigenvectors Ej;, normalized in such a way that
(Eij);; = 1, form an orthonormal basis for the matrices.
Thus, E;; belongs to the kernel of ad, — 2k if and only if
Ai = 4j 2k 0. As a consequence, since 4; —4; =2k #0
for every i, j by the above assumptions, the kernel
of ad, —2k only contains 0, and the construction is
complete.

ij)ij7

AoHop) + Asr)(9) + 9 A + - -

(133)

|
C. Anomalous dimensions of twist-2 operators

We define the bare operators with s > 2 and k > 0 [9]

Of) = (=i0,)* O, (137)

that, to the leading order of perturbation theory, for £k > 0
are conformal descendants [15] of the corresponding

primary conformal operator Og)s) = Op, in the standard
basis. As a consequence of the operator mixing we obtain
[9,15] for the renormalized operators

ZZS,O (k+s—i)

with the mixing matrix Z and the matrix of the anomalous
dimensions

(138)

r(9) = (139)

Z v 92/+2

lower triangular and y, diagonal in the MS scheme
[9,15]. In our notation the eigenvalues of y, are given
by [9,13]

010gu

o= e (Wl D =) =
s2+s+1
(s=1s(s+1)(s+ 2)) (140)
for @Ek) with even s > 2, and
R G TIE
sT+s—=2
(s—l)s(s+1)(s+2)) (141)

for @ﬁ") with odd s > 3. yqp, = 0 consistently with the
conservation of the stress-energy tensor. The eigenvalues of

vo for S* and S are given by [13]
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11
o= e (s D= =2) e

with even s > 2.

Interestingly, from the above equations it follows that in
SU(N) YM theory y, is independent of N and thus has no
nonplanar contribution [12].

Moreover, we have verified numerically that the non-
resonant condition in Eq. (126) is satisfied for all the
collinear twist-2 operators in the standard basis up
to s = 10*.

Hence, the nonresonant diagonal basis exists for the
collinear twist-2 operators and restricts to the lowest order
|

of perturbation theory to the standard basis because y, is
diagonal in this basis.

Therefore, the standard basis may be employed to
compute the conformal correlators in Eq. (129).

VIII. GENERATING FUNCTIONAL OF
EUCLIDEAN RG-IMPROVED CORRELATORS

From the vantage point of view of the ’t Hooft large-N
expansion it is convenient to employ the rescaled operators
in Eq. (24) in Euclidean spacetime, so that the two-point
correlators are of order 1 for large N. The corresponding
asymptotic connected correlators acquire the simpler form
in the balanced

<®/sl;:(ﬁx1) T ®§f(/1xn)®/s€,l (lxn-&-l) T CD/SL,;:H,,, (Axn+2m)>
N Z®:] </1) o Z@s” (/1) Z®"'n+l (A') o Z®‘n+2m (/I) (N2—n—2m _ N—n—2m) 227:12711 SI(_I) 7:12m s
/12+s1 /12+s,, 12+s,,+1 /12+s”+2m (4ﬂ2)n+2m
« 52 ‘V"§:‘_2(S1 ) ( S ) ( Sn+2m ) ( Sntom )
k=0 Kyy2m=0 kl kl + 2 k n+2m kn+2m + 2
1
X om Z (561) = ko(1) + Ko@)+ (So(niam) = Konram) + Ko1))!
GePn+2m
ol —k +ka So(n+2m _krf n+2m +ko'
< (x”(l) B xﬂ@))’ v v o (xo"(n+2m) - xa(l))z reametzm o) (143)
((¥a(1) = Xo2))2) 0 R HRTE (X oy = X(1))?) Sotrr2m =Retnsam Hhotn 1
and unbalanced sectors
(S (Axy) - - S (Ax, ) S (Ay1) -+ S (Aya))
Z /1 Z i ng-/ (/1) Zi J (l?') n / n /
N j;r( ) ] fz\jr( ) 22;/ 521’ ( 2-2n _ N—Zn) (4 12)2 22]:1S1+S1(—1)lelsl+sl
S Sy 5| sh T n
51=2 =2 /o s s s
1 1 n n
X P P
> ;(ka)(kg+z) () (&)
2n 1 ) ,
=2 D (5ot = Koty + k) = Ky + Ko)!
o€P, peP,
X (s(;(n) - ko"(n) + k;)(n))'(s;)(n) - k;J(n) + k”(l))‘
Sa(1) =Ko )+k;; 1 S,,) 1 _k:, 1) Tko(2)
% (xa(l) _yp(l))z 1 s (yp(1) —Xa(z>)z<> w
((xo'(l) _ yp(l))z)sg() ko1 +k/)(l) ((yp(l) —x (2>)2)s/1(1)_k;;(1)+k"(2)+1
So(n —k,,(n>+k/)(n> ( )—k’( +k6(1)
(xa(n) - yp(n))z " ’ (yp( )~ a(l)) 2
(144

p(n)

((xa(n) - yp(n))z)sa( i ((yp

according to Egs. (25), (55), and (129). Correspondingly,
the generating functional of the Euclidean n-point corre-
lators of twist-2 operators decomposes into its planar

WE  ere and LO-nonplanar W, contributions.

(1>)2) ol )—k;<n)+k5(])+1

Perturbatively, according to general principles of the 't
Hooft large-N expansion [1], WE . involves a sum of

Feynman diagrams that have the topology of a punctured
torus in the 't Hooft double-line representation.
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Nonperturbatively, WE - must involve the sum of Whiere o Al ~ Wi here[J o5 4] (145)
the glueball one-loop diagrams, and it has been predicted
in [4]—on the basis of the existence of a large-N non- and
perturbative effective action for the glueballs—that it 5 5
should have the structure of the logarithm of a functional Wisnsl/ oz Al ~ Wasgm tons 0. ] (146)
determinant. with
The UV asymptotics as 4 — 0 of V\)sphere and WE fo
twist-2 operators in the nonresonant diagonal scheme follows W%ym sphere [Joe, A = — N>WE yin forus [Joe, 4] (147)
from the computation of the RG-improved correlators
(Sec. VII) according to Eq. (25), where
Wasym torus [J@/E, J@/E 5 JS/E, Jg/E ) ﬂ]
= —I—llo Det| I + i ) ’ (—5) Yk A (Zo,(or + Z@f (A)J‘D/E L)kt
B 2\ kJ\k+2) %" N2
s—2
s s — (Zo,(D)Jor - Zg (/1)]@’5
1 Det!| I -0 s—k—lA—l s s s k+1
+ =log e<+;<k)<k+2>( 2) N2
205N s, = (Zo Wor —Zg Wor) =\~
logDet|1—2( 1 —0 ki 9 )kt
+ =~ log De < +k0<k)<k+2>( Z) Nﬂer‘Y ( Z)
s s Zg (%)
1 1 -
X —0.)51— kl—lA 1 ‘1 J 9 ki+1
2 () (L oot s 0
5,2 ( / (ﬂ)] o A (ﬂ)] rE) -1
So So — O Oy (@) (8]
x| I+ — 0 )k A 2 0. )t
() )
s3—2 s s s (l)
< 3 ) < 3 > (_?Z)Sg ky— IA 1 2+‘ J§’\-E (_ 9 Z)k3+l (148)
i=o\ks ky +2 NA“TS ™3

that follows from Eqgs. (25), (27), (55), (57), and (129). By the
above computation we verify the aforementioned prediction
[4] that the generating functional Wi s Of the LO
nonplanar Euclidean RG-improved collinear twist-2 corre-
lators should inherit the very same loop structure—specifi-
cally, the one of the logarithm of a functional determinant—
of the corresponding nonperturbative object that involves the
sum of glueball one-loop diagrams.

Hence, the aforementioned asymptotic results strongly
constrain the nonperturbative solution of the large-N YM
theory and may actually provide an essential guide to find it.

APPENDIX A: DETERMINANTS OF BLOCK
MATRICES

The matrix in Eq. (21) has a block structure with
noncommutative entries

() w

where A, B, C, D are operators. Correspondingly, the
determinant of M reads [16]

Det M = Det(A)Det(D — CA‘lB) (A2)
or [17]
Det M = Det(D)Det(A — BD™! C) (A3)

provided that A=! or D~! exist, respectively. The above
formulas may be rewritten as

Det M = Det(A)Det(D)Det(1 — D~'CA™'B)  (A4)

or
Det M = Det(D)Det(A)Det(1 — A~'BD~!C)  (AS5)

provided that both A=! and D~' exist. In our case
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Mub — 5ab
~ )5 ® Vi,

0-1S 10, 1,150, @KL,

— 5205, ® Vi,

and we employ Eq. (A4). Hence, up to a trivial constant normalization, we get

1 s 1 s 1 s 1 s
Det M = Det <Z +5 i0"Jp, ® yé_z + EiD“J@,Y ® H§_2> Det (I + iiD“J@J ® y%_z - iiD"J@x ® H%_z)

2

1 1 5 1 s \-! s
x Det [I -5 (I 50070, ® Yy —5i07 V5, ® H§_2> i07Js, ® V., 5

1. 5 | 5 -1 5
X <I+§l|:|_]]@s2 ® yiz_z +§l|:| ]JOSZ ® Hiz_2> i 1J§:3 ® y§3_2:|,

where the sum over repeated spin indices is understood.

APPENDIX B: CONFORMAL PROPERTIES OF
THE STANDARD BASIS

The gauge-invariant collinear twist-2 operators in the
light-cone gauge in the standard basis read [6]

(B2)
(B3)

3 0, — 3+
X Co| =—= )0 AW).
0, + 0,

(B4)

where C‘l‘/ (x) are the Gegenbauer polynomials that are a
special case of the Jacobi polynomials [6]

T+ 2a’)F(a’ + 5)

(L) )
F(2a’)F(l v+ 5)

CY (x) =

(BS)

5 5 ’ (A6)
i0=33200, ®Vin+32 76, ® H, 5
(A7)
[
with the symmetry properties
Cf (=x) = (=1)'C{ (x). (B6)

They are the restriction, up to perhaps normalization and
linear combinations [6], to the component with maximal-
spin projection s along the p, direction of the balanced,
07=2, 072, and unbalanced, S7=2, twist-2 operators that
to the leading order of perturbation theory transform as
primary operators with respect to the conformal group [7]

o= =1vr* D,---D, F,,, — traces
s (p 7, ps1t s J
OT=2=TrvF" D, ---D, F — traces
s (P ps1t s ’

<>

ST=2 =Tr(F,, + iF,,)D,,...D,_, (Fyo + iF),)

— traces, (B7)
where the parentheses stand for symmetrization of all the
indices in between and the subtraction of the traces ensures
that the contraction of any two indices is zero.

The above statement about the conformal properties
needs some refinements. In a conformal field theory the
propagator of a vector field V,(x) with conformal dimen-
sion 1 is purely longitudinal [18]

X,
|x|?

<wmw@wm4%— )1 €25, log |+

P 2
(B8)

Therefore, there is no Lorentz-covariant gauge where the
field A, may be primary with respect to the conformal
group to the lowest order of perturbation theory. Yet, F,,
decomposes into the (1,0) @ (0, 1) representations of the
Lorentz group [6]

Fa[zbb = 2(fab€i1i7 - €abfiz b)’ (B9)
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where [6]
Faivh = 0ai®pFu (B10)
and
Sfar = % (Gﬂy)th,m
Fap = =50")iFu (B11)
with
Fav = Fai (B12)

It turns out that to the leading order of perturbation theory f;,
and f, ; are local primary fields with respect to the conformal
group [7]. Consequently, it follows the construction [7] in
Eq. (B7) of the local gauge-invariant operators that are
conformal primaries to the leading order, with the caveat
above that the corresponding representation of the conformal
group does not extend outside the local gauge-invariant
sector by including the field A, in a covariant gauge.

Besides, by projecting on the maximal-spin component
along the p, direction the aforementioned gauge-invariant
operators restrict to [6]

(B13)

(B14)

1
SS - 72
(B15)

1 T
ﬁTrfi i(0)(iD, +iD,)*?

X C <L> fii(x)
D, +D,
that are primaries with respect to the collinear conformal
subgroup SL(2,R) [9] and reduce in the light-cone
gauge to the operators in Eq. (B1) with f,; = —d,A. By
allowing operator mixing with derivatives of operators with
lower spin they may be extended to primary conformal
operators to the next-to-leading order in the conformal
renormalization scheme [15] that differs from the MS
scheme by a finite renormalization.
In fact, the fields f = f,; and f = f i | may be realized as
primary operators for the collinear conformal subgroup to

S, =

(B16)

the leading order of perturbation theory in a noncanonical
path-integral quantization of the YM theory in the light-
cone gauge by a suitable change of variables [13]

Sym(f.f)

[y

2= e (07 2002 + 07 10072 )

VN

~2pabepuieqgd (0717 1)o7 (07 ), (B17)

where
<01(x1)"'0n(xn)>
1 - -
22/DfoelSYM(f'f>Ol(x1)"'On(xn)- (B18)

APPENDIX C: NORMALIZATION
OF TWO-POINT CORRELATORS

The normalization of the two-point correlators has been
computed [6] by means of a technique [19] involving the
orthogonality of the Gegenbauer polynomials that makes
apparent the vanishing of two-point correlators with differ-
ent spins. In the standard basis the twist-2 operators O, are
normalized so that [6]

= (S,,(x)S;,(¥)).  s1.52 even,
(0,,(x)04,(y)) = (05, (0)Oy, (y)), 51,57 0dd.  (C1)
Hence, for example, it suffices to evaluate [6]
(O, (x)0y, ()
= (N = )X, (0 0V, (07 0y)
xi07 (xy —yz)lD ' —x)k== (C2)
where
0 (x—y) 4:[2 " y1|2 (C3)
and
(04,9
e
=9,(0, +i9,)2C_, (%)5}. (C4)
9.+ 9.
We restrict the correlators to (x—y), =0, so that

lx—y[>=2(x—y),(x—y)_. For x_ > y_ we obtain
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(k)

B A (C5)
(x =)~ /o

The 7 integral yields

oo I(sy + 5,42
By the above formula we convert derivatives into multi- / drrsitortle=tley)- — (l—slzﬂﬁz) (C12)
plications 0 (x = y)2
axf -z, ax; . We rewrite
1 s 3
Oy = T2, Oy; = 71 (Co) A dyy*(1 - 7>2C§1—2(1 —-2y)C, (1 =2y)  (C13)
By the symmetry property as
C(=x) = (=1)'Cf (%), (C7) Vdu (1—u?\? s s
’ ’ [5(55) Gawdam )
it follows )
with u = 1-2y. The orthogonality of the Gegenbauer
C% (- T — T1> _ (—1)S1C§ . <72 - Tl)’ polynomials reads
: T+ 17 NG ks { 1
5 _ 5 _ dz(1 = 22)%2C% (2)C¥,
Chos (Tl Tz) = (-1)°C, (TZ Tl)' (c8) [ -arter e
2 (%) + (3 2 71 + (%) 7r21_2“/l“(n1 + 2“’)
=6, 1 . (C15)
Hence, we obtain "2 (ny + o )T()?
/3
(O, (x)0y, (»)) Hence, for o/ =3
1 N?-1 1 /1 g, d s
- sit—4 ()it du(l—u”)C; _,(u)C, _,(u
(47[2)2 4 l 4(x—y)2+( ) . ( ) | 2( ) 2 2( )
0 16(S1 +2)'
s1+85—4.,2 .2 ,—(71+713) (x—y)_ =0 2_4 . Cl16
) A dndn(@ +n) e Y w95 —2) 128y + 1) (1o
% C% . (TZ - Tl) C% . <72 - Tl>' (C9) Collecting all the above factors we get
T\ 1) T\t
. (O, (x)0s,(¥))
From the substitution ) |
= 0y, s _1 N1 i51+52—4<—1)51+52 i_l(sl +2)!
T = 1%, Ty = T(l — 7/), (ClO) 172 (47[2)2 4 24 32(5'1 — 2)'
[(sy+s5,+2) 1
; : C17
it follows 2S1 1 4(X _ y)2+(x _ y)il+sz+2 ( )
(05, (x)05, (v)) Going back outside the plane (x —y), =0,
_ #NZ -1 i51+s2—4; (_1)51+s2 S1+5;
(471'2)2 4 4-()6 - )’)i 5 1 5= 251+82 %’
[7ae [ i pesees A= yR ey (b= yPyre?
X T 75152 —y)re Ty~
R T (C18)
X C:E\‘]—Z(l - 23/)(:2\2—2(1 - 2}/) (Cll) we obtain
J
1 N’-1 1 (s +2)!T0(s; +55+2) (x—y)™™
@) @) =5 ‘s|+S2—42s|+sz -1 S1+5, +
< Sl(x) Sz(y)> 5152 (4ﬂ'2)2 4 l ( ) 2432 (Sl _ z)y 251 +1 (|x _y|2)s|+SQ+2
1 NZ -1 22s1+2 , xX—y 251
-5 (1 (51 = Va1 + 1)+ 2) (21 2 (19)

w4 (4]

(=P

Analogously, the above equation extends to the balanced operators O, with odd s.
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APPENDIX D: CONFORMAL STRUCTURE OF THREE-POINT CORRELATORS

We work out the various conformal structures that contribute to the three-point correlators up to s = 4.
The nonvanishing three-point correlators of twist-2 operators O in the standard basis all have the same structure [6]

<Os1 (xl)osz (x2)0s3 ()C3)> = <®s1 (xl)@)sz ('x2)®s3 (X3)>
= <®s1(xl)Ssz(XZ)gs3(x3)>’ S1, 82,83 €ven,

(O, (x1) 0y, (x)Oy, (x3)), s, even and s,, s3 odd, (D1)

<Os1 (xl)osz(x2>053 (X3)>

where [6]
o o 0 B 1 ) 2\3N2 -1 51-H52-+5381 5255
( sl(xl) sz(xZ) s3<x3)> = —W 41 3 l

X (s14+ D) (s14+2)(s5+ 1) (59 +2)(s3+ 1)(s3+2)

§1—2 552 §3—2 s
1 S $2 52 §3 $3
X
2 o) () )2 G

X (81 = ky + ko) (52 = ky + k3) (53 — k3 + ky)!

(=) 7 ()T (g xR (D2)
(Jx1 = xpP)srHihithe (Jxy — xg]2)s2tihotha ((xg — xy [2)sat ot ”
We set x; — x; = x;; and—with an abuse of notation4—x§j = |x;;|>. Hence,
$1—=2 $5—2 53—2
81 S S o) 853 83
O, (x1)O, (x,)O;.(x3)) =C
(00 (321)0s,(x2) 53( )i S ;;);Qz()/;)<k1> <k1 + 2) <k2> (kz + 2) <k3> <k3 + 2>
X (Sl - k1 + k2)!(S2 - k2 + k3)!(S3 - k3 + kl)'
—ky+k —ky+k —k3+k
ST N v o

(agy) It (g ) st Imhoths (x3 ) sati-hath

with

1 2\3N%2 -1
Coiopsy = —WZQ—!) g Pt st (g 4 1) (s) +2)(s2 + 1) (s2 +2)(s3 + 1)(s3+2).  (D4)

A generic three-point correlator of primary conformal operators OO, admits the structure [19]

S1=N =N 3y S22 = N3 {73 =N 13— 123 gyl pyiti3 pyha3
§ : 2 Vl V2 V3 H12 H13 H23
12,113,123 3(@1+42=a3) py(a1+43=42) paaa+as—ar)
P12 P13 P23

<Os1(x1)052(x2)053 (X3>> = (DS)

nyp.n13,n2320

withs; —np—n;3 20,8 —np —ny;3 20,53 —n3—nyy >0, and g; = d; + s;, where d; is the conformal dimension of
the operators and

“In the main body of the paper |x|> and x? are the squares of the Minkowskian and Euclidean lengths, respectively.
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_ 2
Pij = 'xij’
H.. = —2x2
1 i+
2 2
Vv _ X214 X3 T X3144p
1 — b} )
X23
2 _ 2
v, = 232+%01 — X124 X33
2 — x2 )
13
X134053 = X234 X7
_ X134493 3+X13
Vi = 5 . (D6)
12

For twist-2 operators g; = 2s; + 2, so that

V‘Il_nIZ_”lfi V;Z_”IZ_”B V§3_”]3_n23H’11122H7]33HZ%3
<031(x1)052 (x2)033 (x3)> = Z /1”12,'113’"23 (x%z)sl+s2—S3+1(x%3)s1+s3—sz+l(x%S)sz-&-srsl-&-i . (D7)

ny2.n13,n2320

As a preliminary step we work out the useful identity

1 1 n
x’f2+x’f3+x33+ = ? (Vl V2V3 + 5 (V1H23 + V2H13 + V3H12>> (DS)

and the more trivial one
o 2n 2 L\"
X34 X134 X034 = 3 HY,H{3Hy; (D9)

so that we have two ways of writing the product x/, , x{;, x3; . We are now in the position to identify the conformal tensor
structures.
For 5| = 5, = 53 =2 we get

x%2+ x§3+ X%H
(Oy(x1)05(x2) 05 (x3)) = Comy—— ¢
Ao X3 X3

1 (ViVaVs 43 (ViHy + VoH s 4 V3Hyy))? — S HiyHisHos

——C
] 2,22

(D10)

6 6 6
X12X13%23

Indeed, there are precisely 1 + 3 + 6 terms by expanding the square, plus 1 extra term, so that there are exactly 11 distinct
structures, as predicted by Eq. (D7).

For s; =5, =2 and s3 =4,

2 4 .2 2 .3 .3 2 2 .4
X X X X X X X X X
- 124%234+ %13+ 124%23+ %13+ 12+%23+ %13+
(O1(x1) 05 (x2)O4(x3)) = 576C224< c 06 2 %633 T %60 ) (D11)
X12X2343) X12X2343] X12X23X31

To identify the conformal tensor structures we factorize the maximal common divisor of the numerators and the
denominator in Eq. (D7)

2 2 2,2 4 2 2 2 4
X124+ X234 %73 [ %2343 X203+ X134+ X53X31 | *134%93
(02(31)O(x2) O4(x3)) = 576Cy4 =55 15 ( 2l 2 + ) (D12)
XHX13303 Xt xh X
The sum of terms inside the parentheses is exactly V3
2 .2 .2
X{p X535, X
(Or(x1)O,(x2)O4(x3)) = 576C4 —12; ff)*m” V% (D13)
X12X13%23

so that
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(ViV,Vs + % (ViHy + VoH3 + ViH ) — %H12H13H23

2 10,10
X12X13%23

(Os(x1)O01(x2)O4(x3)) = 288C14 V3. (D14)

For s; =2 and s, = 53 = 3 we get

8 .8 6 6 10,6

3.3 2 2 4 .2 3.2 .3 2 3 .3
XTn, X532, X X Xoa X X7n, X554, X Xin, X352, X
12+%23+%13 12+%23+%13 12+X23+%13 12+%23+%13
(O5(x1)O3(x2) O5(x3)) = 216C35 <3 T e B e +>. (D15)
X12X23X31 X12X23X31 X12X23X31 X12X23X31

Similarly, after the above factorization we obtain

O5(x1)O3(x,) Os (x3)) = 216Cs3 X0 X33 X5y 3x12+x23+x§3+4x2 _3x12+x13+x33_3x23+x13+x§3 (D16
23+ 2

x?2x£(3)xgl x%z x12x§1 x%l
The terms inside the parentheses read
2 2 .2
X7 X572, X 1
(05(x1)05(x2) O3(x3)) = 216C,33 —2E-20 3% <3V2V3 - §H23>- (D17)
X12X23X3]
Then
(ViVaVs +3(ViHy + VoH 3 + V3Hy))? — 3 HioH3Hys 1
(Os(x1)O3(x2)O3(x3)) = 108C135 : TN 2 3VaVs =5 Hy ).
X12X23X31
(D18)
For s =2, s, = 53 =4 we get
xh x3, X2 X3, X0, x2 X2 x8, 2
<02(x1)(94(x2)(94(x3)> — 6912C244 <6 12-;—0 213(;&- 613+ + 20 12;— 213; 613+ + 15 12—g 2131- 613-‘,—
X12X23X31 X12X2343) X12X2343)
_ ]2x4112+x%3+x?3+ _ 32x?2+x‘2‘3+x?3+ —~20 X X3y Xae | XXX,
10,8 .8 8 10,8 6 12,8 10.6 .10
X12X2343) X12X2343] X12X2343) X12X2343]
3.3 .4 2 4 .4
X124+ 4234 X 13+ X24X23+ X134+
+ 12—t 66— ) (D19)
X12X23X3] X12X23X3]
Again factorizing we obtain
2 2 2 2 2 .4 302
X405 X554, X XTo, X52, X X191 X532, X
2 (X1 )Us(X2))Uy(X3)) = 244 + + 15x
O O O N 6912C 12; 2?:» 613+ 6 12+ i3+ 23 20 12+ §3+ 23 15 £213+
X12X23X31 X2 12
Xy Xa3: X134 X5 X124 %93, X133 X33 X13:X33 | XX 45
S e -32 3 e
X12X31 X12X31 X31 X12X31
X X X2 X6 x2 XZ X4
4t 223+ 413+ 3, X3+ 4113+ 23>. (D20)
X12X31 X31
Hence,
2 2 .2
X{r, X572, X 1
(O1(x1)O04(x2)O4(x3)) = 6912C244W <6(V2V3)2 —4(V,V3)Hys + ZH%3> (D21)
X12X23X3)
so that
(ViVaVy+3(ViHy + VoH 3 + V3H )2 =3 HiH 3 Hos
(O(x1)O4(x2) O4(x3)) = 3456C44 2 16 2
X12X2343)
1
X (6(V2V3)2 —4(V,V3)Hos + ZH%3>- (D22)

054023-30



UV ASYMPTOTICS OF n-POINT CORRELATORS OF ... PHYS. REV. D 108, 054023 (2023)

For s; =4, s, = 53 =3 we get

5 3 2 4 4 0 5 .2 .3
Xy X33, X Xir X553, X X1, X33, X
<O4()C1)O3()C2>O';(X3)> — 5184C433 (15 12-&1—2 2;+ 6]3+ +12 12—1—0 2133- 613-&- —-15 12-;—2 263+ 813+
i i X (5X53X X15Xp3X X[5X93 X
12X23X3; 12%23%3) 12%23X3]
4 3 .3 34 .3 4 0 .4 3.3 .4
Sl P ol NN R N KSRV P o R S v B g K
10,8 8 8 (10,8 10,6 10 88410
12%23%31 12%23X31 12%23X31 12%23X3]
2 4 4 3 .2 .5 2 .3 .5
I 1p 12422348131 s M2 X034 Xisy 5 X1 034 M3y (D23)
%0 10,10 8 0 12 82 )
12%2343] 12%23X3] 6%23%31

Factorizing as above,

2 2 2 3 4 2 2 4 3 2
X X X X X X X X X X X X
_ 124+423+"13+ 1244234+43] 124+7234+31 124+V13+43]
<O4(X1)O3(X2)O3(X3)> = 5184C433 0.6 10 (15 ) + 12 ) - 15 5

12%23X3] X12X23 X33 X2

2 2 2 2 .2 2 2

X9 X231 X132 X X194 X572, X130 X5~ X X190 X930 X 2, X

124+%23+X134X3] 124X234 X134 X12X3) o 2 124X234 X713, X7
-33 5 —24 T +32x7,, X3, +33—— 75—+

X3 X3 X3

2 2 4 32 34

X X X X124 X X .XZ3 X X,
+ 12 23+ i3+ 12 _ 15 + §3+ 12 _ 15 ‘2 132+ 6 ) (D24)

X3 31 X23X31

The terms in the parentheses above arise from the following combination of conformal tensor structures:

(ViVaVy+ 3 (ViHy + VoH s + V3H )2 —AHipH 3 Hos

<(94(x1)(’)3(x2)(’)3(x3)> = 10368Cy3; 2 10,10
X12X13423
x (18V3V,V3 =6V, V3H |, — 6V VoH 3 —3ViH; + HpH 3). (D25)

For 5| = 5, = 53 =4 we get

14,.10 .6 12,126

6 4 .2 5 .5 .2 4 6 .2
X0, x4 x X7y, X2, X X3, x%, , x
1245234413 1244234 %13 12+%231 413
(O4(x1)O4(x2) O4(x3)) = 55296C444<135 SR 300 A 135 A
X12X2343) X12X2343) X12X2343)

6 3 43 5 4,3 45,3
X0y X33, X X4 X535, X x| X35, X
_ 7022345 e M124 0231 M 51 oo X124 34 M3

14,8 8 12,10.8 10,128
X12X2343) X12%23431 X12X2343)
3.6 .3 6 2 .4 5 .3 .4
_270x12+x23+x13++135x12+x23+x13++660x12+x23+x13+
8 14,8 14,6 10 12,8 10
12%23X31 12%23%31 12%23%3]
4 4 .4 3.5 .4 2 .6 .4
X121 X031 X134 X124 X234 X134 X124 X231 X134
+ 1132 10,10,10 + 660 8 12,10 + 135 26 14,10
12%23X3] 12%23%31 12423%3]
5 .2 .5 4 .3 .5 3 .4 .5
_ 3000262234 M 3¢ o X120Y234 N3y o0 X124 123 X134
12,6 (12 10,8 2 8 10,12
12%23%31 12%23%3] 12%23X37
2 .5 .5 4 2 .6 33 .6 2 4 .6
X124 X231 X134 X124 X234 X134 X124 X231 X134 X124 X234 X34
— 300283 4 35723 | g +135 (D26)
10 12,12 (10,6 14 JERRNT 010,14
12%23X37 12%23%31 12%23X3] 12%23%31

As above

2 2 .2 4 2 4 3.3 .4 2 4 4
X5h X552, X XTh X52. X Xin X357, X Xin, X532, X
3 1
(O4(x1)04(x2) Oy (x3)) = 55296C 4y 252 DBE <135 R 4 3002 4 135 R
X12X23X3] X2 X12X23 X3
4 2 .2 302 2 2 3 2
X X034 X134 X532 X X3n, X552, X130 X Xin  X32, X134X
124%234+X134X53X3 124%23+X13+43; 12+4%234+ X134+ 43
- 270 o — 660 2 — 660 2
12 12 23

4 2 .2 4 2 4 3 2 2

X124 X X134 XX X X X953 X X234 X X33

—270 23+ - 12731 135 124+ ‘1‘3+ 23 660 124+ B 134723
X93 X12 X12
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3.2 .2 4 2 4
X124 X33, X734 X X33, X73.X
+ 113223, 3%, 35, + 660 PITATIE 4 1357

2
X3

4
X23

3.2 .4 2 3.2 2 3 .2
X1h, XT2, X X X231 X712, X X124 X52, X12 X
+X13+423 +X23+ X734 12+%234 X134

300244134423 o M2 134423 _ e 23+*13+ %12

2 2 2
A12X31 X31

2 2 7
X23X31 31

X X X X X X X X X X7, X X X X

2
31

7 7 (D27)

X31 X31

The terms in the parentheses above arise from the following combination of conformal tensor structures:

(O4(x1)O04(x2)O4(x3)) = 13824C sy

(ViVaV3 +3(ViHy + VoH 3+ V3H )2 — S HipHi3Hys

10,1010
X12X23X3]

x (90(V,V,V3)? =90V, V3V3H 3 — 90V3V,V3Hys — 90V, V,V3H |,

— 13H\,Hy3H 3 + 15V V3H 3 Hys + 15V, V3H pHoys + 15V Vo Hys Hys).

(D28)

The algorithm to extract the conformal tensor structures from the three-point correlators is clear enough—according to our
examples—though cumbersome in practice for increasing spins.
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