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In this work, we adopt the one-boson-exchange model to study the YcKð�ÞðYc ¼ Λc;ΣcÞ interactions.
After considering both of the S −D wave mixing effects and the coupled channel effects, we can predict
several possible open-charm molecular pentaquarks, i.e., the single ΣcK� molecular states with
IðJPÞ ¼ 1=2ð1=2−Þ, 1=2ð3=2−Þ, and 3=2ð1=2−Þ, the coupled ΛcK�=ΣcK� molecular states with
1=2ð1=2−Þ and 1=2ð3=2−Þ, and the coupled ΣcK=ΛcK�=ΣcK� molecular state with 1=2ð1=2−Þ. Mean-
while, we extend our study to the YcK̄ð�Þ interactions, and our results suggest that the ΣcK̄ system with
IðJPÞ ¼ 1=2ð1=2−Þ, the ΣcK̄� systems with 1=2ð1=2−Þ, 1=2ð3=2−Þ, and 3=2ð3=2−Þ, the coupled
ΛcK̄�=ΣcK̄� system with 1=2ð1=2−Þ, and the ΣcK̄=ΛcK̄�=ΣcK̄� system with 1=2ð1=2−Þ can be the prime
molecular candidates.

DOI: 10.1103/PhysRevD.108.054011

I. INTRODUCTION

In the past decades, the observations of X=Y=Z=Pc=Tcc
structures have stimulated theorist’s extensive interest in
exploring the properties of exotic states. Among the
possible configurations, the hadronic molecular state,
which is composed of the color-singlet hadrons, plays an
important role in explaining the observed exotic structures.
The main reason of introducing such a configuration is that
many observed X=Y=Z=Pc=Tcc structures are near some
specific mass thresholds of the hadron pairs, which leads to
answers whether these observations can be explained
under the framework of the molecular state (one can see
Refs. [1–5] for a detailed review). Thus, carrying out the
study of the hadronic molecular state has became an active
and important research field in the hadron physics. It is not
only helpful to reveal the underlying structures of these
near thresholds X=Y=Z=Pc=Tcc structures, but it can also
improve our knowledge of the nonperturbative behavior of
the quantum chromodynamics.
Very recently, the LHCb collaboration reported their

observations of two open heavy flavormultiquark candidates,

Ta0
cs̄ ð2900Þ and Taþþ

cs̄ ð2900Þ, where the superscript a means
that their quantumnumbers are both IðJPÞ ¼ 1ð0þÞ [6,7]. For
theTa0

cs̄ ð2900Þ, the discovered channel isDþ
s π

−, themass and
width are 2892� 14� 15 MeV and 119� 26� 12 MeV,
respectively, while for the Taþþ

cs̄ ð2900Þ, the discovered
channel, the mass, and the width are Dþ

s π
þ, 2921� 17�

19 MeV and 137� 32� 14 MeV, respectively. According
to their channels, mass positions and quantum numbers,
it is easy to guess that the Ta0

cs̄ ð2900Þ andTaþþ
cs̄ ð2900Þ belong

to the same isovector triplet. Furthermore, the LHCb
collaboration also determined their averaged masses and
decay widths, which are 2908� 11� 20 MeV and 136�
23� 11 MeV, respectively.
Due to the charged property of Ta0ðþþÞ

cs̄ ð2900Þ, their
minimal valance quark components are naturally inferred
to be cs̄qq̄ (q ¼ u; d). Since they are very close to theD�K�
mass threshold, it is natural conjecture whether the

Ta0ðþþÞ
cs̄ ð2900Þ states can be the isovector D�K� molecules

with JP ¼ 0þ. In fact, in our former work [8], we can not
only reproduce the D�

s0ð2317Þ and Ds1ð2460Þ in the
S-wave DK and D�K molecular scenario but also find
that the one-boson-exchange (OBE) effective potentials are
strong enough to form loosely bound molecular states for
the D�K� systems with IðJPÞ ¼ 0ð0þ; 1þ; 2þÞ and 1ð0þÞ.
Therefore, the D�K� hadronic molecular explanations for

the Ta0ðþþÞ
cs̄ ð2900Þ states cannot be excluded. In addition,

there are other different theoretical explanations to the

Ta0ðþþÞ
cs̄ ð2900Þ states, like the compact open-charm penta-

quark [9–11] and the D�ρ molecule [12].

*chenrui@hunnu.edu.cn
†06289@njnu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 054011 (2023)

2470-0010=2023=108(5)=054011(10) 054011-1 Published by the American Physical Society

https://orcid.org/0000-0001-5752-3476
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.054011&domain=pdf&date_stamp=2023-09-11
https://doi.org/10.1103/PhysRevD.108.054011
https://doi.org/10.1103/PhysRevD.108.054011
https://doi.org/10.1103/PhysRevD.108.054011
https://doi.org/10.1103/PhysRevD.108.054011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Besides the Ta0ðþþÞ
cs̄ ð2900Þ, another two open-charm

states X0ð2900Þ and X1ð2900Þ, which were observed by
the LHCb collaboration in the D−Kþ final states of the
Bþ → DþD−Kþ decay process [13,14], are also interest-
ing. Their spin parities JP are 0þ and 1þ, respectively.
Because their mass positions are very close to the D̄�K� and
D̄1K mass thresholds, respectively, many theorists propose
the X0ð2900Þ and X1ð2900Þ states as the hadronic molecu-
lar states [15–25]. At present, the inner structures for the

Ta0ðþþÞ
cs̄ ð2900Þ and X0;1ð2900Þ are still in discussion (as

one can see in Ref. [5]).
As is well known, the light diquark in the heavy baryons

Yc ¼ ðΛc;ΣcÞ has the same color structure 3̄c with the light

antiquark in the heavy mesonQq̄ [26]. If the Ta0ðþþÞ
cs̄ ð2900Þ

can be assigned as the loosely bound hadronic molecular
states composed by the charmed meson and kaon, then
it is natural to conjecture whether there exist possible
open charm molecular pentaquarks counterpart of the

Ta0ðþþÞ
cs̄ ð2900Þ, which are near the thresholds of the

ΛcKð�Þ and ΣcKð�Þ, respectively. In this work, we search
for such open charm molecular partners composed by
ΛcKð�Þ and ΣcKð�Þ, which can not only enrich the family of
the exotic states, but also help us to understand the nature of

the newly Ta0ðþþÞ
cs̄ ð2900Þ.

Apart from searching for possible ΛcKð�Þ and ΣcKð�Þ
molecular states, in this work, we also study the inter-
actions between the S-wave charmed baryon Yc ¼ ðΛc;ΣcÞ
and the antistrange meson K̄ð�Þ by adopting the OBE model
and considering both of the S-D mixing effects and the
coupled channel effects. After solving the coupled channel
Schrödinger equations, we can search for the possible
charmed-strange molecular pentaquarks counterpart of the
X0;1ð2900Þ. Our study will not only provide valuable
information to the experimental search for exotic open
charm hadronic molecular pentaquarks but also give an
indirect test of the molecular state picture for the

Ta0ðþþÞ
cs̄ ð2900Þ and X0;1ð2900Þ.
This paper is organized as follows. After this introduc-

tion, we introduce the relevant effective Lagrangians and
the OBE model in Sec. II. In Sec. III, we present the OBE
effective potentials and the corresponding numerical
results. The paper ends with a summary in Sec. IV.

II. LAGRANGIANS AND OBE MODEL

In this work, we deduce the OBE effective potentials for
the YcKð�Þ systems by employing the effective Lagrangian
approach at the hadronic level. The relevant Lagrangians
describing the interactions between the heavy baryons and
light mesons are constructed in terms of the heavy quark
limit and chiral symmetry [27], i.e.,

LB3̄
¼ lBhB̄3̄σB3̄i þ iβBhB̄3̄v

μðVμ − ρμÞB3̄i; ð1Þ

LB6
¼ lShS̄μσSμi − 3

2
g1εμνλκvκhS̄μAνSλi

þ iβShS̄μvαðVα
ab − ραabÞSμi þ λShS̄μFμνðρÞSνi; ð2Þ

LB3̄
B6 ¼ ig4hS̄μAμB3̄i þ iλIεμνλκvμhS̄νFλκB3̄i þ H:c: ð3Þ

Here, v ¼ ð1; 0Þ is the four velocity, ρμba ¼ igVV
μ
ba=

ffiffiffi
2

p
,

and FμνðρÞ ¼ ∂
μρν − ∂

νρμ þ ½ρμ; ρν�. Aμ and Vμ stand for
the axial current and vector current, respectively. They can
be written as

Aμ ¼
1

2
ðξ†∂μξ − ξ∂μξ

†Þ ¼ i
fπ

∂μPþ…;

Vμ ¼
1

2
ðξ†∂μξþ ξ∂μξ

†Þ ¼ i
2f2π

h
P; ∂μP

i
þ…;

respectively. Here, ξ ¼ expðiP=fπÞ and fπ ¼ 132 MeV.

B3̄ and Sμ ¼ −
ffiffi
1
3

q
ðγμ þ vμÞγ5B6 þ B�

6μ denote the ground

heavy baryons multiplets with their light quarks in the 3̄
and 6 flavor representation, respectively. The matrices B3̄,
B6, P, and V read as

B3̄¼
�

0 Λþ
c

−Λþ
c 0

�
; B6¼

0
@Σþþ

c
Σþ
cffiffi
2

p

Σþ
cffiffi
2

p Σ0
c

1
A;

P¼
0
@ π0ffiffi

2
p þ ηffiffi

6
p πþ

π− − π0ffiffi
2

p þ ηffiffi
6

p

1
A; V¼

0
@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

1
A:

The effective Lagrangians describing the interactions
between the strange mesons and light mesons are con-
structed in the SUð3Þ symmetry [28,29], i.e.,

LPPV ¼ ig

2
ffiffiffi
2

p
D
∂
μPðPVμ − VμP

E
; ð4Þ

LVVP ¼ gVVPffiffiffi
2

p ϵμναβ
D
∂μVν∂αVβP

E
; ð5Þ

LVVV ¼ ig

2
ffiffiffi
2

p
D
∂
μVν

�
VμVν − VνVμ

�E
: ð6Þ

After expanding Eqs. (1)–(6), we can further obtain

Lσ ¼ lBhB̄3̄σB3̄i − lShB̄6σB6i; ð7Þ

LP ¼ i
g1
2fπ

εμνλκvκhB̄6γμγλ∂νPB6i

−
ffiffiffi
1

3

r
g4
fπ

hB̄6γ
5ðγμ þ vμÞ∂μPB3̄i þ H:c:; ð8Þ
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LV ¼ 1ffiffiffi
2

p βBgVhB̄3̄v · VB3̄i − βSgVffiffiffi
2

p hB̄6v · VB6i

−
λIgVffiffiffi

6
p εμνλκvμhB̄6γ

5γνð∂λVκ − ∂κVλÞB3̄i þ H:c:

− i
λgV
3

ffiffiffi
2

p hB̄6γμγνð∂μVν − ∂
νVμÞB6i; ð9Þ

LKð�ÞKð�Þσ ¼ gσmKK̄Kσ − gσmK�K̄� · K�σ ð10Þ

LPKK� ¼ ig
4

�
ðK̄�μK − K̄K�μÞ

�
τ · ∂μπ þ ∂μηffiffiffi

3
p

�

þ ð∂μK̄K�μ − K̄�μ
∂μKÞ

�
τ · π þ ηffiffiffi

3
p

��
; ð11Þ

LVKK ¼ ig
4
½K̄∂μK − ∂μK̄K�ðτ · ρμ þ ωμÞ; ð12Þ

LVK�K� ¼ ig
4
½ðK̄�

μ∂
μK�ν − ∂

μK̄�νK�
μÞðτ · ρν þ ωνÞ

þ ð∂μK̄�νK�
ν − K̄�

ν∂
μK�νÞðτ · ρμ þ ωμÞ

þ ðK̄�
νK�

μ − K̄�
μK�

νÞðτ · ∂μρν þ ∂
μωνÞ�; ð13Þ

LPK�K� ¼ gVVPεμναβ∂μK̄�ν
∂
αK�β

�
τ · π þ ηffiffiffi

3
p

�
; ð14Þ

LVKK� ¼ gVVPεμναβð∂μK̄�νK þ K̄∂μK�νÞ
ðτ · ∂αρβ þ ∂

αωβÞ: ð15Þ

Coupling constants in the above Lagrangians are esti-
mated with the quark model [27,30], lS ¼ −2lB ¼ 7.3,
g1 ¼ ð ffiffiffi

8
p

=3Þg4 ¼ 1.0, βSgV ¼ −2βBgV ¼ 12.0, λSgV ¼
−2

ffiffiffi
2

p
λIgV ¼ 19.2 GeV−1, gσ ¼ −3.65, and g ¼ 12.00.

gVVP ¼ 3g2=ð32 ffiffiffi
2

p
π2fπÞ [31].

With these prepared effective Lagrangians, we can easily
write down the scattering amplitudes for the B1M2 →
B3M4 processes in the t channel, where B1 and B3 stand
for the initial and final baryons, respectively, and M2 and
M4 stand for the initial and final mesons, respectively. The
corresponding effective potentials can be related to the
scattering amplitudes by the Breit approximation,

VB1M2→B3M4

E ðqÞ ¼ −
MðB1M2 → B3M4Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimB1
mM2

mB3
mM4

p : ð16Þ

Here,mi is the mass of the interaction hadron.MðB1M2 →
B3M4Þ denotes the scattering amplitude for the B1M2 →
B3M4 process by exchanging the light mesons (σ, π, η, ρ,
and ω). Next, we perform the Fourier transformation to
obtain the effective potentials in the coordinate space VðrÞ,

VEðrÞ ¼
Z

d3q
ð2πÞ3 e

iq·rVEðqÞF 2ðq2; m2
EÞ:

In order to compensate the off-shell effect of the exchanged
meson, we introduce a monopole form factor F ðq2; m2

EÞ ¼
ðΛ2 −m2

EÞ=ðΛ2 − q2Þ at every interactive vertex, where Λ,
mE, and q are the cutoff parameter, the mass, and four-
momentum of the exchanged meson, respectively. In our
numerical calculations, we vary the cutoff value in the
range of 0.8 ≤ Λ ≤ 5.0 GeV. According to the deuteron
experience [32,33], the reasonable cutoff value is taken
around 1.00 GeV. In the following discussion, the loosely
bound state with the cutoff value around 1.00 GeV can be
recommended as the prime hadronic molecular candidate.
For the ΛcKð�Þ systems, the flavor wave function jI; I3i

can be expressed as j1=2; 1=2i ¼ jΛþ
c Kð�Þþi and

j1=2;−1=2i ¼ jΛþ
c Kð�Þ0i. For the ΣcKð�Þ systems, their

isospin I can be taken as 1=2 or 3=2. The corresponding
flavor wave functions jI; I3i are

				 12 ;
1

2



¼

ffiffiffi
2

3

r 			Σþþ
c Kð�Þ0

E
−

1ffiffiffi
3

p
			Σþ

c Kð�Þþ
E
;

				 12 ;−
1

2



¼ 1ffiffiffi

3
p

			Σþ
c Kð�Þ0

E
−

ffiffiffi
2

3

r 			Σ0
cKð�Þþ

E
;

				 32 ;
3

2



¼

			Σþþ
c Kð�Þþ

E
;

				 32 ;
1

2

E
¼ 1ffiffiffi

3
p

			Σþþ
c Kð�Þ0

E
þ

ffiffiffi
2

3

r 			Σþ
c Kð�Þþ

E
;

				 32 ;−
1

2



¼

ffiffiffi
2

3

r 			Σþ
c Kð�Þ0

E
þ 1ffiffiffi

3
p

			Σ0
cKð�Þþ

E
;

				 32 ;−
3

2



¼

			Σ0
cKð�Þ0

E
;

respectively. When we consider the S −D wave mixing
effects, the spin-orbit wave functions j2Sþ1LJi are

YcK½JP ¼ 1=2−�∶ j2S1=2i;
YcK�½JP ¼ 1=2−�∶ j2S1=2i; j4D1=2i;
YcK�½JP ¼ 3=2−�∶ j4S3=2i; j2D3=2i; j4D3=2i: ð17Þ

The general expressions of the spin-orbit wave functions
j2Sþ1LJi for the YcKð�Þ systems read as

YcK∶j2Sþ1LJi ¼
X
mS;mL

CJ;M
1
2
mS;LmL

χ1
2
mjYL;mL

i;

YcK�∶j2Sþ1LJi ¼
XmS;mL

m;m0
CS;mS

1
2
m;1m0C

J;M
SmS;LmL

χ1
2
mϵ

m0 jYL;mL
i:

Here, CJ;M
1
2
mS;LmL

, CS;mS
1
2
m;1m0 , and CJ;M

SmS;LmL
are the Clebsch-

Gordan coefficients. χ1
2
m and YL;mL

stand for the spin wave
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function and the spherical harmonics function, respectively.
ϵ is the polarization vector for the vector meson with
ϵm� ¼∓ 1ffiffi

2
p ðϵmx � iϵmy Þ and ϵm0 ¼ ϵmz , which satisfies ϵ�1 ¼

1ffiffi
2

p ð0;�1; i; 0Þ and ϵ0 ¼ ð0; 0; 0;−1Þ.

III. THE OBE EFFECTIVE POTENTIALS AND THE
NUMERICAL RESULTS

Following the above procedures, we can deduce the
concrete OBE effective potentials for the YcKð�Þ systems
with different quantum configurations. After that, we adopt
the obtained OBE effective potentials to solve the coupled
channel Schrödinger equations. By doing this, we can
search for the bound state solutions. A system with the
reasonable bound state solutions can be recommended as
the good hadronic molecular candidate, where the binding
energy is taken from several MeV to several tens MeV, and
the root-mean-square (rms) radius is a few fm or larger.

A. The ΛcKð�Þ systems

The total OBE effective potentials for the single ΛcK
system can be written as

VΛcK→ΛcK ¼ lBgσχ
†
3χ1YðΛ; mσ; rÞ

þ βBgVg
4

χ†3χ1YðΛ; mω; rÞ: ð18Þ

Here, we define

YðΛ; m; rÞ ¼ 1

4πr
ðe−mr − e−ΛrÞ − Λ2 −m2

8πΛ
e−Λr: ð19Þ

As shown in Eq. (18), there exist the σ exchange and ω
exchange interactions, which contribute in the intermediate
range and the short range, respectively. The σ exchange
provides an attractive interaction, whereas the ω exchange
interaction is repulsive. Here, the ρ exchange interaction is
strongly suppressed as the isospin forbidden in the Λc −
Λc − ρ coupling. Since the KKπðηÞ coupling is forbidden

by the spin-parity conservation, the pseudoscalar meson
(π=η) exchanges interactions are strongly suppressed,
either.
After solving the Schrödinger equation, we do not

find bound state solutions in the cutoff region 0.8 ≤
Λ ≤ 5.0 GeV. Thus, the OBE effective potentials for
the ΛcK system is not strong enough to bind a bound
state.
For the single S-wave ΛcK� systems with JP ¼ 1=2−

and 3=2−, their OBE effective potentials are the same, i.e.,

VΛcK�→ΛcK� ¼ lBgσðϵ2 · ϵ†4Þχ†3χ1YðΛ; mσ; rÞ

þ βBgVg
4

ðϵ2 · ϵ†4Þχ†3χ1YðΛ; mω; rÞ: ð20Þ

When we consider the S −D wave mixing effects, the
operator ϵ2 · ϵ

†
4 will be replaced by the unit matrix I ¼

h2S0þ1L0
J0jϵ2 · ϵ†4j2Sþ1LJi in the numerical calculations,

which indicates the OBE effective potentials are the exactly
the same with those for the ΛcK system with 1=2−. In the
cutoff region 0.8 ≤ Λ ≤ 5.0 GeV, we cannot find the
bound state solutions, either.
In this work, we further perform the coupled channel

analysis on the ΛcK�=ΣcK� interactions, the corresponding
OBE effective potentials are

VC
ΛcK� ¼

�
VΛcK�→ΛcK� VΣcK�→ΛcK�

VΛcK�→ΣcK� VΣcK�→ΣcK�

�
; ð21Þ

with

VΛcK�→ΣcK� ¼ 1

6

g4gVVP
fπ

F 1ðr;σ; iϵ2 × ϵ†4ÞYðΛ0;mπ0; rÞ

−
1

6
ffiffiffi
2

p λIgVg
mK�

F 2ðr;σ; iϵ2 × ϵ†4ÞYðΛ0;mρ0; rÞ;

ð22Þ

VΣcK�→ΣcK� ¼ 1

2
lSgσχ

†
3χ1ϵ2 · ϵ

†
3YðΛ; mσ; rÞ −

g1gVVP
6

ffiffiffi
2

p
fπ

F 1ðr; σ; iϵ2 × ϵ†4ÞGðIÞYðΛ; mπ; rÞ

−
g1gVVP
18

ffiffiffi
2

p
fπ

F 1ðr; σ; iϵ2 × ϵ†4ÞYðΛ; mη; rÞ þ
1

8
βSgVgχ

†
3χ1ϵ2 · ϵ

†
3GðIÞYðΛ; mρ; rÞ

þ λSgVg

8
ffiffiffi
3

p
mΣc

χ†3χ1ϵ2 · ϵ
†
3GðIÞ∇2YðΛ; mρ; rÞ −

λSgVg

24
ffiffiffi
3

p
mK�

F 2ðr; σ; iϵ2 × ϵ†4ÞGðIÞYðΛ; mρ; rÞ

þ 1

8
βSgVgχ

†
3χ1ϵ2 · ϵ

†
3YðΛ; mω; rÞ þ

λSgVg

8
ffiffiffi
3

p
mΣc

χ†3χ1ϵ2 · ϵ
†
3∇2YðΛ; mω; rÞ

−
λSgVg

24
ffiffiffi
3

p
mK�

F 2ðr; σ; iϵ2 × ϵ†4ÞYðΛ; mω; rÞ: ð23Þ
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Here, the value of the isospin factor GðIÞ is taken as
GðI ¼ 1=2Þ ¼ −2, GðI ¼ 3=2Þ ¼ 1. The variables in
Eq. (22) are Λ2

0¼Λ2−q20, m
2
π0¼m2

π−q20, m
2
ρ0 ¼ m2

ρ − q20

with q0 ¼
M2

Σc
−M2

Λc
2ðMΣcþMK� Þ. And we define useful operators, i.e.,

F 1ðr; a; bÞ ¼ χ†3

�
a · b∇2 þ Sðr̂; a; bÞr ∂

∂r
1

r
∂

∂r

�
χ1; ð24Þ

F 2ðr; a; bÞ ¼ χ†3

�
2a · b∇2 − Sðr̂; a; bÞr ∂

∂r
1

r
∂

∂r

�
χ1: ð25Þ

Here, the a · b and Sðr̂; a; bÞ stand for the spin-spin
interactions and the tensor force operators, respectively.
The corresponding matrices elements can be obtained by
sandwiched between the spin-orbit wave functions as
presented in the Eq. (17), i.e.,

iσ · ðϵ2 × ϵ†4Þ ↦

8>>>>>>>><
>>>>>>>>:

�−2 0

0 1

�
; JP ¼ 1=2−

0
B@

1 0 0

0 −2 0

0 0 1

1
CA; JP ¼ 3=2−

ð26Þ

Sðr̂;σ;iϵ2×ϵ†4Þ↦

8>>>>>>><
>>>>>>>:

�
0 −

ffiffiffi
2

p

−
ffiffiffi
2

p
−2

�
; JP¼1=2−

0
B@
0 1 2

1 0 −1
2 −1 0

1
CA; JP¼3=2−

ð27Þ

With these deduced effective potentials, we search for
the bound state solutions for the coupled ΛcK�=ΣcK�
systems in the cutoff range 0.8 ≤ Λ ≤ 5.0 GeV. In
Table I, we collect the corresponding numerical results,

which include the cutoff dependence of the binding energy
E, the root-mean-square radius rrms, and the probabilities
Pið%Þ for all the discussed channels.
For the coupled ΛcK�=ΣcK� system with IðJPÞ ¼

1=2ð1=2−Þ, there exist four channels, the ΛcK�ð2S1=2;
4D1=2Þ channels and the ΣcK�ð2S1=2; 4D1=2Þ channels after
considering both the S −D wave mixing effects and the
coupled channel effects. As presented in Table I, when the
cutoff is taken as 1.56 GeV, the binding energy is
−0.14 MeV, the rms radius is 6.11 fm, and the probability
for the ΛcK�ð2S1=2Þ channel is 98.82%. As the cutoff Λ
increases to 1.62 GeV, the binding energy becomes
−11.57 MeV, the rms radius becomes 1.12 fm, and the
ΛcK�ð2S1=2Þ is still the dominant channel with the prob-
ability around 93.18%. From the current numerical results,
in the cutoff range around 1.60 GeV, we can obtain the
weakly bound state with the reasonable loosely bound state
solutions, and the dominant channel is the ΛcK�ð2S1=2Þ
with its probability over 90%. Since the cutoff value
is close to the empirical value Λ ∼ 1.00 GeV for
the deuteron [32,33], we conclude that the coupled
ΛcK�=ΣcK� systems with IðJPÞ ¼ 1=2ð1=2−Þ can be
recommended as a good hadronic molecular candidate.
For the coupled ΛcK�=ΣcK� system with IðJPÞ ¼

1=2ð3=2−Þ, there include the ΛcK�ð4S3=2; 2D3=2; 4D3=2Þ
channels and the ΣcK�ð4S3=2; 2D3=2; 4D3=2Þ channels when
we consider both the coupled channel effects and the S −D
wave mixing effects. As shown in Table I, we can obtain
loosely bound state solutions at the cutoff larger than
1.34 GeV, where the binding energy is from several to ten
MeV, and the rms radius is larger than 1.00 fm, the
dominant channel is the ΛcK�ð4S3=2Þ channel. As the
increasing of the cutoff value, the ΣcK�ð4S3=2Þ channel
becomes more and more important, when the cutoff is
1.40 GeV, the probability of the S-wave ΣcK� component
turns into 27.27%. If we still adopt the experience of the
deuteron [32,33], then the coupled ΛcK�=ΣcK� system

TABLE I. The bound state solutions (the binding energy E, the root-mean-square radius rrms, and the probabilities Pið%Þ for all the
discussed channels) for the coupled ΛcK�=ΣcK� systems with IðJPÞ ¼ 1=2ð1=2−Þ and 1=2ð3=2−Þ. Here, E, rrms, and Λ are in units of
MeV, fm, and GeV, respectively. The dominant channels are labeled in a bold manner.

IðJPÞ Λ E rrms ΛcK�ð2S1=2Þ ΛcK�ð4D1=2Þ ΣcK�ð2S1=2Þ ΣcK�ð4D1=2Þ
1=2ð1=2−Þ 1.56 −0.14 6.11 98.82 ∼0 1.14 0.04

1.58 −2.14 2.62 97.11 0.01 2.82 0.06
1.60 −6.02 1.56 95.12 0.02 4.79 0.07
1.62 −11.57 1.12 93.18 0.03 6.72 0.07

IðJPÞ Λ E rrms ΛcK�ð4S3=2Þ ΛcK�ð2D3=2Þ ΛcK�ð4D3=2Þ ΣcK�ð4S3=2Þ ΣcK�ð2D3=2Þ ΣcK�ð4D3=2Þ
1=2ð3=2−Þ 1.34 −0.07 6.35 94.23 0.03 0.11 4.89 0.22 0.52

1.36 −3.06 2.07 84.54 0.08 0.28 13.36 0.53 1.20
1.38 −8.93 1.18 75.92 0.12 0.42 21.07 0.76 1.71
1.40 −16.80 0.87 69.12 0.14 0.52 27.27 0.91 2.05
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with 1=2ð3=2−Þ can be a good hadronic molecular candi-
date; it is mainly composed by the ΛcK�ð4S3=2Þ channel,
followed by the ΣcK�ð4S3=2Þ channel.
In addition, we find that the coupled channel effects play

an important role in forming these ΛcK�=ΣcK� bound
states with 1=2ð1=2−; 3=2−Þ, since there do not exist bound
state solutions in the single ΛcK� systems.

B. The ΣcKð�Þ systems

The OBE effective potentials for the single ΣcK is

VΣcK→ΣcK ¼ 1

2
lSgσχ

†
3χ1YðΛ; mσ; rÞ

þ GðIÞ
8

βSgVgχ
†
3χ1YðΛ; mρ; rÞ

−
GðIÞ
24mΣc

λSgVgχ
†
3χ1∇2YðΛ; mρ; rÞ

þ 1

8
βSgVgχ

†
3χ1YðΛ; mω; rÞ

−
1

24mΣc

λSgVgχ
†
3χ1∇2YðΛ; mω; rÞ: ð28Þ

Here, there exists the extra ρ exchange interaction in
comparison to the ΛcK system, and it provides the
attractive and repulsive forces for the ΣcK system with I ¼
1=2 and 3=2, respectively. Therefore, it is possible to find
the bound state solutions for the ΣcK system with I ¼ 1=2
as the stronger attractive OBE effective potentials. After
solving the coupled channel Schrödinger equation, our
results show that there exist no bound state solutions for the
isoquartet ΣcK system. For the isodoublet ΣcK system, as
presented in Table II, we can obtain the reasonable loosely
bound state solutions when the cutoff Λ is larger than
2.00 GeV.
When we further perform the coupled ΣcK=ΛcK�=ΣcK�

analysis, we can allow the π-exchange interactions for both
of the ΛcK� → ΣcK and ΣcK� → ΣcK processes, which

play a very important role in binding the deuteron.
The corresponding OBE effective potentials can be
expressed as

VC
ΣcK

¼

0
B@

VΣcK→ΣcK VΛcK�→ΣcK VΣcK�→ΣcK

VΣcK→ΛcK� VΛcK�→ΛcK� VΣcK�→ΛcK�

VΣcK→ΣcK� VΛcK�→ΣcK� VΣcK�→ΣcK�

1
CA; ð29Þ

with

VΛcK�→ΣcK ¼ −
1

6

g4g
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKmK�

p F 1ðr; σ; ϵ2ÞUðΛ1; mπ1; rÞ

−
λIgVgVVP
3

ffiffiffi
2

p
ffiffiffiffiffiffiffiffi
mK�

mK

r
F 2ðr; σ; ϵ2ÞYðΛ1; mρ1; rÞ;

ð30Þ

VΣcK�→ΣcK¼
g1gF 1ðr;σ;ϵ2Þ

24
ffiffiffi
2

p
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKmK�

p GðIÞYðΛ2;mπ2;rÞ

þ g1g

72
ffiffiffi
2

p
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKmK�

p F 1ðr;σ;ϵ2ÞYðΛ2;mη2;rÞ

þλSgVgVVP
6

ffiffiffi
3

p
ffiffiffiffiffiffiffiffi
mK�

mK

r
F 2ðr;σ;ϵ2ÞGðIÞYðΛ2;mρ2;rÞ

þλSgVgVVP
6

ffiffiffi
3

p
ffiffiffiffiffiffiffiffi
mK�

mK

r
F 2ðr;σ;ϵ2ÞYðΛ2;mω2;rÞ:

ð31Þ

Here, we define an useful function in Eq. (30), i.e.,

UðΛ; m; rÞ ¼ 1

4πr
ðcosðmrÞ − e−ΛrÞ − Λ2 þm2

8πΛ
e−Λr:

The variables in the above effective potentials (30)–(31) are
defined as q1 ¼

M2
Λc
þM2

K−M
2
Σc
−M2

K�
2ðMΣcþMKÞ , Λ2

1 ¼ Λ2 − q21, m2
π1 ¼

q21 −m2
π , m2

ρ1 ¼ m2
ρ − q21, q2 ¼

M2
K�−M

2
K

2ðMΣcþMKÞ, Λ
2
2 ¼ Λ2 − q22,

TABLE II. The bound state solutions (the binding energy E, the root-mean-square radius rrms, and the probabilities Pið%Þ for all the
discussed channels) for the single ΣcK and the coupled ΣcK=ΛcK�=ΣcK� systems with IðJPÞ ¼ 1=2ð1=2−Þ and 3=2ð1=2−Þ. Here, E,
rrms, and Λ are in units of MeV, fm, and GeV, respectively. The dominant channels are labeled in bold.

Single channel Coupled channel

IðJPÞ Λ E rrms Λ E rrms ΣcKð2S1=2Þ ΛcK�ð2S1=2Þ ΛcK�ð4D1=2Þ ΣcK�ð2S1=2Þ ΣcK�ð4D1=2Þ
1=2ð1=2−Þ 2.00 −0.94 4.78 0.90 −0.36 6.14 98.85 0.61 0.47 0.01 0.06

2.20 −4.80 2.44 0.95 −3.28 3.04 97.61 1.34 0.92 0.02 0.12
2.40 −10.96 1.68 1.00 −9.27 1.91 96.11 2.25 1.42 0.04 0.18
2.60 −18.92 1.31 1.05 −18.44 1.42 94.60 3.18 1.92 0.06 0.24

3=2ð1=2−Þ � � � � � � � � � 1.28 −2.58 2.85 92.77 � � � � � � 7.11 0.12
� � � � � � � � � 1.29 −12.82 1.23 85.78 � � � � � � 13.99 0.22
� � � � � � � � � 1.30 −28.46 0.80 80.03 � � � � � � 19.67 0.30
� � � � � � � � � 1.31 −48.10 0.61 75.36 � � � � � � 24.29 0.35
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m2
π2 ¼ m2

π − q22, m2
η2 ¼ m2

η − q22, m2
ρ2 ¼ m2

ρ − q22,
m2

ω2 ¼ m2
ω − q22. After considering the S −D wave mixing

effects, the matrix elements for the spin-spin interaction
and tensor force operators read as σ · ϵ2 ↦ ð ffiffiffi

3
p

0 Þ and
Sðr̂; σ; ϵ2Þ ↦ ð 0 − ffiffiffi

6
p Þ, respectively.

In Table II, we collect the bound state solutions
[the binding energy E, the root-mean-square radius rrms,
and the probabilities Pið%Þ for all the discussed channels]
for the coupled ΣcK=ΛcK�=ΣcK� systems with IðJPÞ ¼
0; 1ð1=2−Þ.
For the ΣcK=ΛcK�=ΣcK� system with IðJPÞ ¼

1=2ð1=2−Þ, there exist the ΣcKð2S1=2Þ channel, the
ΛcK�ð2S1=2; 4D1=2Þ channels, and the ΣcK�ð2S1=2; 4D1=2Þ
channels. The reasonable loosely bound state solutions
emerge at the cutoff Λ ¼ 0.90 GeV, where the binding
energy is −0.36 MeV, the rms radius is 4.78 fm, and the
dominant channel is the ΣcKð2S1=2Þ with the probability
P ¼ 98.85%. When the cutoff increases to 1.05 GeV, this
bound state binds deeper, the binding energy is
−18.44 MeV, the rms radius decreases to 1.42 fm, and
the ΣcKð2S1=2Þ channel is still the dominant channel with its
probability around 95%. For the remaining channels, their
probabilities are very tiny. Compared to the bound state
properties in the single channel case, the cutoff is very
close to the reasonable value Λ ∼ 1.00 GeV. Therefore, the
coupledΣcK=ΛcK�=ΣcK� systemwith IðJPÞ ¼ 1=2ð1=2−Þ
can be the prime molecular candidate, and the coupled
channel effects play an important role for the formation of
this bound state.
For the ΣcK=ΣcK� system with IðJPÞ ¼ 3=2ð1=2−Þ,

there include the ΣcKð2S1=2Þ channel and the
ΣcK�ð2S1=2; 4D1=2Þ channels. We find a weakly bound state
at the cutoff Λ ¼ 1.28 GeV, the binding energy is
E ¼ −2.58 MeV, the rms radius is rrms ¼ 2.85 fm, and
the dominant channel is the ΣcKð2S1=2Þwith the probability
P ¼ 92.77%. With the increasing of the cutoff value, the
ΣcK� channel becomes more and more important. As the
cutoff increases to 1.31 GeV, the binding energy turns into
−48.10 MeV, the rms radius decreases to 0.61 fm, and the
probability for the ΣcK�ð2S1=2Þ is 24.29%. However, the
binding energy depends very sensitively on the cutoff.
Thus, we cannot draw a definite conclusion that the
ΣcK=ΣcK� system with IðJPÞ ¼ 3=2ð1=2−Þ as a good
hadronic molecular candidate.
For the ΣcK� systems, the isospin and spin-parity

configurations IðJPÞ include 1=2ð1=2−Þ, 1=2ð3=2−Þ,
3=2ð1=2−Þ, and 3=2ð3=2−Þ after considering the S −D
wave mixing effects. The relevant OBE effective potentials
are presented in Eq. (23). Our results indicate that there
exist the reasonable loosely bound state solutions for the
ΣcK� states with IðJPÞ ¼ 1=2ð1=2−Þ, 1=2ð3=2−Þ, and
3=2ð1=2−Þ in the cutoff range 0.80 ≤ Λ ≤ 5.00 GeV. As
shown in Table III, for the ΣcK� systems with 1=2ð3=2−Þ

and 3=2ð1=2−Þ, the binding energy around several to
several tens MeV and the rms radius around several fm
appear at the cutoff around 1.00 GeV, which is comparable
to the value in the deuteron [32,33]. Therefore, these two
states can be suggested as the good hadronic molecular
candidates. For the ΣcK� system with 1=2ð1=2−Þ, the
loosely bound state solutions appear as the cutoff is larger
than 1.70 GeV, which is slightly far away from the
empirical value for the deuteron [32,33], in this work,
we cannot exclude that the ΣcK� system with 1=2ð1=2−Þ as
a suitable molecular candidate.
In summary, our results can predict several possible open

charm molecular pentaquarks, the coupled ΛcK�=ΣcK�

molecular states with IðJPÞ ¼ 1=2ð1=2−; 3=2−Þ, the
coupled ΣcK=ΛcK�=ΣcK� molecular states with IðJPÞ ¼
1=2ð1=2−Þ, and the single ΣcK� states with IðJPÞ ¼
1=2ð1=2−; 3=2−Þ and 3=2ð1=2−Þ. And the coupled channel
effects do play the very important role in generating these
coupled channel molecular candidates.
The study of the strong decay behaviors is very helpful to

the search of these predicted open flavor molecular
pentaquarks. According to the conservation of the quantum
numbers and the limit of the phase space, we collect the
important strong decay channels as follows, i.e.,

ΣcK=ΛcK�=ΣcK�½1=2ð1=2−Þ� → fDsN;ΛcKg;
ΛcK�=ΣcK�½1=2ð1=2−Þ� → fDð�Þ

s N;ΛcK;ΣcKg;
ΛcK�=ΣcK�½1=2ð3=2−Þ� → fD�

sNg;
ΣcK�½1=2ð1=2−Þ� → fDð�Þ

s N;ΛcKð�Þ;ΣcKg;
ΣcK�½1=2ð3=2−Þ� → fD�

sN;ΛcK�;Σ�
cKg;

ΣcK�½3=2ð1=2−Þ� → fD�
sΔ;ΣcKg:

C. The predictions of the possible
YcK̄ð�Þ molecular states

In this work, we further extend our study to the ΛcK̄ð�Þ

and ΣcK̄ð�Þ systems, the corresponding OBE effective

TABLE III. The Λ dependence of the obtained bound-state
solutions (the binding energy E and the root-mean-square radius
rrms) for the single ΣcK� systems. Here, E, rrms, and Λ are in units
of MeV, fm, and GeV, respectively.

IðJPÞ Λ E rrms IðJPÞ Λ E rrms

1=2ð1=2−Þ 1.70 −0.50 5.32 1=2ð3=2−Þ 0.88 −0.25 6.06
2.00 −3.32 2.64 0.98 −3.32 2.58
2.30 −8.31 1.81 1.08 −10.72 1.59
2.60 −15.30 1.42 1.18 −23.27 1.15

3=2ð1=2−Þ 1.28 −0.11 6.24 3=2ð3=2−Þ � � � � � � � � �
1.31 −2.42 2.50 � � � � � � � � �
1.34 −7.78 1.43 � � � � � � � � �
1.37 −16.71 1.00 � � � � � � � � �
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potentials can be related to those for the ΛcKð�Þ and ΣcKð�Þ
systems by the G-parity rule [34], i.e.,

VB1M̄2→B3M̄4
¼ ð−1ÞGEVB1M2→B3M4

; ð32Þ

where GE stands for the G parity for the exchanged meson
in the B1M2 → B3M4 process, notations M̄i and Mi
correspond to the antimesons and mesons, respectively.
Therefore, the effective potentials from the ω and π
exchanges are in complete contrast between the YcKð�Þ

and the YcK̄ð�Þ systems.

In the following, we also perform the single channel
analysis and the coupled channel analysis on the YcK̄ð�Þ
systems. We summary the corresponding numerical results
in Tables IV and V, respectively.
As shown in Table IV, we collect the bound state

properties for the single YcK̄ð�Þ systems. In the cutoff region
0.80 ≤ Λ ≤ 5.00 GeV, we can obtain five loosely bound
states, the ΣcK̄ bound state with IðJPÞ ¼ 1=2ð1=2−Þ,
the ΣcK̄� states with IðJPÞ ¼ 1=2ð1=2−Þ, 1=2ð3=2−Þ,
3=2ð1=2−Þ, and 3=2ð3=2−Þ. Among these five bound states,
we cannot recommend the ΣcK̄� state with 3=2ð1=2−Þ as a

TABLE IV. The Λ dependence of the obtained bound-state solutions (the binding energy E and the root-mean-square radius rrms) for
the single YcK̄ð�Þ systems. Here, E, rrms, and Λ are in units of MeV, fm, and GeV, respectively.

Systems Λ E rrms Systems Λ E rrms Systems Λ E rrms

ΛcK̄½1=2ð1=2−Þ� � � � � � � � � � ΣcK̄½1=2ð1=2−Þ� 1.30 −0.54 5.55 ΣcK̄�½3=2ð1=2−Þ� 4.40 −0.10 6.58
ΛcK̄�½1=2ð1=2−Þ� � � � � � � � � � 1.35 −3.21 2.97 4.60 −0.40 5.43
ΛcK̄�½1=2ð3=2−Þ� � � � � � � � � � 1.40 −7.92 1.99 4.80 −0.84 4.34
ΣcK̄½3=2ð1=2−Þ� � � � � � � � � � 1.45 −14.56 1.52 5.00 −1.47 3.47

ΣcK̄�½1=2ð1=2−Þ� 0.85 −0.37 5.42 ΣcK̄�½1=2ð3=2−Þ� 0.96 −0.40 5.64 ΣcK̄�½3=2ð3=2−Þ� 1.50 −0.75 4.49
0.90 −3.49 2.35 1.02 −3.26 2.66 1.70 −4.46 2.11
0.95 −9.56 1.54 1.08 −9.90 1.69 1.90 −11.09 1.42
1.00 −18.11 1.20 1.14 −21.21 1.25 2.10 −20.62 1.09

TABLE V. The bound state solutions (the binding energy E, the root-mean-square radius rrms, and the probabilities Pið%Þ for all the
discussed channels) for the coupled YcK̄ð�Þ systems. Here, E, rrms, and Λ are in units of MeV, fm, and GeV, respectively. The dominant
channels are labeled in a bold manner.

IðJPÞ Λ E rrms ΛcK̄�ð2S1=2Þ ΛcK̄�ð4D1=2Þ ΣcK̄�ð2S1=2Þ ΣcK̄�ð4D1=2Þ
1=2ð1=2−Þ 1.38 −0.90 2.98 81.97 0.18 16.99 0.86

1.40 −4.77 1.21 66.23 0.34 31.86 1.57
1.42 −9.42 0.88 56.07 0.45 41.46 2.02
1.44 −14.44 0.75 49.04 0.53 48.10 2.33

IðJPÞ Λ E rrms ΛcK̄�ð4S3=2Þ ΛcK̄�ð2D3=2Þ ΛcK̄�ð4D3=2Þ ΣcK̄�ð4S3=2Þ ΣcK̄�ð2D3=2Þ ΣcK̄�ð4D3=2Þ
1=2ð3=2−Þ 1.38 −2.71 1.51 40.22 0.27 2.16 48.94 0.46 7.96

1.39 −8.95 0.86 28.77 0.32 2.53 58.55 0.53 9.29
1.40 −15.88 0.72 23.23 0.34 2.69 63.27 0.56 9.90
1.41 −23.20 0.66 19.83 0.36 2.77 66.19 0.58 10.27

IðJPÞ Λ E rrms ΣcK̄ð2S1=2Þ ΛcK̄�ð2S1=2Þ ΛcK̄�ð4D1=2Þ ΣcK̄�ð2S1=2Þ ΣcK̄�ð4D1=2Þ
1=2ð1=2−Þ 0.87 −0.34 6.18 98.57 0.90 0.40 0.04 0.09

0.91 −3.71 2.85 97.15 1.90 0.68 0.07 0.19
0.95 −11.61 1.70 95.52 3.15 0.92 0.09 0.32
0.99 −25.39 1.21 93.90 4.47 1.09 0.08 0.46

IðJPÞ Λ E rrms ΣcK̄ð2S1=2Þ ΛcK̄�ð2S1=2Þ ΛcK̄�ð4D1=2Þ ΣcK̄�ð2S1=2Þ ΣcK̄�ð4D1=2Þ
3=2ð1=2−Þ 3.80 −0.54 5.47 99.43 � � � � � � 0.28 0.29

4.00 −2.67 3.12 99.00 � � � � � � 0.50 0.50
4.20 −6.91 2.00 98.42 � � � � � � 0.82 0.76
4.40 −14.02 1.43 97.68 � � � � � � 1.23 1.09
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good hadronicmolecular candidate, as the cutoff value is too
far away from the empirical value Λ ∼ 1.00 GeV. For the
remaining four bound states, we conclude that they can be
prime hadronicmolecular candidateswhenwe take the same
cutoff criterion in the deuteron.
When we consider the coupled channel analysis, we

find four weakly bound states by varying the cutoff from
0.80 to 5.00 GeVas shown in Table V. For the ΛcK̄�=ΣcK̄�

coupled bound state with IðJPÞ ¼ 1=2ð1=2−Þ and the
ΣcK̄=ΛcK̄�=ΣcK̄� coupled bound state with IðJPÞ ¼
1=2ð1=2−Þ, we can obtain the reasonable loosely bound
state properties at the cutoff taken around 1.00 GeV, the
dominant channels are the ΛcK̄�ð2S1=2Þ and ΣcK̄ð2S1=2Þ
channels, respectively. Thus, these two coupled bound states
can be prime hadronic molecular candidates, which are
mainly composed by theΛcK̄� and ΣcK̄ states, respectively.
Compared to the bound states solutions for the single

ΛcK̄� and ΣcK̄ systems with 1=2ð1=2−Þ, we also find that
the coupled channel effects play an important role in
generating the ΛcK̄� state with 1=2ð1=2−Þ. However, it
contributes very little for the ΣcK̄ state with 1=2ð1=2−Þ.
Thus, the ΣcK̄=ΛcK̄�=ΣcK̄� coupled bound state with
IðJPÞ ¼ 1=2ð1=2−Þ predicted here is not a new bound

state but has a close relation with the single ΣcK̄ molecule
with 1=2ð1=2−Þ.
For the ΛcK̄�=ΣcK̄� coupled system with IðJPÞ ¼

1=2ð3=2−Þ, its dominant channel is the ΣcK̄�ð4S3=2Þ. As
shown in Table V, its size is much smaller than those
coupled channel bound states mainly made up by the
lowest system. As the dominant channel is the ΣcK̄�ð4S3=2Þ,
this bound state has a close relation to the ΣcK̄� molecule
with 1=2ð3=2−Þ.
For the ΣcK̄=ΣcK̄� coupled system with IðJPÞ ¼

3=2ð1=2−Þ, we can obtain the bound state solution as
the cutoff reaches up to 3.80 GeV. Obviously, the cutoff
applied here is deviated from the reasonable value
1.00 GeV. It cannot be a good molecular candidate.
All in all, our results can predict five YcK̄ð�Þ type

hadronic molecular candidates, the coupled ΛcK̄�=ΣcK̄�

molecule with 1=2ð1=2−Þ, the ΣcK̄=ΛcK̄�=ΣcK̄� molecule
with 1=2ð1=2−Þ, the ΣcK̄� molecules with 1=2ð1=2−;
3=2−Þ, and 3=2ð3=2−Þ, where the coupled channel effects
play a vital role in binding the coupled ΛcK̄�=ΣcK̄� state
with 1=2ð1=2−Þ. Their important two-body strong decay
channels are summarized as follows, i.e.,

ΣcK̄½1=2ð1=2−Þ� → fΛcK̄;Ξ
ð0Þ
c πg;

ΛcK̄�=ΣcK̄�½1=2ð1=2−Þ� → fΛcK̄;ΣcK̄; DΛ; DΣ;Ξð0Þ
c π;Ξð0Þ

c ηg;
ΣcK̄�½1=2ð1=2−Þ� → fΛcK̄ð�Þ;ΣcK̄; Dð�ÞΛ; Dð�ÞΣ;Ξð0Þ

c π;Ξð0Þ
c η;Ξcρ;Ξcωg;

ΣcK̄�½1=2ð3=2−Þ� → fΛcK̄�;Σ�
cK̄; D�Λ; D�Σ;Ξcρ;Ξcω;Ξ�

cπ;Ξ�
cηg;

ΣcK̄�½3=2ð3=2−Þ� → fΣ�
cK̄; D�Σ;Ξcρ;Ξ�

cπg:

IV. SUMMARY

The studyof the exotic states is an important and interesting
issue in the hadron physics. Searching for the hadronic
molecular states can not only enrich the family of the
exotic states, but also help us to understand the essential
hadron-hadron interactions. Very recently, the LHCb col-
laboration observed two open heavy flavor multiquarks

Ta0ðþþÞ
cs̄ . Their near threshold behavior inspires the isovector

D�K� molecular explanations to them. In our former
paper, we found the D�K� state with IðJPÞ ¼ 1ð0þÞ can
be possible molecular candidate by adopting the OBE
effective potentials [8].
In this work, we extend our study on the interactions

between the S-wave charmed baryon Yc ¼ ðΛc;ΣcÞ and the
strange meson Kð�Þ by using the OBE model, and we
consider both of the S −D wave mixing effects and the
coupled channel effects. As shown in Fig. 1, our results
indicate the single ΣcK� states with IðJPÞ ¼ 1=2ð1=2−Þ,
1=2ð3=2−Þ, and 3=2ð1=2−Þ can be good open charm

molecular candidates. When we further consider the
coupled channel effects, we can predict another three
prime open charm molecular candidates, i.e., the coupled
ΛcK�=ΣcK� molecular states with 1=2ð1=2−Þ and
1=2ð3=2−Þ, and the coupled ΣcK=ΛcK�=ΣcK� molecular
state with 1=2ð1=2−Þ, where the dominant channels

FIG. 1. A summary of the predicted YcKð�Þ and YcK̄� molecu-
lar candidates. Here, the red and blue lines label the molecular
candidates predicted by the single channel analysis and the
coupled channel analysis. respectively.
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correspond to the ΛcK�ð2S1=2Þ, ΛcK�ð4S3=2Þ, and
ΣcKð2S1=2Þ, respectively. And the coupled channel effects
play the essential role in binding these three coupled
channel molecular candidates.
As a byproduct, we further study the YcK̄ð�Þ interactions

in the same model. As shown in Fig. 1, we can predict the
existences of the YcK̄ð�Þ type hadronic molecular states,
i.e., the ΣcK̄ molecule with IðJPÞ ¼ 1=2ð1=2−Þ, the ΣcK̄�
molecules with 1=2ð1=2−Þ, 1=2ð3=2−Þ, and 3=2ð3=2−Þ, the
coupled ΛcK̄�=ΣcK̄� molecule with 1=2ð1=2−Þ, and the
ΣcK̄=ΛcK̄�=ΣcK̄� molecule with 1=2ð1=2−Þ. We expect the

experimentalists to search for these predicted open charm
molecular pentaquarks.
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