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The evolution kernels that govern the scale dependence of the generalized parton distributions are invariant
under transformations of the SLð2;RÞ collinear subgroup of the conformal group. Beyond one loop the
symmetry generators, due to quantum effects, differ from the canonical ones. We construct the transformation
that brings the full symmetry generators back to their canonical form and show that the eigenvalues
(anomalous dimensions) of the new, canonically invariant, evolution kernel coincide with the so-called parity
respecting anomalous dimensions. We develop an efficient method that allows one to restore an invariant
kernel from the corresponding anomalous dimensions. As an example, the explicit expressions for next-to-
next-to-leading order invariant kernels for the twist-two flavor-nonsinglet operators in QCD and for the planar
part of the universal anomalous dimension in N ¼ 4 supersymmetric Yang-Mills are presented.
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I. INTRODUCTION

The study of deeply virtual Compton scattering (DVCS)
gives one access to the generalized parton distributions
(GPDs) [1–3] that encode the information on the transverse
position of quarks and gluons in the proton in dependence
on their longitudinal momentum. To extract the GPDs from
experimental data one has to know, among other things,
their scale dependence. The latter is governed by the
renormalization group equations (RGEs) or, equivalently,
evolution equations for the corresponding twist-two oper-
ators. Essentially the same equations govern the scale
dependence of the ordinary parton distribution functions
(PDFs) in the deep inelastic scattering (DIS) process. In
DIS one is interested in the scale dependence of forward
matrix elements of the local twist-two operators and
therefore can neglect the operator mixing problem between
local operators from the operator product expansion (OPE).
In the nonsinglet sector, there is only one operator for
a given spin/dimension. The anomalous dimensions of
such operators are known currently with the three-loop
accuracy [4,5], and first results at four loops are becoming
available [6,7]. In contrast, the DVCS process corresponds

to nonzero momentum transfer from the initial to the final
state and, as a consequence, the total derivatives of the local
twist-two operators have to be taken into consideration. All
these operators mix under renormalization and the RGE has
a matrix form. The DIS anomalous dimensions appear as
the diagonal entries of the anomalous dimensions matrix
which, in general, has a triangular form for the latter.
It was shown byMüller [8,9] that the off-diagonal part of

the anomalous dimension matrix is completely determined
by a special object, the so-called conformal anomaly.
Moreover, to determine the off-diagonal part of the anoma-
lous dimension matrix with l-loop accuracy it is enough to
calculate the conformal anomaly at one loop less. This
technique was used to reconstruct all relevant evolution
kernels/anomalous dimension matrices in QCD at two
loops [10–12].
A similar approach, but based on the analysis of QCD at

the critical point in noninteger dimensions, was developed
in Refs. [13–15]. It was shown that the evolution kernels in
d ¼ 4 in the MS-like renormalization scheme inherit the
symmetries of the critical theory in d ¼ 4 − 2ϵ dimensions.
As expected, the symmetry generators deviate from their
canonical form. Corrections to the generators have a rather
simple form if they are written in terms of the evolution
kernel and the conformal anomaly. It was shown in
Ref. [16] that by changing a renormalization scheme one
can get rid of the conformal anomaly term in the generators
bringing them into the so-called “minimal” form. Beyond
computing the evolution kernels, the conformal approach
has also been employed to calculate the next-to-next-to-
leading order (NNLO) coefficient (hard) functions of vector
and axial-vector contributions in DVCS [17,18], the latter
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in agreement with a direct Feynman diagram calculation
[19]. Moreover, the conformal technique is also applicable
to computing kinematic higher-power corrections in two-
photon processes as was recently shown in Refs. [20,21].
In this paper we construct a similarity transformation that

brings the full quantum generators back to the canonical
form. Correspondingly, the transformed evolution kernel
is invariant under the canonical SLð2;RÞ transformation.
Moreover, we will show that the eigenvalues of this kernel
are given by the so-called parity respecting anomalous
dimension, fðNÞ [22,23], which is related to the PDF
anomalous dimension spectrum γðNÞ as

γðNÞ ¼ f

�
N þ β̄ðaÞ þ 1

2
γðNÞ

�
; ð1Þ

where β̄ðaÞ ¼ −βðaÞ=2a with βðaÞ being the QCD beta
function. The strong coupling αs is normalized as
a ¼ αs=ð4πÞ. We develop an effective approach to restore
the canonically invariant kernel from its eigenvalues γðNÞ.
As an example, we present explicit expressions for three-
loop invariant kernels in QCD and N ¼ 4 supersymmetric
Yang-Mills (SYM) theory. The answers are given by linear
combinations of harmonic polylogarithms [24], up to
weight four in QCD and up to weight three in N ¼ 4
SYM. We also compare our exact result with the approxi-
mate expression for the three-loop kernels in QCD given
in Ref. [16].
The paper is organized as follows: in Sec. II we

describe the general structure of the evolution kernels of
twist-two operators. In Sec. III we explain how to effec-
tively recover the evolution kernel from the known anoma-
lous dimensions and present our results for the invariant
kernels in QCD and N ¼ 4 SYM. Section IV contains the
concluding remarks. Some technical details are given in
the appendixes.

II. KERNELS AND SYMMETRIES

We are interested in the scale dependence of the twist-
two light-ray flavor nonsinglet operator [25]

Oðz1; z2Þ ¼ ½q̄ðz1nÞγþ½z1n; z2n�qðz2nÞ�MS; ð2Þ

where nμ is an auxiliary lightlike vector, n2 ¼ 0, z1;2 are
real numbers, γþ ¼ nμγμ, ½z1n; z2n� stands for the Wilson
line ensuring gauge invariance, and the subscript MS
denotes the renormalization scheme. This operator can
be viewed as the generating function for local operators,
Oμ1���μN , that are symmetric and traceless in all Lorentz
indices μ1 � � � μN .
The renormalized light-ray operator (2) satisfies the RGE

ðμ∂μ þ βðaÞ∂a þ HðaÞÞOðz1; z2Þ ¼ 0; ð3Þ

where βðaÞ is d-dimensional beta function

βðaÞ ¼ −2aðϵþ β0aþ β1a2 þOða3ÞÞ; ð4Þ

β0 ¼ 11=3Nc − 2=3nf, etc., and HðaÞ¼aH1þa2H2þ���
is an integral operator in z1, z2.
It follows from the invariance of the classical QCD

Lagrangian under conformal transformations that the one-
loop kernel H1 commutes with the canonical generators of
the collinear conformal subgroup, S0; S�,

S− ¼ −∂z1 − ∂z2 ;

S0 ¼ z1∂z1 þ z2∂z2 þ 2;

Sþ ¼ z21∂z1 þ z22∂z2 þ 2z1 þ 2z2: ð5Þ
This symmetry is preserved beyond one loop albeit two
of the generators, S0; Sþ receive quantum corrections,
Sα ↦ S̃αðaÞ ¼ Sα þ ΔSαðaÞ. The explicit form of these
corrections can be found in Ref. [15].
It is quite useful to bring the generators to the following

form using the similarity transformation [16]:

HðaÞ ¼ e−XðaÞHðaÞeXðaÞ;
S̃αðaÞ ¼ e−XðaÞSαðaÞeXðaÞ; ð6Þ

where XðaÞ ¼ aX1 þ a2X2 þ � � � is an integral operator
known up to terms of Oða3Þ [11,16]. This transformation
can be thought of as a change in a renormalization scheme.
The shift operator S− is not modified and hence is

identical to S− in Eq. (5), and the quantum corrections to S0
and Sþ come only through the evolution kernel

S0ðaÞ ¼ S0 þ β̄ðaÞ þ 1

2
HðaÞ; ð7aÞ

SþðaÞ ¼ Sþ þ ðz1 þ z2Þ
�
β̄ðaÞ þ 1

2
HðaÞ

�
; ð7bÞ

where β̄ðaÞ ¼ β0aþ β1a2 þ � � � is the beta function in four
dimensions [cf. Eq. (1)]. The form of the generator S0ðaÞ is
completely fixed by the scale invariance of the theory,
while Eq. (7b) is the “minimal” ansatz consistent with the
commutation relation ½Sþ; S−� ¼ 2S0. Since the operator
HðaÞ commutes with the generators, ½HðaÞ; SαðaÞ� ¼ 0, its
form is completely determined by its spectrum (anomalous
dimensions). However, since the generators do not have the
simple form as in Eq. (5), it is yet necessary to find a way to
recover the operator from its spectrum.
To this end we construct a transformation that brings the

generators SαðaÞ to the canonical form Sα, Eq. (5). Let us
define an operator TðHÞ:

TðHÞ ¼
X∞
n¼0

1

n!
Ln

�
β̄ðaÞ þ 1

2
HðaÞ

�
n
; ð8Þ
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where L ¼ ln z12, z12 ≡ z1 − z2. Recall that z1, z2 are real
variables, so for z12 < 0 it is necessary to choose a specific
branch of the logarithm function. Although this choice is
irrelevant for further analysis we chose the þi0 recipe for
concreteness, i.e., L ¼ lnðz12 þ i0Þ. It can be shown that
the operator TðHÞ intertwines the symmetry generators
SαðaÞ and the canonical generators Sα. Namely,

TðHÞSαðaÞ ¼ SαTðHÞ; ð9Þ

see Appendix A for details. Let us also define a new
kernel Ĥ as

TðHÞHðaÞ ¼ ĤðaÞTðHÞ: ð10Þ

It follows from Eqs. (9) and (10) that the operator Ĥ
commutes with the canonical generators in Eq. (5),

½Sα; ĤðaÞ� ¼ 0: ð11Þ

The problem of restoring a canonically invariant operator
ĤðaÞ from its spectrum is much easier than that for the
operator HðaÞ and will be discussed in the next section. It
can be shown that the inverse of TðHÞ takes the form

T−1ðHÞ ¼
X∞
n¼0

ð−1Þn
n!

Ln

�
β̄ðaÞ þ 1

2
ĤðaÞ

�
n
; ð12Þ

see Appendix A. Further, it follows from Eq. (10) that

HðaÞ ¼ T−1ðHÞĤðaÞTðHÞ

¼ ĤðaÞ þ
X∞
n¼1

1

n!
TnðaÞ

�
β̄ðaÞ þ 1

2
HðaÞ

�
n
: ð13Þ

The operators TnðaÞ are defined by recursion

TnðaÞ ¼ ½Tn−1ðaÞ;L� ð14Þ

with the boundary condition T0ðaÞ ¼ ĤðaÞ. The nth term
in the sum in Eq. (13) is of order Oðanþ1Þ so that one can
easily work out an approximation for HðaÞ with arbitrary
precision, e.g.,

HðaÞ ¼ ĤðaÞ þ T1ðaÞ
�
1þ 1

2
T1ðaÞ

��
β̄ðaÞ þ 1

2
ĤðaÞ

�

þ 1

2
T2ðaÞ

�
β̄ðaÞ þ 1

2
ĤðaÞ

�
2

þOða4Þ: ð15Þ

It can be checked that this expression coincides with that
obtained in Ref. [16] [Eq. (3.9)].1

The evolution kernel ĤðaÞ can be realized as an integral
operator. It acts on a function of two real variables as
follows:

ĤðaÞfðz1; z2Þ ¼ Afðz1; z2Þ þ
Z
þ
hðτÞfðzα12; zβ21Þ; ð16Þ

where A is a constant, zα12 ≡ z1ᾱþ z2α, ᾱ≡ 1 − α, and

Z
þ
≡
Z

1

0

dα
Z

ᾱ

0

dβ: ð17Þ

τ ¼ αβ=ᾱ β̄ is called a conformal ratio. The weight function
hðτÞ in Eq. (16) only depends on this particular combina-
tion of the variables α, β as a consequence of invariance
properties of Ĥ, Eq. (11).
It is easy to find that the operators Tn take the form

TnðaÞfðz1; z2Þ ¼
Z
þ
lnnð1 − α − βÞhðτÞfðzα12; zβ21Þ ð18Þ

that again agrees with the results of Ref. [16]. Note that this
expression does not depend on the choice of the branch of
the logarithm defining the function L ¼ ln z12 in Eq. (8);
see Appendix A for more discussion.

III. ANOMALOUS DIMENSIONS VS KERNELS

First of all let us establish a connection between the
eigenvalues of the operators H and Ĥ. Since both of them
are integral operators of the functional form in Eqs. (16)
and (18), both operators are diagonalized by functions of
the form ψNðz1; z2Þ ¼ ðz1 − z2ÞN−1, whereN is an arbitrary
complex number. One may worry that the continuation of
the function ψN for negative z12 is not unique and requires
special care. But it does not matter for our analysis. Indeed,
zα12 − zβ21 ¼ ð1 − α − βÞz12 with αþ β < 1, and therefore
the operators do not mix the regions z12 ≷ 0. For definite-
ness let us suppose that

ψNðz1; z2Þ ¼ θðz12ÞzN−1
12 : ð19Þ

Let γðNÞ and γ̂ðNÞ be eigenvalues (anomalous dimensions)
of the operators H and Ĥ corresponding to the function ψN ,
respectively,

HðaÞψN ¼ γðNÞψN; ð20Þ

ĤðaÞψN ¼ γ̂ðNÞψN: ð21Þ

The anomalous dimensions γðNÞ and γ̂ðNÞ are analytic
functions of N in the right complex half-plane, ReðNÞ > 0.

1The notations adopted here and in Ref. [16] differ slightly. To
facilitate a comparison we note that the operators Tn defined here
satisfy the equation ½Sþ;Tn� ¼ n½Tn−1; z1 þ z2�.
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For integer even (odd) N, γðNÞ gives the anomalous
dimensions of the local (axial) vector operators.2

Now let us note that the operator TðHÞ acts on ψN as
follows;

TðHÞψNðz1; z2Þ ¼
X∞
n¼0

Ln

n!

�
β̄ðaÞ þ 1

2
γðNÞ

�
n
ψNðz1; z2Þ

¼ z
β̄ðaÞþ1

2
γðNÞ

12 ψNðz1; z2Þ
¼ ψNþβ̄þ1

2
γðNÞðz1; z2Þ: ð22Þ

Thus, it follows from Eq. (13) that the anomalous dimen-
sions γðNÞ and γ̂ðNÞ satisfy the relation [cf. also Eq. (1)]

γðNÞ ¼ γ̂

�
N þ β̄ðaÞ þ 1

2
γðNÞ

�
: ð23Þ

This relation appeared first in Refs. [22,23] as a generali-
zation of the Gribov-Lipatov reciprocity relation [26,27].
It was shown that the asymptotic expansion of the
function γ̂ðNÞ for large N is invariant under the reflection
N → −N − 1; see, e.g., Refs. [22,28–30]. This property
strongly restricts harmonics sums, which can appear in
the perturbative expansion of the anomalous dimension
γ̂ðNÞ [29]. Explicit expressions for γ̂ðNÞ are known at four
loops in QCD [6] and at seven loops in the N ¼ 4 SYM;
see Refs. [29,31–34].

A. Kernels from anomalous dimensions

For large N the anomalous dimension γ̂ðNÞ grows as
lnN. This term enters with a coefficient 2ΓcuspðaÞ where
ΓcuspðaÞ is the so-called cusp anomalous dimension [35,36]
whose complete form is known to the four-loop order in
QCD [37,38] and in N ¼ 4 SYM [37]. In the planar limit
of N ¼ 4 SYM, the cusp anomalous dimension is known
beyond the four-loop order (e.g., as a special case of results
in [33,34]), and in fact, to any loop order from Ref. [39].
Thus, we write γ̂ðNÞ in the following form:

γ̂ðNÞ ¼ 2ΓcuspðaÞS1ðNÞ þ AðaÞ þ Δγ̂ðNÞ; ð24Þ

where S1ðNÞ ¼ ψðN þ 1Þ − ψð1Þ is the harmonic sum
responsible for the lnN behavior at large N and AðaÞ is
a constant term. The remaining term, Δγ̂ðNÞ, vanishes at
least as Oð1=NðN þ 1ÞÞ at large N. The constant AðaÞ is
exactly the same that appears in Eq. (16). The first term in
Eq. (24) comes from a special SLð2;RÞ invariant kernel

Ĥf ¼
Z

1

0

dα
α
f2fðz1; z2Þ − ᾱðfðzα12; z2Þ þ fðz1; zα21ÞÞg;

ð25Þ

which in momentum space gives rise to the so-called plus
distribution. The eigenvalues of this kernel are 2S1ðNÞ
[ĤzN−1

12 ¼ 2S1ðNÞzN−1
12 ]. It corresponds to a singular con-

tribution of the form −δþðτÞ to the invariant kernel hðτÞ;
see [Ref. [16], Eq. (2.19)] for details. Thus the evolution
kernel can generally be written as

Ĥ ¼ ΓcuspðaÞĤþ AðaÞ þ ΔĤ: ð26Þ

Here ΔĤ is an integral operator,

ΔĤfðz1; z2Þ ¼
Z
þ
hðτÞfðzα12; zβ21Þ; ð27Þ

where the weight function hðτÞ is a regular function of
τ∈ ð0; 1Þ. The eigenvalues of ΔĤ are equal to Δγ̂ðNÞ and
are given by the following integral:

Δγ̂ðNÞ ¼
Z
þ
hðτÞð1 − α − βÞN−1: ð28Þ

The inverse transformation takes the form [14]

hðτÞ ¼
Z
C

dN
2πi

ð2N þ 1ÞΔγ̂ðNÞPN

�
1þ τ

1 − τ

�
; ð29Þ

where PN are the Legendre polynomials. The integration
path C goes along the line parallel to the imaginary axis,
ReðNÞ > 0, such that all poles of Δγ̂ðNÞ lie to the left of
this line. Some details of the derivation can be found in
Appendix B.
One can hardly hope to evaluate the integral (29) in a

closed form for an arbitrary function Δγ̂ðNÞ. However, as
was mentioned before, the anomalous dimensions Δγ̂ðNÞ
in quantum field theory are rather special functions. Most
of the terms in the perturbative expansion of Δγ̂ðNÞ have
the following form:

ηkðNÞΩm⃗ðNÞ; ηkðNÞΩp
1 ðNÞ; ð30Þ

where ηðNÞ ¼ 1=ðNðN þ 1ÞÞ and the functions Ωm⃗ðNÞ ¼
Ωm1;…;mp

ðNÞ are the parity respecting harmonic sums [29],
[Ωm⃗ðNÞ ∼Ωm⃗ð−N − 1Þ for N → ∞]. We will assume that
the sums Ωm⃗ðNÞ are “subtracted,” i.e., Ωm⃗ðNÞ → 0 at
N → ∞. The second structure occurs only for k > 0, since
Ω1ðNÞ ¼ S1ðNÞ grows as lnN for large N.
Since all SLð2;RÞ invariant operators share the same

eigenfunctions, the product of two invariant operators H1

and H2, H1H2ð¼ H2H1Þ with eigenvalues H1ðNÞ and
H2ðNÞ, respectively, has eigenvalues H1ðNÞH2ðNÞ.

2As usual one has to consider the operators of certain parity,
O�ðz1; z2Þ ¼ Oðz1; z2Þ ∓ Oðz2; z1Þ; then the functions γ�ðNÞ
give the anomalous dimensions of local operators, for even and
odd N, respectively.
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One can use this property to reconstruct an operator with
the eigenvalue (30).
First, we remark that the operator with the eigenvalues

ηðNÞ (we denote it as Hþ) has [as follows from Eq. (28)]
a very simple weight function, hþðτÞ ¼ 1. This can also
be derived from Eq. (29). Since PNðxÞ ¼ P−N−1ðxÞ, the
integral in Eq. (29) vanishes for the integration path
ReðNÞ ¼ −1=2 due to the antisymmetry of the integrand.
Therefore, the integral (29) can be evaluated by the residue
theorem3

hþðτÞ ¼
2N þ 1

N þ 1
PN

�
1þ τ

1 − τ

�����
N¼0

¼ 1: ð31Þ

Let us consider the product H2 ¼ HþH1ð¼ H1HþÞ,
where H1 is an integral operator with the weight function
h1ðτÞ. Then the weight function h2ðτÞ of the operator H2 is
given by the following integral:

h2ðτÞ ¼
Z

τ

0

ds
s̄2

lnðτ=sÞh1ðsÞ; ð32Þ

see Appendix B for details. Thus the contribution to the
anomalous dimension of type (30) can be evaluated with
the help of this formula if the weight function correspond-
ing to the harmonic sums Ωm⃗ is known.
We also give an expression for another product of the

operators: H2 ¼ ĤH1,

h2ðτÞ ¼ − ln τh1ðτÞ þ 2τ̄

Z
τ

0

ds
s̄
h1ðτÞ − h1ðsÞ

ðτ − sÞ ; ð33Þ

which appears to be useful in the calculations as well.

B. Recurrence procedure

Let us consider the integral (29) with Δγ̂ ¼ Ωm⃗,

hm⃗ðτÞ ¼
Z
C

dN
2πi

ð2N þ 1ÞΩm⃗ðNÞPNðzÞ; ð34Þ

where z ¼ ð1þ τÞ=ð1 − τÞ. Using a recurrence relation for
the Legendre functions

ð2N þ 1ÞPNðzÞ ¼
d
dz

ðPNþ1ðzÞ − PN−1ðzÞÞ; ð35Þ

we obtain

hm⃗ðτÞ ¼ −
d
dz

Z
C

dN
2πi

PNðzÞFm⃗ðNÞ; ð36Þ

where

Fm⃗ðNÞ ¼ ðΩm⃗ðN þ 1Þ −Ωm⃗ðN − 1ÞÞ: ð37Þ

It is easy to see that the function Fm⃗ðNÞ has the negative
parity under N → −N − 1 transformation and can be
represented in the form

Fm1;…;mp
ðNÞ ¼

Xp
k¼2

rkðNÞΩmk;…;mp
ðNÞ þ rðNÞ; ð38Þ

where rkðNÞ are rational functions of N. The harmonic
sums Ωmk;…;mp

ðNÞ in Eq. (38) can be of either positive or
negative parity. Therefore the coefficient rkðNÞ accompa-
nying the positive parity functionΩmk;…;mp

ðNÞ has the form
rkðNÞ ¼ ð2N þ 1ÞPkðηÞ, where Pk is some polynomial,
while rk ¼ PkðηÞ for the harmonic sums of negative parity.
The free term has the form rðNÞ ¼ ð2N þ 1ÞPðηÞ.
Together, they make Fm1;…;mp

ðNÞ with negative parity.
For example, for the harmonic sum Ω1;3 (see Appendix C
for a definition), one gets

F1;3ðNÞ ¼ ð2N þ 1Þη
�
Ω3 þ ζ3 − η2 −

1

2
η3
�
; ð39Þ

while for the harmonic sum Ω2;2

F2;2ðNÞ ¼ ð2N þ 1Þ 1
2
η3ð3þ ηÞ þ ηð2þ ηÞΩ2: ð40Þ

Note the reappearance of the common factor (2N þ 1) in the
first case, (39). This implies that, up to the derivative d=dz,
the integral (36) has the form (29). Hence, if the kernel
corresponding to the underlined terms in Eq. (39) is known,
the kernel corresponding to Ω1;3 can easily be obtained.
Thus the problem of finding the invariant kernel with the
eigenvaluesΩ1;3ðNÞ is reduced to the problem of finding the
kernel with the eigenvalues Ω3ðNÞ ðΩ1;3 ↦ Ω3Þ.
However, as is seen from our second example, not all

parity preserving harmonic sums share this property. Indeed,
the underlined term on the right-hand side (rhs) of Eq. (40)
does not have the factor (2N þ 1). Hence, all these trans-
formations do not help to solve the problem for Ω2;2.
It is easy to see that the above recurrence procedure

works only if all the harmonic sums Ωmk;…;mp
appearing in

Eq. (38) are of positive parity. It was proven in [Ref. [29],
Theorem 2] that any harmonic sum, Ωm⃗, with all indices m⃗
positive odd or negative even has positive parity (see
Appendix C for explicit examples of the harmonic sums
satisfying these conditions). Therefore, the rhs of Eq. (38)
only contains harmonic sums of the same type. Thus the
invariant kernels corresponding to the harmonic sums
of positive parity can always be calculated recursively,
using Eqs. (32), (33), (36), and (38). Crucially, only such

3This trick allows one to calculate the integral (29) for
any function Δγ̂ðNÞ with exact symmetry under N → −1 − N
reflection.
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harmonic sums appear in the anomalous dimensions γ̂ðNÞ
in QCD and N ¼ 4 SYM. All convolution integrals (32)
and (33) can in turn be systematically calculated with the
packages HyperInt [40] or PolyLogTools [41].
The explicit expressions for the kernels corresponding

to the lowest harmonic sums are given in Appendix C for
references.

C. Invariant kernels: QCD

Below we give an explicit expression for the invariant
kernel of the twist-two flavor nonsinglet operator in QCD.
We will not split the operator Oðz1; z2Þ into positive

(negative) parity operators. The evolution operator still takes
the form (26), with ΔĤ given by the following integral:

ΔĤfðz1; z2Þ ¼
Z
þ
ðhðτÞ þ h̄ðτÞP12Þfðzα12; zβ21Þ; ð41Þ

where P12 is a permutation operator, P12fðz1; z2Þ ¼
fðz2; z1Þ.4 For (anti)symmetric functions fðz1; z2Þ the oper-
ator (41) takes a simpler form (27) with the kernel h� h̄.
Our expression for the constant term AðaÞ agrees with

the constant term χ given in [Ref. [16], Eq. (5.5)],
A ¼ χ − 2Γcusp. For completeness, we provide explicit
expressions for the constant A ¼ aA1 þ a2A2 þ a3A3 þ � � �,

A1 ¼ −6CF;

A2 ¼ CF

�
nf

�
16

3
ζ2 þ

2

3

�
− Nc

�
52

3
ζ2 þ

43

6

�
þ 1

Nc

�
24ζ3 − 12ζ2 þ

3

2

��
;

A3 ¼ CF

�
n2f

�
32

9
ζ3 −

160

27
ζ2 þ

34

9

�
þ nfNc

�
−
256

15
ζ22 þ

8

9
ζ3 þ

2492

27
ζ2 − 17

�
þ nf
Nc

�
232

15
ζ22 −

136

3
ζ3 þ

20

3
ζ2 − 23

�

þ N2
c

�
−80ζ5 þ

616

15
ζ22 þ

266

9
ζ3 −

5545

27
ζ2 þ

847

18

�
þ
�
−120ζ5 − 16ζ2ζ3 −

124

15
ζ22 þ

1048

3
ζ3 −

356

3
ζ2 þ

209

4

�

þ 1

N2
c

�
120ζ5 þ 16ζ2ζ3 −

144

5
ζ22 − 34ζ3 − 9ζ2 −

29

4

��
; ð42Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir in

the fundamental representation of SUðNcÞ and we take
TF ¼ 1=2. Note that we are adopting a different color basis
compared to Ref. [16].
The explicit expressions for the cusp anomalous dimen-

sions ΓcuspðaÞ ¼ aΓð1Þ
cusp þ a2Γð2Þ

cusp þ a3Γð3Þ
cusp up to three

loops are provided in Eq. (D3). Finally we give answers
for the kernels hðh̄ÞðaÞ ¼ P

k a
khkðh̄kÞ. Explicit one- and

two-loop expressions are known [14,16] but for complete-
ness we give them here

h1 ¼ −4CF; h̄1 ¼ 0; ð43Þ

and

h2 ¼ CF

�
nf

88

9
þ Nc

�
−2H1 þ 8ζ2 −

604

9

�

þ 1

Nc

�
−8ðH11 þ H2Þ þ 2

�
1 −

4

τ

�
H1

��
;

h̄2 ¼ −
8CF

Nc
ðH11 þ τH1Þ; ð44Þ

where Hm⃗ ¼ Hm⃗ðτÞ are the harmonic polylogarithms
(HPLs) [24]. The three-loop expression5 is more involved

h3 ¼ CF

�
−
64

9
n2f þ nfNc

8

3

�
H3 − H110 − H20 þ H12 þ

1

τ
H2 −

1

τ
H10 −

19

12
H1 þ 8ζ3 −

32

3
ζ2 þ

5695

72

�

þ nf
Nc

16

3

�
3ζ3 −

75

16
þ H3 þ H21 þ H12 þ H111 þ

�
16

3
þ 1

τ

�
ðH2 þ H11Þ þ

�
31

24
þ 10

3τ

�
H1

�

þ N2
c4

�
H13 þ H112 − H120 − H1110 þ 2H4 − 2H30 − 2H210 þ 2H22 þ

�
8

3
−
2

τ

�
ðH20 − H3 þ H110 − H12Þ

5A file with our main results can be obtained from the preprint server http://arXiv.org by downloading the source. Furthermore, the
results are available from the authors upon request.

4To avoid possible misunderstandings we write it down explicitly, P12fðzα12; zβ21Þ ¼ fðzα21; zβ12Þ.
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−
5

4
ðH10 þ H11Þ þ

2

3τ
ðH10 − H2Þ −

5

2
H0 þ

�
115

72
þ ζ2 þ

1

τ

�
H1 −

44

5
ζ22 −

22

3
ζ3 þ

436

9
ζ2 −

4783

27

�

þ 16

�
H4 − H30 þ H13 þ H121 −

3

2
H120 þ

3

2
H22 þ

3

2
H112 þ 2H31 þ 2H1111 þ 3H211 −

1

2
H1110 −

�
1

τ
þ 1

�
H20

−
�
11

6
−
1

τ

�
H3 − H110 þ

�
−
37

12
þ 3

2τ

�
H12 −

�
7

3
−
2

τ

�
H21 þ

�
−
43

12
þ 3

τ

�
H111 þ

�
13

8
þ 1

2
ζ2

�
H10

−
�
1

2
ζ2 þ

127

9
þ 11

6τ

�
H2 −

�
899

72
þ 1

3τ

�
H11 þ ðζ2 − 1ÞH0 þ

�
7

4
ζ2 −

143

36
−
1

τ

�
1

2
ζ2 þ

67

9

��
H1 þ

5

2
ζ2 −

47

24

�

þ 8

N2
c

�
H4 − H30 − H210 þ H112 − H1111 − 2H120 þ 2H13 þ 2H31 − 2H1110 − 2H211 þ 3H121

−
�
1

2
þ 1

τ

�
ðH20 − H3 þ H110Þ þ 2

�
1þ 1

τ

�
H21 þ

�
3

2
−
2

τ

�
H111 þ

�
7

8
þ 3

2τ

�
H10 −

�
ζ2 −

1

2
þ 3

2τ

�
H2

þ
�
11

8
− ζ2

�
H11 −

11

4
H0 þ

�
ζ2 −

107

16
−
ζ2
τ
−

1

2τ

�
H1 þ

7

2

��
ð45Þ

and

h̄3 ¼ −8CF

�
−
2nf
3Nc

�
H111 þ H110 þ τH10 þ

�
16

3
þ τ

�
H11 þ

�
1

2
þ 10

3
τ

�
H1 þ

1

2

�

þ H120 þ H22 − H1110 − H112 − 2H121 þ 2H211 − 4H1111 þ τH20 þ
�
13

6
− τ

�
H110 þ

�
1

2
− 2τ

�
H12

þ
�
5

2
− 2τ

�
H21 þ

�
43

6
− 6τ

�
H111 −

�
ζ2 −

13

6
τ

�
H10 −

�
3þ ζ2 þ

3

2
τ

�
H2 þ

�
236

9
þ 2

3
τ

�
H11 − ζ2τH0

þ
�
53

6
þ ζ2 þ 3ζ3 þ

134

9
τ þ ζ2τ

�
H1 þ

11

6
þ 3

�
ζ2 þ ζ3 −

1

2

�
τ

þ 1

N2
c

�
H1111 − H22 − H211 þ 3H120 þ 3H112 − 3H1110 þ 4H121 þ 3τH20 þ 3

�
1

2
− τ

�
H110 −

�
7

2
− 4τ

�
H12

þ
�
1

2
þ 4τ

�
H21 þ

�
−
3

2
þ 2τ

�
H111 − 3

�
ζ2 −

1

2
τ

�
H10 þ

�
ζ2 − 2 −

3

2
τ

�
H2 þ 2ðζ2 − 1ÞH11 − 3ζ2τH0

þ ð5þ 2ζ2 þ 3ζ3 þ ζ2τÞH1 þ 3τ

�
ζ3 −

1

2

���
: ð46Þ

The kernels are smooth functions of τ except for the end
points τ ¼ 0 and τ ¼ 1. For τ → 1 the three-loop kernel
functions behave as

P
0≤k≤4

P
m>0 rkmτ̄

m lnk τ̄. For small
τ—which determines the large N asymptotic of the
anomalous dimensions—the kernels (for each color struc-
ture) have the form

P
k≥0ðak þ bk ln τÞτk. We note here that

the reciprocity property of the anomalous dimension is
equivalent to the statement that the small τ expansion of
the kernels does not involve noninteger powers of τ,
namely hðτÞ ∼P

m;k≥0 amkτ
m lnk τ.

Below we compare our exact three-loop results with
the approximate expressions constructed in Ref. [16].
The approximate expressions reproduce the asymptotic
behaviors of the exact kernels at both τ → 0, 1.
We therefore subtract the logarithmically divergent pieces
[see Eqs. (D1) and (D2) for explicit expressions] from both

the exact and the approximated expressions to highlight
their (small) deviations as shown in Figs. 1 and 2. For
illustrative purposes, we plot the planar contribution (CFN2

c

and CF in h3 and h̄3, respectively) and the subsubplanar
contribution (CF=N2

c). The former is numerically dominant
and generates the leading contribution in the large-Nc limit,
whereas the latter shows the worst-case scenario for the
previous approximation using a simple HPL function
ansatz. The error of other color structures all fall between
the planar and subsubplanar cases, and hence are numeri-
cally small.

D. Invariant kernels: N = 4 SYM

In this section we present the invariant kernels for the
universal anomalous dimensions of the planarN ¼ 4 SYM
(see, e.g., Refs. [31,42] for expressions up to NNLO). They
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are rather short so that we quote them here. We use the
parametrization (24), where ΓcuspðaÞ can be found in
Ref. [37] and the constant term AðaÞ is

AðaÞ ¼ −24a2ζ3 þ 32a3ðζ2ζ3 þ 5ζ5Þ þOða4Þ; ð47Þ

where a ¼ Ncg2SYM
16π2

and

Δγ̂ðNÞ ¼ −a216ðΩ3 − 2Ω−2;1 þ 2Ω1Ω−2Þ
þ a364ðΩ5 þ 2Ω3;−2 − 8Ω1;1;−2;1 þ 2Ω1;−4

þΩ1ðΩ−4 þΩ2
−2 þ ζ2Ω−2Þ − 2ζ2Ω−2;1Þ: ð48Þ

For the kernels we find h1 ¼ h̄1 ¼ 0,

h2 ¼ 8
τ̄

τ
H1; h̄2 ¼ −8τ̄H1; ð49Þ

and

h3 ¼ −16
τ̄

τ
ð4H111 þ H21 þ H12 þ H110Þ;

h̄3 ¼ 16τ̄ð4H111 þ 3ðH21 þ H12Þ − H110 þ H20 − ζ2H0Þ:
ð50Þ

These expressions are extremely simple in comparison with
the expressions in QCD of the same order. Let us notice
that the two-loop kernels contain only HPLs of weight one
with the three-loop kernels involving HPLs of weight three,
while in QCD the corresponding kernels require HPLs of

FIG. 2. Same as Fig. 1 for the color structures CF and CF=N2
c in h̄3.

FIG. 1. Comparison of two distinct color contributions (CFN2
c and CF=N2

c) in the exact (black solid line) and approximated (red
dashed line) three-loop kernel h3 (see Ref. [16] for explicit expressions of the latter). The inset curves show the relative percentage errors

[ð1 − hðcÞ3;appr=h
ðcÞ
3;exactÞ × 100%] of the approximation.
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weights two and four, respectively. Note also that the kernel
h is proportional to the factor τ̄=τ and the kernel h̄ to the
factor τ̄. It would be interesting to see if these properties
persist in higher loops.

IV. SUMMARY

We have constructed a transformation that brings the
evolution kernels of twist-two operators to the canonically
conformal invariant form. The eigenvalues of these kernels
are given by the parity respecting anomalous dimensions.
We have developed a recurrence procedure that allows
one to restore the weight functions of the corresponding
kernels. It is applicable to a subset of the harmonic sums
(with positive odd and negative even indices). It is
interesting to note that exactly only such harmonic sums
appear in the expressions for the reciprocity respecting
anomalous dimensions.
We have calculated the three-loop invariant kernels in

QCD and in N ¼ 4 SYM (in the planar limit). In QCD it
was the last missing piece to obtain the three-loop evolution
kernels for the flavor-nonsinglet twist-two operators in a
fully analytic form; see Ref. [16].
In the case of N ¼ 4 SYM the lowest order expressions

for the kernels are rather simple and exhibit some regular-
ities, h ∼ τ̄=τ, h̄ ∼ τ̄. It would be interesting to check if
these properties survive at higher loops. We expect that
at l-loops the kernels hðlÞðτÞ will be given by linear
combinations (up to common prefactors) of HPLs of weight
2l − 3 with positive indices. Therefore going over to the
invariant kernel can lead to a more compact representation of
the anomalous dimensions than representing the anomalous
dimension spectrum γðNÞ in terms of harmonic sums. The
much smaller function basis in terms of HPLs (τ=τ̄Hm⃗ and
τ̄Hm⃗) opens the possibility of extracting the analytical
expressions of the higher-order evolution kernels from
minimal numerical input through the PSLQ algorithm.
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APPENDIX A

In this appendix, we describe in detail the derivations of
some of the equations presented in Sec. II. Let us start with
Eq. (9). For the generator S−ðaÞ ¼ S− the statement is
trivial. Next, making use of Eq. (8) for the operator TðHÞ
and, taking into account that HðaÞ commutes with the
generators SαðaÞ, one can write the left-hand side (lhs) of
Eq. (9) in the form

X∞
n¼0

1

n!
LnSαðaÞXn; ðA1Þ

where X ¼ β̄ðaÞ þ 1
2
HðaÞ. Using the representation (7) for

the generators and taking into account that ½S0;L� ¼ 1 and
½Sþ;L� ¼ z1 þ z2 (we recall that L ¼ ln z12) one obtains

LnS0 ¼ S0Ln − nLn−1 þ LnX;

LnSþ ¼ SþLn þ ðz1 þ z2Þð−nLn−1 þ LnXÞ: ðA2Þ

Substituting these expressions back into Eq. (A1) one
finds that the contributions of the last two terms on the
rhs of Eq. (A2) cancel each other. Hence Eq. (A1) takes
the form

Sα
X∞
n¼0

1

n!
LnXn ¼ SαTðHÞ ðA3Þ

that finally results in Eq. (9).
Let us now show that the inverse to TðHÞ has the

form (12). The product I ¼ T−1ðHÞTðHÞ can be written as

I ¼
X∞
n¼0

ð−1Þn
n!

Ln

�
β̄ðaÞ þ 1

2
ĤðaÞ

�
n
TðHÞ: ðA4Þ

Moving TðHÞ to the left with the help of the relation (10)
and then using Eq. (8) for TðHÞ one gets [X ¼
β̄ðaÞ þ 1

2
HðaÞ]

I ¼
X∞
n¼0

ð−1Þn
n!

LnTðHÞXn ¼
X∞
n;k¼0

ð−1Þn
n!k!

LnþkXnþk ¼ 1:

Finally, we consider the product of operators T with a
differently defined function L. Namely, let us take T�ðHÞ≡
TðL�;HÞ, where L� ¼ lnðz12 � i0Þ so that Lþ − L− ¼
2πθðz2 − z1Þ. To calculate the product U¼TþðHÞT−ðHÞ
one proceeds as before: use expansion (8) for TþðHÞ,
move T−ðHÞ to the left, and then expand it into a power
series. It yields

U ¼
X∞
n;k¼0

ð−1Þn
n!k!

LnþLk
−X̂

nþk; ðA5Þ

where X̂ ¼ β̄ðaÞ þ 1
2
ĤðaÞ. Let Lþ ¼ L− þ 2πiθðz2 − z1Þ,

and one can get for the sum in Eq. (A5)

U ¼
X∞
m¼0

ð2πiθÞm
m!

X̂mðaÞ ¼ 1 − θ
	
1 − e2πiðβ̄þ1

2
ĤÞ


;

where θ≡ θðz2 − z1Þ. Since S0;þθðz21Þ ∼ z21δðz21Þ ¼ 0

one concludes that U commutes with the canonical gen-
erators Sα and hence UĤ ¼ ĤU.
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APPENDIX B

Let us check that the kernel hðτÞ given by Eq. (29)
has the eigenvalues Δγ̂ðNÞ. First, after some algebra, the
integral in Eq. (28) can be brought to the following form:

Δγ̂ðNÞ ¼
Z

∞

1

dth

�
t − 1

tþ 1

�
QNðtÞ; ðB1Þ

where QNðtÞ is the Legendre function of the second
kind [43]. Inserting h in the form of Eq. (29) into
Eq. (B1) one gets

Z
C

dN0

2πi
ð2N0 þ 1ÞΔγðN0Þ

Z
∞

1

dtPN0 ðtÞQNðtÞ: ðB2Þ

The t-integral of the product of the two Legendre functions
gives [43]

ððN − N0ÞðN þ N0 þ 1ÞÞ−1: ðB3Þ

Then closing the integration contour in the right half-plane
one evaluates the N0 integral with the residue theorem at
N0 ¼ N yielding the desired lhs of Eq. (B1).
Finally, to verify Eq. (32) one can check that the

integral (B1) with the kernel h2, Δγ̂2ðNÞ, is equal to
Δγ̂1ðNÞ=N=ðN þ 1Þ. The simplest way to do it is to
substitute the Legendre function in the form

QNðtÞ ¼ −∂tð1 − t2Þ∂tQNðtÞ=N=ðN þ 1Þ ðB4Þ

and perform integration by parts.

APPENDIX C

In this appendix, we collect the harmonic sums and the
corresponding kernels that we have used. We split them
into two parts: the first one includes the harmonic sums
Ωm1;…;mk

such that
Q

k
i signðmiÞ ¼ 1,

Ω3 ¼ S3 − ζ3;

Ω3;1 ¼ S3;1 −
1

2
S4 −

3

10
ζ22;

Ω−2;−2 ¼ S−2;−2 −
1

2
S4 þ

1

2
ζ2S−2 þ

1

8
ζ22;

Ω1;3;1 ¼ S1;3;1 −
1

2
S1;4 −

1

2
S4;1 þ

1

4
S5 −

3

10
ζ22S1 þ

3

4
ζ5;

Ω−2;−2;1 ¼ S−2;−2;1 −
1

2
S4;1 −

1

2
S−2;−3 þ

1

4
ζ3S−2 þ

5

16
ζ5;

Ω5 ¼ S5 − ζ5: ðC1Þ

Here Sm⃗ are the harmonic sums with argument N. We
define the sums of negative signature,

Q
k
i signðmiÞ ¼ −1,

with an additional sign factor:

Ω−2 ¼ð−1ÞN
�
S−2þ

ζ2
2

�
;

Ω−2;1 ¼ð−1ÞN
�
S−2;1−

1

2
S−3þ

1

4
ζ3

�
;

Ω1;−2;1 ¼ð−1ÞN
�
S1;−2;1−

1

2
S1;−3−

1

2
S−3;1þ

1

4
S−4

þ1

4
ζ3S1−

1

80
ζ22

�
;

Ω−4;1 ¼ð−1ÞN
�
S−4;1−

1

2
S−5þ

11

8
ζ5−

1

2
ζ2ζ3

�
;

Ω3;−2 ¼ð−1ÞN
�
S3;−2−

1

2
S−5þ

1

2
ζ2S3þ

9

8
ζ5−

3

4
ζ2ζ3

�
;

Ω1;1;−2;1 ¼ð−1ÞN
�
S1;1;−2;1−

1

2
S1;1;−3−

1

2
S1;−3;1−

1

2
S2;−2;1

þ1

4
S2;−3þ

1

4
S−4;1þ

1

4
S1;−4−

1

8
S−5

þ1

4
ζ3S1;1−

1

80
ζ22S1−

1

8
ζ3S2þ

1

8
ζ5−

1

16
ζ2ζ3

�
;

Ω1;−4 ¼ð−1ÞN
�
S1;−4−

1

2
S−5þ

7

20
ζ22S1−

11

8
ζ5þ

1

2
ζ2ζ3

�
:

ðC2Þ
These combinations of harmonic sums are generated by the
following kernels:

H3 ¼ −
1

2

τ̄

τ
H1;

H3;1 ¼
1

4

τ̄

τ
ðH11 þ H10Þ;

H−2;−2 ¼
1

4

τ̄

τ
H11;

H1;3;1 ¼ −
1

8

τ̄

τ
ðH20 þ H110 þ H21 þ H111Þ;

H−2;−2;1 ¼
1

8

τ̄

τ
ðH12 − H110Þ;

H5 ¼ −
1

2

τ̄

τ
ðH111 þ H12Þ; ðC3Þ

and

H−2 ¼
1

2
τ̄;

H−2;1 ¼ −
1

4
τ̄ðH1 þ H0Þ;

H1;−2;1 ¼
1

8
τ̄ðH10 þ H11Þ;

H−4;1 ¼ −
1

4
τ̄ðH21 þ H20 þ H111 þ H110Þ;

H3;−2 ¼ −
1

4
τ̄ðH21 þ H111Þ;
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H1;1;−2;1 ¼ −
1

16
τ̄ðH111 þ H110Þ;

H1;−4 ¼ −
1

4
τ̄ðH12 þ H111Þ; ðC4Þ

where all HPLs have argument τ. These functions serve as a
basis, and more complicated structures can be generated as
products of Ωm⃗.

APPENDIX D

Here we give the small (τ → 0) and large (τ → 1)

expansions of the invariant kernels h3; h̄3. By hðAÞ3 (h̄ðAÞ3 )
we denote the function that appears in the expression for

h3 (h̄ðAÞ3 ) with the color factor CF × A. We will keep the
logarithmically enhanced and constant terms in both limits.
The former is subtracted from both the exact and the
approximated three-loop kernel to obtain the two figures in
Eqs. (1) and (2). At τ → 0 one gets

h
ðnfNcÞ
3 ¼ 5839

27
−
256

9
ζ2 þ

64

3
ζ3 −

8

3
ln τ;

h
ðnf=NcÞ
3 ¼ −

17

9
þ 16ζ3;

h̄
ðnf=NcÞ
3 ¼ 8

3
;

hðN
2
cÞ

3 ¼ −
18520

27
−
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3
ζ3 −

176

5
ζ22 þ

1744

9
ζ2 −
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3
ln τ;

hðN
0
cÞ

3 ¼ −
1186

9
þ 32ζ2 þ ð−32þ 16ζ2Þ ln τ;

hðN
−2
c Þ

3 ¼ 24 − 8ζ2 − 18 ln τ;

h̄ðN
0
cÞ

3 ¼ −
44

3
;

h̄ðN
−2
c Þ

3 ¼ −48τ
�
ζ2 þ ζ3 þ

1

4
− ζ2 ln τ

�
; ðD1Þ

and for τ → 1 one obtains

h
ðnfNcÞ
3 ¼ 5695

27
−
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9
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3
ζ3 þ

�
−
16

3
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9

�
ln τ̄;

h
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3 ¼ 304

9
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�
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3
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3

�
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9
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8
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3

�
1

2
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�
þ
�
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9
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9
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8

9
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Here we quote the cusp anomalous dimensions up to three loops for Refs. [4,35,36],

Γð1Þ
cusp ¼ 4CF;

Γð2Þ
cusp ¼ CF

�
Nc

�
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9
− 16ζ2

�
−
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�
;
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�
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