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We demonstrate that the Higgs boson mass can be extracted from the dispersion relation obeyed by the
correlation function of two b-quark scalar currents. The solution to the dispersion relation with the input
from the perturbative evaluation of the correlation function up to next-to-leading order in QCD and with
the b-quark mass mb ¼ 4.43 GeV demands a specific Higgs mass 114 GeV. Our observation offers an
alternative resolution to the long-standing fine-tuning problem of the Standard Model (SM); the Higgs
mass is determined dynamically for the internal consistency of the SM. The similar formalism, as applied
to the correlation function of two b-quark vector currents with the same mb, leads to the Z boson mass
90.8 GeV. This solution exists only when the Z- andW-boson masses are proportionate, conforming to the
Higgs mechanism of the electroweak symmetry breaking. We then consider the mixing between theQū and
Q̄u states for a fictitious heavy quark Q and a u quark through the bb̄ channel, inspired by our earlier
analysis of neutral meson mixing. Its dispersion relation, given the perturbative input from the responsible
box diagrams and the same mb, fixes the top-quark mass 176 GeV. It is highly nontrivial to predict the
above electroweak-scale masses with at most 9% deviation from their measured values using the single
parameter mb. More accurate results are expected, as more precise perturbative inputs are adopted.

DOI: 10.1103/PhysRevD.108.054020

I. INTRODUCTION

Recently we proposed the possibility that the parameters
in the Standard Model (SM) are not free, but arranged
properly to achieve the internal dynamical consistency [1].
This proposal was motivated by the emergence of a heavy
(charm or bottom) quark mass in the dispersive analysis on
decay widths of a heavy meson HQ formed by a fictitious
heavy quark Q with an arbitrary mass mQ. A decay width,
as the absorptive piece of a heavy meson matrix element of
the four-quark effective operators, satisfies a dispersion
relation, which imposes a stringent connection between
high-mass and low-mass behaviors of a decay width. A
solution to the dispersion relation with the input from heavy
quark expansion (HQE) at high mass specifies the value of
mQ, which turns out to coincide with the physical c or b
quark mass. Starting with massless final-state up and down
quarks, we have shown that the solution for the decayQ →
dud̄ (Q → cūd) with the leading-order HQE input leads to
the c- (b-)quark mass mc ¼ 1.35 ðmb ¼ 4.4Þ GeV, given
the binding energy Λ̄ ¼ 0.5 (0.6) GeV of a heavy meson.
Requiring that the dispersion relation for the Q → sud̄

(Q → dμþνμ; Q → uτ−ν̄τ) decay yields the same heavy
quark mass, we obtained the strange quark (muon, τ lepton)
mass ms ¼ 0.12 GeV (mμ ¼ 0.11 GeV, mτ ¼ 2.0 GeV).
The above particle masses, close to the measured ones,
support the aforementioned proposal.
This paper will further demonstrate that the electroweak-

scale masses, i.e., the Higgs boson, Z-boson and top-quark
masses, can also be determined in a similar manner. To
extract the Higgs boson mass, we investigate the dispersion
relation obeyed by the correlation function of two b-quark
scalar currents, like those employed in QCD sum rules [2]
for probing resonance properties (see [3], for instance). The
solution to the dispersion relation, with the input from the
perturbative evaluation of the correlation function up to
next-to-leading order (NLO) in QCD and with the b-quark
mass mb ¼ 4.43 GeV (slightly higher than that from [1]),
demands a specific scalar mass 114 GeV, close to the
measured onemH ¼ ð125.25� 0.17Þ GeV [4]. This obser-
vation offers an alternative resolution to the long-standing
fine-tuning problem of the SM; the Higgs boson must have
this mass to make the internal consistency of the SM
dynamics. The above formalism, as applied to the corre-
lation function of two b-quark vector currents with the
same mb, generates the Z boson mass 90.8 GeV, close to
the measured one mZ ¼ ð91.1876� 0.0021Þ GeV [4]. We
then consider the mixing between the Qū and Q̄u states for
a fictitious heavy quark Q and a u quark through the bb̄
channel, which was inspired by our earlier dispersive
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analysis on neutral meson mixing [5]. Its dispersion
relation, given the perturbative input from the responsible
box diagrams and the same mb, fixes the top-quark mass
176 GeV, close to the measured one mt ¼ ð172.69�
0.30Þ GeV [4]. The solved particle masses with the single
parameter mb, deviating from the measured values by at
most 9%, are highly nontrivial. Our studies suggest that the
masses over a huge hierarchy in the SM, from 0.1 GeV to
100 GeV, can be correlated to each other through appro-
priate dispersion relations.

II. HIGGS-BOSON MASS

The nonperturbative approach based on dispersion rela-
tions for physical observables was proposed in [6], and
applied to the explorations of various quantities in [7–10].
Following the threads of the above references, we construct
the dispersion relation obeyed by the two-point correlation
function

Πðq2Þ ¼ i
Z

d4xeiq·xh0jT½JðxÞJð0Þ�j0i; ð1Þ

with the momentum q being injected into the b-quark scalar
current J ¼ b̄b. The momentum squared q2 defines an
invariant mass mS ¼

ffiffiffiffiffi
q2

p
of the scalar attaching to the

current. The standard operator product expansion (OPE)
implemented in QCD sum rules is reliable for Eq. (1) in the
large mS region. Inserting various states between the two
operators JðxÞ and Jð0Þ, one realizes that information of
any physical particle allowed to decay into a bb̄ quark pair
can be extracted from the above correlation function in
principle, as the OPE is known precisely enough. It is thus
clear that the bb̄ final state, instead of lighter ones like cc̄, is
appropriate for extracting the Higgs boson mass, because
no other scalar particles with masses above the B-meson-
pair threshold decay into bb̄.
It has been noticed [11,12] that the power corrections

from heavy-quark condensates can be absorbed into those
from the gluon condensates. The gluon condensate effects,
starting with hαsG2i ∼Oð0.1Þ GeV4 [13,14] and down by
powers of mS > mb, are negligible. Hence, we keep only
the leading term in the OPE, i.e., the perturbative con-
tribution [15–17], which gives rise to the spectral function

ImΠpðmSÞ ∝
ðm2

S − 4m2
bÞ3=2

mS

×

�
1þ αsðμÞ

π
CF

�
17

4
þ 3

2
ln

μ2

m2
S

��
: ð2Þ

The argument of the above function has been changed to
mS, and the suppressed constant prefactor is not crucial for
the reasoning below. For the NLO correction, we include
only that in QCD for illustration, which dominates over
others from the electroweak interaction. Equation (2) is

nothing but the width for a scalar decay into a bb̄ quark pair
without the initial particle density factor 1=ð2mSÞ and the
relevant Yukawa coupling constant.
Viewing the presence of 1=mS in Eq. (2), we consider the

contour integration of m2
SΠðmSÞ in the complex mS plane,

instead of the m2
S plane, which contain different branching

cuts [1]. This manipulation facilitates the derivation of a
solution to the dispersion relation as seen later. The contour
consists of two pieces of horizontal lines above and below
the branch cut along the positive real axis, two pieces of
horizontal lines above and below the branch cut along the
negative real axis, and a circle CR of large radius R as
depicted in Fig. 1. We then have the identity

1

2πi

I
m2ΠðmÞ
m −mS

dm ¼ m2
SΠpðmSÞ ¼

1

2πi

I
m2ΠpðmÞ
m −mS

dm:

ð3Þ

The residue from the pole at m ¼ mS marked in Fig. 1 has
been replaced by its perturbative expression Πp, since
perturbation holds well for high scales. This residue is
further written as the contour integral ofm2

SΠpðmSÞ based on
the analyticity of perturbative calculations [5,9]. An inter-
mediate advantage of considering the integrand m2ΠðmÞ is
apparent; if there exists a singularity of ΠðmÞ in the low m
region, its residue will be suppressed by a power of m2=m2

S
relative to the one in Eq. (3), and can be dropped.
Canceling the contributions from the large circle CR on

both sides of Eq. (3), which are approximated by the
perturbative ones reliably, we arrive at

Z
R

2mB

m2ImΠðmÞ
m−mS

dm−
Z

−2mB

−R

m2ImΠðmÞ
m−mS

dm

¼
Z

R

2mb

m2ImΠpðmÞ
m−mS

dm−
Z

−2mb

−R

m2ImΠpðmÞ
m−mS

dm: ð4Þ

FIG. 1. Contour for Eq. (3), where the thick lines represent the
branch cuts.
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The hadronic threshold 2mB, mB being the B meson mass,
and the quark-level threshold 2mb have been assigned. The
imaginary part of the perturbative correlation function is
attributed to the logarithmic factor lnð−m2 þ 4m2

bÞ from
the b-quark loop, which can be split into lnð−m2 þ 4m2

bÞ ¼
lnðmþ 2mbÞ þ lnð−mþ 2mbÞ. The former (latter) gives
the phase iπ (−iπ) for m < −2mb (m > 2mb) along the
contour above the branch cut. This opposite sign has been
reflected explicitly between the two terms on each side of
Eq. (4). The unknown spectral function ImΠðmÞ, involving
strong dynamics characterized by the scale mB, will be
solved from the above dispersion relation with the input of
ImΠpðmÞ. That is, Eq. (5) will be handled as an inverse
problem [6].
Note that the input ImΠpðmÞ is an odd function in m, so

is the corresponding solution ImΠðmÞ from Eq. (4). The
variable change m → −m for the second integrals on both
sides leads to

Z
R2

4m2
B

mImΠðmÞ
m2

S −m2
dm2 ¼

Z
R2

4m2
b

mImΠpðmÞ
m2

S −m2
dm2: ð5Þ

We supply an intuitive interpretation for the above equa-
tion. The unknown spectral function ImΠðmÞ on the
left-hand side collects contributions from real physical
particles. Take the spectral function in the case of light-
quark vector currents as an example. As the momentum
squared q2 injected into the vector current increases from
zero and crosses the dipion threshold, the two virtual
quarks emitted from one current fragment into two real
pions, whose invariant mass defines the hadronic threshold
2mπ . As q2 increases further and crosses the ρ meson
threshold, the two virtual quarks emitted from one current
can “annihilate” into a real ρ meson, which then “decays”
into the two virtual quarks that end at the other current. One
can think of the coupling between the ρ meson and the
quark pair as gρqq̄ appearing in the Nambu-Jona-Lasinio
model [18]. This real ρ meson contribution to the unknown
spectral function has been parametrized as a pole term in
QCD sum rules.
In the present case with the b-quark scalar currents, the

hadronic threshold 2mB in Eq. (4) corresponds to 2mπ , and
a real Higgs boson contribution corresponds to the real ρ
meson contribution mentioned above, with the Yukawa
coupling between the Higgs boson and the b-quark pair
corresponding to gρqq̄. The right-hand side of Eq. (5) is
evaluated in perturbation theory systematically by starting
with two real b quarks. Then Eq. (5) means that the two
dispersive integrals, one in terms of the unknown spectral
function from the contributions of real physical particles
and the other in terms of the perturbative spectral function
from the contribution of real b quarks, should be equal at
largemS. Solving Eq. (5) directly, one can extract the Higgs
boson mass in the same way as extracting the ρmeson mass
from the correlation function of light-quark currents [9].

The idea behind our formalism is thus similar to that
of QCD sum rules, but with power corrections in
ðmB −mbÞ=mS originating from the difference between
the thresholds 2mB and 2mb, which are necessary for
establishing a physical solution [5]. Without these power
corrections, i.e., if mb is equal to mB, there will be only the
trivial solution ImΠðmÞ ¼ ImΠpðmÞ and no constraint on
the Higgs boson mass.
It has been proved rigorously [19] that the solution to an

integral equation like Eq. (5) (the Fredholm equation of the
first kind), if existing, is unique under adequate boundary
conditions. We will construct a solution to Eq. (5) below.
Moving the integrand on the right-hand side to the left-hand
side, and regarding it as a subtraction term, we get

Z
∞

4m2
b

ΔρðmÞ
ðm2

S −m2Þ dm
2 ¼ 0;

ΔρðmÞ≡mΔΠðmÞ; ΔΠðmÞ ¼ ImΠðmÞ − ImΠpðmÞ:
ð6Þ

The subtracted unknown function ΔΠðmÞ is fixed to
−ImΠpðmÞ in the interval ð2mb; 2mBÞ ofm, and approaches
zero at large m, where ImΠðmÞ → ImΠpðmÞ. This explains
why the upper bound R2 of the integration variable m2 can
be extended to infinity. The procedure of solving Eq. (6) has
been elucidated in [1], which is recaptured here for a self-
contained presentation. We change mS and m in Eq. (6) into
the dimensionless variables u and v viam2

S − 4m2
b ¼ uΛ and

m2 − 4m2
b ¼ vΛ, respectively, obtaining

Z
∞

0

dv
ΔρðvÞ
u − v

¼ 0: ð7Þ

The purpose of introducing the arbitrary scaleΛwill become
transparent shortly.
Because ΔρðvÞ diminishes at large v; namely, the major

contribution to Eq. (7) comes from the region with finite v,
we can expand Eq. (7) into a power series in 1=u for
sufficiently large juj by inserting 1=ðu−vÞ¼P∞

i¼1v
i−1=ui.

Note that u, i.e.,mS could be a complex number, as indicated
in Fig. 1. Equation (7) then dictates a vanishing coefficient
for every power of 1=u. We start with the case with N
vanishing coefficients,

Z
∞

0

dvvi−1ΔρðvÞ ¼ 0; i ¼ 1; 2; 3 � � � ; N; ð8Þ

where N will be pushed to infinity eventually. The first N

polynomials LðαÞ
0 ðvÞ; LðαÞ

1 ðvÞ; � � � ; LðαÞ
N−1ðvÞ are composed of

the terms 1; v; � � � ; vN−1 appearing in the above expressions.
Equation (8) thus implies an expansion of ΔρðvÞ in terms of
the generalized Laguerre polynomials LðαÞ

j ðvÞwith degrees j
not lower than N,
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ΔρðvÞ ¼
XN0

j¼N

ajvαe−vL
ðαÞ
j ðvÞ; N0 > N; ð9Þ

owing to the orthogonality of the polynomials, in which aj
represent a set of unknown coefficients. The index α
describes the behavior of ΔρðvÞ around v ∼ 0. The highest
degree N0 can be fixed in principle by the aforementioned
initial condition ofΔρðvÞ in the interval ð0; 4ðm2

B −m2
bÞ=ΛÞ

of v. Since − ImΠp is a smooth function, N0 needs not be
infinite.
A generalized Laguerre polynomial takes the approxi-

mate form for a large j, LðαÞ
j ðvÞ ≈ jα=2v−α=2ev=2Jαð2

ffiffiffiffiffi
jv

p Þ
[20], up to corrections of 1=

ffiffi
j

p
, Jα being a Bessel function

of the first kind. Equation (9) becomes

ΔρðmÞ ≈
XN0

j¼N

aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðm2 − 4m2

bÞ
Λ

r
α

e−ðm
2−4m2

bÞ=ð2ΛÞ

× Jα

 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðm2 − 4m2

bÞ
Λ

r !
; ð10Þ

where the variable v has been written as ðm2 − 4m2
bÞ=Λ

explicitly. Defining the scaling variable ω≡ ffiffiffiffiffiffiffiffiffiffi
N=Λ

p
, we

have the approximation N0=Λ ¼ ω2 þ ðN0 − NÞ=N ≈ ω2

for a finite N0 − N. Equation (10) then reduces to

ΔρðmÞ ≈ y
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4m2

b

q �α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4m2

b

q �
; ð11Þ

as the common Bessel functions Jαð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðm2 − 4m2

bÞ=Λ
q

Þ ≈
Jαð2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4m2

b

q
Þ for j ¼ N;N þ 1;…; N0 are factored

out, and the sum of the unknown coefficients
P

N0
j¼N aj

is denoted by y. The exponential suppression factor
e−ðm

2−4m2
bÞ=ð2ΛÞ ¼ e−ω

2ðm2−4m2
bÞ=ð2NÞ has been replaced by

unity for a large N in the region with finite m and ω, which
we are interested in.
We stress that a solution to the dispersion relation should

be insensitive to the variation of the arbitrary scale Λ, i.e.,
of ω, which is introduced via the artificial variable changes.
To realize this insensitivity, we make a Taylor expansion
of ΔρðmSÞ,

ΔρðmSÞ ¼ ΔρðmSÞjω¼ω̄ þ dΔρðmSÞ
dω

×

				
ω¼ω̄

ðω − ω̄Þ þ 1

2

d2ΔρðmSÞ
dω2

				
ω¼ω̄

× ðω − ω̄Þ2 þ � � � ; ð12Þ

where the constant ω̄, together with the index α and the
coefficient y, are fixed via the fit of the first term

ΔρðmSÞjω¼ω̄ to −mSImΠpðmSÞ in the interval ð2mb; 2mBÞ
of mS. The insensitivity to the scaling variable ω requires
the vanishing of the first derivative in Eq. (12),
dΔρðmSÞ=dωjω¼ω̄ ¼ 0, from which roots of mS are solved.
Furthermore, the second derivative d2ΔρðmSÞ=dω2jω¼ω̄
should be minimal to maximize the stability window
around ω̄, in which ΔρðmSÞ remains almost independent
ofω. It will be seen that only whenmS takes a value close to
the physical Higgs boson mass, can the above requirements
be satisfied. Equation (11) with this specific mS establishes
the solution to the dispersion relation in Eq. (6) with
the initial condition in the interval ð2mb; 2mBÞ. Once the
solution is found, we increase the degree N for the
polynomial expansion in Eq. (9) and the scale Λ arbitrarily
by keeping ω ¼ ffiffiffiffiffiffiffiffiffiffi

N=Λ
p

within the stability window. Then
all the deductions based on the large-N scenario are
justified.
Comparing ΔρðmSÞ in Eq. (11) in the limit mS → 2mb

with the input

−mSImΠpðmSÞ ∝ ðm2
S − 4m2

bÞ3=2; ð13Þ

we read off the index α ¼ 3=2. It is clear now why we
considered the contour integration of m2ΠðmÞ; the corre-
sponding input is proportional to a simple power of
m2 − 4m2

b, so that the index α can be determined unam-
biguously. The boundary condition ΔρðmSÞ at mS ¼ 2mB
sets the coefficient

y ¼ −2mBImΠpð2mBÞ
��

2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B −m2
b

q �
3=2

× J3=2
�
4ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B −m2
b

q ��−1
: ð14Þ

The running coupling constant is given by

αsðμÞ ¼
4π

β0 lnðμ2=Λ2
QCDÞ

�
1 −

β1 ln lnðμ2=Λ2
QCDÞ

β20 lnðμ2=Λ2
QCDÞ

�
; ð15Þ

with the coefficients β0 ¼ 11 − 2nf=3 and β1¼
2ð51−19nf=3Þ. We take the QCD scale ΛQCD ¼ 0.2GeV
for the number of active quark flavors nf ¼ 5 [21],
and choose the renormalization scale μ ¼ mS. Adopting the
b-quark massmb ¼ 4.43 and the B-meson massmB ¼ 5.28
[4], we derive ω̄ ¼ 0.0254 GeV−1 from the best fit of
Eq. (11) to −mSImΠpðmSÞ from Eq. (2) in the interval
ð2mb; 2mBÞ of mS. The fit result in terms of −ΔΠðmSÞ
is contrasted with ImΠpðmSÞ in Fig. 2(a). Their perfect
match confirms that the approximate solution in Eq. (11)
works well, and that other methods for acquiring ω̄ should
return similar values; for example, equating ΔΠðmSÞ and
−ImΠpðmSÞ at mS ¼ mB þmb yields ω̄ ¼ 0.0256 GeV−1,
almost identical to 0.0254 GeV−1 from the best fit.
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As postulated before, the derivative dΔρðmSÞ=dω van-
ishes at ω ¼ ω̄, i.e.,

DðmSÞ≡ d
dω

J3=2
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S − 4m2
b

q �
J3=2

�
4ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B −m2
b

q �
						
ω¼ω̄

¼ 0; ð16Þ

where the factors independent of ω in the solution
have been dropped for simplicity. Figure 2(b) shows the
dependence of the derivative DðmSÞ on mS, which reveals
an oscillatory behavior. The first root located at mS ¼
2mB ¼ 10.56 GeV, attributed to the boundary condition
of ΔρðmSÞ at this mS, is trivial and bears no physical
significance. It has been checked that the second derivatives
are larger at higher roots, as observed in [1], so a smaller
root is preferred. Therefore, we identify the second root
at mS ¼ 114 GeV as the physical solution of the Higgs
boson mass, which deviates from the measured one
mH ¼ ð125.25� 0.17Þ GeV by only 9%. The value of
ΔΠðmS ¼ 114 GeVÞ, amounting to about 10% of the
perturbative input ImΠpðmS ¼ 114 GeVÞ, indicates a
minor nonperturbative contribution to Higgs decays asso-
ciated with the hadronic threshold 2mB.
We estimate the theoretical uncertainties involved in

the above analysis. The variation of the b-quark mass in
its well-accepted range causes a minor effect; a higher
(lower) mb ¼ 4.8 (4.0) GeV yields the Higgs boson mass
116 (111) GeV. That is, an 8% change ofmb makes less than
3% impact on the outcome. We mention that the NLO QCD
correction to the perturbative input is crucial for attaining a
sensible Higgs boson mass. Without the OðαsÞ piece in
Eq. (2), ω̄ would be as small as 1.9 × 10−4 GeV−1, and the
Higgs boson mass becomes as large as 1.5 × 104 GeV. It is
then necessary to examine the dependence on the renorm-
alization scale μ: the choice μ ¼ mS=2 (μ ¼ 2mS) leads to
the Higgs boson mass 126 (112) GeV. It hints that higher-
order corrections are under control, and their inclusion
into the perturbative input is likely to account for the
measured mH. This Oð10%Þ QCD effect from the initial
condition at the mb scale is quite reasonable.

III. Z-BOSON MASS

We extract the Z-boson mass in the same formalism.
A Z boson decays into a bb̄ quark pair through the vertex
γμðvb þ abγ5Þ, where the vector coupling vb and the
axial-vector coupling ab can vary independently in a
mathematical point of view. It is noticed in perturbative
calculations [22–25] that the axial-vector contribution is
less than 10% of the vector one in the threshold region
ð2mb; 2mBÞ, and, in particular, completely negligible near
the quark-level threshold 2mb. Hence, we work on the vb
term, namely, the two-point correlation function

Πμνðq2Þ ¼ i
Z

d4xeiq·xh0jT½JμðxÞJνð0Þ�j0i

¼ ðqμqν − gμνq2ÞΠðq2Þ; ð17Þ

with the momentum q being injected into the b-quark
vector current Jμ ¼ b̄γμb. Similarly, we keep only the
leading term in the OPE for the correlation function Πðq2Þ,
i.e., the perturbative contribution [22–25], which gives the
imaginary piece

ImΠpðmVÞ ∝m2
VβðmVÞ½3− β2ðmVÞ�



1þ 4αsðmVÞ

3

×

�
π

2βðmVÞ
−
3þ βðmVÞ

4

�
π

2
−

3

4π

���
; ð18Þ

with the invariant massmV ¼
ffiffiffiffiffi
q2

p
and the factor βðmVÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2
b=m

2
V

q
. We have also suppressed the constant

prefactor in the above expression, and taken into account
the NLO QCD correction solely, where the renormalization
scale μ in αs is set to mV .
The perturbative input in Eq. (18) consists of both

even and odd functions in mV , ImΠpðmVÞ ¼ ImΠp
eðmVÞþ

ImΠp
oðmVÞ, so the unknown function is decomposed

into ImΠðmVÞ ¼ ImΠeðmVÞ þ ImΠoðmVÞ accordingly.
We start with the contour integration of ΠðmVÞ in this
case, deriving

FIG. 2. (a) Comparison of −ΔΠðmSÞ from the fit (dotted line) with the input ImΠpðmSÞ (dashed line) in Eq. (2) in the interval
ð2mb; 2mBÞ of mS. (b) Dependence of the derivative DðmSÞ in Eq. (16) on mS.
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Z
∞

4m2
b

ΔΠeðmÞ
m2

V −m2
dm2 ¼ 0;

Z
∞

4m2
b

ΔΠoðmÞ
mðm2

V −m2Þ dm
2 ¼ 0;

ð19Þ

for the even and odd pieces, respectively. The subtracted
unknown functions are defined by ΔΠe;oðmÞ ¼
ImΠe;oðmÞ − ImΠp

e;oðmÞ, which are fixed to −ImΠp
e;oðmÞ

in the interval ð2mb; 2mBÞ of m. The solutions to Eq. (19)
are constructed in a similar way. The even piece is
written as

ΔΠeðmVÞ ≈ ye
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �
;

ð20Þ

whose comparison with

−ImΠp
eðmVÞ ∝ 8παsð2mbÞm2

b ¼ const:; ð21Þ

in the limit mV → 2mb specifies the index α ¼ 0. The odd
piece reads

ΔΠoðmVÞ
mV

≈ yo
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �
;

ð22Þ

whose comparison with

−
ImΠp

oðmVÞ
mV

∝ ðm2
V − 4m2

bÞ1=2; ð23Þ

in the limit mV → 2mb places the index α ¼ 1=2.

The final solution takes the form

ΔΠðmVÞ ¼ ΔΠeðmVÞ þ ΔΠoðmVÞ
≈ yeJ0

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �
þ yomV

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �1=2
× J1=2

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
b

q �
: ð24Þ

The second term in Eq. (24) diminishes in the limit
mV → 2mb, so the coefficient ye is related to the initial
value −ImΠpðmV ¼ 2mbÞ,

ye ¼ −
ImΠpð2mbÞ

J0ð0Þ
¼ −ImΠpð2mbÞ: ð25Þ

The coefficient yo is obtained from the value
−ImΠpðmV ¼ 2mBÞ,

yo ¼ −

h
ImΠpð2mBÞ þ yeJ0

�
4ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B −m2
b

q �i
2mB

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B −m2
b

q �
1=2

J1=2
�
4ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B −m2
b

q � :
ð26Þ

With the same masses mb ¼ 4.43 GeV and mB ¼ 5.28,
we get ω̄ ¼ 0.0249 GeV−1 from the best fit of Eq. (24)
to −ImΠpðmVÞ in the interval ð2mb; 2mBÞ. The fit result
−ΔΠðmVÞ is contrasted with ImΠpðmVÞ in Eq. (18) in
Fig. 3(a), where the exact overlap of the two curves justifies
the approximate solution in Eq. (24).
The stability of the solution under the variation of ω

demands the vanishing of the derivative

DðmVÞ≡ 1

ye

dΔΠðmVÞ
dω

				
ω¼ω̄

¼ 0; ð27Þ

where the additional constant 1=ye, rendering the differ-
entiated function dimensionless, does not affect the loca-
tions of roots inmV . Figure 3(b) displays the dependence of

FIG. 3. (a) Comparison of −ΔΠðmVÞ from the fit (dotted line) with the input ImΠpðmVÞ (dashed line) in the interval ð2mb; 2mBÞ of
mV . (b) Dependence of the derivative DðmVÞ in Eq. (27) on mV .
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the above derivative on mV , where the first root at mV ¼
2mB has no physical significance. The second root atmV ¼
90.8 GeV corresponds to the physical solution of the Z
boson mass, which deviates from the measured one mZ ¼
ð91.1876� 0.0021Þ GeV [4] by only 0.4%. This result
is not sensitive to the variation of the b-quark mass,
analogous to the Higgs boson case. It is observed that
the nonperturbative contribution arising from the difference
between the thresholds 2mb and 2mB also amounts to about
20% of the perturbative contribution to ImΠðmZÞ, i.e.,
the Z boson decay width. We remark that ϒð4SÞ with the
quantum numbers JPC ¼ 1−−, the mass 10.58 GeV and
the width 20.5 MeV can decay into the BB̄ state. To probe
such a fine resonance structure in our formalism, more
precise OPE for the correlation function including QCD
condensates [26] is needed.
Note that the vector coupling vb ¼ −1þ 4 sin2 θW=3,

with the Weinberg angle θW and sin θW ¼ g0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
, is

a constant, given the U(1) coupling g0 and the SU(2)
coupling g in the SM. The relation sin2 θW ¼ 1 −m2

W=m
2
Z

then implies that the W- and Z-boson masses are propor-
tionate. It is interesting to verify this proportionality by
introducing the mV-dependent coupling

vbðmVÞ ¼ −1þ 4

3

�
1 −

m2
W

m2
V

�
; ð28Þ

for the fixed W-boson mass mW ¼ 80.377 GeV into the
perturbative input in Eq. (18). The additional factor 1=m2

V
in Eq. (28) modifies the derivation for the odd piece of
the solution, which follows the contour integration of
m2

VΠðmVÞ=ðm2
V − 4m2

bÞ as in the Higgs boson case. The
comparison of the solution with −mVImΠp

oðmVÞ=ðm2
V −

4m2
bÞ in the interval ð2mb; 2mBÞ sets the index α ¼ −1=2.

The straightforward steps yieldmZ ¼ 38 GeV, inconsistent
with the measured value. That is, the solution mV ¼
90.8 GeV exists, only when the W- and Z-boson masses
are correlated to each other, conforming to the Higgs
mechanism of the electroweak symmetry breaking. It also
means that the W-boson mass is known, once the Z-boson
mass is extracted from our dispersion analysis and the
electroweak couplings are designated.

IV. TOP-QUARK MASS

At last, we come to the determination of the top-quark
mass. Because a top quark does not form a bound state, the
correlation functions defined in terms of hadronic matrix
elements, such as the heavy meson lifetimes considered
in [1] for constraining heavy quark masses, may not be
suitable. Therefore, we extend the formalism developed
for neutral meson mixing in [5] to the Qū − Q̄u mixing
through the box diagrams with a fictitious heavy quark
Q of an arbitrary mass mQ. The Cabibbo-Kobayashi-
Maskawa (CKM) factors associated with the intermediate

bb̄; bs̄; ss̄;… channels can vary independently in a math-
ematical viewpoint, so we focus on the dispersion relation
for the bb̄ channel below. All our dispersive studies on the
electroweak-scale masses then depend on a single quark-
level threshold 2mb. The box diagrams generate two
effective four-fermion operators with the ðV − AÞðV − AÞ
and ðS − PÞðS − PÞ structures. It suffices to pick up the
contribution from the former, whose imaginary piece in
perturbative evaluations is expressed as [27,28]

ImΠpðmQÞ ∝ C2ðmQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q − 4m2
b

q
mQðm2

W −m2
bÞ2

×

�
2

�
1þ m4

b

4m4
W

�
m2

Wðm2
Q − 4m2

bÞ

− 6m2
bðm2

Q − 2m2
bÞ
�
: ð29Þ

We have kept only the Wilson coefficient C2ðμÞ, which
dominates over C1ðμÞ at the relevant renormalization
scale μ ¼ mQ.
The second term in the square brackets of Eq. (29) is

down by a tiny ratio m2
b=m

2
W , so the behavior of Eq. (29) in

mQ is governed by the first term. It suggests an analysis
similar to that for the Higgs boson, and the solution of
the unknown subtracted function ΔρðmQÞ is the same as
Eq. (11). The comparison of Eq. (11) with Eq. (29) in the
region around mQ ∼ 2mb then specifies the index α ¼ 3=2.
The coefficient y fixed by the boundary condition at
mQ ¼ 2mB is identical to Eq. (14). The same b-quark and
B-meson masses give ω̄ ¼ 0.0164 GeV−1 from the best
fit of Eq. (11) to the perturbative input −mQImΠpðmQÞ in
the interval ð2mb; 2mBÞ of mQ. We present the fit result in
terms of −ΔΠðmQÞ and the perturbative input ImΠpðmQÞ
in Fig. 4(a) with excellent match between them. The
derivative dΔρðmQÞ=dω vanishes at ω ¼ ω̄ as in Eq. (16).
Figure 4(b) exhibits the dependence of the derivative
DðmQÞ on mQ, where the second root at mQ ¼ 176 GeV
corresponds to the physical top-quark mass, with only
2% deviation from the measured one mt ¼ ð172.69�
0.30Þ GeV [4].
The solved top-quark mass is more sensitive to the

variation of mb compared to the Higgs and Z-boson cases;
choosing a slightly smaller mb ¼ 4.42 GeV would lower
the root of mQ to 169 GeV. Decreasing the renormalization
scale in the Wilson coefficient C2 a bit to μ ¼ 0.98mQ leads
to mt ¼ 173 GeV in agreement with the data. It hints that
the top-quark mass can be well-accommodated within the
theoretical uncertainty of the calculation. To be cautious,
we have repeated the above derivation for the Bd meson
mixing via the cc̄ channel. The difference is that the HQE
contributions from the effective weak Hamiltonian [29,30],
instead of from the box diagrams, are input. Taking the
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c-quark mass mc ¼ 1.35 GeV [1] and the D-meson mass
mD ¼ 1.86 GeV [4], we deduce the b-quark mass mb≈
4.7 GeV, close to the values assumed in the present work
and extracted from the study of heavy meson lifetimes [1].
This result, to be published elsewhere, solidifies the
determination of the top-quark mass and the consistency
of our approach.

V. CONCLUSION

We have demonstrated that dispersive analyses of
physical observables involving heavy particles can disclose
stringent connections between their high-energy and low-
energy behaviors. The strategy is to treat the dispersion
relation obeyed by a correlation function as an inverse
problem with reliable perturbative inputs in the high-energy
region. Two arbitrary parameters were introduced into the
formalism: the lowest degree N for the Laguerre poly-
nomial expansion and the variable Λ, which scales the
heavy particle mass in dispersive integrals. The essential
feature is that the solution for a physical observable
depends on the ratio ω2 ¼ N=Λ, which it must be insensi-
tive to. This criterion can be met, only when the heavy
particle takes a specific mass. Once the solution with the
physical mass is established, both N and Λ can be extended
to sufficiently high values by keeping ω in the stability
window. All the large N approximations assumed in
solving the dispersion relation are then justified. We
emphasize that no a priori information of the considered
heavy particle was included: the fictitious scalar mass mS,
vector mass mV and heavy-quark mass mQ appearing in
the dispersion relations are completely arbitrary, and the b
quark mass is the only input parameter. Hence, the

emergence of the Higgs-boson, Z-boson and top-quark
masses as the stable solutions is not coincidence, but a
necessary consequence of highly nontrivial constraints
imposed by the dispersion relations.
We point out that the strong interaction plays an

important role here; the initial conditions in the interval
bounded by the quark- and hadron-level thresholds are
indispensable for the existence of nontrivial solutions. Our
previous analysis has manifested the correlation among the
masses of a strange quark, charm quark, bottom quark,
muon and τ lepton through the dispersion relations for
heavy meson decay widths. Together with the present
work, we claim that the particle masses from 0.1 GeV
up to the electroweak scale may be understood by means of
the internal consistency of SM dynamics, and that at least
some of the SM parameters are not free, but constrained
dynamically. Our observation provides a natural explan-
ation of the flavor structures of the SM without resorting
to any new symmetries, interactions or mechanism, as
attempted intensively in the literature. We have taken the
perturbative inputs up to NLO in QCD, and the current
determinations of the particle masses deviate from the
measured ones at percent level. More precise predictions
will be pursued by taking into account subleading con-
tributions in inputs, and theoretical uncertainties will be
investigated more thoroughly in the future.
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FIG. 4. (a) Comparison of −ΔΠðmQÞ from the fit (dotted line) with the input ImΠpðmQÞ (dashed line) in the interval ð2mb; 2mBÞ of
mV . (b) Dependence of the derivative DðmQÞ in Eq. (16) on mQ.
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