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We study the axion of quantum chromodynamics in hot and/or dense quark matter, within a Nambu-
Jona-Lasinio-like model that includes the coupling of the axion to quarks. First, we compute the effects of
the chiral crossover on the axion mass and self-coupling at finite temperature and baryon density,
implementing local electrical neutrality and β-equilibrium. We find that the low energy properties of axion
are very sensitive to the phase transition of quantum chromodynamics, in particular, when the bulk quark
matter is close to criticality. Then, for the first time in the literature we compute the axion potential at finite
quark chemical potential and study the axion domain walls in bulk quark matter. We find that the energy
barrier between two adjacent vacuum states decrease in the chirally restored phase: this results in a lower
surface tension of the walls. Finally, we comment on the possibility of production of walls in dense quark
matter.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a fundamental
quantum field theory that provides a comprehensive frame-
work for describing the strong interaction, which is
characterized by a variety of remarkable features including
color confinement, chiral symmetry breaking, and the
Uð1ÞA anomaly. QCD is invariant under gauge transfor-
mations belonging to the SUð3Þ color group; however,
gauge invariance does not forbid the term

Lθ ∝ θF · F̃ ð1Þ

in the QCD Lagrangian density. In (1), F and F̃ denote the
gluon field strength tensor and its dual respectively, while θ

is a real parameter called the θ—angle. A θ ≠ 0 would
imply an explicit breaking of the charge conjugation, C,
and parity, P, symmetries and QCD would not be invariant
under CP transformations (thereby inducing an electric
dipole moment for the neutron [1]); however, there is
evidence that θ ≲ 10−11 [2–8]. The fact that θ is so small
despite the fact that it is not forbidden by gauge invariance
is called the strong CP problem. In order to understand this
problem it was suggested that a pseudoscalar field, a, exists
and couples to the nontrivial gluon field configurations via
the Lagrangian density

La ¼
a
fa

F · F̃; ð2Þ

then, including the θ—term (1) the CP-breaking
Lagrangian would be

LCP ¼ θF · F̃ þ a
fa

F · F̃: ð3Þ

Therefore, violations of CP in strong interactions would be
drivenbyθ þ a=fa. The coupling ofa to the gluon field gives
rise to a potential for a itself: it was then assumed that this
potential develops a minimum such that ha=fa þ θi ¼ 0.
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Hence, the expectation value of a would cancel the con-
tributions to observables coming from the θ—term inEq. (3).
This is called the Peccei-Quinn (PQ)mechanism and leads to
potential solution of the strong CP problem [9–16]. While
the PQmechanism is quite elegant, it implies the existence of
a light particle, theQCD-axion (for simplicitywe refer to this
particle as the axion in this article), which represents the
quantum fluctuation of the a field around hai. Axions are
dark matter candidates [11,17–19], they could arrange in
the form of stars [20–34] and might form Bose-Einstein
condensates [35,36].
Given the wide range in temperature and density of the

physical systems in which axions might play a role, it is
important to know how the properties of this particle vary
by changing the environment, in particular temperature and
density. This is the main scope of the present study, in
which we compute how the axion properties are affected by
the temperature and the density of the medium, focusing in
particular to temperatures and chemical potentials around
the QCD chiral phase transitions.
The use of perturbative methods to study the physical

properties of axions around the QCD critical temperature
and/or in dense quark matter is questionable, hence it is
necessary to resort to QCD-like models and effective field
theories to explore physics in the moderate energy scale. A
commonly used effective theory is the chiral perturbation
theory (χPT), which plays an important role in the study of
the vacuum structure of QCD as well as the axion proper-
ties at low temperatures by means of systematically
expanding the action in powers of the momenta of the
lighter mesons [37–42]. χPT shows great advantages in
the low energy regimes, for example, its prediction of the
topological susceptibility at zero temperature [13] is in
good agreement with the lattice QCD results [43–45].
However, at high temperature and/or large density, χPT
cannot be used due to the fact that it lacks information
about the QCD phase transitions. Consequently, the use of
a QCD-like model that is capable to accommodate axions
and the QCD phase transition is very welcome.
In this study, we use the Nambu-Jona-Lasinio (NJL)

model [46–50], to study the low energy properties of
axions. The model incorporates the instanton-induced
interaction that is responsible of the breaking of the
Uð1ÞA symmetry and is capable to describe the sponta-
neous breaking of chiral symmetry as well as the coupling
of quarks to the axions. In comparison with previous
studies, the use of the NJL model allows us to quantify
the effects of the QCD phase transitions on the low-energy
properties of the axion. We find that the chiral phase
transition substantially affects the axion mass and self-
coupling, particularly when the bulk of dense matter is
close to the critical endpoint: indeed, near the critical
endpoint, we find that the axion mass drops while the self-
coupling is enhanced. Both trends agree with previous
model studies [51–55].

In comparison with most of the previous works devoted
to the study the properties of the QCD axion in a hot and/or
dense environment, we implement β—equilibrium and
electrical neutrality, keeping in mind potential future
applications to compact stellar objects. It is worth noticing
that these conditions were also applied in [52], where
however a completely different physical problem was
studied, namely the construction of an equation of state
for dense matter with axions. We do not attempt to make up
an equation of state in this work, hence we believe that
ignoring the vector interaction can be a reasonable sim-
plification of the problem at hand.
As a matter of fact, the vector interaction generally has

the effect to make the chiral phase transition smoother, and
consequently it would move the critical endpoint in the
phase diagram toward regions of larger μ and smaller T.
However, our results do not depend on the exact location of
the critical endpoint. Indeed, the enhancement of the self-
coupling around the critical endpoint, the lowering of the
axion mass in the QCD medium with chiral symmetry
restored, and the lowering of the surface tension of the
axion walls, are related to the existence of a chiral cross-
over/phase transition and not to the specific location of the
critical lines. Consequently, they will remain even if the
critical line made smoother by the vector interaction.
Moreover, it is well know that vector interactions contribute
to the stiffness of quark matter in compact stars. For many
quark EoS that are soft without vector interactions, the
latter are a crucial ingredient to stabilize hybrid compact
stars for which the condition relating the compact star mass
M and the density at its center ϵc must be fulfilled: ∂M=∂ϵc.
Nevertheless, there are a couple of scenarios that do not
necessarily require vector interactions in quark matter:
(a) hadronic neutron stars made of stiff matter that do
not bear quark matter in their cores, however it can be
created when they merge with another compact star
typically happening in binary systems, due the compression
of nuclear matter resulting into a density increase beyond
the onset of quark matter, (b) neutron stars featuring a slow
phase transition [56] where the aforementioned stellar
stability condition is meant to break down.
When compared to previous works, our approach has the

merit to include the effect of the chiral phase transition on
the low-energy properties of the axions. Second, we study
the axion walls [57,58] and analyze how these could be
produced in the cores of compact stellar objects. We discuss
for the first time how chiral symmetry restoration in dense
quark matter affects the surface tension of the walls. We
then briefly discuss how these walls could form in the cores
of compact stellar objects.
The plan of the article is as follows. In Sec. II we present

in some detail the model we use to describe the coupling of
the QCD axion to hot and dense quark matter. In Sec. III we
present the results on axion mass, self-coupling, potential,
and walls at finite temperature and density. Finally, in
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Sec. IV we present our conclusions. Natural units ℏ ¼ 1,
c ¼ 1 and kB ¼ 1, are used throughout the article.

II. THE MODEL

We work in the grand canonical ensemble formalism,
using T and μ as state variables, where μ denotes the quark
number chemical potential. We consider quark matter
of two light flavors with Lagrangian density is given by
[46–55,59,60]

L ¼ q̄ði∂þ μ̂γ0 −m0Þqþ ēði∂þ μeγ0Þeþ Lint: ð4Þ

Here q denotes the quark field carrying Dirac, color and
flavor indices, while e is the electron field.m0 is the current
quark mass, that we take to be equal for u and d quarks for
simplicity. The quark chemical potential matrix is

μ̂ ¼
�
μu 0

0 μd

�
⊗ 1c ð5Þ

with 1c denoting the identity in color space and

μu ¼ μ −
2

3
μe; μd ¼ μþ 1

3
μe; ð6Þ

μd ¼ μu þ μe in agreement with the requirement of
β—equilibrium. Moreover, the interaction term is taken
as [51–55]

Lint ¼ G1½ðq̄τaqÞðq̄τaqÞ þ ðq̄τaiγ5qÞðq̄τaiγ5qÞ�
þ 8G2½ei

a
fa detðq̄RqLÞ þ e−i

a
fa detðq̄LqRÞ�; ð7Þ

in particular, the second line in the above equation
corresponds to the Uð1ÞA-breaking term that is responsible
of the coupling of the QCD-axion to the quarks [61,62]. In
the above equation, τa are matrices in the flavor space with
a ¼ 0;…; 3; τ0 is the identity and τi with i ¼ 1, 2, 3 are
Pauli matrices, normalized as trðτiτiÞ ¼ δij=2. The cou-
pling constant G1 governs the Uð1ÞA—invariant interac-
tion. Similarly, G2 regulates the strength of the Uð1ÞA—
breaking term; the determinant in the latter is understood in
the flavor space.
The thermodynamic potential at one loop has been

discussed in the literature, see [51] and references therein;
it reads

Ω ¼ Ωmf þΩ1−loop þ Ωe: ð8Þ
Here we take

Ωmf ¼ −G2ðη2 − σ2Þ cosða=faÞ þ G1ðη2 þ σ2Þ
− 2G2ση sinða=faÞ; ð9Þ

that represents the mean field contribution to Ω, with
σ ¼ hq̄qi, η ¼ hq̄iγ5qi. Moreover,

Ωe ¼ −2T
4π

8π3

�
7π4

180
T3 þ π2μ2eT

6
þ μ4e
12T

�
ð10Þ

is the contribution of the free, massless electrons. Finally,
Ω1−loop corresponds to the quark loop contribution,
given by

Ωq ¼ −4Nc

X
f¼u;d

Z
d3p
ð2πÞ3

×

�
Ep

2
þ 1

2β
logð1þ e−βðEp−μfÞÞð1þ e−βðEpþμfÞÞ

�
;

ð11Þ

with β ¼ 1=T. The dispersion laws of quarks are given by

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

q
; Δ2 ¼ ðm0 þ α0Þ2 þ β20; ð12Þ

with

α0 ¼ −2½G1 þG2 cosða=faÞ�σ þ 2G2η sinða=faÞ; ð13Þ

β0 ¼ −2½G1 −G2 cosða=faÞ�ηþ 2G2σ sinða=faÞ: ð14Þ

We notice that the first integral in the right-hand side of
Eq. (11) is ultraviolet divergent: we regularize this diver-
gence by cutting the integration at p ¼ Λ. The set of
parameters we use is [51] Λ ¼ 590 MeV, G0Λ2 ¼ 2.435,
G1 ¼ ð1 − cÞG0, G2 ¼ cG0, c ¼ 0.2, m0 ¼ 6 MeV.
The electron chemical potential is fixed for each value

of the pair ðμ; TÞ by imposing the electrical neutrality
condition

∂Ω
∂μe

¼ 0: ð15Þ

This condition is important for potential applications to the
core of compact stars. Moreover, the condensates are
computed self-consistently by solving the gap equations

∂Ω
∂σ

¼ 0;
∂Ω
∂η

¼ 0; ð16Þ

being sure that the solution σ ¼ σ̄, η ¼ η̄ corresponds to the
global minimum of Ω.

III. RESULTS

In Fig. 1 we plot −ðσ=2Þ1=3 ¼ −ðhūuþ d̄di=2Þ1=3 ver-
sus T for several values of μ; the electron chemical potential
has been computed self-consistently by solving simulta-
neously the gap equations (16) and the neutrality condition
(15) for a ¼ 0. In this case the η-condensate vanishes.
We notice that for all the values of μ considered, the chiral

condensate drops down in a narrow range of temperature,
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signaling the approximate restoration of chiral symmetry.
This allows us to define a pseudocritical temperature, Tc, as
the temperature where σ has its largest variation. Tc drops
as the chemical potential increases. In addition to this, we
notice that the variation of σ becomes sharper with μ:
the smooth crossover at μ ¼ 0 becomes a sharp transition
at large μ. This implies the existence of a critical end-
point in the phase diagram: we found it is located at
ðμCP; TCPÞ ¼ ð336 MeV; 79 MeVÞ. For completeness, at
T ¼ 0 the critical chemical potential is μC ¼ 393 MeV.
The axion mass and self-coupling are given by

m2
a ¼

d2Ω
da2

����
a¼0

; λa ¼
d4Ω
da4

����
a¼0

; ð17Þ

where the derivatives are total derivatives, namely they take
into account that the two condensates depend on a, and are
understood at σ ¼ σ̄, η ¼ η̄, where σ̄ and η̄ are the values of
the condensates that minimize Ω. Since the condensates
depend ona, the neutrality condition (15) has to be computed
by taking into account this dependence as well. Thus

d
da

¼ ∂

∂a
þ ∂σ

∂a
∂

∂σ
þ ∂η

∂a
∂

∂η
; ð18Þ

and so on for the higher derivatives.
In Fig. 2 we plot mafa, in units of the same quantity at

T ¼ μ ¼ 0, namely

mafa ¼ 6.38 × 103 MeV2; ð19Þ

in agreement with previous estimates [13,51]. In the figure
we plot the results versus temperature, for several values of
μ. The solid lines denote the results obtained by taking
electrical neutrality into account; for comparison, we show
by the dashed lines the results obtained for μe ¼ 0. We note
that the decrease ofma with T is slightly delayed by μe ≠ 0;

besides this, we find no major differences between the
cases with and without the neutrality condition.
From the numerical value of mafa in the vacuum we

obtain the topological susceptibility, χ ¼ m2
af2a, which is

χ ≈ ð79 MeVÞ4, again in agreement with previous works
[13,51]. We notice that in correspondence of the QCD
crossover at finite temperature the axion mass drops
significantly. Moreover, increasing μ results in a sharper
drop of the axion mass, similarly to what happens to the
chiral condensate. We conclude that the axion mass is very
sensitive to the QCD phase transition.
In Fig. 3 we plot λaf4a versus T for several values of μ.

The solid lines correspond to the results obtained by
imposing the electrical neutrality condition while the
dashed lines denote those with μe ¼ 0. At T ¼ μ ¼ 0 we
find

FIG. 1. Chiral condensate, −ðσ=2Þ1=3, versus T for several
values of μ in the neutral ground state.

FIG. 2. mafa versus T for several values of μ. Solid lines
correspond to the calculations with electrical neutrality while
dashed lines denote the results for μe ¼ 0.

FIG. 3. λaf4a versus T for several values of μ. Solid lines
correspond to the calculations with electrical neutrality while
dashed lines denote the results for μe ¼ 0.
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λaf4a ¼ −ð55.63 MeVÞ4; ð20Þ

in agreement with previous calculations within the NJL
model [51] and with χPT [13]. The fact that λa < 0 means
that the quartic interaction is attractive. We notice that in
correspondence of the chiral crossover, the quartic coupling
experiences a kink, in agreement with [55]; the kink
becomes more pronounced when the crossover becomes
sharper, namely when the critical endpoint is approached.
Thus, despite the fact that λa tends to become smaller with
T, the chiral crossover enhances the axion self-coupling
and this enhancement is very pronounced in proximity of
the critical endpoint. We also note that imposing electrical
neutrality does not qualitatively change the behavior of λa:
the nonzero μe slightly pushes the chiral crossover to higher
values of T; the peaks around the crossover are still present,
and are quite substantial for large values of the quark
chemical potential.

IV. THE AXION POTENTIAL
AND THE DOMAIN WALLS

In this section we analyze the full axion potential (8), that
we later use to analyze the axion domain walls and in
particular to compute the surface tension. The potential
ΩðθÞ in Eq. (8) is understood at the global minimum,
namely computed at for the values of σ and η that minimize
Ω for each value of θ. In addition to that, since we consider
electrically neutral matter, we fix μe in order to satisfy the
condition (15) for a ≠ 0.
In Fig. 4 we plot the axion potential versus a=fa for

several temperatures and for μ ¼ 320 MeV; this has been
computed along the neutrality line (15). The value at a ¼ 0
has been subtracted for later convenience, see Eq. (21). We
note that increasing temperature results the lowering of the
potential; this behavior is in qualitative agreement with

previous results [51,55]. We note that high chemical
potential and temperature the barrier between the two
degenerate vacua a ¼ 0 and a=fa ¼ 2π becomes several
orders of magnitude smaller than that in the phase with
chiral symmetry broken. Consequently, we expect that in
the chiral restored phase the energy stored in solitons
connecting the two vacua will be quite smaller than the one
in the vacuum.
As a matter of fact, the potential shown in Fig. 4 gives

rise to domain walls that interpolate between two succes-
sive vacua, because the potential is invariant under the
discrete symmetry transformation θ → θ þ 2πnwith n∈Z,
while this symmetry is broken spontaneously by choosing
one value of a, for example a ¼ 0. Derivation of the walls
is quite standard and the details can be found textbooks, see
for example [63,64], hence here we report the main steps of
the calculations only.
For the domain wall solution we consider the Lagrangian

density

L ¼ 1

2
∂
μa∂μa − Vða=faÞ; ð21Þ

where we defined

VðxÞ ¼ ΩðxÞ −Ωð0Þ; ð22Þ

clearly, V in the above equation depends on μ as well, but
we suppress this dependence for the sake of notation.
Incidentally, V is the quantity shown in Fig. 4. Putting
a ¼ θfa, the field equation that we get from L is

∂μ∂
μθ þ 1

f2a

∂VðθÞ
∂θ

¼ 0: ð23Þ

The domain wall solution of Eq. (23) is a solitary wave,

θðx; tÞ ¼ θðx − vtÞ; ð24Þ

where v denotes the propagation speed of the soliton.
Putting ξ ¼ x − vt we can write Eq. (23) as

ð1 − v2Þθξξ ¼
1

f2a

∂VðθÞ
∂θ

: ð25Þ

Multiplying both sides of (25) by θξ and integrating, also
noticing that we impose the boundary conditions θ → 0 and
θξ → 0 for ξ → �∞ we have

dθffiffiffiffiffiffiffiffiffiffi
VðθÞp ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

f2að1 − v2Þ

s
dξ; ð26Þ

the � sign correspond to the kink and antikink solutions
respectively. The antikink connects θ ¼ 2π for ξ → −∞ to
θ ¼ 0 for ξ → þ∞, while for the kink the two

FIG. 4. Axion potential at μ ¼ 320 MeV, computed along the
neutrality line. The potential is measured in units of the NJL
cutoff Λ.
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aforementioned limit values of θ are inverted. Equation (26)
can be integrated by noticing that, for both the kink and the
antikink, we can request that in the center of the soliton,
ξ ¼ 0, we have θðξÞ ¼ π. Then

Z
θðξÞ

π

dθffiffiffiffiffiffiffiffiffiffi
VðθÞp ¼ �ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

f2að1 − v2Þ

s
: ð27Þ

The above equation defines implicitly the soliton θðξÞ.
In order to simplify the numerical evaluation of the

integral on the left-hand side of Eq. (27) we represent the
potential by its Fourier cosine series,

VðθÞ ¼ c0
2
þ
XN
n¼1

cn cosðnθÞ; ð28Þ

with

cn ¼
2

π

Z
π

0

dθVðθÞ cosðnθÞ: ð29Þ

For the whole range of ðμ; TÞ we consider in this study we
find thatN ¼ 8 in Eq. (28) is enough.Moreover, we find that
for largeT=μ the approximationN ¼ 1works verywell,with
c1 ¼ −c0=2≡ −V0. For this particular case we have

VðθÞ ¼ V0ð1 − cos θÞ ¼ m2
af2að1 − cos θÞ: ð30Þ

For the potential (30) we can perform the integration in
Eq. (27) easily to get

θ�ðξÞ ¼ 4 arctan exp

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a

1 − v2

s
ξ

!
; ð31Þ

that, besides the rescaling brought byma, corresponds to the
well-known soliton of the sine-Gordon equation, propagat-
ing along the x—direction with speed c.
In the following analysis we consider only solitons at

rest: thus we put c ¼ 0 in Eq. (27) that implies ξ ¼ x andZ
θðxÞ

π

dθffiffiffiffiffiffiffiffiffiffi
VðθÞp ¼ �x

ffiffiffi
2

p

fa
: ð32Þ

For each x the above equation allows us to compute the
profile θðxÞ; the moving soliton is obtained from Eq. (32)
by a Lorentz boost. Similarly, for the cosine potential (30)
we have

θ�ðxÞ ¼ 4 arctan exp ð�maxÞ: ð33Þ

The above equation shows that the thickness of the wall is
ζ ¼ 1=ma: consequently, from the results in Fig. 2 we
conclude that chiral symmetry restoration (either at high
temperature or large baryon density) results in the broad-
ening of the axion walls.

In Fig. 5 we plot the axion wall profiles, θ ¼ a=fa, in the
chiral broken phase (green dot-dashed line) and in the
chiral restored phase (orange solid line); we used fa ¼
109 GeV which is within the so-called classical axion
window [65], see also [66] for more details, and ma was
computed within the NJL model, see Fig. 2: we found
ma ≈ 6.4 meV in the chiral symmetry broken phase
and ma ≈ 2.4 meV in the chiral symmetry restored phase.
The tiny value of the axion mass in the chiral restored phase
explains why the spatial extension of the wall in this phase
is of the order of 10−4 meters. The qualitative behavior of
the walls is in agreement with the above discussion, namely
restoring chiral symmetry results in the broadening of the
walls. This implies the lowering of the surface tension of
the wall, as we discuss later.
It is interesting to analyze the structure of the wall as we

approach its center. In the upper panel of Fig. 6 we plot σ
and η condensates along an axion wall in the cold and
dense quark matter phase: calculations correspond to
μ ¼ 400 MeV and T ¼ 10 MeV. The condensates are
measured in units of σ0 ¼ −2 × ð241.5Þ3 MeV3 which
corresponds to the condensate in the vacuum. In the lower
panel of the same figure we plot the fermion gap Δ defined
in Eq. (12). In this phase, the axion potential is well
approximated by the cosine form (30). In order to compute
the condensates we fixed fa ¼ 109 GeV as before, then
used the NJL model to compute ma ≈ 1.48 meV. We note
that approaching the core of the wall, the η-condensate
forms, signaling the spontaneous breaking of parity in that
region. We also note thatΔ decreases by a factor of ≈3 near
the core, meaning that quarks become lighter when they
approach the inner region of the wall; for comparison, we
checked that for the walls in the phase with chiral symmetry
broken Δ decreases of a few percent only moving from the
exterior part of the wall toward the core.
The energy per unit of transverse area, that is the surface

tension κ, of the domain wall is defined as

FIG. 5. Axionwalls, θ ¼ a=fa, in the chiral broken phase (green
dot-dashed line) and chiral symmetric phase (solid orange line).
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κ ¼
Z þ∞

−∞
dx
�
1

2

�
da
dx

�
2

þ Vða=faÞ
�
: ð34Þ

From the expression above it is easy to see that the wall gets
most of its energy from the region where jda=dxj and V are
larger, namely for a=fπ ¼ ð2kþ 1Þπ. Using a ¼ faθ and
Eq. (26) for c ¼ 0 we get

κ ¼ 2
ffiffiffi
2

p
fa

Z
π

0

dθ
ffiffiffiffiffiffiffiffiffiffi
VðθÞ

p
; ð35Þ

which stands for both kink and antikink solutions. For the
simple potential (30) this gives in particular

κ ¼ 8maf2a ¼
8χ

ma
; ð36Þ

where χ denotes the topological susceptibility.

In Fig. 7 we plot κ versus temperature for μ ¼ 0 (black
lines) and μ ¼ 320 MeV (green lines), computed along the
neutrality line; solid lines correspond to the results obtained
using the full axion potential (22), while the dashed lines
are the results obtained by virtue of the simplified cosine
potential (30). κ is measured in units of the surface tension
at T ¼ μ ¼ 0, which is κ0 ¼ 1.9 × 1016 MeV3. We note
that the QCD phase transition drastically affects the surface
tension of the wall; particularly, in correspondence of chiral
restoration κ drops of about one order of magnitude for both
values of μ shown.
We close this section with a comment on the possible

abundance of axion walls in the cores of compact stars.
From Eq. (36) we note that κ can be a monstrous number in
the vacuum; in the presence of dense quark matter, our
calculations show that κ can decrease of a few orders of
magnitude at most, which still gives a gigantic surface
tension. Therefore, one might conclude that forming the
walls in quark matter is almost as prohibitive as forming the
walls in the vacuum. However, this argument does not take
into account of the background energy carried by quark
matter itself: our conclusion is that in the thermodynamic
limit, adding one wall to the bulk quark matter costs zero
energy, therefore axion walls can form easily in presence of
dense quark matter. To see this effect, for simplicity let us
limit ourselves to the zero temperature case, which is a
good approximation for the core of a compact star. Then,
taking into account the domain wall, the energy density at
T ¼ 0 is

E ¼ 1

2

�
da
dx

�
2

þ Ωðμ; aðxÞÞ; ð37Þ

FIG. 6. Condensates (upper panel) and fermion gap (lower
panel) for the wall in cold and dense quark matter. We used
fa ¼ 109 GeV, while ma ¼ 1.48 meV resulting from the NJL
model calculation. σ0 corresponds to the condensate at
T ¼ μ ¼ 0.

FIG. 7. κ versus temperature at μ ¼ 0 (black lines) and μ ¼
320 MeV (green lines). Solid lines correspond to the results
obtained with the full potential (22), while the dashed lines are the
results obtained by virtue of the simplified cosine potential (30).
κ0 ¼ 1.9 × 1016 MeV3 is the surface tension computed at
T ¼ μ ¼ 0.
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here aðxÞ denotes the wall profile, so Ωðμ; aðxÞÞ contains
both the contribution of quark matter and that of the wall.
We can add and subtract Ωðμ; 0Þ to the right-hand side of
the above equation, then subtract the irrelevant constant
Ωð0; 0Þ, to get

E ¼ Ewall þ Equarks; ð38Þ

where

Ewall ¼
1

2

�
da
dx

�
2

þ V½aðxÞ�; ð39Þ

with V is defined in Eq. (22), and

Equarks ¼ Ωðμ; 0Þ −Ωð0; 0Þ: ð40Þ

Thus, Ewall corresponds to the energy density stored in the
wall aðxÞ at a given μ, while Equarks is the free energy of
bulk quark matter at the same μ. In other words, adding the
wall aðxÞ to the bulk of quark matter requires an energy
density Ewall. In the thermodynamic limit, L → ∞, the
energy of the wall grows ∼L2; however, the energy of
the background of quark matter grows∼μ4L3. Accordingly,
the energy cost of adding one of these solitons to the bulk of
quark matter is zero in this limit. We conclude that forming
walls in bulk quark matter is easier than forming the walls
in the vacuum, hence these walls might be abundant in the
cores of compact stellar objects.

V. CONCLUSIONS AND OUTLOOK

We studied the QCD axion potential in dense quark
matter. In particular, we analyzed the axion mass and self-
coupling at finite temperature and/or baryon density. The
interaction of axions to QCD matter, as well as the strong
interaction, were modeled by a local NJL model. Our main
goal was to study the effect of the chiral phase transition on
the low energy properties of the QCD axion. Interestingly,
axions have been studied in astrophysical environments in
the context of supernova explosions and protoneutron stars
formation [67,68]. Within this scenario, axions or axion
like particles might be formed by means of the so called
Primakoff process, which involves resonant production of
neutral pseudoscalar mesons from the interaction of high-
energy photons with atomic nuclei. The expected signals
have been searched for in different data surveys, for
instance in the Fermi-LAT data, where relevant the energy
range covers 50 MeV to 500 GeV [69]. In addition,
compact stars can potentially cool down by axion emis-
sions that complement the standard neutrino and photon
cooling [70–73]. Keeping in mind potential applications of
the results to the astrophysical compact objects, namely
neutron stars or neutron stars mergers which can be hot
and dense, we implemented bulk quark matter which is
locally electrically neutral and in β—equilibrium. In the

framework of the QCD axion and its implications for
astrophysics, these conditions were applied for the first
time in the literature in [52], where however a different
physical problem was studied, which was the building up of
stable neutron stars with equations of state that include
axions. In this work we focused primarily on the low
energy properties of the axion, namely the mass and the
self-coupling, as well as analyzed the formation of walls in
dense quark matter.
We found that the chiral phase transition considerably

affects the low energy properties of axions. In fact, the
axion mass drops when chiral symmetry is restored.
Moreover, the axion quartic self-coupling is enhanced
when quark matter is close to the QCD critical endpoint.
We then computed the axion walls in dense quark matter,

focusing on the surface tension of the solitons: to our
knowledge, this is the first time that such a problem is
considered. We noticed that the energy to form one of such
walls in bulk quark matter has to be compared with the
energy of the background matter: in the thermodynamic
limit adding one wall to the bulk costs zero energy. As a
consequence, adding walls to dense quark matter is not
disfavored by energy arguments, and our conclusion is that
it is likely that in bulk quark matter many axion walls form.
The calculation of the full axion potential, in addition with
the domain wall tension, shows that increasing T and/or μ
the potential well of the QCD axion becomes lower, thus
making the transitions between the θ—vacua easier.
Differently from calculations based on χPT, our work

has at least two advantages. First, it gives a result for the full
axion potential, rather than an expansion around a ¼ 0.
Moreover, it allows us to take into account the effect of the
chiral phase transition on the axion potential, and these
might have some impact, see for example the enhancement
of λa around the transition, or the lowering of ma in the
chiral restored phase. These effects cannot be obtained
within χPT because in the latter the phase transition at finite
temperature and/or chemical potential is missing.
As previously stated, this work paves the way to more

complete model calculations as well as to interesting
astrophysical applications. The results in Fig. 3 show that
λa is enhanced in proximity of the QCD critical endpoint:
this implies that when quark matter is close to criticality,
axions self-interaction is enhanced and this might favor the
formation of self-bound axion droplets. While in our work
this is purely speculative, this particular problem can be
studied in detail and we aim at addressing it in the near
future. Furthermore, the use of nonlocal covariant NJL
models is very welcome, since these allow for a better
comparison with lattice QCD data: studies of the coupling
of axions to dense quark matter within nonlocal models are
missing, so it is of a certain interest to extend the work we
presented here to such models, possibly including a vector
interaction. Moreover, it will be interesting to couple
quarks to magnetic, and more generally to electromagnetic,
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fields, and study how this coupling affects the low energy
properties of the axions. Even more, it is of a great interest
to study the modifications of axions to the QCD equation of
state at finite T and μ, having in mind applications to the
structure of compact stars and neutron stars mergers. If
axion walls can form inside compact stars, then they might
affect the transport properties of nuclear and quark matter
inside the stars themselves, because of the possible scatter-
ings of nucleons and/or quarks on the walls. We leave these
interesting problems to near future works.

ACKNOWLEDGMENTS

M.R. acknowledges John Petrucci for inspiration, L.
Campanelli and Z. Y. Lu for numerous discussions and S. S.
Wanforhis supporton the initial part of thisproject.D. E. A. C.
acknowledges support from theNCNOPUSProjectNo. 2018/
29/B/ST2/02576. A. G. G. would like to acknowledge the
support received from CONICET (Argentina) under Grants
No. PIP 22-24 11220210100150CO and from ANPCyT
(Argentina) under Grant No. PICT20-01847.

[1] R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten,
Phys. Lett. 88B, 123 (1979).

[2] C. A. Baker, D. D. Doyle, P. Geltenbort, K. Green, M. G. D.
van der Grinten, P. G. Harris, P. Iaydjiev, S. N. Ivanov,
D. J. R. May, J. M. Pendlebury et al., Phys. Rev. Lett. 97,
131801 (2006).

[3] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V.
Romalis, B. R. Heckel, and E. N. Fortson, Phys. Rev. Lett.
102, 101601 (2009).

[4] R. H. Parker, M. R. Dietrich, M. R. Kalita, N. D. Lemke,
K. G. Bailey, M. Bishof, J. P. Greene, R. J. Holt, W. Korsch,
Z. T. Lu et al., Phys. Rev. Lett. 114, 233002 (2015).

[5] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Phys.
Rev. Lett. 116, 161601 (2016); 119, 119901(E) (2017).

[6] N. Yamanaka, T. Yamada, E. Hiyama, and Y. Funaki, Phys.
Rev. C 95, 065503 (2017).

[7] F. K. Guo, R. Horsley, U. G. Meissner, Y. Nakamura, H.
Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller, and J. M.
Zanotti, Phys. Rev. Lett. 115, 062001 (2015).

[8] T. Bhattacharya, V. Cirigliano, R. Gupta, H. W. Lin, and B.
Yoon, Phys. Rev. Lett. 115, 212002 (2015).

[9] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977).

[10] R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977).
[11] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[12] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[13] G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G.

Villadoro, J. High Energy Phys. 01 (2016) 034.
[14] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010);

91, 049902(E) (2019).
[15] D. A. Easson, I. Sawicki, and A. Vikman, J. Cosmol.

Astropart. Phys. 11 (2011) 021.
[16] E. Berkowitz, M. I. Buchoff, and E. Rinaldi, Phys. Rev. D

92, 034507 (2015).
[17] L. D. Duffy and K. van Bibber, New J. Phys. 11, 105008

(2009).
[18] M. S. Turner and F. Wilczek, Phys. Rev. Lett. 66, 5 (1991).
[19] L. Visinelli and P. Gondolo, Phys. Rev. D 80, 035024

(2009).
[20] I. I. Tkachev, Phys. Lett. B 261, 289 (1991).
[21] E.W. Kolb and I. I. Tkachev, Phys. Rev. Lett. 71, 3051

(1993).
[22] P. H. Chavanis, Phys. Rev. D 84, 043531 (2011).

[23] F. S. Guzman and L. A. Urena-Lopez, Astrophys. J. 645,
814 (2006).

[24] J. Barranco and A. Bernal, Phys. Rev. D 83, 043525 (2011).
[25] E. Braaten, A. Mohapatra, and H. Zhang, Phys. Rev. Lett.

117, 121801 (2016).
[26] S. Davidson and T. Schwetz, Phys. Rev. D 93, 123509

(2016).
[27] J. Eby, M. Leembruggen, P. Suranyi, and L. C. R.

Wijewardhana, J. High Energy Phys. 12 (2016) 066.
[28] T. Helfer, D. Marsh, K. Clough, M. Fairbairn, E. Lim, and

R. Becerril, J. Cosmol. Astropart. Phys. 03 (2017) 055.
[29] D. G. Levkov, A. G. Panin, and I. I. Tkachev, Phys. Rev.

Lett. 118, 011301 (2017).
[30] J. Eby, M. Leembruggen, P. Suranyi, and L. C. R.

Wijewardhana, J. High Energy Phys. 06 (2017) 014.
[31] L. Visinelli, S. Baum, J. Redondo, K. Freese, and F.

Wilczek, Phys. Lett. B 777, 64 (2018).
[32] P. H. Chavanis, Phys. Rev. D 94, 083007 (2016).
[33] E. Cotner, Phys. Rev. D 94, 063503 (2016).
[34] Y. Bai, V. Barger, and J. Berger, J. High Energy Phys. 12

(2016) 127.
[35] P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301

(2009).
[36] P. H. Chavanis, Phys. Rev. D 98, 023009 (2018).
[37] R. Brower, S. Chandrasekharan, J. W. Negele, and U. J.

Wiese, Phys. Lett. B 560, 64 (2003).
[38] Y. Y. Mao, and T.-W. Chiu (TWQCD Collaboration), Phys.

Rev. D 80, 034502 (2009).
[39] S. Aoki and H. Fukaya, Phys. Rev. D 81, 034022 (2010).
[40] V. Bernard, S. Descotes-Genon, and G. Toucas, J. High

Energy Phys. 12 (2012) 080.
[41] V. Bernard, S. Descotes-Genon, and G. Toucas, J. High

Energy Phys. 06 (2012) 051.
[42] M. A. Metlitski and A. R. Zhitnitsky, Phys. Lett. B 633, 721

(2006).
[43] S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D.

Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor, F.
Pittler et al., Nature (London) 539, 69 (2016).

[44] S. Aoki et al. (JLQCD Collaboration), EPJ Web Conf. 175,
04008 (2018).

[45] C. Bonati, M. D’Elia, M. Mariti, G. Martinelli, M. Mesiti, F.
Negro, F. Sanfilippo, and G. Villadoro, J. High Energy Phys.
03 (2016) 155.

EXPLORING THE AXION POTENTIAL AND AXION WALLS IN … PHYS. REV. D 108, 054010 (2023)

054010-9

https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.102.101601
https://doi.org/10.1103/PhysRevLett.102.101601
https://doi.org/10.1103/PhysRevLett.114.233002
https://doi.org/10.1103/PhysRevLett.116.161601
https://doi.org/10.1103/PhysRevLett.116.161601
https://doi.org/10.1103/PhysRevLett.119.119901
https://doi.org/10.1103/PhysRevC.95.065503
https://doi.org/10.1103/PhysRevC.95.065503
https://doi.org/10.1103/PhysRevLett.115.062001
https://doi.org/10.1103/PhysRevLett.115.212002
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1103/RevModPhys.82.557
https://doi.org/10.1103/RevModPhys.91.049902
https://doi.org/10.1088/1475-7516/2011/11/021
https://doi.org/10.1088/1475-7516/2011/11/021
https://doi.org/10.1103/PhysRevD.92.034507
https://doi.org/10.1103/PhysRevD.92.034507
https://doi.org/10.1088/1367-2630/11/10/105008
https://doi.org/10.1088/1367-2630/11/10/105008
https://doi.org/10.1103/PhysRevLett.66.5
https://doi.org/10.1103/PhysRevD.80.035024
https://doi.org/10.1103/PhysRevD.80.035024
https://doi.org/10.1016/0370-2693(91)90330-S
https://doi.org/10.1103/PhysRevLett.71.3051
https://doi.org/10.1103/PhysRevLett.71.3051
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1086/504508
https://doi.org/10.1086/504508
https://doi.org/10.1103/PhysRevD.83.043525
https://doi.org/10.1103/PhysRevLett.117.121801
https://doi.org/10.1103/PhysRevLett.117.121801
https://doi.org/10.1103/PhysRevD.93.123509
https://doi.org/10.1103/PhysRevD.93.123509
https://doi.org/10.1007/JHEP12(2016)066
https://doi.org/10.1088/1475-7516/2017/03/055
https://doi.org/10.1103/PhysRevLett.118.011301
https://doi.org/10.1103/PhysRevLett.118.011301
https://doi.org/10.1007/JHEP06(2017)014
https://doi.org/10.1016/j.physletb.2017.12.010
https://doi.org/10.1103/PhysRevD.94.083007
https://doi.org/10.1103/PhysRevD.94.063503
https://doi.org/10.1007/JHEP12(2016)127
https://doi.org/10.1007/JHEP12(2016)127
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevD.98.023009
https://doi.org/10.1016/S0370-2693(03)00369-1
https://doi.org/10.1103/PhysRevD.80.034502
https://doi.org/10.1103/PhysRevD.80.034502
https://doi.org/10.1103/PhysRevD.81.034022
https://doi.org/10.1007/JHEP12(2012)080
https://doi.org/10.1007/JHEP12(2012)080
https://doi.org/10.1007/JHEP06(2012)051
https://doi.org/10.1007/JHEP06(2012)051
https://doi.org/10.1016/j.physletb.2006.01.001
https://doi.org/10.1016/j.physletb.2006.01.001
https://doi.org/10.1038/nature20115
https://doi.org/10.1051/epjconf/201817504008
https://doi.org/10.1051/epjconf/201817504008
https://doi.org/10.1007/JHEP03(2016)155
https://doi.org/10.1007/JHEP03(2016)155


[46] M. Buballa, Phys. Rep. 407, 205 (2005).
[47] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
[48] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[49] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345

(1961).
[50] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246

(1961).
[51] Z. Y. Lu and M. Ruggieri, Phys. Rev. D 100, 014013 (2019).
[52] B. S. Lopes,R. L. S. Farias,V.Dexheimer,A.Bandyopadhyay,

and R. O. Ramos, Phys. Rev. D 106, L121301 (2022).
[53] A. Bandyopadhyay, R. L. S. Farias, B. S. Lopes, and R. O.

Ramos, Phys. Rev. D 100, 076021 (2019).
[54] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 103,

074003 (2021).
[55] R. K. Mohapatra, A. Abhishek, A. Das, and H. Mishra,

Springer Proc. Phys. 277, 455 (2022).
[56] J. P. Pereira, C. V. Flores, and G. Lugones, Astrophys. J.

860, 12 (2018).
[57] P. Sikivie, Phys. Rev. Lett. 48, 1156 (1982).
[58] G. Gabadadze and M. A. Shifman, Phys. Rev. D 62, 114003

(2000).
[59] S. B. Ruester, V. Werth, M. Buballa, I. A. Shovkovy, and

D. H. Rischke, Phys. Rev. D 72, 034004 (2005).
[60] D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Oztas, and

F. Sandin, Phys. Rev. D 72, 065020 (2005).

[61] G. ’t Hooft, Phys. Rev. D 14, 3432 (1976); 18, 2199(E)
(1978).

[62] G. ’t Hooft, Phys. Rep. 142, 357 (1986).
[63] Y. Nagashima, Beyond the Standard Model of Elementary

Particle Physics (Wiley-VCH, New York, 2014), ISBN 978-
3-527-41177-1, 978-3-527-66505-1.

[64] M. Shifman, Advanced Topics in Quantum Field Theory
(Cambridge University Press, Cambridge, England, 2022),
ISBN 978-1-108-88591-1, 978-1-108-84042-2.

[65] F. Takahashi, W. Yin, and A. H. Guth, Phys. Rev. D 98,
015042 (2018).

[66] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[67] G. Lucente, P. Carenza, T. Fischer, M. Giannotti, and A.
Mirizzi, J. Cosmol. Astropart. Phys. 12 (2020) 008.

[68] T. Fischer, P. Carenza, B. Fore, M. Giannotti, A. Mirizzi,
and S. Reddy, Phys. Rev. D 104, 103012 (2021).

[69] F. Calore, P. Carenza, C. Eckner, T. Fischer, M. Giannotti,
J. Jaeckel, K. Kotake, T. Kuroda, A. Mirizzi, and F. Sivo,
Phys. Rev. D 105, 063028 (2022).

[70] L. B. Leinson, J. Cosmol. Astropart. Phys. 08 (2014) 031.
[71] A. Sedrakian, Phys. Rev. D 93, 065044 (2016).
[72] A. Sedrakian, Phys. Rev. D 99, 043011 (2019).
[73] M. Buschmann, C. Dessert, J. W. Foster, A. J. Long, and

B. R. Safdi, Phys. Rev. Lett. 128, 091102 (2022).

ZHANG, CASTILLO, GRUNFELD, and RUGGIERI PHYS. REV. D 108, 054010 (2023)

054010-10

https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRevD.100.014013
https://doi.org/10.1103/PhysRevD.106.L121301
https://doi.org/10.1103/PhysRevD.100.076021
https://doi.org/10.1103/PhysRevD.103.074003
https://doi.org/10.1103/PhysRevD.103.074003
https://doi.org/10.1007/978-981-19-2354-8
https://doi.org/10.3847/1538-4357/aabfbf
https://doi.org/10.3847/1538-4357/aabfbf
https://doi.org/10.1103/PhysRevLett.48.1156
https://doi.org/10.1103/PhysRevD.62.114003
https://doi.org/10.1103/PhysRevD.62.114003
https://doi.org/10.1103/PhysRevD.72.034004
https://doi.org/10.1103/PhysRevD.72.065020
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.18.2199
https://doi.org/10.1103/PhysRevD.18.2199
https://doi.org/10.1016/0370-1573(86)90117-1
https://doi.org/10.1103/PhysRevD.98.015042
https://doi.org/10.1103/PhysRevD.98.015042
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1088/1475-7516/2020/12/008
https://doi.org/10.1103/PhysRevD.104.103012
https://doi.org/10.1103/PhysRevD.105.063028
https://doi.org/10.1088/1475-7516/2014/08/031
https://doi.org/10.1103/PhysRevD.93.065044
https://doi.org/10.1103/PhysRevD.99.043011
https://doi.org/10.1103/PhysRevLett.128.091102

