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By combining relativistic mean field models and equivparticle models with density-dependent quark
masses, we construct explicitly “a quark Fermi sea” and “a baryonic Fermi surface” to model the quarkyonic
phase, where baryons with momentums ranging from zero to Fermi momentums are included. The
properties of nuclear matter, quark matter, and quarkyonic matter are then investigated in a unified manner,
where quarkyonic matter is more stable and energy minimization is still applicable to obtain the microscopic
properties of dense matter. Three different covariant density functionals TW99, PKDD, and DD-ME2 are
adopted in our work, where TW99 gives satisfactory predictions for the properties of nuclear matter in both
neutron stars and heavy-ion collisions and quarkyonic transition is unfavorable. Nevertheless, if PKDD with
larger slope of symmetry energy L or DD-ME2 with larger skewness coefficient J are adopted, the
corresponding equations of state (EOSs) are too stiff according to both experimental and astrophysical
constraints. The situation is improved if quarkyonic transition takes place, where the EOSs become softer
and can accommodate various experimental and astrophysical constraints.
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I. INTRODUCTION

Because of the asymptotic freedom and confinement of
strong interactions at large and small energy scales, the
strongly interacting matter at zero temperature is believed to
exhibit at least two phases, i.e., low-density hadronic matter
(HM) and high-density quark matter (QM). As density
increases, HM may undergo a deconfinement phase tran-
sition and form QM, while it is not clear what exactly
happens in the processes of deconfinement phase transition
and many possibilities exist [1,2]. For example, one type of
deconfinement phase transitions from HM to QM are of first
order [3], indicating the possible existence of a quark-hadron
mixed phase inside hybrid stars [4–15]. The other type of
deconfinement phase transitions resemble those at vanishing
chemical potentials and large temperatures, where a smooth
crossover between HM and quark-gluon plasma takes
place [16,17]. The hadron-quark crossover at finite densities
was modeled with various phenomenological interpolation
functions, which predicts a stiffer equation of state (EOS) so
that a hybrid star could reach 2M⊙ [18–31]. The implica-
tions of such a hadron-quark crossover on binary neutron

star mergers and the postmerger gravitational signals were
then examined, which could be identified by future kilohertz
gravitational wave detectors [32,33].
To unveil the microscopic dynamics for the crossover

domain, as demonstrated by Fukushima and Kojo [34], the
crossover from HM to QM can be bridged by quarkyonic
matter. At supranuclear densities, the many-body inter-
actions between baryons become significant [35], which
is attributed to the increasing number of exchanged
quarks [34]. The boundary between baryons eventually
becomes blurred and quarks can move freely among
baryons at large densities, i.e., forming the quarkyonic
phase [36]. As proposed by McLerran and Pisarski in the
large Nc limit [37], a quarkyonic phase is comprised of “a
quark Fermi sea” and “a baryonic Fermi surface.” Further
studies on the phase diagram of strongly interacting matter
with an extended Nambu-Jona-Lasinio model suggest
that the quarkyonic transition is indeed a crossover at
Nc ¼ 3 [38]. It was shown that the pressure and sound
velocity of quarkyonic matter increase rapidly with density,
which fulfills the observational constraints on massive
neutron stars [39]. The effects of isospin-flavor asymmetry
was later considered, predicting a lower proton fraction
which could potentially quench fast cooling in massive
quarkyonic stars [40]. By synthesizing the Walecka model
together with the quark-meson model, a complete field
model for quarkyonic matter treating baryons, quarks, and
mesons on the same footing was developed [41,42], where
the chiral symmetry breaking and restoration in quarkyonic
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matter can be described. In the framework of a constituent
quark model, the emergence of quarkyonic modes in dense
baryonic matter was analyzed as well, where the attractive
ud color antitriplet diquark remains intact [43,44].
For baryonic matter below and around the nuclear

saturation density n0, relativistic mean field (RMF) models
are often adopted [45], which give an excellent description
for finite nuclei [46–56] and nuclear matter [57–65]. In
such cases, it is natural to extend RMF models to include
quark degrees of freedom, which was done by combining
RMF models and equivparticle models with density-
dependent quark masses [66]. In this work, based on
our previous study [66], we construct explicitly a quark
Fermi sea and a baryonic Fermi surface to model the
quarkyonic phase. A schematic illustration of the corre-
sponding quarkyonic phase is presented in Fig. 1, where
the Fermi distributions of quarks from the quark Fermi sea
and baryonic Fermi surface are indicated by the red and
cyan regions, respectively. The single-particle energies of
quarks (ϵq, red dashed curve) and baryons (ϵb, black solid
curve) as functions of their momentums pq and pb are
presented, which are matched at pb ¼ 0 and ϵb ¼ 3ϵq ≠ 0

as denoted by the horizontal line. It is worth mentioning
that, in contrast to previous constructions of the Fermi
sphere for quarkyonic matter by simply removing lower-
momentum components [39–42], baryons with momentums
ranging from zero to Fermi momentums are considered
here. We believe such treatment is more natural, since the
low-energy excitations should carry vanishing momentums

analogous to the formation of Cooper pairs [67], which is
dominated by zero-momentum components. The quarks
confined within baryons can be viewed as wave packets,
and we expect a widespread momentum distribution for
quarks in the baryonic Fermi surface. Despite the small total
momentum of three quarks forming a baryon, a lower-
momentum cutoff exists due to the effects of Pauli blocking
from the quark Fermi sea, which alters the masses of
baryons and results in the peculiar momentum distribution
as illustrated by the cyan area in Fig. 1.
The interactions between baryons are treated with the

RMF approach via exchange of σ, ω, and ρ mesons, where
the baryon-meson couplings are density dependent, adopt-
ing the effective interactions TW99 [51], PKDD [68], and
DD-ME2 [69]. The quarks are considered as quasifree
particles with density-dependent masses, including con-
finement and leading-order perturbative interactions [70].
Finally, the quark-baryon interactions are accounted for
with density-dependent baryon masses, and energy mini-
mization is still applicable to obtain microscopic properties
of quarkyonic matter. The paper is organized as follows.
In Sec. II, we present the theoretical framework for nuclear
matter, quark matter, and quarkyonic matter. The properties
of dense matter and the implication for compact star
structures are then examined in Sec. III. We draw our
conclusion in Sec. IV.

II. THEORETICAL FRAMEWORK

The Lagrangian density of the extended RMF model can
be divided into the following three parts:

L ¼ LB þ LQ þ LL; ð1Þ

where LB, LQ, and LL are, respectively, the Lagrangian
densities for nuclear matter, quark matter, and leptonic
matter, i.e.,

LB ¼
X
i¼n;p

Ψ̄ifiγμ∂μ −miðnQb Þ − gσiðnBb Þσ

− gωiðnBb Þγμωμ − gρiðnBb Þγμτi · ρμgΨi

−
1

2
m2

σσ
2 þ 1

2
m2

ωωμω
μ þ 1

2
m2

ρρμ · ρμ; ð2Þ

LQ ¼
X
i¼u;d

Ψ̄i½iγμ∂μ −miðnbÞ�Ψi; ð3Þ

LL ¼
X
i¼e;μ

Ψ̄i½iγμ∂μ −mi�Ψi: ð4Þ

Here Ψi represents the Dirac spinor for different fermions i
(baryons, quarks, and leptons) with masses mi, where
mn;pðnQb Þ and mu;dðnbÞ are density dependent with nBb ,

nQb , and nb being, respectively, the baryon number densities
for nucleons, quarks, and both particles combined, i.e.,
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FIG. 1. Schematic plot on the occupation function fq for quarks
with momenta pq in the quarkyonic phase, which is comprised of
two parts, i.e., those from the quark Fermi sea (red area) and
baryonic Fermi surface (cyan area). The corresponding dispersion
relations of quarks (3ϵq-3pq) and nucleons (ϵb-pb) are indicated in
the lower panel as well.

XIA, JIN, and SUN PHYS. REV. D 108, 054013 (2023)

054013-2



nBb ¼ npþnn; nQb ¼ðnuþndÞ=3; nb ¼ nBb þnQb : ð5Þ

The isospin of baryons is denoted by τi. To describe the
baryon-baryon interactions, the isoscalar-scalar meson σ,
isoscalar-vector meson ωμ, and isovector-vector meson ρμ
are introduced with mσðgσiÞ, mωðgωiÞ, and mρðgρiÞ being
their masses (coupling constants), respectively. For a
system with time-reversal symmetry, the spacelike compo-
nents of the vector fields ωμ and ρμ vanish, leaving only the
time components ω0 and ρ0. Meanwhile, charge conserva-
tion guarantees that only the third component ρ0;3 in the
isospin space survives. Note that, for uniform dense matter
σ, ω0, and ρ0;3 are independent of the space coordinates, so
that their space and time derivatives vanish.
In the quarkyonic phase, baryons and quarks coexist

inside the same volume. Similar to the treatments of α
clustering inside nuclear matter in Refs. [71,72], we adopt a
phenomenological baryon mass scaling to consider the
effects of Pauli blocking and interactions between quarks
and baryons, i.e.,

miðnQb Þ ¼ m0i þ BnQb ; ð6Þ

wherem0i (i ¼ n, p) represents the baryon mass in vacuum
and B the interaction strength.
The quarks are treated as quasifree particles with

density-dependent equivalent masses in the framework of
equivparticle models [70,73–75], which is described by the
Lagrangian density in Eq. (3). Considering the interactions
of linear confinement and leading-order perturbation, the
quark mass scaling is determined by [70]

miðnbÞ ¼ m0i þ
Dffiffiffiffiffi
nb3

p þ C
ffiffiffiffiffi
nb3

p
; ð7Þ

where m0u ¼ 2.3 MeV and m0d ¼ 4.8 MeV are the cur-
rent masses of quarks [76]. The parameterD represents the
confinement strength, which is related to the chiral
restoration density, string tension, and the sum of vacuum
chiral condensates. The perturbative strength C is con-
nected to the strong coupling constant. Because of the
uncertainties in relevant quantities, the exact values of D
and C are still unclear. Nevertheless, it has been estimated
that

ffiffiffiffi
D

p
approximately lies in the range of 147–270 MeV

[75] and C≲ 1.2 [70].
According to the Typel-Wolter ansatz [51], we adopt

density-dependent nucleon-meson coupling constants. For
σ and ω mesons, the coupling constants are determined by

gϕiðnBb Þ ¼ gϕiðn0Þaϕ
1þ bϕðxþ dϕÞ2
1þ cϕðxþ eϕÞ2

; ð8Þ

where ϕ ¼ σ, ω and x≡ nBb =n0 with n0 being the saturation
density of nuclear matter. aϕ, bϕ, cϕ, dϕ, and eϕ are five

adjustable parameters describing the density-dependent
coupling constants. Meanwhile, a different formula is
adopted for the ρ meson, i.e.,

gρiðnBb Þ ¼ gρiðn0Þ exp½−aρðxþ bρÞ�: ð9Þ

Based on the Lagrangian density in Eqs. (2)–(4), the
meson fields are determined by

m2
σσ ¼ −

X
i¼n;p

gσinsi ; ð10Þ

m2
ωω0 ¼

X
i¼n;p

gωini; ð11Þ

m2
ρρ3 ¼

X
i¼n;p

gρiτi;3ni: ð12Þ

Adopting the no-sea approximation, the source currents of
fermion i for cold dense matter are given by

ni ¼ hΨ̄iγ
0Ψii ¼

giν3i
6π2

; ð13Þ

nsi ¼hΨ̄iΨii ¼
giðm�

i Þ3
4π2

�
xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ

�
: ð14Þ

Here we have defined xi ≡ νi=m�
i with νi being the Fermi

momentum and the degeneracy factor gi taken as gn;p ¼ 2,
gu;d ¼ 6, and ge;μ ¼ 2 for baryons, quarks, and leptons,
respectively. The effective mass for baryon b is defined as
m�

b ¼ mbðnQb Þ þ gσbσ with the baryon mass scalingmbðnQb Þ
indicated in Eq. (6), while for quark q we adopt the mass
scaling of Eq. (7), i.e., m�

q ¼ mqðnbÞ. Meanwhile, the
masses of leptons remain constant with m�

e ¼ 0.511 MeV
andm�

μ ¼ 105.66 MeV [76]. The single-particle energies of
fermions at fixed momentum p are

ϵBb ðpÞ ¼ gωbωþ gρbτb;3ρ3 þ ΣR
b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm�

bÞ2
q

; ð15Þ

ϵQq ðpÞ ¼ ΣR
q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm�

qÞ2
q

; ð16Þ

ϵLl ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm�

l Þ2
q

; ð17Þ

with the “rearrangement” terms given by

ΣR
b ¼

X
i¼n;p

 
dgσi
dnBb

σnsi þ
dgωi
dnBb

ωni þ
dgρi
dnBb

ρ3τi;3ni

!

þ
X
i¼u;d

dmi

dnb
nsi ; ð18Þ
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ΣR
q ¼ 1

3

X
i¼n;p;u;d

dmi

dnb
nsi : ð19Þ

For quarkyonic matter, the quark-hadron interface in
momentum space is set by matching the single-particle
energies, i.e.,

ϵQu ðνuÞ þ 2ϵQd ðνdÞ ¼ ϵBn ð0Þ;
2ϵQu ðνuÞ þ ϵQd ðνdÞ ¼ ϵBpð0Þ; ð20Þ

where ϵiðpiÞ represents the single-particle energy at a given
momentum pi. In the quarkyonic phase, νu and νd now
represent the maximum momentums for u and d quarks
instead of Fermi momentums, above which are baryons and
the effects of Pauli blocking exclude the existence of free
quarks. The chemical potentials for baryon b and lepton l
are then fixed by μb ¼ ϵBb ðνbÞ and μl ¼ ϵLl ðνlÞ, respectively.
For quarks, we can also define an effective chemical
potential μq ¼ ϵQq ðνqÞ, which is nonetheless not the actual
one, as νq does not correspond to the Fermi surface in the
quarkyonic phase.
Finally, the energy density can be determined by

E ¼
X
i

εiðνi; m�
i Þ þ

X
ϕ¼σ;ω;ρ

1

2
m2

ϕϕ
2; ð21Þ

with the kinetic energy density

εiðνi; m�
i Þ ¼

Z
νi

0

gip2

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm�

i Þ2
q

dp

¼ giðm�
i Þ4

16π2

�
xið2x2i þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ

�
:

ð22Þ
Then the pressure P is obtained with

P ¼
X
i

μini − E: ð23Þ

At a given total baryon number density nb and isospin
asymmetry

δ≡ ðnd − nu þ nn − npÞ=nb; ð24Þ

the properties of three types of strongly interacting matter
can then be fixed, i.e.,
(1) Nuclear matter: nQb ¼ 0 with nb ¼ nBb .
(2) Quark matter: nBb ¼ 0 with nb ¼ nQb .
(3) Quarkyonic matter: nb ¼ nBb þ nQb with nBb and nQb

fixed by Eq. (20).
The corresponding mean fields, single-particle energies,
and densities are fixed by solving Eqs. (6)–(20) in an
iterative manner. Once convergency is reached, the energy
density and pressure can then be obtained with Eqs. (21)
and (23).

III. RESULTS AND DISCUSSIONS

For baryonic matter described by the Lagrangian density
in Eq. (2), we adopt three different density-dependent
covariant density functionals TW99 [51], PKDD [68],
and DD-ME2 [69]. The corresponding properties of nuclear
matter around the saturation density (n0 ≈ 0.16 fm−3) are
indicated in Table I, which include the binding energy B,
incompressibility K, skewness coefficient J, symmetry
energy S, slope L, and curvature parameter Ksym of nuclear
symmetry energy. Note that some of the coefficients arewell
constrained with B ≈ −16 MeV, K ¼ 240� 20 MeV [77],
S ¼ 31.7� 3.2 MeV, and L ¼ 58.7� 28.1 MeV [78,79],
which can be further constrained by considering the recent
data from astrophysical observations, heavy-ion collisions,
measurements of the neutron skin thicknesses, and nuclear
theories [80–84]. The saturation properties of nuclear matter
predicted by the covariant density functionals generally
coincide with those constraints, except that PKDD predicts
slightly larger S and L. In summary, compared with TW99,
the functional PKDD predicts larger symmetry energy (S
and L), while the energy per baryon for symmetric nuclear
matter at suprasaturation densities is significantly increased
(larger K and J) if DD-ME2 is adopted.
Based on the aforementioned density functionals, we

further consider the possible formation of quarkyonic matter
by including explicitly quasifree quarks. The adopted
parameter sets ðB;C; ffiffiffiffi

D
p Þ of the baryon and quark mass

scalings in Eqs. (6) and (7) are listed in Table II, where B is
in MeV=fm3, C dimensionless, and

ffiffiffiffi
D

p
in MeV. To fix the

properties of dense stellar matter, leptons fulfilling charge
neutrality condition need to be considered, i.e.,X

i

qini ¼ 0; ð25Þ

where qn ¼ 0, qp ¼ 1, qu ¼ 2=3, qd ¼ −1=3, and qe ¼
qμ ¼ −1 are the charge numbers of each particle type. Note
that hyperons are not included yet, which will be considered
in our future works. Additionally, at fixed total baryon
number density nb, the number densities of leptons ne;μ,

quarks nQb , and isospin asymmetry δ for cold dense stellar
matter are fixed by fulfilling the chemical equilibrium
condition, i.e.,

TABLE I. Saturation properties of nuclear matter predicted by
three different density-dependent covariant density functionals
TW99 [51], PKDD [68], and DD-ME2 [69].

n0
fm−3

B
MeV

K
MeV

J
MeV

S
MeV

L
MeV

Ksym

MeV

TW99 0.153 −16.24 240.2 −540 32.8 55.3 −125
PKDD 0.150 −16.27 262.2 −119 36.8 90.2 −81
DD-ME2 0.152 −16.13 250.8 477 32.3 51.2 −87
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μn − μp ¼ μe ¼ μμ: ð26Þ

The EOSs of neutron star matter are obtained with the
energy density E fixed by Eq. (21) and pressure P
by Eq. (23).
In Fig. 2, we present the energy per baryon E=nb of

nuclear matter and quarkyonic matter in compact stars as
functions of the total baryon number density nb. As density

increases, nuclear matter is converted into quarkyonic
matter at nb ≳ 0.1 fm−3, which becomes more stable as
the energy is decreased. The variations of the energy per
baryon in quarkyonic matter are far less significant than
those of nuclear matter. It is found that the transitions from
nuclear matter to quarkyonic matter are mostly second
order, except for the case of PKDD adopting the parameter
set B ¼ 0, C ¼ 0.7, and

ffiffiffiffi
D

p ¼ 150 MeV, where a first-
order quarkyonic transition is identified. The effects of
various types of interactions can be examined by varying
the corresponding parameters, where the onset densities
of quarkyonic transitions and energies of quarkyonic matter
increase with the strengths of quark-hadron interaction
B, perturbative interaction C, and confinement

ffiffiffiffi
D

p
.

Meanwhile, we note that increasing C leads to a more
significant increment in energy at higher densities, which is
mainly due to the increasing repulsive interaction described
by the quark mass scaling in Eq. (7).
To show more explicitly the variations in the stiffness of

the EOSs, we present the velocity of sound v in Fig. 3,
which is determined by

v ¼
ffiffiffiffiffiffi
dP
dE

r
: ð27Þ

As the total baryon number density nb increases, the
velocity of sound also increases before reaching its peak
vmax for quarkyonic matter. Such structure in the speed of
sound was identified in various previous studies and
interpreted as the onset of a new matter state [85–89],

TABLE II. The adopted parameter sets ðB;C; ffiffiffiffi
D

p Þ for the
baryon and quark mass scalings in Eqs. (6) and (7). The obtained
radii R1.4 and tidal deformability Λ1.4 of 1.4-solar-mass compact
stars, the maximum mass MTOV, and the maximum sound speed
vmax of quarkyonic matter are indicated as well.

B C
ffiffiffiffi
D

p
R1.4 Λ1.4 MTOV vmax

MeV=fm3 MeV km M⊙ c

TW99 300 0.7 180 12.27 405 2.04 0.73
0 0.7 180 12.27 405 1.97 0.67

300 0.2 180 12.20 386 1.88 0.68
300 0.7 230 12.27 405 2.08 0.83

PKDD 150 0.7 150 12.80 530 2.06 0.67
0 0.7 150 12.40 463 2.00 0.67

150 1.0 150 13.60 751 2.20 0.70
150 0.7 180 13.63 764 2.20 0.69

DD-ME2 100 0.5 160 12.74 557 2.06 0.65
300 0.5 160 13.08 666 2.15 0.65
100 0.7 160 13.17 703 2.19 0.65
100 0.5 180 13.20 712 2.19 0.63

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5

1.0

1.2

1.4

1.6

TW99
(300, 0.7, 180)
( 0, 0.7, 180)
(300, 0.2, 180)
(300, 0.7, 230)

PKDD
(150, 0.7, 150)
( 0, 0.7, 150)
(150, 1.0, 150)
(150, 0.7, 180)

E/
n b
(G
eV
)

DD-ME2
(100, 0.5, 160)
(300, 0.5, 160)
(100, 0.7, 160)
(100, 0.5, 180)

nb (fm-3)

FIG. 2. Energy per baryon E=nb of nuclear matter (solid lines)
and quarkyonic matter (dashed lines) as functions of the total
baryon number density nb, which are obtained adopting the
parameter sets indicated in Table II.

FIG. 3. Velocity of sound v in nuclear matter (solid lines) and
quarkyonic matter (dashed lines) obtained with the EOSs
presented in Fig. 2.
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which corresponds to quarkyonic transition in our current
study. At larger densities, the velocity of sound for
quarkyonic matter is distinctively smaller than that of
nuclear matter, which approaches ∼0.64 and is slightly
larger than the ultrarelativistic limit 1=

ffiffiffi
3

p
(≈0.58). Note

that, when we take B ¼ 0, C ¼ 0.7, and
ffiffiffiffi
D

p ¼ 150 MeV
for PKDD, the quarkyonic transition is of first order and the
velocity of sound is zero in the range nb ≈ 0.1–0.13 fm−3.
Meanwhile, at large enough densities, e.g., ∼40n0, pertur-
bative QCD is applicable and we expect the formation of a
deconfined quark matter with v → 1=

ffiffiffi
3

p
[90–92]. The

deviation of v from 1=
ffiffiffi
3

p
is thus attributed to the strong

interactions in the quarkyonic phase. Generally speaking, at
small densities with the emergence of quarkyonic matter,
the velocity of sound increases with B, C, and

ffiffiffiffi
D

p
, which

can be identified as well according to the maximum sound
speed vmax indicated in Table II. At larger densities, the
velocity of sound increases with C and decreases with

ffiffiffiffi
D

p
,

while varying the quark-hadron interaction strength B has
little contribution to v.
Based on the EOSs presented in Fig. 2, the correspond-

ing structures of compact stars are obtained by solving the
Tolman-Oppenheimer-Volkov (TOV) equation

dP
dr

¼ −
GME
r2

ð1þ P=EÞð1þ 4πr3P=MÞ
1 − 2GM=r

ð28Þ

with the subsidiary condition

dM
dr

¼ 4πEr2: ð29Þ

The gravity constant is taken asG ¼ 6.707 × 10−45 MeV−2.
The dimensionless tidal deformability is calculated by

Λ ¼ 2k2
3

�
R
GM

�
5

; ð30Þ

where the second Love number k2 is evaluated by
introducing perturbations to the metric [93–95]. Note that
a first-order liquid-gas phase transition takes place at
subsaturation densities, which forms various types of
nonuniform structures, and we have adopted unified
neutron star EOSs corresponding to the employed covar-
iant density functionals [96].
In Fig. 4, we present the M-R relations of neutron stars

and quarkyonic stars obtained by adopting different combi-
nations of parameters in Table II. The corresponding radius
R1.4 and tidal deformability Λ1.4 for 1.4M⊙ stars and
the maximum mass MTOV are indicated in Table II as well.
Based on various observational data of pulsars, strong
constraints on compact star structures are obtained.
For example, by analyzing the orbital motion of pulsars
in a binary system [97], the masses of PSR J1614-2230
(1.928� 0.017M⊙) [98] and PSR J0348þ 0432 (2.01�
0.04M⊙) [99] were measured with high precision. The
observation of gravitational waves emitted in the binary
neutron star merger event GW170817 has placed strong
constraints on the tidal deformability 70 ≤ Λ1.4 ≤ 580,
corresponding to a radius of 11.9þ1.4

−1.4 km [100]. The
simultaneous measurements of masses and radii for PSR
J0030þ 0451 and PSR J0740þ 6620 have also placed
strong constraints on compact star structures [101–104].
The M-R relation of neutron stars predicted by the

covariant density functional TW99 agrees well with the
observational constraints [96], while the radii for two-solar-
mass neutron stars lie in the lower ends of the PSR J0740þ
6620 constraints [102,104]. Nevertheless, neutron stars
obtained with PKDD (larger L) and DD-ME2 (larger J)
have larger maximum masses MTOV, radii R1.4, and tidal
deformabilities Λ1.4, where R1.4 and Λ1.4 slightly exceed
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FIG. 4. Mass-radius relations of compact stars obtained with the EOSs presented in Fig. 2. The shaded regions indicate the constraints
from the binary neutron star merger event GW170817 within 90% credible region [100], the observational pulse profiles in PSR
J0030þ 0451 and PSR J0740þ 6620 within 68% credible region [101–104].
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the observational upper limits. With the emergence of
quarkyonic matter, the EOSs of quarkyonic matter become
softer, and, consequently, quarkyonic stars are more com-
pact with smaller radii and tidal deformabilities. For smaller
values of (B, C,

ffiffiffiffi
D

p
), the EOSs of quarkyonic matter

become softer, where MTOV, R1.4, and Λ1.4 decrease. The
quarkyonic stars obtained with the parameter sets (100, 0.5,
160) for DD-ME2 and (150, 0.7, 150) and (0, 0.7, 150) for
PKDD, thus, become consistent with various constraints
from pulsar observations. Note that, for TW99, quarkyonic
transition is not favored according to pulsar observations,
where quarkyonic matter can emerge only in the center
regions of massive stars. Evidently, adopting (300, 0.2,
180) for TW99 predicts a too soft EOS for quarkyonic stars,
where the corresponding maximum mass does not reach
2M⊙ and is, thus, inconsistent with pulsar observations
[99]. In such cases, quarkyonic transition is more likely to
take place if a large skewness coefficient J or slope of
symmetry energy L is confirmed for nuclear matter, e.g.,
those from PREX-2 [82].
In Fig. 5, we present energy per baryon and pressure of

nuclear matter, quark matter, and quarkyonic matter with
isospin asymmetry δ ¼ 0 and 1. To fix the properties of
quark matter and quarkyonic matter, as indicated by the
boldface in Table II, the parameter sets (100, 0.5, 160) for
DD-ME2 and (150, 0.7, 150) for PKDD are adopted, which
predict quarkyonic stars that are consistent with pulsar
observations. Evidently, the deconfined quark matter is
highly unstable in comparison with nuclear matter and
quarkyonic matter, where the energy per baryon is much
larger. The quarkyonic transition takes place at around 1.4n0

for symmetric nuclear matter (SNM), while the onset
density is decreased significantly for pure neutron matter
(PNM) at around non ¼ 0.1 fm−3. Similar to quarkyonic
matter in compact stars, the energy is decreased once
quarkyonic transition takes place for both SNM and
PNM. The obtained energy per baryon is then compared
with the well-constrained nuclear matter properties at n0 and
non, i.e., Bðn0Þ ¼ −16 MeV, Sðn0Þ ¼ 31.7� 3.2 MeV
[78,79], BðnonÞ ¼ −14.1� 0.1 MeV, and SðnonÞ ¼ 25.5�
1.0 MeV [105,106]. Evidently, the binding energy of SNM
agrees well with the constraints BðnonÞ ¼ −14.1�
0.1 MeV and Bðn0Þ ¼ −16 MeV. This is not the case
for PNM, where PKDD predicts symmetry energy that
exceeds the constraint Sðn0Þ ¼ 31.7� 3.2 MeV. The sit-
uation is improved if quarkyonic transition takes place for
PNM, which well reproduces the constraint on symmetry
energy Sðn0Þ ¼ 31.7� 3.2 MeV.
In the right panel in Fig. 5, we compare the pressure of

nuclear matter, quark matter, and quarkyonic matter with
various constraints from the flow data of heavy-ion
collisions [107,108]. Note that there exist many other
constraints on the pressure of dense matter [109–113],
which are not indicated in Fig. 5, since they generally
coincide with those from Refs. [107,108]. For SNM at
nb ≈ 2–3n0, the pressure obtained by RMF models is
generally larger than the constraint provided by
Danielewicz et al. [107], which nonetheless coincides with
the constraint from Oliinychenko et al. [108]. At larger
densities, however, SNM becomes too stiff except for those
obtained with the covariant energy density functional
TW99. This can be improved if we consider quarkyonic
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transitions, where the pressure at nb ≈ 3–5n0 coincides
with the constraints from the flow data of heavy-ion
collisions [107,108]. Similar situations are also observed
for PNM, where the pressure obtained with PKDD and DD-
ME2 is too large except for TW99 that gives satisfactory
results. Note that, at nb ≈ 2–3n0, the constraint from
Oliinychenko et al. [108] gives a larger upper limit on
pressure as well, which supports the predictions of RMF
models. At larger densities, it is necessary to consider
quarkyonic transitions if the covariant density functionals
PKDD and DD-ME2 are adopted, where the pressure of
PNM is decreased so that it is consistent with the
constraints from heavy-ion collisions [107].

IV. CONCLUSION

In this work, by combining RMF models and equivpar-
ticle models with density-dependent quark masses [66], we
extend RMF models to include quark degrees of freedom,
where we have constructed explicitly a quark Fermi sea and
a baryonic Fermi surface to model the quarkyonic phase. In
contrast to previous treatments of simply removing lower-
momentum components [39–42], baryons with momentums
ranging from zero to Fermi momentums are included in our
approach, which are more reasonable in analogy to the
formation of Cooper pairs that are dominated by zero
momentum components. The nuclear matter, quark matter,
and quarkyonic matter are treated in a unified manner. As
we increase the density of nuclear matter, quarkyonic matter
emerges and the energy per baryon decreases; i.e., quar-
kyonic matter is more stable than nuclear matter or quark
matter, and energy minimization is still applicable to obtain
the microscopic properties of quarkyonic matter.
We have adopted three different effective baryon-baryon

interactions TW99 [51], PKDD [68], and DD-ME2 [69],
which indicate different saturation properties for nuclear
matter with a larger slope of symmetry energy L for PKDD

and larger skewness coefficient J for DD-ME2 in compari-
son with TW99. Note that the covariant density functional
TW99 gives satisfactory predictions for the nuclear matter
properties in both neutron stars and heavy-ion collisions,
where the quarkyonic transition is unfavorable according to
both experimental and astrophysical constraints. This is not
the case for either PKDD or DD-ME2, which predict too
stiff EOSs for nuclear matter in neutron stars and heavy-ion
collisions. The radii and tidal deformabilities of neutron
stars are too large with R1.4 ¼ 13.63 km andΛ1.4 ¼ 764 for
PKDD and R1.4 ¼ 13.2 km and Λ1.4 ¼ 712 for DD-ME2,
which exceed the constraints 70 ≤ Λ1.4 ≤ 580 from the
binary neutron star merger event GW170817 [100] and the
radius measurements of PSR J0030þ 0451 with R1.4 ¼
12.45� 0.65 km [104]. Meanwhile, the functionals PKDD
and DD-ME2 predict too large pressure for nuclear matter at
nb ≈ 3–5n0 according to the constraints from the flow data
of heavy-ion collisions [107,108]. This situation can be
improved if quarkyonic transition takes place, where the
EOSs become softer and can accommodate various exper-
imental and astrophysical constraints.
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