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The strong coupling in the effective quark mass was usually taken as a constant in a quasiparticle model
while it is, in fact, running with an energy scale. With a running coupling, however, the thermodynamic
inconsistency problem appears in the conventional treatment. We show that the renormalization subtraction
point should be taken as a function of the summation of the biquadratic chemical potentials if the quark’s
current masses vanish, in order to ensure full thermodynamic consistency. Taking the simplest form, we
study the properties of up-down (ud) quark matter, and confirm that the revised quasiparticle model fulfills
the quantitative criteria for thermodynamic consistency. Moreover, we find that the maximum mass of an
ud quark star can be larger than 2 times the solar mass, reaching up to 2.31M⊙, for reasonable model
parameters. However, to further satisfy the upper limit of tidal deformability Λ̃1.4 ≤ 580 observed in the
event GW170817, the maximum mass of an ud quark star can only be as large as 2.08M⊙, namely
Mmax ≲ 2.08M⊙. In other words, our results indicate that the measured tidal deformability for event
GW170817 places an upper bound on the maximum mass of ud quark stars, but does not rule out
the possibility of the existence of quark stars composed of ud quark matter, with a mass of about 2 times
the solar mass.
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I. INTRODUCTION

The accepted theory for a precise description of the
strong interaction between quarks and gluons is quantum
chromodynamics (QCD) [1], in which the running coupling
αsðΛ2Þ acts as one of the basic parameters. The relevant
theoretical and experimental research shows that QCD has
two special features: color confinement and asymptotic
freedom [2–4]. The former has been proposed because a
single quark cannot be observed from experiments even at
the present time, but the quantum number of the so-called
color is indispensable in order to explain the confusion of
the requisite antisymmetry wave function of hadrons. The
latter reveals that the interaction between quarks gets
weaker with increasing energy scales. These two extraor-
dinary features of QCD happen at two extreme energy

scales: the asymptotic freedom is related to the high-energy
region while the color confinement comes up in the infrared
domain. Owing to the difficulties in the nonperturbative
regime and the consistent implementation of finite density
in lattice simulations, some QCD-inspired phenomenologi-
cal models have been constructed to study the properties of
strongly interacting quark matter, e.g., the MIT bag model
[5–8], Nambu-Jona-Lasinio (NJL) model [9–14], pertur-
bative QCD model [15–17], density-dependent quark mass
model [18–22], etc.
Employing a two-flavor NJL model including the vector

interactions, Yuan et al. [23] found that there is a possibility
for both ud and strange (uds) quark matter being absolutely
stable, depending on the interplay of the confinement with
quark vector interaction and the exchange interaction
channels. As stated by Buballa in Ref. [24], however,
the NJL model does not support the idea that uds quark
matter is more stable than the ud quark matter. In particular,
by using an effective theory with Yukawa coupling to
quarks Holdom et al. [25] demonstrated that ud quark
matter generally has lower bulk energy per baryon than
normal nuclei and uds quark matter. Moreover, within a
confining quark matter model, Cao et al. [26] demonstrated
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that the reported GW190814’s secondary component with a
mass greater than 2 times the solar mass could be an ud
quark star. After the proposal that ud quark matter is more
stable than uds quark matter, the study of the properties of
strongly interacting ud quark matter and its astrophysical
implications has recently received increased interest in the
literature, e.g., Refs. [27–33].
The quasiparticle model, as one of the QCD-inspired

phenomenological models, has also been extensively
studied and widely applied to the study of quark matter
over the last two decades. In the case of a hot gluon gas,
the equation of state with the effective mass agrees well
with the lattice results even at temperatures where the
QCD coupling constant is not small [34–37]. Motivated
by the successful application of the hard-thermal-loop
approximation at finite temperature, many authors have
applied the hard-dense-loop approximation at finite den-
sity to investigate the properties of the strongly interacting
cold quark matter [36–39]. Its original version keeps all
the thermodynamic quantities in the same form as those of
a free particle system [40–42]. The thermodynamic treat-
ment in this model has been much discussed [43–45]. If
the QCD coupling is treated as a real constant, the
thermodynamic inconsistency problem can be removed
by including an additional term in the thermodynamic
potential density [39]. However, the actual QCD coupling
is running, i.e., it depends on where the subtraction point
is chosen in the renormalization scheme [46,47]. In high-
energy physics, the subtraction point Λ is usually taken as
the momentum transfer of the corresponding process,
while in dense quark matter, it should be a function of the
chemical potentials of the quarks through the subtraction
point [48–50]. In this case, the additional term is deter-
mined by a path integral. Because the thermodynamic
quantity is a state function, it should thus be independent
of the chosen path. Otherwise, the thermodynamic incon-
sistency problem will appear [18,51]: the pressure at the
minimum energy per baryon deviates from zero, which
contradicts fundamental thermodynamics. In this work,
we will show that the renormalization-group subtraction
point should be generally taken as a function of the
biquadratic summation of the respective chemical poten-
tial for quarks.
In this study, we focus on the thermodynamic incon-

sistency problem of a two-flavor quasiparticle model at
zero temperature and finite chemical potential with an
effective quark mass. Within the revised quasiparticle
model, we are particularly interested in the stability
windows and thermodynamic properties of the ud quark
matter. Through our research, we seek to understand the
behavior of quark matter under extreme conditions and its
implications for cosmological and astrophysical phenom-
ena including, in particular quark star structure and tidal
deformability. The results for the mass-radius relation as
well as the tidal deformability of quark stars indicate that

the recently observed massive pulsars with a mass of about
two solar masses could be made of ud quark matter.
The rest of the paper is organized as follows. In Sec. II,

we review the conventional treatment in the quasiparticle
model with an effective quark mass and show the thermo-
dynamic inconsistency in this treatment. Then in Sec. III,
we limit the form of the renormalization subtraction point
as a function of the chemical potentials and determine a
medium-dependent effective bag constant which makes the
thermodynamic treatment self-consistent. In Sec. IV, we
present the numerical results for the calculations. Finally, a
summary is given in Sec. V.

II. THERMODYNAMIC INCONSISTENCY
IN THE CONVENTIONAL VERSION

OF QUASIPARTICLE MODEL

Owing to the strong interaction between quarks, the
quark masses are medium dependent, namely, the quark
masses vary with the environment. The effective quark
mass is obtained from the zero momentum limit of the
quark dispersion relation, which follows the so-called
hard-dense-loop approximation of the quark self-energy,
giving [36,52]

m�
i ¼

ffiffiffiffiffiffiffi
2αs
3π

r
μi ði ¼ u; dÞ; ð1Þ

where μi represents the chemical potential for the ith
flavor of quarks.
At zero temperature, the quasiparticle contribution to the

thermodynamic potential density of the system is given by

Ωi ¼ −
gi

48π2

�
μikF;ið2μ2i − 5m�2

i Þ þ 3m�4
i ln

μi þ kF;i
m�

i

�
;

ð2Þ

where kF;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −m�2

i

p
is the Fermi momentum, and gi is

the statistical factor with gi ¼ 6 for quarks and gi ¼ 2 for
electrons. In addition, the thermodynamic potential density
of electrons is Ωe ¼ −μ4e=12π2 with μe being the electron
chemical potential.
By using the basic relations of standard thermodynamics

P ¼ −Ω and E ¼ Ωþ μnwithΩ being the thermodynamic
potential density of the system, n the number density of the
particles, in Fig. 1 we plot the energy per baryon of ud
quark matter as a function of the pressure without adding an
effective bag constant.
As proved in Refs. [51,53,54] any consistent thermody-

namic treatment must ensure that δ ¼ P − n2 d
dn ðEnÞ ¼ 0 at

arbitrary density. In particular, the pressure at the minimum
energy per baryon must be zero. From Fig. 1, however, it is
evident that the energy minimum does not locate at the zero
pressure point, as required by the thermodynamic consis-
tency of phenomenological models. In other words, the
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quasiparticle model with a chemical potential-dependent
quark mass but without adding an effective bag constant is
thermodynamically inconsistent. We should emphasize that
if one takes the strong coupling constant αs as a free input
parameter and also adds a medium-dependent effective bag
constant to the thermodynamic potential density of the
system, as was done in Refs. [38,55–58], the phenomeno-
logical models do not encounter thermodynamic incon-
sistency problems, but we note that the strong coupling
runs with the energy scale. Hence, in the next section we
will show that a thermodynamically determined effective
bag constant with a running strong coupling constant can
solve this problem properly.

III. SELF-CONSISTENT THERMODYNAMIC
TREATMENT AT FINITE CHEMICAL

POTENTIALS

The quasiparticle model is based on the idea that quarks
can be treated as quasiparticles with an effective quark
mass, which is determined by the quark self-energy and
quark-quark interaction. The self-consistency of this model
is maintained by adding a new term, which is a chemical
potential dependent variable at zero temperature. In the
two-flavor case, the total thermodynamic potential density
of the system can be written as [38]

Ω ¼
X
i

Ωiðμi; m�
i Þ þ B�ðfμigÞ; ð3Þ

where B�ðfμigÞ≡ BðfμigÞ þ B0 is defined as an effective
bag constant including the energy contributions both from
the vacuum B0 and medium effects BðfμigÞ. Following the
procedure proposed in Ref. [59], we have

ni¼−
dΩ
dμi

����
μj≠i

¼−
∂Ωi

∂μi
−
�
∂Ωi

∂m�
i

∂m�
i

∂μi
þ

X
j¼u;d

∂Ωj

∂m�
j

∂m�
j

∂αs

∂αs
∂Λ

∂Λ
∂μi

þ ∂B
∂μi

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

ð4Þ

for the ith flavor quark in the two-flavor quasiparticle
model. The derivative of the quasiparticle contribution of
the thermodynamic potential density with respect to the
effective quark mass m�

i is given by

∂Ωi

∂m�
i
¼ gim�

i

4π2

�
μikF;i −m�2

i ln
μi þ kF;i

m�
i

�
: ð5Þ

From the quasiparticle point of view, quarks are con-
sidered quasiparticles with an effective quark mass gen-
erated by medium effects. In this case, the quark number
density should have the same form as in the standard
statistical mechanics, with the current quark mass replaced
by the effective mass, i.e.,

ni ¼
gi
6π2

k3F;i: ð6Þ

This is, in fact, the first term on the right-hand side of the
second equality of Eq. (4). By also considering the
contribution from the down quark, we immediately get

dB ¼ −Fdμu −Mdμd; ð7Þ

where

F ðμu; μdÞ ¼
∂Ωu

∂m�
u

∂m�
u

∂μu
þ

X
j¼u;d

∂Ωj

∂m�
j

∂m�
j

∂αs

∂αs
∂Λ

∂Λ
∂μu

; ð8Þ

Mðμu; μdÞ ¼
∂Ωd

∂m�
d

∂m�
d

∂μd
þ

X
j¼u;d

∂Ωj

∂m�
j

∂m�
j

∂αs

∂αs
∂Λ

∂Λ
∂μd

: ð9Þ

Because the thermodynamic quantity should be a function
of the independent state variables, the integral of Eq. (7)
should be path independent [60,61]. Mathematically, this
can be achieved by imposing the following condition:

∂F ðμu; μdÞ
∂μd

¼ ∂Mðμu; μdÞ
∂μu

: ð10Þ

Obviously, if the QCD coupling constant was assumed to be
a pure constant as in Ref. [38], the above Cauchy conditions
in Eq. (10) would always be satisfied. However, the QCD
coupling is running with the quark chemical potentials.
We thus need to find the condition that ensures the equality
in Eq. (10). Substituting the explicit expressions for F and
M in Eqs. (8) and (9) into Eq. (10) and simplifying the
corresponding expression then gives

FIG. 1. Pressure versus energy per baryon of ud quark matter in
the quasiparticle model without adding an effective bag constant
(inconsistent case). It is clear that the energy minimum denoted
by a triangle does not locate at the zero pressure point denoted by
a circle.
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μ3u
∂Λ
∂μd

¼ μ3d
∂Λ
∂μu

: ð11Þ

Equation (11) is a quasilinear partial differential equation,
and its general solution is an arbitrary function of μ4u þ μ4d,
i.e., Λ ¼ fðμ4u þ μ4dÞ. Since the subtraction point Λ carries
the dimension of an energy, we take the simplest form

Λ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4u þ μ4d
Nf

4

s
; ð12Þ

where C is introduced as a dimensionless model parameter,
and Nf ¼ 2 is the number of flavors.
In this case, the bag constant B can be obtained by a path

integral as

B ¼
Z ðμu;μdÞ

ð0;0Þ
F ðμ0u; μ0dÞdμ0u þMðμ0u; μ0dÞdμ0d: ð13Þ

IV. NUMERICAL RESULTS AND DISCUSSIONS

Considering a system composed of up, down quarks and
electrons in β equilibrium achieved by the weak reactions
d ↔ uþ eþ ν̄e, one easily obtains the following equality:

μu ¼ μd þ μe: ð14Þ

Neutrinos are assumed to enter and escape the system
freely, so the chemical potential of neutrinos is zero. The
baryon number density nb is defined as

nb ¼
1

3
ðnu þ ndÞ: ð15Þ

The charge neutrality condition is also imposed on the
system, i.e.,

2

3
nu −

1

3
nd − ne ¼ 0: ð16Þ

The strong coupling constant αs, which is related to the
running coupling constant g by αs ¼ g2=4π, is, in fact, a
function of the renormalization subtraction point Λ. In this
work, we adopt the analytic QCD coupling constant
proposed by Shirkov et al. at the one-loop level [62],
which is written as

αsðΛ2Þ ¼ 4π

β0

�
1

lnðΛ2=Λ2
QCDÞ

þ Λ2
QCD

Λ2
QCD − Λ2

�
; ð17Þ

where β0 ¼ 11 − 2Nf=3, the QCD scale parameterΛQCD ¼
147 MeV [63], and Nf ¼ 2 is the quark flavor considered
in the system.
For a given baryon density nb, the chemical potentials μi

are obtained by solving a set of Eqs. (14)–(16). Because the

integrand in Eq. (13) is long and complicated, only
numerical studies will be possible. Accordingly, by sub-
stituting Eq. (13) into Eq. (3), the energy density and the
pressure of the system can then be derived:

E ¼ Ωþ
X
i

μini; P ¼ −Ω: ð18Þ

A. Parameter space and equation of state
of quark matter

We note that the energy per baryon of ud quark matter
should be greater than 930 MeV in order not to contradict
the standard nuclear physics requirement. Consequently,
the stable condition and the two solar masses of compact
stars usually set strict constraints on the parameter space of
phenomenological models. In Fig. 2, we show the param-
eter space for ud quark matter in the C versus B1=4

0 plane,
where the region above the red solid line corresponds to the
allowed region for the ud quark matter. In contrast, the
lower right shaded region below the red solid line is
forbidden since the energy per baryon of ud quark matter
is less than 930 MeV. In addition, the measured gravita-
tional mass of PSR J0740þ 6620 [64] with a central value
of 2.08M⊙ and a lower limit of 2.01M⊙ is also translated
into the C − B1=4

0 plane, indicated by the red dashed and
blue dotted lines with star symbols. Therefore, in the
allowed region between the red solid and dashed blue

FIG. 2. Stability windows for ud quark matter in the C − B1=4
0

plane. The down-right black shaded area is forbidden, where the
energy per baryon of ud quark matter is less than 930 MeV.
Meanwhile, the region between the red dashed and blue dotted
lines with star symbols corresponds to the ud quark matter stable
region with an equation of state that can support an ud quark star
with the maximum mass in the range 2.01 ≤ Mmax=M⊙ ≤ 2.08.
The selected typical model parameters are indicated with solid
black dots.
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lines, the equation of state further meets the requirement
that the maximum mass of ud quark stars can be as large as
or even greater than 2.01M⊙, where M⊙ is the solar mass.
Considering the ud quark matter with the equations of

state satisfying the requirement of two solar masses of ud
quark stars, the parameters are set as ðC;B1=4

0 =MeVÞ¼
ð0.5;138Þ;ð0.5;142Þ;ð8;142Þ, as indicated in Fig. 2 by
dots. Figure 3 shows the energy per baryon of ud quark
matter as a function of the baryon density with the selected
parameter sets. It can be seen that for the revised quasi-
particle model the energy minima lie exactly at the
corresponding zero pressure points, thus satisfying the
thermodynamic requirement of the model. However, for
the model without adding the effective bag constant as
shown by the black dashed line, the energy minimum does
not coincide with the zero pressure point. Furthermore,
comparing the three typical lines, we find that with the
increase in B0 (C), the minimum energy per baryon
increases (decreases). This is because, with increasing
B0 (C), the thermodynamic potential density of the system
Ω in Eq. (3) and in turn the energy density increases
(deceases) according to Eq. (18).
In Fig. 4, we show the equations of state of ud quark

matter in the revised quasiparticle model, and the result for
the inconsistent case and P ¼ E are also shown for
comparison. From left to right, the green dotted, blue
dash-dotted, red solid, and black dashed lines correspond to
the revised quasiparticle model with parameter sets
ðC;B1=4

0 =MeVÞ ¼ ð0.5; 138Þ; ð8; 142Þ; ð0.5; 142Þ and the
inconsistent case, respectively. One can see that the

pressure increases with the energy density without any
exception. In particular, as the bag constant B0 increases,
the line moves to higher values of the energy density,
whereas for a larger value of C, the line moves to a lower
value of the energy density. Furthermore, except for
the black dashed line (inconsistent case), the other three
typical lines, representing the results obtained in the
revised quasiparticle model, almost coincide at large
energy densities.
Figure 5 shows the effective bag constant B� as a

function of the baryon density for several parameter sets.

FIG. 3. Density behavior of the energy per baryon of ud quark
matter with different values of C and B0. The result from the
model without adding an effective bag constant is also shown for
comparison. It is clear that in the revised quasiparticle model, the
zero pressure points denoted by circles are exactly located at the
minimum energy per baryon denoted by triangles, except for
the inconsistent case denoted by the dashed line.

FIG. 4. Equations of state of cold quark matter in the revised
quasiparticle model with different values of C and B0. For
comparison, we also show the results for the inconsistent case
and P ¼ E. Conventions for line styles and colors are the same as
in Fig. 3.

FIG. 5. Density behavior of the effective bag constant with
different values of C and B0. Conventions for line styles and
colors are the same as in Fig. 3.
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For comparison, we also show results, indicated by the
dashed line, for the inconsistent case without any correction
to the energy density and pressure. For the revised
quasiparticle model, as shown by the solid, dotted, and
dash-dotted lines, the values decrease with increasing
baryon density in all cases. This is consistent with the
fact that color confinement becomes less important at
sufficiently high densities.

B. Mass-radius relations and tidal
deformability of quark stars

Quark stars are a class of hypothetical, theoretical
compact stars composed of quark matter. Using the quark
matter equation of state obtained from the revised two-
flavor quasiparticle model shown in Eq. (18), one can solve
the Tolman-Oppenheimer-Volkoff (TOV) equations to
obtain the mass-radius relation for dense quark stars.
The equilibrium structure of a static spherically symmetric
quark star is determined by the TOV equation

dPðrÞ
dr

¼ −
GmE
r2

ð1þ P=EÞð1þ 4πr3P=mÞ
1 − 2Gm=r

; ð19Þ

and the subsidiary condition

dmðrÞ
dr

¼ 4πr2E; ð20Þ

where G ¼ 6.7 × 10−45 MeV−2 is the gravitational con-
stant, r is the radial coordinate of the quark star, and m is
the gravitational mass contained within the radius r.
Taking the equation of state shown in Fig. 3 as an input,

the coupled TOVequations are solved numerically, and the
obtained mass-radius relations of quark stars are shown in
Fig. 6. As can be seen from Fig. 6 the inconsistent case
supports a maximum mass of about 1.56M⊙, and the other
curves show the maximum mass about 2 times the solar
mass for the selected parameter sets in our model. Under
the assumption that the ud quark matter is more stable than
the uds quark matter, the observed two solar masses of
compact stars [65,66] can be described as a 2M⊙ ud
quark star.
Very recently, the determination of the gravitational mass

of the compact star PSR J0740þ 6620 has been updated to
2.08þ0.07

−0.07M⊙ [64]. Moreover, two more massive compact
stars, MSR J0740þ 6620 [67] and PSR J2215þ 5135

[68], have been measured to be 2.14�0.10
0.09 M⊙ and

2.27þ0.17
−0.15M⊙ respectively. Figure 7 shows the maximum

mass and radius of ud quark stars as functions of the bag
constant B1=4

0 at fixed C ¼ 0.1. One can see that, both the
maximummass and the corresponding radius decrease with
the increase in C. In particular, for the given equation of
state with a small value of C, e.g., C ¼ 0.1, the maximum
mass of a quark star composed of ud quark matter has been

calculated to be up to 2.31M⊙. This result demonstrates the
potential for ud quark stars to be more massive than
neutron stars, which are limited to a maximum mass of
about or greater than 2M⊙, suggesting that ud quark stars
may be an important component of the astrophysical
landscape [69].
We mention that, besides the mass-radius relation, owing

to the recent detection of gravitational waves for event
GW170817 [70] the measured tidal deformability also
provides a stringent experimental constraint on the equation
of state for compact stars [71–73]. Over recent years, many
efforts have been made to constrain the properties of quark
star matter [74–83], based on the improved estimate of tidal
deformability Λ̃1.4 ¼ 190þ390

−120 from the GW170817 event,

FIG. 6. Mass-radius relations for ud quark stars. The maximum
masses are denoted by the solid circles. Conventions for line
styles and colors are the same as in Fig. 3.

FIG. 7. Maximum mass and the corresponding radius of ud
quark stars as a function of the bag constant B0 for C ¼ 0.1.
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where Λ̃1.4 is the dimensionless tidal deformability of a
compact star with a mass of 1.4M⊙. The response of the
quark star to the gravitational field is described by the tidal
Love number k2, which depends on the quark star structure
and consequently on the mass and the equation of state of
quark matter. In general relativity, the dimensionless tidal
deformability Λ̃ is related to the l ¼ 2 tidal Love number k2
as [70,84]

Λ̃ ¼ 2

3β5
k2; ð21Þ

where β ¼ GM=R and R are the compactness parameter
and radius of the star, respectively, while the Love number
k2 can be expressed as [85]

k2 ¼
8β5

5
ð1 − 2βÞ2½2þ 2βðyR − 1Þ − yR�

× f4β3½13 − 11yR þ βð3yR − 2Þ þ 2β2ð1þ yRÞ�
þ 3ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ� lnð1 − 2βÞ
þ 2β½6 − 3yR þ 3βð5yR − 8Þ�g; ð22Þ

where yR ≡ yðRÞ, and yðrÞ is determined by solving the
following differential equation:

r
dyðrÞ
dr

þ y2ðrÞ þ yðrÞFðrÞ þ r2QðrÞ ¼ 0: ð23Þ

Here, FðrÞ and QðrÞ are, respectively, defined as

FðrÞ≡ 1 − 4πr2½EðrÞ − PðrÞ�G
fðrÞ ð24Þ

and

QðrÞ≡ 4π

fðrÞ
�
5EðrÞGþ9PðrÞGþEðrÞþPðrÞ

V2
sðrÞ

G−
6

4πr2

�

−4

�
mðrÞþ4πr3PðrÞ

r2fðrÞ G

�
2

; ð25Þ

where V2
s represents the squared sound velocity of quark

matter, and fðrÞ takes the form fðrÞ ¼ 1–2GmðrÞ=r.
Figure 8 shows the tidal deformability of ud quark stars

as a function of the star mass, for the revised quasiparticle
model with different parameter sets in Fig. 2. The vertical
black solid line corresponds to the quark stars with a mass
of 1.4M⊙, whereas the black shaded area between the two
horizontal orange dotted lines indicates the range of tidal
deformability Λ̃1.4 ¼ 190þ390

−120, measured by the LIGO and
Virgo Collaboration in the event GW170817 [70].
Obviously, the tidal deformability decreases rapidly with
increasing quark star mass, indicating that lighter quark
stars can be deformed easier than heavier ones, as expected.
Furthermore, as can be noticed from the plots, with the

increase in B0 the intersection of the green dashed line and
the black solid line moves toward lower values of tidal
deformability. More specifically, except for the green
dotted line, the red solid and blue dash-dotted lines intersect
the vertical black solid line and are located in the black
shaded area. This indicates that the equations of state for
these two selected parameter sets can simultaneously
satisfy the constraint of the tidal deformability 70 ≤ Λ̃1.4 ≤
580 measured for GW170817 and the astrophysical obser-
vations of the compact star PSR J0740þ 6620 with a mass
of 2.08þ0.07

−0.07M⊙. In particular, we have verified that for the
parameter sets located in the blue shaded area shown in
Fig. 2, the corresponding equations of state satisfy the
requirement that the massive compact stars compare with a
mass about or even greater than 2 times the solar mass.
While for the parameter sets taken from the region bounded
by the red dashed line and the blue dotted line with star
symbols, the equations of state simultaneously satisfy the
constraint of the tidal deformability 70 ≤ Λ̃1.4 ≤ 580
extracted from GW170817 and the astrophysical observa-
tions of the compact stars PSR J0740þ 6620 and PSR
J1614-2230 with a mass of 2.08þ0.07

−0.07M⊙ and 1.97þ0.04
−0.04M⊙,

respectively.
We close this section by noticing that the recently

observed massive compact stars have already ruled out a
large number of equations of state since these equations of
state are too soft to support a compact star with a mass
about 2 times the solar mass. However, there are still
various ways to obtain a massive quark star. One way is to
assume the presence of the pion superfluid phase in the
quark star [86], since the speed of sound in the pion
superfluid phase is much larger than that of normal quark
matter and ordinary nuclear matter [87]. In fact, the

FIG. 8. Tidal deformability of ud quark stars as a function of
the star mass for different selected parameter sets. The black
shaded area represents the improved estimate of the tidal
deformability Λ̃1.4 ¼ 190þ390

−120 for GW170817.
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inclusion of the non-Newtonian gravity effect can also
significantly enhance the mass of quark stars [73,88].

V. CONCLUSIONS

The quasiparticle model is an essential phenomenologi-
cal model for studying the properties of strongly interacting
quark matter. However, the model with a medium-
dependent quark mass that accounts for the strong inter-
actions can lead to thermodynamic inconsistency problems.
In particular, thermodynamic consistency limits the func-
tional form of the renormalization subtraction on the
chemical potentials. In this work, we have shown that
the renormalization subtraction point should be taken as a
function of the summation of the biquadratic chemical
potentials if the quark’s current masses vanish in order to
ensure full thermodynamic consistency. Taking the sim-
plest form, we have studied the thermodynamic properties
of ud quark matter and the mass-radius relation of compact
stars in a revised thermodynamically consistent two-flavor
quasiparticle model, considering the running of the QCD
coupling constant. It is found that there is allowed param-
eter space for ud quark matter to be stable, and the
corresponding equation of state can support the massive
pulsars with a mass larger than 2 times the solar mass.
We have also computed the dimensionless tidal deform-

ability of ud quark stars in the revised quasiparticle model.
We found, however, that in order to further respect the
upper limit of tidal deformability Λ̃1.4 ¼ 190þ390

−120 measured
in the binary star merger GW170817 event, the maximum
mass of an ud quark star should not exceed 2.08M⊙, i.e.,
Mmax ≲ 2.08M⊙. Although the upper limit of the measured
tidal deformability Λ̃1.4 ≤ 580 extracted from the event
GW170817 poses an upper limit on the allowed maximum
mass of compact stars, our results show that there is still a
range of parameter space for the revised two-flavor
quasiparticle model to simultaneously satisfy the stable
condition, the astrophysical observations of the massive
compact star with a mass about or slightly larger than 2
times the solar mass, and the tidal deformability of quark
stars in the range of Λ̃1.4 ¼ 190þ390

−120 . In addition, it would

be worth mentioning that if we relax the upper limit of the
tidal deformability to Λ̃1.4 ≤ 800 [89], the blue shaded area
in Fig. 2 where the equations of state of ud quark matter
enable the support of the massive compact stars with
maximum masses in the range 2.01 ≤ Mmax=M⊙ ≤ 2.08
and the tidal deformability Λ̃1.4 ≤ 800 reported in Ref. [89],
would also be allowed.
Consistent with the previous studies using different

methods [30,31], our results on the maximum masses of
compact stars in this work have revealed that there is a
range of parameters that can support the existence of ud
quark matter and are compatible with the observed massive
pulsars with a mass about or greater than two solar masses.
This has opened up new possibilities for understanding the
physical properties of these incredibly dense stellar objects.
It also provides insight into the potential implications of
quark matter existing in the core of such massive pulsars. In
this paper, only the bulk properties of the ud quark matter
are considered. In fact, the finite size effect [90,91] should
be taken into account when the system is finite, such as
quark matter nuggets [92,93]. These effects can signifi-
cantly alter the physical properties of a system and can,
therefore, have an important impact on the results of any
simulations or experiments performed. For example, a
finite system may exhibit unique behavior due to the
presence of surface effects or the effects of a limited
number of particles. Therefore, the extension of the model
to include the surface and curvature terms would be highly
relevant in the near future.
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