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We derive covariant equations describing the three-quark bound state in terms of quark and diquark
degrees of freedom. The equations are exact in the approximation where three-body forces are neglected. A
feature of these equations is that they unify two often-used but seemingly unrelated approaches that model
baryons as quark-diquark systems; namely, (i) the approach using Poincaré covariant quarkþ diquark
Faddeev equations driven by a one-quark-exchange kernel [pioneered by Cahill et al., Aust. J. Phys. 42,
129 (1989) and Reinhardt, Phys. Lett. B 244, 316 (1990)], and (ii) the approach using the quasipotential
quark-diquark bound-state equation where the kernel consists of the lowest-order contribution from an
underlying quark-quark potential [pioneered by Ebert et al., Z. Phys. C 76, 111 (1997)]. In particular, we
show that each of these approaches corresponds to the unified equations with its kernel taken in different,
nonoverlapping, approximations.
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I. INTRODUCTION

The use of diquarks as effective degrees of freedom
in describing hadrons has a long history, as evidenced by
a number of reviews over the past thirty years [1–4].
Documented are different quark-diquark approaches for
baryons, but to the best of our knowledge, no attempt has
been made for their comparison on the basis of quantum
field theory. In the present work, we would like to make
such a comparison, demonstrating that two of the most
often-used quark-diquark models of baryons, which have
usually been considered as separate, unrelated models of
baryons, are in fact two nonoverlapping parts of the same
quark-diquark model.
The first of these models, proposed more than 30 years

ago [5,6], is based on a description of three quarks using
covariant Faddeev equations where the quark-quark t
matrix is approximated by one or more diquark-pole terms
(i.e., terms with a pole at the diquark mass, and with a
residue that is expressed as an outer product of form factors
Γ and Γ̄ for the transition between the diquark and two free
quarks). The resulting coupled set of bound-state equations
is illustrated in Fig. 1. Sometimes referred to as Poincaré

covariant quarkþ diquark Faddeev equations [4,7], and
sometimes as quark-diquark Bethe-Salpeter equations [8,9],
they have been used extensively over the years, see [7–18]
for a representative selection of works.
The second model, proposed more that 25 years ago [19],

is a relativistic description of the quark-diquark system
using quasipotential equations (we will refer to it as the
“quasipotential quark-diquark model”), which has likewise
been often used over the years [19–29]. In this model one
first constructs a quark-quark potential of the form

Vqq ¼ Vgluon þ Vconf ; ð1Þ

where Vgluon is the quark-quark (qq) one-gluon-exchange
potential and Vconf is a local confining potential, and then
uses this to construct the quark-diquark potential which
then forms the kernel of a relativistic quark-diquark quasi-
potential equation for the baryon. Illustrated in Fig. 2, this
bound-state equation again has the form of a Faddeev
equation, but with a kernel corresponding to a single
rescattering of two quarks via potential Vqq [specified in
the diagram as quarks a and c scattering via a potential Kb
(¼ Vqq) with quark b being a spectator].
In the following, we derive covariant triquark bound-

state equations that are exact for the case where three-body
forces are neglected. These equations are illustrated in
Fig. 3, and have the form of Faddeev equations where the
kernel consists of an infinite series involving successive
numbers of quark exchanges between quark-diquark states.
It is evident that the Poincaré covariant quarkþ diquark
Faddeev equations of Refs. [5,6] correspond to keeping just
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the first term in the infinite series, and the quasipotential
equations of Ref. [19] correspond to keeping just the
second term in this series. As such, our triquark equations
unify these two popular approaches for modeling baryons
in terms of quark and diquark degrees of freedom.
Moreover, it is evident that these two approaches should
not be viewed as unrelated competing models of baryons,
but rather, as different approximations of the same model.
Indeed, any competition between these models at describ-
ing data needs to be assessed by comparing their kernels, as
these are nonoverlapping terms appearing in the unified
equations.
Ideally, the two approaches should be combined, with a

kernel that is the sum of the first two terms of the infinite
series illustrated in Fig. 3. Additionally, in light of the
unification embodied in Fig. 3, all sorts of form factors
(electromagnetic, axial-vector, pseudoscalar, etc.) should

also be unified correspondingly. This can be done by
gauging the equation of Fig. 3 [30], thereby obtaining
contributions to the baryon form factors coming from
both of the first two kernels in this figure. By contrast,
the current situation is that the baryon form factors are
being pursued intensively in each of the two approaches
separately (just in the past few years, the Poincaré covariant
quarkþ diquark Faddeev equations have been used to
calculate such form factors in Refs. [31–38] and the
quasipotential quark-diquark approach has been used to
calculate them in Refs. [39–46]).
It is worth noting that analogous unified equations were

derived for the tetraquark [47].

II. DERIVATION

A. Triquark equations for distinguishable quarks

For clarity of presentation, we first consider the case of
three distinguishable quarks. To describe such a system
where only pairwise interactions are taken into account, we
follow the formulation of Faddeev [48]. Thus, assigning
labels 1, 2 and 3 to the quarks, and using a notation where
ðabcÞ is a cyclic permutation of (123), the three-body (3q)
kernel, K, is written as

K ¼
X

a

Ka; ð2Þ

where Ka is the kernel where quarks b and c are interacting
while quark a is a spectator, as illustrated in Fig. 4.
The 3q bound-state wave function for distinguishable

quarks is then

Ψ ¼ G0KΨ; ð3Þ

where G0 is the fully disconnected part of the full 3q Green
function G. The three-body kernels Ka can be used to
define the Faddeev components Ψa as

Ψa ¼ G0KaΨ; ð4Þ

so that

Ψ ¼
X

a

Ψa: ð5Þ

FIG. 2. Equations corresponding to the quasipotential quark-
diquark model of Ref. [19]. Similar to Fig. 1, amplitudes Φa and
Φc are Faddeev components coupling the baryon to quark-
diquark states, with Γc and Γ̄a being diquark vertex functions.
However, the kernel of this equation involves a single scattering
of two quarks (quarks a and c in this case) via a potential Kb.

FIG. 3. Unified quarkþ diquark equations derived in this paper. The kernel of this equation is an infinite series whose first two terms,
separately, correspond to the model of Refs. [5,6] as illustrated in Fig. 1, and the model of Ref. [19] as illustrated in Fig. 2, respectively.

FIG. 1. Poincaré covariant quarkþ diquark Faddeev equations
of Refs. [5,6]. The amplitudes Φa and Φc are Faddeev compo-
nents coupling the baryon to quark (single line) and diquark
(double-line) states. The equation kernel corresponds to one-
quark exchange, with Γc and Γ̄a being vertex functions describing
the disintegration and formation of the diquark.
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From Eq. (3) follow Faddeev’s equations for the compo-
nents,

Ψa ¼
X

b

G0Taδ̄abΨb; ð6Þ

where δ̄ab ¼ 1 − δab and Ta is the t matrix corresponding to
kernel Ka, so that

Ta ¼ Ka þ KaG0Ta: ð7Þ

Assuming that the qq interaction admits the creation of a
diquark, the Green function Ga describing the scattering of
quarks b and c will contain a corresponding pole at the
diquark mass, so that one can write

Ga ¼ GP
a þGR

a ; ð8Þ

where GP
a is the Green function’s pole term while GR

a is its
regular part. Then, because

Ta ¼ Ka þ KaGaKa; ð9Þ

the t matrix Ta can be written as

Ta ¼ Ka þ TP
a þ TC

a ; ð10Þ

where TP
a is Ta’s pole term, while the sum Ka þ TC

a
constitutes its regular part. It is important to note that there
is no overcounting in this decomposition; that is, the terms
Ka, TP

a and TC
a do not overlap. Note that in the case of

unconfined quarks, the analytic structure of Ta would be
represented by its pole part, TP

a , its part with the 2q branch
point, TC

a , and the part Ka again with a branch point, but
above the 2q mass.
We write Eq. (6) in matrix form as

Ψ ¼ T Ψ; ð11Þ

where Ψ is a column matrix of elements Ψa, and T is a
square matrix whose ða; bÞth element is T ab ¼ G0Taδ̄ab.
Similarly we write Eq. (10) in matrix form as

T ¼ Kþ T P þ T C; ð12Þ

where Kab ¼ G0Kaδ̄ab, T P
ab ¼ G0TP

a δ̄ab, and T C
ab ¼

G0Ta
Cδ̄ab. Equation (11) can then be recast as

Ψ ¼ ð1 −K − T CÞ−1T PΨ: ð13Þ

Using the separable form of the pole term,

TP
a ¼ ΓaDaΓ̄a; ð14Þ

where Γa (similarly Γ̄a) and Da are the diquark form factor
and propagator, respectively, Eq. (13) implies that

Φa ¼
X

bc

Γ̄aδ̄ab½ð1 −K − T CÞ−1�bcG0ΓcDcΦc; ð15Þ

where

Φa ¼
X

b

Γ̄aδ̄abΨb: ð16Þ

Expanding the inverse term in Eq. (15) as

ð1 −K − T CÞ−1 ¼ 1þKþ T C þ � � � ; ð17Þ

we obtain

Φa ¼
X

bc

Γ̄aδ̄abðδbc þG0Kbδ̄bc þ � � �ÞG0ΓcDcΦc; ð18Þ

which is illustrated in Fig. 3.
It is apparent that the first two terms of this series

correspond to the models of Refs. [5,6] and Ref. [19],
respectively. Indeed, keeping just the first term in the series
results in the bound-state equation

Φa ¼
X

b

Γ̄aδ̄abG0ΓbDbΦb ð19Þ

which is illustrated in Fig. 1 and coincides with the
Poincaré covariant quarkþ diquark Faddeev equations of
Refs. [5,6], and keeping just the second term in the series
results in the bound-state equation

Φa ¼
X

bc

Γ̄aδ̄abG0Kbδ̄bcG0ΓcDcΦc; ð20Þ

which is illustrated in Fig. 2 and coincides with the
quasipotential quark-diquark equations of Ref. [19].
Although each of the approaches of Refs. [5,6] and

Ref. [19], can be viewed as different approximations of the
same unified equations, Eq. (18), the reality is that the

FIG. 4. Structure of the terms Ka (a ¼ 1, 2, 3) making up the three-body kernel K where only two-body forces are included. The
colored circles represent two-body kernels Kbc for the scattering of quarks b and c, as indicated.
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quark-diquark picture of a baryon is described by a kernel
that consists of at least the sum of the first two terms of the
series in Eq. (18). This observation should clarify the true
picture of quark-diquark dynamics in baryons.

B. Triquark equations for indistinguishable quarks

To take into account the antisymmetry of identical
quarks, we first note that the Faddeev equations for
distinguishable particles, Eq. (6), possess fully antisym-
metric solutions (as well as symmetric ones) where the
component wave functions have the symmetry properties

P23Ψ1 ¼ −Ψ1; P12Ψ1 ¼ −Ψ2; P31Ψ1 ¼ −Ψ3;

P31Ψ2 ¼ −Ψ2; P23Ψ2 ¼ −Ψ3; P12Ψ2 ¼ −Ψ1;

P12Ψ3 ¼ −Ψ3; P31Ψ3 ¼ −Ψ1; P23Ψ3 ¼ −Ψ2;

ð21Þ
where Pab is the operator that exchanges the quantum
numbers of particles a and b. Choosing a solution with
these symmetry properties, Eq. (6) for Ψ1 reduces to

Ψ1 ¼ −G0T1P12Ψ1; ð22Þ

where T1 results from antisymmetrizing the t matrix for
distinguishable particles, Td

1 , using

T1 ¼ ð1 − P23ÞTd
1: ð23Þ

Equation (22) can be seen most easily by using Eq. (21):

Ψ1 ¼ G0Td
1ðΨ2 þ Ψ3Þ ¼ G0Td

1ð1 − P23ÞΨ2

¼ G0ð1 − P23ÞTd
1Ψ2

¼ −G0ð1 − P23ÞTd
1P12Ψ1: ð24Þ

We can then again express T1 as

T1 ¼ K1 þ TP
1 þ TC

1 ; ð25Þ

where TP
1 and K1 þ TC

1 are the pole and regular parts
of T1, but this time with all quantities antisymmetric under
the interchange of quark 2 and 3’s quantum numbers.
Equation (22) can then be recast as

Ψ1 ¼ −½1þ ðK1 þ T C
1 ÞP12�−1T P

1P12Ψ1; ð26Þ

where K1 ¼ G0K1, T P
1 ¼ G0TP

1 , and T C
1 ¼ G0TC

1 . Using
the separable form of the pole term,

TP
1 ¼ Γ1D1Γ̄1; ð27Þ

where the diquark form factors are now antisymmetric,
P23Γ1 ¼ −Γ1 and Γ̄1P23 ¼ −Γ̄1, we obtain the equation for
the Faddeev component

Φ1 ¼ −Γ̄1P12½1þG0ðK1 þ TC
1 ÞP12�−1G0Γ1D1Φ1; ð28Þ

where

Φ1 ¼ Γ̄1P12Ψ1: ð29Þ

Expanding the inverse term in Eq. (28) as

½1þ G0ðK1 þ TC
1 ÞP12�−1 ¼ 1 −G0ðK1 þ TC

1 ÞP12 þ � � �
ð30Þ

leads to the final form of our unified equations for three
identical quarks,

Φ1 ¼ −Γ̄1P12½1 −G0ðK1 þ TC
1 ÞP12 þ � � ��G0Γ1D1Φ1:

ð31Þ

Keeping only the first two terms of the series for the kernel,
and making the further approximation, TC

1 ¼ 0, leads to the
equation

Φ1 ¼ Γ̄1P12½1þ K1P12�Γ1d1Φ1 ð32Þ

which covers both approaches of Refs. [5,6] and Ref. [19].

III. DISCUSSION

We have derived covariant equations that describe the
bound state of the triquark in terms of quark and diquark
degrees of freedom. These equations are illustrated in
Fig. 3, with exact expressions given for distinguishable
quarks in Eq. (18), and for indistinguishable quarks in
Eq. (31). An essential aspect of these equations is that they
are exact in the approximation where only two-body forces
are retained.
It is worth noting that our procedure leading to Eq. (15),

and hence to Eqs. (18) and (31), is similar to the one used
by Alt, Grassbeger, and Sandhas (AGS) to reduce three-
particle Faddeev equations to that of coupled two-particle
equations [49]; however, it differs from AGS in its details,
and also in one essential way, namely, we have shown that
the two-body matrix (in three-body space) Ta, can be
decomposed into three mutually exclusive parts, as in
Eq. (10), where the two-body kernel Ka appears explicitly
(AGS and related prior works, decomposed two-body t
matrices into two parts, a separable one, and the rest). It is
just this decomposition of Ta into three parts involving Ka,
which has led to the unification of previous works, as
outlined above.
This unification is demonstrated explicitly for two of the

most prominent and longest-used approaches in the liter-
ature, namely the one using the covariant quarkþ diquark
Faddeev equations of Refs. [5,6], and the one using quasi-
potential quark-diquark equations of Ref. [19]. In particu-
lar, the covariant quarkþ diquark Faddeev equations
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correspond to keeping just the first term of the kernel in our
equations (the one-quark-exchange diagram in Fig. 3), and
the quasipotential quark-diquark equations correspond to
keeping just the second term of the kernel in our equations
(the qq rescattering diagram in Fig. 3). It is noteworthy that
our equations reveal that these two approaches, which have
been pursued separately for more than 25 years in order to
model not only bound states of baryons, but also various
types of baryon form factors (electromagnetic, axial-vector,
scalar, etc.), use equations with two, different, nonoverlap-
ping, kernels. Our equations indicate that it is the sum of the
first two terms in the kernel (at least) that should have been

used instead. Although this is not an issue for cases where
only one pair of quarks (out of three possible pairs) can
form a diquark, in which case only the kernel of the
quasipotential quark-diquark equations contributes [19,22],
it may be a serious problem for other cases, like that of
three identical quarks where both kernels contribute and
therefore should be summed [29].

ACKNOWLEDGMENTS

A. N. K. was supported by the Shota Rustaveli National
Science Foundation (Grant No. FR17-354).

[1] M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, and
D. B. Lichtenberg, Diquarks, Rev. Mod. Phys. 65, 1199
(1993).

[2] R. Alkofer and L. von Smekal, The infrared behavior of
QCD Green’s functions: Confinement, dynamical symmetry
breaking, and hadrons as relativistic bound states, Phys.
Rep. 353, 281 (2001).

[3] G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer,
and C. S. Fischer, Baryons as relativistic three-quark bound
states, Prog. Part. Nucl. Phys. 91, 1 (2016).

[4] M. Y. Barabanov et al., Diquark correlations in hadron
physics: Origin, impact and evidence, Prog. Part. Nucl.
Phys. 116, 103835 (2021).

[5] R. T. Cahill, C. D. Roberts, and J. Praschifka, Baryon
structure and QCD, Aust. J. Phys. 42, 129 (1989).

[6] H. Reinhardt, Hadronization of quark flavor dynamics,
Phys. Lett. B 244, 316 (1990).

[7] C. Chen, L. Chang, C. D. Roberts, S. Wan, and D. J. Wilson,
Spectrum of hadrons with strangeness, Few-Body Syst. 53,
293 (2012).

[8] M. Oettel, L. Von Smekal, and R. Alkofer, Relativistic three
quark bound states in separable two quark approximation,
Comput. Phys. Commun. 144, 63 (2002).

[9] G. Eichmann, C. S. Fischer, and H. Sanchis-Alepuz, Light
baryons and their excitations, Phys. Rev. D 94, 094033 (2016).

[10] M. Oettel, G. Hellstern, R. Alkofer, and H. Reinhardt, Octet
and decuplet baryons in a covariant and confining diquark-
quark model, Phys. Rev. C 58, 2459 (1998).

[11] S. Ahlig, R. Alkofer, C. S. Fischer, M. Oettel, H. Reinhardt,
and H. Weigel, Production processes as a tool to study
parametrizations of quark confinement, Phys. Rev. D 64,
014004 (2001).

[12] G. Eichmann, A. Krassnigg, M. Schwinzerl, and R. Alkofer,
A covariant view on the nucleons’ quark core, Ann. Phys.
(Amsterdam) 323, 2505 (2008).

[13] D. Nicmorus, G. Eichmann, A. Krassnigg, and R. Alkofer,
Delta-baryon mass in a covariant Faddeev approach, Phys.
Rev. D 80, 054028 (2009).

[14] D. J. Wilson, I. C. Cloet, L. Chang, and C. D. Roberts,
Nucleon and Roper electromagnetic elastic and transition
form factors, Phys. Rev. C 85, 025205 (2012).

[15] K.-l. Wang, Y.-x. Liu, L. Chang, C. D. Roberts, and S. M.
Schmidt, Baryon and meson screening masses, Phys. Rev. D
87, 074038 (2013).

[16] J. Segovia, C. D. Roberts, and S. M. Schmidt, Understand-
ing the nucleon as a Borromean bound-state, Phys. Lett. B
750, 100 (2015).

[17] C. Chen, G. I. Krein, C. D. Roberts, S. M. Schmidt, and J.
Segovia, Spectrum and structure of octet and decuplet
baryons and their positive-parity excitations, Phys. Rev.
D 100, 054009 (2019).

[18] L. Liu, C. Chen, and C. D. Roberts, Wave functions of
ðI; JπÞ ¼ ð1

2
; 3
2
∓Þ baryons, Phys. Rev. D 107, 014002 (2023).

[19] D. Ebert, R. N. Faustov, V. O. Galkin, A. P. Martynenko,
and V. A. Saleev, Heavy baryons in the relativistic quark
model, Z. Phys. C 76, 111 (1997).

[20] D. Ebert, R. N. Faustov, V. O. Galkin, and A. P.
Martynenko, Semileptonic decays of doubly heavy baryons
in the relativistic quark model, Phys. Rev. D 70, 014018
(2004); 77, 079903(E) (2008).

[21] D. Ebert, R. N. Faustov, V. O. Galkin, and A. P.
Martynenko, Properties of doubly heavy baryons in the
relativistic quark model, Phys. At. Nucl. 68, 784 (2005).

[22] D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of heavy
baryons in the relativistic quark model, Phys. Rev. D 72,
034026 (2005).

[23] D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of excited
heavy baryons in the relativistic quark model, Phys. Lett. B
659, 612 (2008).

[24] D. Ebert, R. N. Faustov, and V. O. Galkin, Excited heavy
tetraquarks with hidden charm, Eur. Phys. J. C 58, 399 (2008).

[25] D. Ebert, R. N. Faustov, and V. O. Galkin, Mass spectra of
heavy baryons in the relativistic quark model, Phys. At.
Nucl. 72, 178 (2009).

[26] R. N. Faustov and V. O. Galkin, Strange baryon spectros-
copy in the relativistic quark model, Phys. Rev. D 92,
054005 (2015).

[27] R. N. Faustov and V. O. Galkin, Heavy baryon spectros-
copy, EPJ Web Conf. 204, 08001 (2019).

[28] R. N. Faustov and V. O. Galkin, Heavy baryon spectroscopy
in the relativistic quark model, Particles 3, 234 (2020).

UNIFIED TRIQUARK EQUATIONS PHYS. REV. D 108, 054016 (2023)

054016-5

https://doi.org/10.1103/RevModPhys.65.1199
https://doi.org/10.1103/RevModPhys.65.1199
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1016/j.ppnp.2016.07.001
https://doi.org/10.1016/j.ppnp.2020.103835
https://doi.org/10.1016/j.ppnp.2020.103835
https://doi.org/10.1071/PH890129
https://doi.org/10.1016/0370-2693(90)90078-K
https://doi.org/10.1007/s00601-012-0466-3
https://doi.org/10.1007/s00601-012-0466-3
https://doi.org/10.1016/S0010-4655(01)00465-9
https://doi.org/10.1103/PhysRevD.94.094033
https://doi.org/10.1103/PhysRevC.58.2459
https://doi.org/10.1103/PhysRevD.64.014004
https://doi.org/10.1103/PhysRevD.64.014004
https://doi.org/10.1016/j.aop.2008.02.007
https://doi.org/10.1016/j.aop.2008.02.007
https://doi.org/10.1103/PhysRevD.80.054028
https://doi.org/10.1103/PhysRevD.80.054028
https://doi.org/10.1103/PhysRevC.85.025205
https://doi.org/10.1103/PhysRevD.87.074038
https://doi.org/10.1103/PhysRevD.87.074038
https://doi.org/10.1016/j.physletb.2015.08.042
https://doi.org/10.1016/j.physletb.2015.08.042
https://doi.org/10.1103/PhysRevD.100.054009
https://doi.org/10.1103/PhysRevD.100.054009
https://doi.org/10.1103/PhysRevD.107.014002
https://doi.org/10.1007/s002880050534
https://doi.org/10.1103/PhysRevD.70.014018
https://doi.org/10.1103/PhysRevD.70.014018
https://doi.org/10.1103/PhysRevD.77.079903
https://doi.org/10.1134/1.1935012
https://doi.org/10.1103/PhysRevD.72.034026
https://doi.org/10.1103/PhysRevD.72.034026
https://doi.org/10.1016/j.physletb.2007.11.037
https://doi.org/10.1016/j.physletb.2007.11.037
https://doi.org/10.1140/epjc/s10052-008-0754-8
https://doi.org/10.1134/S1063778809010219
https://doi.org/10.1134/S1063778809010219
https://doi.org/10.1103/PhysRevD.92.054005
https://doi.org/10.1103/PhysRevD.92.054005
https://doi.org/10.1051/epjconf/201920408001
https://doi.org/10.3390/particles3010019


[29] R. N. Faustov and V. O. Galkin, Triply heavy baryon
spectroscopy in the relativistic quark model, Phys. Rev.
D 105, 014013 (2022).

[30] A. N. Kvinikhidze and B. Blankleider, Gauging of
equations method. I. Electromagnetic currents of three
distinguishable particles, Phys. Rev. C 60, 044003
(1999); Gauging of equations method. II. Electromagnetic
currents of three identical particles, Phys. Rev. C 60, 044004
(1999).

[31] C. Chen, Y. Lu, D. Binosi, C. D. Roberts, J. Rodríguez-
Quintero, and J. Segovia, Nucleon-to-Roper electromag-
netic transition form factors at large Q2, Phys. Rev. D 99,
034013 (2019).

[32] Y. Lu, C. Chen, Z.-F. Cui, C. D. Roberts, S. M. Schmidt, J.
Segovia, and H. S. Zong, Transition form factors:
γ� þ p → Δð1232Þ, Δð1600Þ, Phys. Rev. D 100, 034001
(2019).

[33] Z.-F. Cui, C. Chen, D. Binosi, F. De Soto, C. D. Roberts,
J. Rodríguez-Quintero, S. M. Schmidt, and J. Segovia,
Nucleon elastic form factors at accessible large spacelike
momenta, Phys. Rev. D 102, 014043 (2020).

[34] C. Chen, C. S. Fischer, C. D. Roberts, and J. Segovia, Form
factors of the nucleon axial current, Phys. Lett. B 815,
136150 (2021).

[35] K. Raya, L. X. Gutiérrez-Guerrero, A. Bashir, L. Chang,
Z.-F. Cui, Y. Lu, C. D. Roberts, and J. Segovia, Dynamical
diquarks in the γð�Þp → Nð1535Þ1

2
− transition, Eur. Phys. J.

A 57, 266 (2021).
[36] C. Chen, C. S. Fischer, C. D. Roberts, and J. Segovia,

Nucleon axial-vector and pseudoscalar form factors and
PCAC relations, Phys. Rev. D 105, 094022 (2022).

[37] C. Chen and C. D. Roberts, Nucleon axial form factor at
large momentum transfers, Eur. Phys. J. A 58, 206 (2022).

[38] P.-L. Yin, C. Chen, C. S. Fischer, and C. D. Roberts,
Δ-baryon axialvector and pseudoscalar form factors,

and associated PCAC relations, Eur. Phys. J. A 59, 163
(2023).

[39] R. N. Faustov and V. O. Galkin, Semileptonic decays of Λc
baryons in the relativistic quark model, Eur. Phys. J. C 76,
628 (2016).

[40] R. N. Faustov and V. O. Galkin, Rare Λb → nlþl− decays in
the relativistic quark-diquark picture, Mod. Phys. Lett. A 32,
1750125 (2017).

[41] R. N. Faustov and V. O. Galkin, Rare Λb → Λlþl− and
Λb → Λγ decays in the relativistic quark model, Phys. Rev.
D 96, 053006 (2017).

[42] R. N. Faustov and V. O. Galkin, Relativistic description of
the Ξb baryon semileptonic decays, Phys. Rev. D 98,
093006 (2018).

[43] R. N. Faustov and V. O. Galkin, Semileptonic Ξc baryon
decays in the relativistic quark model, Eur. Phys. J. C 79,
695 (2019).

[44] R. N. Faustov and V. O. Galkin, Semileptonic decays of
heavy baryons in the relativistic quark model, Particles 3,
208 (2020).

[45] V. O. Galkin and R. N. Faustov, Semileptonic decays of
heavy baryons, Phys. Part. Nucl. 51, 625 (2020).

[46] A. O. Davydov, R. N. Faustov, and V. O. Galkin, Rare
radiative Ξb− → Ξ − γ decay in the relativistic quark
model, Mod. Phys. Lett. A 37, 2250158 (2022).

[47] A. N. Kvinikhidze and B. Blankleider, Unified tetraquark
equations, Phys. Rev. D 107, 094014 (2023).

[48] L. D. Faddeev, Scattering theory for a three particle system,
Sov. Phys. JETP 12, 1014 (1961), http://faddeev.com/
wp-content/uploads/2017/06/Scattering-Theory-for-a-Three-
Particle-System-.pdf.

[49] E. O. Alt, P. Grassberger, and W. Sandhas, Reduction of
the three-particle collision problem to multichannel two-
particle Lippmann-Schwinger equations, Nucl. Phys. B2,
167 (1967).

A. N. KVINIKHIDZE and B. BLANKLEIDER PHYS. REV. D 108, 054016 (2023)

054016-6

https://doi.org/10.1103/PhysRevD.105.014013
https://doi.org/10.1103/PhysRevD.105.014013
https://doi.org/10.1103/PhysRevC.60.044003
https://doi.org/10.1103/PhysRevC.60.044003
https://doi.org/10.1103/PhysRevC.60.044004
https://doi.org/10.1103/PhysRevC.60.044004
https://doi.org/10.1103/PhysRevD.99.034013
https://doi.org/10.1103/PhysRevD.99.034013
https://doi.org/10.1103/PhysRevD.100.034001
https://doi.org/10.1103/PhysRevD.100.034001
https://doi.org/10.1103/PhysRevD.102.014043
https://doi.org/10.1016/j.physletb.2021.136150
https://doi.org/10.1016/j.physletb.2021.136150
https://doi.org/10.1140/epja/s10050-021-00574-w
https://doi.org/10.1140/epja/s10050-021-00574-w
https://doi.org/10.1103/PhysRevD.105.094022
https://doi.org/10.1140/epja/s10050-022-00848-x
https://doi.org/10.1140/epja/s10050-023-01066-9
https://doi.org/10.1140/epja/s10050-023-01066-9
https://doi.org/10.1140/epjc/s10052-016-4492-z
https://doi.org/10.1140/epjc/s10052-016-4492-z
https://doi.org/10.1142/S0217732317501255
https://doi.org/10.1142/S0217732317501255
https://doi.org/10.1103/PhysRevD.96.053006
https://doi.org/10.1103/PhysRevD.96.053006
https://doi.org/10.1103/PhysRevD.98.093006
https://doi.org/10.1103/PhysRevD.98.093006
https://doi.org/10.1140/epjc/s10052-019-7214-5
https://doi.org/10.1140/epjc/s10052-019-7214-5
https://doi.org/10.3390/particles3010017
https://doi.org/10.3390/particles3010017
https://doi.org/10.1134/S1063779620040280
https://doi.org/10.1142/S0217732322501589
https://doi.org/10.1103/PhysRevD.107.094014
http://faddeev.com/wp-content/uploads/2017/06/Scattering-Theory-for-a-Three-Particle-System-.pdf
http://faddeev.com/wp-content/uploads/2017/06/Scattering-Theory-for-a-Three-Particle-System-.pdf
http://faddeev.com/wp-content/uploads/2017/06/Scattering-Theory-for-a-Three-Particle-System-.pdf
http://faddeev.com/wp-content/uploads/2017/06/Scattering-Theory-for-a-Three-Particle-System-.pdf
http://faddeev.com/wp-content/uploads/2017/06/Scattering-Theory-for-a-Three-Particle-System-.pdf
https://doi.org/10.1016/0550-3213(67)90016-8
https://doi.org/10.1016/0550-3213(67)90016-8

