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Neutral pion mass in a warm magnetized medium within the linear
sigma model coupled to quarks framework
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We study the neutral pion mass in the presence of an external arbitrary magnetic field in the framework
of the linear sigma model coupled to quarks to a quark at finite temperature. In doing so, we have calculated
the pion self-energy, constructed the dispersion equation via resummation, and solved the dispersion
relation at zero three-momentum limit. In calculating the pion mass, we have included meson self-
coupling’s thermal and magnetic contribution and approximate chiral order parameter v,. We report that the
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I. INTRODUCTION

Recently the properties of hot and dense nuclear matter
in the presence of a strong background magnetic field are
drawing considerable interest. A transient magnetic field of
the order of 10'® — 10! G is achieved in the early stage of
quark-gluon plasma (QGP) through a noncentral high-
energy heavy-ion collision (HIC) [1-3]. Also, B ~ 10'* G
is predicted in the core of neutron stars, and in magnetars
[4], the primordial magnetic field of 10> G could have
been present in the early universe due to a chiral anomaly
[5,6]. This magnetic field is believed to be responsible for
exotic phenomena in the QCD matter in extreme condi-
tions, such as the chiral magnetic effect [7], magnetic
catalysis, inverse magnetic catalysis [8], thermal chiral and
deconfinement phase transition [9], and superconductivity
of a QCD vacuum [10,11]. One of the most important
hadrons from the perspective of high-energy physics is the
pion, produced copiously in heavy-ion collisions.

The masses of hadrons are expected to be modified under
a strong magnetic field. Considering pions as relativistic
point particles in the presence of the magnetic field, we
expect that 7+ ’s mass increases linearly with |eB|, whereas
7%°s mass remains constant. But the predictions of the
properties of the pion under the influence of a magnetic
field hardly agree with its pointlike particle assumption. A
recent Lattice Quantum Chromodynamics (LQCD) study
[12,13] shows that a neutral pion mass decreases with the
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#” mass decreases with the magnetic field and increases with temperature.

strength of the magnetic field monotonically. For low |eB]|,
the 7" mass dies rapidly, whereas it saturates with high
magnetic field values. This behavior was reproduced to a
high degree of accuracy by Ayala et al. [14] in the strong
field limit |eB| > m2, using the linear sigma model
coupled to quark (LSMq) model. Also, in Ref. [15], the
authors have reported a neutral pion mass using the LSMq
model at an arbitrary strength of ¢B. By tuning the coupling
parameters A and g of the model, they saw that mass
decreases from its vacuum value, and then found a dip at an
intermediate eB and again increases with eB. This quali-
tative nonmonotonic behavior is similar to the LQCD study
of Ref. [16]. Apart from the lattice QCD studies, effective
models were also invoked to study meson masses in
magnetic backgrounds. For example, in Ref. [17], the
authors have calculated the magnetic field-dependent pion
pole mass considering pseudoscalar (PS) and pseudovector
(PV) pion nucleon interaction invoking weak field approxi-
mation. They have obtained a decreasing nature for PS
coupling and an increasing nature for PV coupling for the
7Y mass. Most of the work in determining the meson mass
under the magnetic field was carried out in the Nambu-
Jona-Laisino (NJL) model and chiral perturbation theory
(ChPt). For example, a full magnetic field-independent
regularization (MFIR) scheme with the random phase
approximation (RPA) method was employed in Ref. [18]
to calculate the meson mass. This MFIR scheme was
remarkably [19] in agreement with LQCD predictions of
the 7° mass. In the ChPt framework, the charged, neutral
pion mass was calculated at finite 7 and e¢B in Ref. [20].

The linear sigma model and linear sigma model coupled
to quarks to quarks are recently being used to study various
properties of hot and dense nuclear matter produced in
heavy-ion-collision experiments. There are many interest-
ing works in the literature regarding the transport coef-
ficients at a nonzero temperature and the zero magnetic field
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in the framework of a quark-meson model (see [21] and
references therein): The magnetic field-dependent electric
charge transport in hadronic medium [22], the shear viscosity
of hadronic matter at finite temperature and magnetic field [23],
and the QCD phase diagram in a magnetized medium [24].
In the first part of this series [15], we calculated the
neutral pion mass in a magnetic field at zero temperature.
We extend the calculation to the finite temperature using
the linear sigma model coupled to quarks in this part. It is
extensively used to investigate from the QCD confinement/
deconfinement phase transition to properties of hadrons. In
the present work, we have examined the behavior of the
neutral pion mass in the presence of an external magnetic
field at a nonzero temperature within the framework of the
LSMq model. In Sec. II, we briefly tour the LSMq model.
In Sec. III, we have computed the neutral pion self-energy
from the LSMq Lagrangian. In Sec. IV, the z° mass is
obtained considering the following three scenarios: (a) bare
couplings, (b) one-loop corrected meson couplings
(Appendix A), and (c) one-loop corrected meson coupling,
as well as the quantum corrected effective potential (details
of it are elaborated in Appendix C). In Sec. V, the numerical
results are discussed, and in Sec. VI, we conclude.

II. LINEAR SIGMA MODEL COUPLED
TO QUARKS

The linear sigma model coupled to quarks to a quark is
obtained by appending a SU(2) scalar and pseudoscalar
interaction of the sigma meson and pion, respectively, with
light quarks (u and d flavors). The Lagrangian density for the
LSMq reads

:1(6 a)2+l(6 7t>2+a—2(62+7t2)—&(62+7l'2)2
2°H 2°H 2 4

+ iyt — g (o + iyst - my. (1)

L

The first four terms of the last equation is the linear sigma
model (LSM) part, and the other two terms are the quark part
of L. Here & = (n', z%, z%). The physical pion fields are
defined as
1
at = —(z' £ in?), =7, (2)

V2

respectively, o is the sigma meson, and vy is the light quark

doublet with
-(1) 2
V= a)
1.2

7= (7', 7%,7%), where 7' (i = 1,2, 3) is the ith Pauli spin
matrix. Also, a® is the mass parameter that we take as
negative in the symmetry-unbroken state. Finally, 4 and ¢
are the meson-meson coupling and meson-quark coupling,
respectively. The O(4) symmetry of the Lagrangian is
spontaneously broken when a? becomes positive, and the

o field gets a nonzero vacuum expectation value (VEV).
Hence, after the symmetry breaking, the o field becomes

c— o+ (4)

As a result of this shift, £ reads
e 1 » |1 s 1)
[, = l//(l}/”aﬂ —Mf)l//-f—i(aﬂﬁ) +E<aﬂ7l') —EMGG

1 _ )
— S Mim = gir(o + iyst -y — V(0.7) = Viee (),

2
(5)
with
_ 2o Ao
V(e,x) = lvo(o +7r)—|—1( + %)%, (6)
Viee (V) = L +1/1v4 (7)
tree 2 4 .

The masses of the quarks, three pions, and sigma are given by

My = gv,

M2 = ? - a?,

M2 = 31?% — a. (8)
respectively. Note that the minimum of the tree-level poten-
tial, obtained by solving dv‘d—b(b) )=y, = 0, is given by

2
a
=1/— 9
Do 7 )

Therefore, the masses, evaluated at v, are given by

Mf(UO) = gy,
M2 =0,
M2 =242, (10)

after symmetry breaking. To incorporate a nonvanishing pion
mass into the model, an explicit symmetry-breaking term is
added to the Lagrangian as

1
£—>£/:£+£ESB:£+§m,2TU(6+U), (11)

with m, = 0.14 GeV. As a result, the tree-level potential

V iree becomes Vi, = — 1 (a> + m2)v* + } Av* and the mini-
mum is shifted to
2 2\ 1/2
vy = V) = (a —;m,,) . (12)

The masses, evaluated at this new minimum vj,, are given by

2 2\ 1/2
a —I—m,r) , (13)

(1) = o

054008-2



NEUTRAL PION MASS IN A WARM MAGNETIZED MEDIUM ...

PHYS. REV. D 108, 054008 (2023)

Mz (vp) = m3,

M2(v)) = 2a® + 3m?2. (14)
The value of a is given by solving Eq. (14) as
M2 (v 3M2 2 —3m2
“_\/ oL )‘\/mazmﬂ‘ (15)

We consider a homogeneous time-independent background
magnetic field in the z direction B = BZ, which can be
obtained from the electromagnetic four-potential in sym-
metric gauge A* =2(0,-y,x,0). As a result, the four
derivative d, is replaced by covariant derivative D, for
quarks and fermions. For a quark with flavor f(= u, d), we
write it as D, =0, + igsA,. Note that g, =3|e| and
qq = —5lel, with |e| being the absolute charge of the
electron. For charged pions, it becomes D, = 9, & i|e|A,,
with the + sign for 7.

III. SELF-ENERGY OF THE NEUTRAL PION

If we rewrite the Feynman diagram of Eq. (5) in terms of
7" and 7~ fields, we notice that the neutral pion self-energy

+

H(()B)(P, T) has contributions from z*, z°, and o. It reads

1y (P, T) = 8T2(T) + 1201,6(T) + 411,(T)
(B)
+ > T (P.T). (16)
f=ud
(B) (B)
Here, I1.(T), [, (T), I,(T), and I (P,T) are the

contributions coming from the charged pion, neutral pion,
sigma meson, and quark-antiquark loop of flavor, respec-

tively, and f to the total z° self-energy H(()B)(P, T). As
mentioned in the previous section, we consider only light
flavor in this article which is indicated by the flavor sum
over the quark-antiquark contribution. Note that the
dependence on external momentum P comes in the total
self-energy solely from the quark-antiquark part. Also, we
have omitted the superscript B from z°-loop and o-loop
contributions since, being charge neutral, they are unaf-
fected by the background magnetic field. In this section, we
compute the self-energies indicated on the right-hand side
(RHS) of Eq. (16). Before proceeding, we clarify some
notations, conventions, and definitions that will be used
repeatedly in the rest of the article.

(i) For any generic four-vectors A¥, B¥, we adopt the
following notation and convention in which four-
vectors are denoted by a capital letter (e.g., A¥),
three-vectors by small letters with boldface (e.g., a),
and magnitude by |a| or a. The following equations
clearly express:

At = (d° a', a%, a?), H = (a",0,0,d%),
A =(0,d',a%,0), (a.b), = a®b° — a’b3,
(a.b), = a'b' + a*b?, A.B = (a.b), = (a.b),,
d)=(ra) =1’ -ya,  d=(ra), =ra +ya,
a® = ay, a; = —a', a, = —a?, a; = —a’,
Azzaﬁ—a%—a%—ag, azza%—f—a%—i—a%,
aﬁ = a} - a3, ai =at+a3. (17)
|
(ii) For calculation involving nonzero temperature, we u denote the temperature and chemical potential of
will work in imaginary time formalism (ITF). In ITF, the thermal medium, respectively.
the integration over the Oth component of the four- (iii) The Landau level (LL) dependent masses and the
momentum running in the loop is replaced by a particle’s energy in the presence of B-field are denoted
discrete Matsubara frequency sum. We make the as follow:—
following replacement:
- ./ 2 - ./
/ dko TZ (18) Mf,f_ 21/p|q]¢B|+Mf, Qk,f,f_ k +Mff’

where ko = iw, = i2nzT for bosons and k;=
i@, =p+i(2n+ 1)aT for fermions. Here T and

(19)

for quarks with flavor f, in Landau Level #, and
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Mpp = \/(Zf‘f' 1)|g,B| + m3,

_ 2 2
Eipp =\ ks +my,,
+

for mesons with species b(= 7%, 7%, ). Here we
assume m, = my and m = = myp = m,. Also for
charged pions, ¢q,- = *e.

(iv) In the presence of a magnetic field, the quark
propagator takes the following form:

S](CB)(K) = exp (— |qkle|) i(_l)f

(20)

£=0
Dk, k,,q:B
/( | KL sz) . (21)
ki —=2¢|q;B| — M7 + ie
where
Dy(K,qB)
2k
= 4%J_Lf 1<| ll}l) + (kll +Mf)
2k2
x | (1 —sgn(qsB)iy'y*)L (—L)
[ ! ‘ lq/B]
1 2k%
= (V+sgn(gsB)iy'y* ) Loy | —57 ) |- (22)
|‘]fB|

Here Lff) (x) is the generalized Laguerre polynomial
which is written as

4
i7 (P, T) _Ncgz/—(z W
where

Niﬂ?(ku,kquQL) =

The trace in (27) is computed as

K+ ‘11.) ¢
Xp - - ) +n )
( laB| ) A= (kj = 2¢]qsB| = M})(q} — 2nlq;B| — M7)

l+a 2 :Lf ",

(23)

with |z] < 1. We note L(f0> (x) = Ly(x) and L(_al) =0.
Here sgn is the sign function.
(v) In the presence of a magnetic field, the charged

boson propagator becomes

(5)(K) = 2exp <—|"B|) S -1y
=0

2k2
Le(7g)

“—(2f+ DeB|

. 24
—m3} + ie 24)

A. Pion to quark-antiquark loop

The quark-antiquark contribution to the neutral pion self-
energy reads

4
% v o[ 4K . (B) . o(B)
_znff (P,T>—Ncg /—(zﬂ)4Tr[yssz (K)ysle (K—P)]’

(25)
where Q = K — P. Here N, denotes the number of colors,

which is taken as three for QCD. Thus, from Eq. (21), the
H;f;) in Eq. (25) becomes

N;ﬁz(kn,kbq\\wﬂ)

Nz(f?(ku,kl, q-q9.) = 8[M

= (k.q)] x {Lf_l (

+64(k'q" + K¢*)L} (

Since we are interested in modification of the z° mass, we take the limit p — 0 of Eq. (26):

H( (Po,

d* K 2k?
- [ e (o
|C]fB|

(26)
TrlysDy(ky, k1, q¢B)rsDu(q)- .1, q5B)]- (27)
2Kk2 24% 2Kk2 24*
)t (o) * 2 o) )
|q/B] |q/B] lq/B]| |q/B]
2k2 24
>L1 ( 7L > (28)
|q /B |q/B]
zoo: (—1)f+n Nfrz(ko, po.q =k) (29)
£.1=0 (k(z) - Q%f,f)(‘](z) - Qz,n,f)

After performing the perpendicular momentum integral analytically, the above expression simplified to
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1
I( ) +Ir(f’)ln lf)[kO(kO _pO) k% _szf] - Sz(le,n—l f

(B) o dk +n ( f n f .
H b ) - _N 8 1 ’ 30
i7 (Po- T g / f;()( (kg = Qi o) (ko = po)? = @, ¢) o

where 7 50,? y (for l,n,a € Z and I, n, a > 0) is defined in Appendix D. After performing the perpendicular integration
according to Eq. (D3) and employing the following identity (under k, integral):

— kogo + k2 p§ —4¢qB| 1

(k% - Qﬁ.f,f)(q% - Qi,f,f) B 2(k% - Q%f,f)(q(% - Q%,f_f) k% - Qi.f,f .

(31)

It is convenient to separate the lowest Landau level (LLL) and higher Landau level (HLL) contributions as follows:

(8) 2qu|/ d*k| {Po 1 1 ]

IT = —iIN, - , (32)
R (k% - Qi,f:o, f)(q% - Q%,f:O, f) k% - Q%f:(), f
(8) |qu| / Pk & [Po 1 1 ]

I1 = —2N.i . (33)
fFHLL 27[ 2 2 (k2 Q%rf’f)( Q%t’f) k2 Q%ff

In deriving Egs. (32) and (33), we used the following identities:
Op1p-1 =1 =580, 6rr = 1. (34)
Here we note that the Kronecker delta gives zero for any negative index. This kind of expression is typical in cases involving

a fermion inside a loop. The degeneracy in higher Landau levels is considered by the factor (2 — ). Combining the
lowest and higher Landau level terms, we write Eqs. (32) and (33) as

°° &k 1 1
(®) | [P

T2 (po. T) = E (2670 / [ - ] (35)
/1 22)* | 2 (k= Qe )05~ Qey) k5= Qipy

The expression involving HLL has an overall factor of 2, which is absent in the expression of the LLL. It comes from the
fact that the virtual quark-antiquark pair in HLL has spin degeneracy that is lifted in LLL. So, after replacing the k

integration with the frequency sum, the expression of H;lj-() (po, T) becomes

(B) 5 197B| & dk Po 1 1
7 (po. T) = Neg” —— > (2= 579) E - : (36)
170 T ; o0 0 2 (kg - ff)( Q%f.f) kg — Q%f,f

In the presence of the magnetic field and temperature, any loop integration contains three pieces: (i) a pure vacuum
contribution, (ii) a pure magnetic field contribution, and (iii) a thermal as well as a magnetic field (i.e., thermomagnetic)
contribution.! Now we compute each contribution separately.

1. Pure vacuum part

KM

For the vacuum part we take Sy(K) = - M2

The diagram in Fig. 1 gives

d*K 2 1 1 1
[@ (37)

I12°(po) = 4N ig® / -
" (27)* [ 2 kg — M7 (ko= po)* = k> =M} k5 —
Employing the Feynman parametrization technique to the first term in the square brackets, we get

"The pure vacuum contribution contains ultraviolet divergence. In our context, the pure magnetic field and thermomagnetic part are
divergence-free. As a result of taking the B — 0 limit, the pure magnetic contribution vanishes, and the thermomagnetic contribution
reduces to a pure thermal contribution. On the other hand, taking the 7 — 0 limit, the thermomagnetic part vanishes.
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z [ d*K 1 d*K 1
TVac :—4N'2@/d/ —/ : 38
57 (Po) et [2 o ) e (K —xPP -2 —x(1 -0 ) G K -3 (38)
After the change of variable K — xP — K, we get
1Y2C( py) — —4N,ig?| 20 / / 'K ! / LS (39)
11 4 20 (K2 -2 —x(1-x)] ) Q'K - M)

Before regularizing the integration, we should mention a few words about the renormalizability of LSMq. The dimension of
the coupling constants g and 4 is 0. So according to quantum field theory, the LSMq is renormalizable [25]. The integral in
Eq. (39) is ultraviolet divergent that is regularized by the method of dimensional regularization. We analytically continue the
momentum integration to d dimensions. Now, it can be performed by using the following identity:

/ K 1 __ 27 (ChrTay) (40)
Cn (K —AF ' 2nf (@) At
It yields, after taking out an auxiliary scale factor A from g as g — gAz‘%i, to
1 p§ (! re-49 r(1-9)
I/2°(pg) = 4N .g*A*~ {—0/ dx 2 -+ 20 41
o @n)?2 2 Jo T ME—x(1-x)p3t (M3)' “1)

Let us take ¢ = 2 — ¢ and obtain

M7 (po) = N % [7 / d (4;:1/\2) ) M3 - xr(‘(IE)— Py <4ﬂ1/\2> ) ?1546;;—11) } ' (42)

Now, we expand the above expression around ¢ = 0 to get

2 2 1
H}’.J‘;’.‘C(po) =N, L {(@ - M)%) (g —re+ 10g(4ﬂA2)> {1;0/ dxlog[M7 — x(1 = x)pg] + M7 — M7 log(M%)H.

ar> |\ 2
(43)
In accordance with MS prescription, we absorb the 1 -y + log(4x) by introducing the counterterm. It leads to
2 2 2
g | Po A ) A
nvac_ N, dx1 —M3(log—+1]]. 44
ffMS(pO) “47° [2 / * 0g<Mj2£—x(1—x)p(2)) f<0gMJ%+ (44)

2. Magnetic field part

After getting the pure vacuum part, we now evaluate the magnetic part. We take ¢ = 1 — g so that the integral formally
diverges at ¢ = 0. We get

(B) o 1 F(] + 6)
IT.- B (2-
ff (pO) 4 2|Qf |Z 5f0)|:2 / dx (47”\2) [M?-+2f|t]fB|—X(l _x)p6]1+e
1 I'(e) }
N , 45
(@sN2)< (W3 + 27q, B )

The sum over the Landau levels in the RHS of the last equation can be performed as

i 2—b¢p _ (2|‘1fB|)_64,<1 Le M} —x(1 —X)P<2)> B 1 (46)
4= M7 4 2¢1q,B| — x(1 — x)pg] '+ |q;B| T 2|gsB (M7 = x(1 = x)pg)'*e’

054008-6
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o0 2640 - M? 1
= (M7 +2¢|q,B|) qrB| Z

Thus, we have
2 2 e M? —x(1 - x)p}
(B) g po L1 +e¢) /‘ (2]g,B|) 7 Do
% (po) = N. L |gBd 0 2 [ gue|F2 2 o gL 700
7 (Po) =N ala |{ 2 anty< Jo X Tam S\ TS T 2,8
1 I'(e) [ M3 1
- |+ e [Pl (e ) = | (49)
(M5 = x(1 = x)p§)"* } (47A2) ! 2lq M
As usual if we expand the above expression around ¢ = 0, we get terms of the form (0, x) and 9, (s, x)|,_,. Now, using the
following properties of the Hurwitz zeta function:

1 d 1
(0.0) =5-x. £00(0.0) = 2-8(s. )]y = logT(x) - Slog(27), (49)

and after performing some simplifications, we obtain

(B) g P 2) |1 2 Mizc 7M%
- T I (Po_ ) 2=y, + log(4nA B|[2logD( ~—— 1 :
7 (o) =N, 2{( f> L ve + log(4n )}+qu I{ og <2qu|)+ °g<4n|qf-3|>}

) 2 M2 —x(1 - x)p} |q /B
P 2) P 7 P ar
— | =% =M% ) log(2|g,B ——/ dx[w( >—|— . (50
<2 7 ) loe(2lasB) =3 |/ 2|q;B| M2 —x(1 - x)p )
After performing the integral, we get
B _ 4lq;B 4M3
/ i |9/B| _ Iq]; ot S, (51)
M —x(1-x)p} P P

the (vacuum + magnetic field dependent) part of self-energy as

(B) 92 Py 1 M2 M%

4M> 2 1 M2 — x(1-x)p}
H2cot ! [ [—L -1 || =22 / dxw( - x(1=x)p 0). (52)
Py 2 Jo 2|qyB|
After subtracting the vacuum part from Eq. (52), we get the pure magnetic field-dependent contribution as
2 2 2 2
H<l§)(p )_HV?Cuum<p ) _ 92 p()/ dx long_'x(l_x)pO_w Mf_x(l_x)po _ |qu|
£7 00 17 0 4 472 | 2 0 2|‘]fB| 2|qu| M% —x(l —X)P%
M3 M7 M3

—2|qB {logl"< )—i—log( )] +M2.—M2-10g( )} 53
95| 2|q,B| 4r|q,B| PR\ 20g,B) (53)

3. The thermomagnetic part

To get the thermomagnetic part, we need to perform the fermionic frequency sums. It is performed in Appendix B 1. Here
we quote the results:

T 1 1= ( Q) — T (Qeky)
Z 92 (ko= po)? =2, , Qi (p2—492, )
¢k.f 0~ Po ¢k f ¢kt Po 7k f
1 1 -0t (Qps ) — (2
TZ . S— it ( f,k.f) i ( f.k,f). (54)
ko =y 2Qp 1 ¢
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Now, substituting the frequency sums in the last line in Eq. (36) and simplifying, we arrive at

B
Hﬁ’}”) (Po.T) = —

We have calculated the vacuum + pure B part earlier, which comes from 1 with the distribution function 7+

that term, we get the thermomagnetic part as

(B) -
Hff,ThM (pO’ T) -

B. Pion to pion loop

1. Charged pion contribution

The tadpole diagram reads as shown in Fig. 2(a)

B _ A 'K . (B)
Iy =- [ —=iDVW(K). 7
D=3 [ G (57)

Substituting Eq. (24) into Eq. (57), we get

d’k J
(B) _ I ¢
I
w* / 2 )2Zk2 (2¢ + 1)|eB|

£=0"

—m2 +ie’
(58)

where we have defined

Here the integral can be performed analytically and shown
in Appendix B. Here is the result quoted:

eB
Te= u (60)
4
This leads Eq. (58) to
I 61
4 2 47r —mfﬂ (61)
K
___ r___
K-P

FIG. 1. Feynman diagram for one-loop quark-antiquark con-
tribution to the 7° self-energy.

) o)
g [se]
N.2—lqeBl> (2-6 dk.Qy
02”2|Qf |f:0( f.O)/_oo Sk s PR —42,

2 (¢
g o]
Ne Py |qsB| Z (2=10¢0) / dk Qg ¢
4 /=0 —o0

1- (Q'fkf)_n (ka/) (55)
. So dropping
Qe s) + 7 (Qeiy) (56)

—4Q2 kf

|

The integral in Eq. (61) is divergent. To regulate the
divergence, we go to the d =2 —2e¢ dimension. Also,
from the dimensional argument, we take out a dimensional
quantity via an auxiliary scale by replacing A — A?21. So
the integral becomes

By AN \eB| Ak 1
n? =i “d . (62)
Z,

T

After performing the d-dimensional integral [26], we get

d

(8) _ IeBI ra-5)
L. = —AN* Z d/2 oo -4 (63)

mf ﬂ) 2

Now we write the last equation in terms of € to get

n = () Ty (o

2 2 2
327 Az A\ - (f + % 4 z‘nzlé‘)e

Now we expand the last equation around ¢ = 0 to get

(8) _ AleB| 1 m2
H + — s~
g 3272 ‘0 2 +2|eB|

1 2|leB
X {E —ye + log(4x) —log |A2 q

1 m2
(1,0)
e <° 2+2|eB|>}

_ AL g log Y
T a2 e TETORTT T8 g
|eB| 2|eB| 1 m
log 27 — logI'( = . 65
+ m,z, 0BT m,z, g 2+2|eB| (65)

We can get weak field results by using the asymptotic
expansion [27]

1 1
logI'(t + x) ~ <t+x —5) logx — x +§log(27r)

1
o

EY )]

n=1

) (66)
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(a) (b) (c)

FIG.2. Feynman diagram for one-loop (a) charged pion, (b) neutral pion, and (c) sigma meson contribution to the z° self-energy. The
dashed line denotes 7°, the double line denotes z*, and the dotted line denotes 6-meson. Only the charged pion is affected by the
magnetic field and temperature, but the neutral pion and the sigma meson are affected by only the temperature.

A = 3.67, g = 0.46, m, = 140 MeV, m, = 435 MeV, | X 3.67, g — 0.46, my — 140 MV, m, — 435 MoV,

1.4 14
1 =0, £y = 10000 4= 0, £rsax = 10000
..... T=0 —— T =120MeV
1.2 —— T =60MeV —— T = 140MeV [
—— T =80 MeV
13
£ —— T =100MeV
>~ 100
S
)
S
§ 0.8

0.6

0.4

0 5 10 15 20 '0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
leB|/m3 T [GeV]

FIG. 3. The behavior of the neutral pion z° mass. The left panel shows the variation of the z° mass with background magnetic field
|eB| at some of the fixed values of temperature ranging from 0 to 140 MeV. The right panel shows the plot of the z° mass with the
temperature keeping the value of the magnetic field fixed. The x axis and y axis are scaled with the square of the vacuum pion mass mio
and the vacuum pion mass m,. In this plot, we have taken the minimum of effective potential vz(7) and one-loop meson self-coupling

Aeff to obtain the pion mass as indicated by Eq. (76).

A = 3.67, g = 0.46, m, = 140 MeV, m, = 435 MeV 1.25 T T T T T T
09 T on Vo] X = 3.67, g = 0.46, m, = 140 McV, m,, = 435 MéV, .

14} =0, fyax = 10000
----- T=0 —— T =120MeV # =0, byax = 10000
13l —— T =60MeV —— T =140MeV |]

—— T = 80 MeV

—— T = 100 MeV
1.2\ °

M (|eB|,T) /mx
M (|eB|,T) /mx

=
o

09

. . . 0.90
0 5 10 15 20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

|eB|/m? T [GeV]

FIG. 4. The behavior of the neutral pion z° mass. The left panel shows the variation of the z° mass with background magnetic field
|eB| at some of the fixed values of temperature ranging from 0 to 140 MeV. The right panel shows the plot of the z° mass with the
temperature keeping the value of the magnetic field fixed. The x axis and y axis are scaled with the square of the vacuum pion mass mio
and the vacuum pion mass m,o. In this plot, we have taken the classical minimum {, and bare meson self-coupling 4 in order to obtain

the pion mass as indicated by Eq. (74).
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where B, (t) are the Bernoulli polynomials defined by the
generating function

Starting from Eq. (61), we obtain

®) /1|eB| / 1
my =--—"— . (68)
= 2 4z £ - Kk —-E,

Here the frequency sum is performed in Appendix B, and
the result is

1 1 + 2”(Ek f)
T = - ey (69)
%: ki — Ei., 2Ey,
where
1
n(Eyr) = (70)

2Y (Ek,f/T) -1

Thus after plugging Eq. (69) in Eq. (68) and dropping the
nonthermal term (containing 1 in the frequency sum), we
get the thermomagnetic contribution as

n(E
/ dk, Ekk; . (71)

2. Neutral pion and sigma loop contribution

B
m®) —4le |
i 167°

For the neutral pion and sigma loop as shown in Figs. 2(b)
and 2(c) respectively, there will be no effects from the
magnetic field as they are chargeless. Again we drop the
vacuum part and consider only the thermal correction;

A [ d*K
= i3 [ G 6 7

where D;(K) = 2' e is the propagator for the j-type

particle with j = 7° ,6. After doing the usual replacements
and performing the frequency sum, we arrive at

2 2
R ()
mh = " dik Y (73)
vk +m;
IV. z° MASS

In this section, we compute the neutral pion mass. Before
doing so, we must reemphasize a few important points.
The vacuum 7 mass, denoted by m,, is one of the input
parameters in the theory. We have taken it as m, =
140 MeV as determined by experiments. Now, in the
presence of the thermal medium as well as the background
magnetic field, the neutral pion receives an additional

correction over m,, denoted by M (eB,T), coming from
the temperature as well as the magnetic field. Our aim in
this section is to obtain M,(eB, T). For that, we need to
solve the following equation:

pg = p* = mz =T1®)(po.p.T) =0 (74)

in the limit of p - 0 and py = M (|eB|,T). The self-
energy is given by (16). Note that there is a factor of ¢* in
the expression of the quark loop contribution as indicated in
(25) and a factor of 1 in the expression of the meson loop
contribution. We shall solve Eq. (74) in three settings as
follows.

A. Basic case

In this case, we take a numerical value of 4, g, which
are two coupling parameters of the theory. Also, we
consider the vacuum value of m, = 0.14 GeV. Then we
solve Eq. (74).

B. Including self-coupling

Here we consider the one-loop correction of vertex A.
In this case we take the one-loop modified vertex
Aetf = 4+ A4, where Al is given by Eq. (Al). So the
dispersion relation becomes

P% = (oii(vh)? = a2) =Tl (po.p = 0.T) = 0. (75)

Here the VM subscript in IT indicates that we replace the
expression of Ay in place of A that appears in front of the
meson self-energy contribution. As mentioned earlier, vy, is
the minimum of the tree-level potential.

C. Including self-coupling and quantum corrected
minimum of the effective potential

Here we solve Eq. (75) with vf, substituted by vg(T),
namely

P}~ (Qev}(T) — a®) =Ty (po.p — 0.T) = 0. (76)

where v (T) is the minimum of the effective potential. The
topic of the effective potential is discussed in detail in
Appendix C. Before proceeding further, we reemphasize

the fact that the self-energy Hﬁg}l(po, p—0,T) is scale
independent. In the self-energy, the vacuum and magnetic
parts are scale dependent. Since we subtracted the vacuum
part from the total self-energy, we get H(\,Bl\zl( posp — 0,7)
scale independent. Additionally, the pure vacuum part of
the effective potential carries the scale A as it is clear from
Egs. (C25) and (C32). However, the position of the
minimum of the effective potential vz(7) and curvature
does not change with changing the scale A. So, the overall
mass correction over the pure-vacuum z° mass is scale
independent as only the self-energy HQ,BI\BI( posp — 0,7)
and vg(T) enters in dispersion Eq. (76).
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1.08

A =3.67, g = 0.46, m, = 140 MeV, m, = 435 MeV, .-
=0, yax = 10000

vB /v,

—— T = 100 MeV

0.961 —— T =120 MeV

—— T = 140 MeV

0.94

0 5 10 15 20
2
leB|/mZ

FIG. 5.

V. RESULTS

We have plotted the magnetic field and temperature
dependence of the neutral pion mass in a warm magnetized
medium as shown in Figs. 3 and 4. The Lagrangian has the
following parameters: the boson self-coupling 4, the boson-
fermion coupling g, the vacuum pion mass m,, and the
mass parameter a’ We have kept the value of m, at
0.14 GeV and m,, at 0.435 GeV throughout. We have kept
the temperature in all of our plots up to 140 MeV, which is
less than or equal to the chiral phase transition temperature
(in LQCD, it is calculated to ~156 MeV [28]). For our
present purpose, we have taken 7 = 0, 60, 80, 100, 120,
140 MeV while changing the magnetic field up to 20m2 =
0.392 GeV? starting from zero as shown in the left panel of
Fig. 4. Also, we have kept T = 140 MeV for four different
values of |eB| as in the right panel of Fig. 4. For the
magnetic field, the value |eB| =20m2 is beyond the
magnitude generated in a heavy-ion collision or inside
the core of magnetars. We have taken A= 3.67 and
g = 0.46, which was used by Ayala et al. in Ref. [14] to
match their result of the magnetic field dependence of the
7¥ mass, calculated in the strong magnetic field approxi-
mation at zero temperature, with the LQCD data of
Ref. [13]. In our calculation, we have tackled the sum
over Landau levels and integration over k, appearing in the
thermomagnetic part of self-energy as well as effective
potential numerically. For a very low magnetic field, one
can note that the result saturates by summing over ~5, 000
LL’s. In our calculation, we have taken &5 = 10, 000;
1.e., we summed over 10,000 Landau levels, which is more
than enough to reach saturation.

In Fig. 3, we show the plots of the neutral pion mass with
leB| (left panel) and with T (right panel) considering the

’In our case a is fixed by m, and m,. So we can think of m, as
a parameter of the theory instead of a.

1.02

A= 3.67, g = 0.46, my — 140 MeV, m, — 435 MeV,
= 0, Entax = 10000

1.00

096l — leB| =0
— leB| = m?
2
— |eB| = 3m;,

— |eB| = 5m?2

0.94 I I I I I
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T [GeV]

The behavior of the minimum of the effective potential vz with |eB| and T shown in the left and right panels, respectively.

effect of effective vertex and quantum corrected condensate
vg(T). The mass decreases with increasing |eB|. The fall is
rapid atlow values of |eB| for all temperate. But after a certain
value (15m2), it saturates with the field. Note that as we
increase the temperature, the fall with |eB| becomes more
rapid in the temperature range ~(0-100) MeV within the
window of |eB| ~ 5m2 — 15m2. As a result, the plot in the
right panel of Fig. 3 T = 0, intersects with 7 = 60 MeV and
T = 80 MeV. Now for the variation with temperature, the
mass increases with temperature, which is quite expected as
the thermal contribution increases with increasing temper-
ature. The mass remains uniform for low 7" but sharply
increases after 60 MeV. This behavior is observed for all
values of magnetic fields considered, and it can be explained
from the plot of mass with the magnetic field. At low
temperatures, for the magnetic field values considered in
the right panel of Fig. 3, the field has a much stronger
tendency to suppress the mass than the temperature to
enhance it. But as the temperature increases, it gradually
becomes more dominating than the magnetic field.

Considering the classical v{, and the bare meson-meson
coupling 4 as well as bare quark-meson coupling g, we have
shown the variation of the neutral z° mass with |eB| and T
in Fig. 4. The purpose of showing Fig. 4 was to compare it
with the behavior of the neutral pion mass (shown in Fig. 3)
by taking into account the effect of A and vg(T). The
behaviour of the vg(T) with |eB| and T, while keeping all
other parameter fixed, is displayed in Fig. 5. As we can see
clearly, the mass falls somewhat less steeply than Fig. 3
with the magnetic field. But the rise of mass with the
temperature is more pronounced and steeper than that with
including the effective vertex and vy (7).

VI. CONCLUSION

In conclusion, we have computed the neutral pion mass
in the presence of an arbitrary background magnetic field
at a nonzero temperature in the framework of the LSMq
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model. We have examined the behavior of the pion mass
with the magnetic field, keeping the temperature at fixed
values, and that with the temperature, keeping the field
fixed. The coupling constants of the theory are the meson-
meson coupling 4 and quark-meson coupling g. At the same
time, other parameters are vacuum pion mass 7, vacuum
sigma mass m,, and constituent quark mass M. We have
incorporated the effect of meson self-coupling through A
and the quantum correction of effective potential through
vg(T) in the 7° mass. In calculating the mass, we have
shown in Fig. 6 the magnetic field and temperature
dependence of the one-loop effective potential V ; as a
function of ». The general case of the arbitrary strength of
the magnetic field is considered by using the general
expression of the charged pion and quark propagator
without invoking strong and/or weak field approximation.
Also, a framework for extending the calculation in the finite
density domain is incorporated by considering the con-
stituent quark chemical potential . We report the decre-
ment of the pion mass with the strength of the background
magnetic field on which some LQCD and effective model
studies agree. The increasing behavior of temperature
agrees qualitatively with the ChPt study of Ref. [20]. To
our knowledge, there is no LQCD simulation in the
literature investigating the pion mass with the strength of
the background magnetic field at nonzero temperature. So,
our investigation of the pion mass, upon the availability of
lattice data at a nonzero temperature in the near future, can
shed light on the predictability of the LSMq framework.
Also, the LQCD study of the neutral pion mass is hindered
by the infamous sign problem while taking into account the
quark chemical potential. So, in our work, we have
delivered a detailed calculation of the neutral pion mass
in the presence of the background magnetic field’s most
general settings, i.e., keeping 7 and y in the framework of
the relatively simple effective model.

A = 3.67, g = 0.46, m, = 140 MeV, m, = 435 MeV,
1 =0, lrrax = 20000, |eB| = m?

-0.06

-0.08

-0.10

Veg/a*

-0.12

—T=0
— T = 60 MeV
— T = 100 MeV

-0.14
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APPENDIX A: VERTEX CORRECTION

The Feynman diagrams that contribute to the vertex
correction of 7¥ is depicted in Fig. 7. The expression for Al
is given by [29]

242

Ad == O1(P.T.m,) + I(P.T.m,)

+4JB)(P, T, m,)] (A1)

|p—>0‘

As usual, A contains the magnetic vacuum part and the
thermomagnetic part. Here we defined

I(P,T,m;) = TZ/%D,(K)D,(P - K),
ko

Bk
JOP.T.m) =Ty / WD§B)(K)D§B>(P ~K).
%

(A2)

with i = 7°,6 and j = 7+, 7"

1. Adg

There will be no magnetic vacuum part for / since its
expression contains only the neutral pion and sigma loop.
Only the J contribution from the magnetic field will be
there due to the involvement of the charged pion propagator
inside the loop. Thus for the vacuum as well as the
magnetic field contributions, we write

_0.06F . . . . . .
X = 3.67, g = 0.46, m, = 140 MeV, m, = 435 MeV,

p =0, £yax = 20000, T = 80 MeV

-0.07}

-0.08}

-0.09t

Ver/a®

-o0.10}

-0.1g — |eB| = 0.1m2
— |eB| = m?

-0.12p — |eB| = 3m?
— |eB| = 5m2

-0.13

0.13 0.14 0.15 0.16 0.17 0.18 0.19
v [GeV]

FIG. 6.
different eB.

0.13 0.14 0.15 0.16 0.17 0.18 0.19
v [GeV]

Left panel: effective potential as a function of v with a fixed eB with different 7. Right panel: the same with a fixed T for
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@ (b) (©)

FIG. 7. Feynman diagram for a one-loop contribution to the self-coupling 1. Contributions to the self-coupling from (a) the charged
pion, (b) the neutral pion, and (c) the sigma meson, respectively.

4
K
JB(P,m)) = —i / d—D@)(K)Dﬁ.B)(P ~K)

Gy
d*k K2 2 2k2 24>
S o e (<t e () ()
i (27) leB| leB| leB|
[ I o
(2m)? kjf = (2¢ + 1)|eB| — m} qf — (2n + 1)|eB| — m;

Forp — 0, after performing the following perpendicular momentum integration and the sum over Landau level n, the above
equation gets simplified to

0 e (27)% k3 — 2f+1)|eB|-m;qg—kg—(zf+1)|e3|—
. |€B| / d k” 1
B ko = xpo)? — k2 = [(2¢ + 1)|eB| + m7 —x(1 = x)pil}?
d’k
_ IeBI / / || ! (A4)
(22 +1)[eB| + m7 = x(1 = x)pg|}*
Now, we perform the usual dimensional regularization routine to get
B| d2 ekH 1
JB) (po.m;) = |e A% / / : (A5)
0:1M; Z 27)7 {i = [(2¢ + 1)[eB| + m3? — x(1 — x) p§]}?

The momentum integration is performed as

I'(1+e)
J(B) .m; AZe / d
(po,m Z * [(2¢ + 1)[eB| + m7 = x(1 = x) pg]'**

ol

=—— x
872 \4xA? o 42 12¢+ 1)|eB| +m; —x(1 —x)pg]'*

1 (2leB| I m? —x(1 - x)pd

- dxt|{1+e-4+—L— 27}, A6

1622 <4m\2) /0 e\ Ires + 2|eB] (A6)

where we summed over LLs as

x 1 1 1 mi—x(1-x)p
= 20eB)¢( 146+ —L—— 0. A7
; 27+ 1)[eB] ¥ 2 —x(1 = xpg  2leB] HeED 5( T T e ) (A7)
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Finally, expanding J(#) in an equation around e = 0, we get

1 N 1 1 m?—x(1-x)p}
JB) (po.p = 0.m;) = T 2[ }/E~|—10g(47rA2)—10g(2|eB|)—/0 dxw<§+’2T>} (A8)
2. Adygae
Now, we compute the dimensionally regularized vacuum part by going to d = 4 — 2¢ as
Vac /12 1 2 ! 2 2
1"*(po,p = 0,m;) = T2 e ——ye +log(4zA%) — A dxlog (m; —x(1 —x)pg)|.
Vac /12 1 2 ! 2 2
JY(po.p = 0,m;) = 62 —ve + log(4zA*) — ; dxlog (m7 — x(1 —x)pg) | (A9)
and
1 [ m; = x(1 = x)p} 1 mi—x(1-x)p;
JB) (po.p =0,m;) — JVe ,:0,-:—/d1 <~ )y +—L——"")|. (AlO
(Po.p =0.m;) (Po.p = 0.m)) = | dxlog 2B wis+ 2B (A10)

2

As long as m2 — x(1 — x)p > 0, the Poly-Gamma function in the above line can be expanded in the limit of [eB| — 0 as

L mi—x(=x)pg mi-x(-0pd\ 1 (  2eB 2
5+ | = log (o __ cleBl B, ALl
l//<2+ 2|eB| og 2]eB] +t51 m? —x(1-)7] + O(leB|*) (A11)

3. At

To extract the thermomagnetic contribution, we start from the expression of 7 and J given in Eq. (A2). For I, we perform
the frequency summation, drop the term that does not contain a distribution function, and obtain the thermal part as

Pk 1 1
2n)} E;y p3 — 4E3,

™(po.p =0,T,m;) = /( 2n(E; ), (A12)

where E;; = \/k* + m3.

For the thermomagnetic part of vertex correction, we need to evaluate the following expression:

B| !
@ 0. |e / . Al3
(po.p = 0,m;) Z Zkz 2f-|— )|eB| —m3 gt — (2¢ + 1)|eB| — m? A

T =0 miqy—

The bosonic frequency sum is evaluated in Appendix B 2. In our case, we have the chemical potential of boson x;, = 0 and
p =0, giving

1 142
% e (A4
ko — k/ (Po = ko)* —E5 . Ej,k,f(l’o 4E/kf)

Finally, the thermomagnetic part is written as

J™(po,p =0,T,m;) = - —Z/ = —az 2ME i) (A15)

where E; ;= \/kg + (27 + 1)|eB| + m3.

*To maintain this condition, we must choose pj < 4m2 for the J®) — JV* to be pure real.
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APPENDIX B: FREQUENCY SUMS ~ s 1
Q A(kg, 51€2) Eﬁm’ (B3)
1. Fermionic sums 1Ko = S1341
We need to calculate a summation of the form 1
— ko 5y ) = B4
o (Po 0+ 52€2) 2Q1 ko — 519, (B4)
I,=TY " A(ky.sQ) (B1)
I— o with
Ly, =T Z (o, 5121)A(qo, $:2), (B2) ko =p+i(21+ 1)xT, po = i2zmT,  (BS)
l=—00
where where [,m = 0,£1, 42, .... Now, we substitute
|
! = i ( Q)/I/Td — {i(20+ DT + = 5,)] (B6)
l(2l+ 1)T[T+/l—slgl = 0 nexpTnid T #= Skl

1
2amT —i(2l+ 1)aT — u — $,Q,

1T
=" (5,8) A dryexp [~ {i2zmT — i(21 + 1)aT — p — 5,2, }] (B7)

in Eq. (B2) and simplify the terms in the exponential to get

/T ) )
I, ,, = ifii; / drydrye™(PmeTrmsiom=san)u =) T N " exp [—(z) — 7,)i(20 + 1)2T]. (B8)
0 I=—0c0

Her = it (5,Q;) = (ePOiFiF) 1 1)~ where f = T~'. Now, we use the identity

T exp[—(r; = 1)i(20 + 1)aT] = 8(z; — 1) (B9)
l=—00
to get
1/T
Iy s, = ﬁfﬁg/ drexp [—7(i2zmT — 51Q — 5,0,)]. (B10)
0

After performing the 7 integral and simplifying by using e’>"” = 1, we analytically continue back to the Minkowski p, by
the prescription i2zmT — p + ie. Then we make use of the identity 7+ (x)e?“F#) = 1 — i*(x) and do a little algebra to
arrive at

5150 1 =07 (51Q)) =17 (52)

Is s — T . (Bl 1)
" 4Q1€)  po— 518 — 528y
Finally, using the identity 1 — ¥ (—x) — AT (x) = 0, we get our desired frequency sum as
St = -y [ ) 1K) 10y B0 10 @)@ g
o o 4Q,Q, Po— 2 —Q Po+ € +Q Po— Q1 +Q Po+ € =€
Now, the following method can perform the other fermionic frequency sum as:
T —
Zkz Q- ZZZQk —sQ 229 12—: i2l+1 7zT+,u—sQ
1T . 1T
— Z _n+ SQ / dTe—T(/t—sQ)T Z 61(21+1)7ZTT _ iflJr(SQ)/ dTe—r(y—sQ)a(T)
/P J— o2 0
= Z 2 it (sQ). (B13)
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Thus, The summand in Eq. (B15) can be conveniently written as
! -t (@) - i (Q) Son =T Y Alko siEDA(po — ko $2E5),  (BI7)
TZ k2 — Q2 = 20 . (B14) "2 Z;o
where
Sl 1
2. Bosonic sums Alko,s1Ey) = 2E ko — s E,’
The frequency sum we need to evaluate is s 1
a Y A(po — ko, $:E5) = = (B13)
| 2E; po — ko — 52E5
0,0 :
‘7-“1(3,3 = Tkz BBk -E (B15)  Thus, Eq. (B15) can be written as
0

]:E;OI(;)) = ZSSI 55 (Blg)

where i

It is easy to see that Eq. (B18) can be written in integral

ko = p + i2laT. (B16)  representation as

/T
A(kO’S1E1> = _ZS—E,anr(SlEI)/) dTle_“'l(kO_SlEl)’

T
A<p0 - k()a S2E2) = _ZS—EZ,ZH_<S2E2) A d12e_72<l70_k0—5252).

Thus,

T(s1E)n~(s,E 1T >
SShh _ S5 (ilEllE)Z (SQ 2)/) dTldl.zerl(lel—y)erz(szEﬁ»ﬂ)—fzpo x T Z exp [—k()(‘L'l _ 12)]'

I=—0c0

Using the identity
T Z exp [—ko(71 — 2)] = 8(7; — 12),

and integrating over the delta function, we obtain

+ - 1
Ssl,sz :S1S2n (ZIEE';1£)7Z (S2E2)/0 /TdTeT(SlEl—ﬂ)e‘f(szEz+M)e—‘fP0.

Performing the 7 integral, we get

B(s1E1—p) pP(s2:E2+1) p=BPo _ |
$1872 _ e e e
Ss1.2 =1 E2 nt (s E)n”(s2E)

$1E1 + s2E5 — po

Since e7#P0 = 1, we get after some algebra

5150 1 +n"(s1E)) +n™(s,E;)
4E\E, Po—s1Ey —s2E, '

(o3 —
“Ssl,xZ -

Using n*(E) = —[1 + nF(E)], we get

0.0
fl(_?,B) =

1 <1 +n(E)) +n7(Ey) 1+n7(E)+n"(Ey) n'(E)—n"(Ey)  n(E)—n(E)
4E\E, po—E —E; po+E +E; po—E +E pot+E —E
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APPENDIX C: EFFECTIVE POTENTIAL AT
NONZERO TEMPERATURE

The effective potential is a central quantity for theories
with a spontaneous breakdown of continuous symmetry.
In this case, the classical value of the potential is altered
due to the perturbative loop correction after spontaneous

symmetry breaking. As a result of this, the minimum vj, =

(a® + m2) /2 of the tree-level potential Vi,..(v) receives a
quantum correction shifting its value to v = vg. To briefly
elaborate this point we note that, in the presence of
interaction, the expression of VEV becomes

(O[Trlo(x) exp (—fHysm,)]|0)
(O[Tr[exp (—BHLswm,)][0)

vp = (Qlo(x)|Q) = . (C1)

Here |0) and |Q2) are the noninteracting and interacting
ground states of the theory, respectively. H LSM, is the total

Hamiltonian of LSM,, f is the inverse temperature.
Equation (C1) can be expanded perturbatively in powers
of 4 and g as

(Qlo(x)|2) = (0]o(x)|0) + Quantum loop correction.
——

/
Yo

(€2)

In the lowest order in perturbation theory, the effective
potential is just the classical potential vy,.

In this section, we compute the contribution of the
temperature and magnetic field to the effective potential.
First, the effective potential has contributions from tree
level, bosonic (appearing due to the quantum fluctuations
of # and ¢ meson), and fermionic parts (for which the
|

lB __TZ/

n=—oo

00 3
1.B) © 2 d\k © dS ~0 2
Z ,,Zz_m/o ’”f/ <2n>% cosh<|qu|>‘°“"p< s[“’"* o

Here, w, = 2znT and @, = (2n+ 1)aT —

&k 1 s
dmb/( / cosh(|eB|)eXp <—s [a)n + k; +

quantum fluctuation of quarks is responsible). The higher-
order corrections to the potential are divergent, and the
incorporation of counterterm contribution V is needed
to remove the infinities systematically. Thus up to O(#),
it reads

1 1
Ver = Viee + Y. VP + Y vV v,

b=n*1"0c f=u.d
+ Z Vh .Ring’ (C3)
b=n"1"c
where
! 1 2 2Y,,2 1 4
Vitee = _E(a + mn’)v + Z’IU ’ (C4)

d3
IB __7 Z/ log (kO m)n,k mb) 1}7

(C5)
(1B)
vV, = —Tr log [(iP)? — ] (C6)
U B
o = Eémv +Z(3/11) , (C7)

and Vﬁ}lmg is the ring contribution from mesons which is
discussed in detail in Sec. C 3. We shall not write the v
dependence, which is there in the expression of the
effective potential via mj and M.

After a few steps of simple algebra clearly depicted in
Ref [24], Egs. (C5) and (C6) take the following form:

tanh(|eB|s)

2 2
e ke )

tanh(|gB|s)

kK + M> B |. Cc9
|qu|s J_+ f+rqf :|> ( )

iy are bosonic and fermionic Matsubara frequencies, respectively. By

integrating over the proper time s in Eqgs. (C8) and (C9), the expressions of Vgl) and V;l ) are converted to the Landau

level representation,

s T , [Pk
V=32 /d’””/(zzm; <

Wy S [ [ 5 Sa

r=+1 n=-oo0 =0

)5)3+k§+

K2 2%
exp (— L ()
S , (C10)
w; + ki + (2 + 1)|eB| + m;,
K2 262
exp (— Lo (25 o

(22 + 1+ rsgn(q,B))lqsB| + M3’
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After performing the sum over r, Eq. (C11) can be straightforwardly simplified by writing in terms of the spin degeneracy

factor as
Pk & exp (- \ 3\)Lf(\ B\)
lB e q
=-T dm (2-6 )Y - . C12
nz_:m/ f/ ; 10) ~%+k§+2f|qf8|—|—Mj% (C12)
1. Computation of Vgl)
By performing the integration over d’k,, we get
1 B) dk, leB| 1
=T -
Z:oo/ / 2 4rn Zw5+k2+(2£+1)|e3|+m§
B
’e | ZT Z log [@2 + K2 + (2¢ + 1)|eB| + m})] (C13)
Now the frequency sum is performed following Ref. [30] as
> 2 2} Ek,f,b
T Y log(a}+ E,,) = Eep+ 2T log |1 —exp = (C14)
Substituting the above expression of the sum integration in Eq. (C13), we get
B| & dk, E
V(bl'B) _leB] / {Efk + 2T log [1 —exp ( kfﬁ)] } (C15)
4n £ 2r T
Now the first term containing E; ,; is divergent, which we need to regulate. We use the following procedure to regulate the
momentum integration by dimensional regularization
odk, - d' %k
S A* | ——. Cl16
/_m 2r - /(271)1_25 ( )
We use the following identity in Ref. [31]
(m,d,A) / d'k : : : A d : (C17)
m = = -5
(2rz)d (K> + m®)A  (4n)¥°T(A) 2 (mZ)A—§
to perform the integration
lB |eB| 25 dl 26k |€B| A 2e > \/ 2
Z/( 1=2¢ Erc HA ;q) (2f+1)|eB‘+mb’l_2€’_2
leB| T(e —1)
C18
~167% (4zA?) ; 20+ 1 |eB| + m3]e! (C18)
The sum over LL is performed by using the representation of the Hurwitz zeta function
Z (e, a) (C19)
7= (
as
(1.B) leB)* (2|eB|\ ¢ 1 m
V, == = I'e—-1 -1,- . C20
be 2 \aziz) TVl e 1ot o (C20)
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Here we used I'(—1/2) = —v/4x. This result matches
(1.B)

exactly with [32]. Now, we expand Vbl,é
and obtain

(1’3) |€B|2 1 m2
v, = -1,
be 52 S\ T 2|eB|

8 1 Io 2|eB|_’_1
YE g4A

+ 4«(1,0) (_

The finite temperature part is

around ¢ =0

1 m?
Lo+ 2|e%|>} +0(e). (C21)

B
E,IT%_ le |TZ / dk.log (1 — e~EeealT),  (C22)

For the ¢ and z° meson, we take the limit of |eB| — 0 in
Eq. (C8) and do the s and m3 integration to get

Z/ 7

d3k

lBO

slog(wh + k2 + m3)

+mb

k2—|—mb

+2Tlog |1 —exp . (C23)

“):—222 5,0)T Z/dk Ve <_

n—=-—00

_ quiz 5f0/
=0

—0o0

o dk -

n=-—oo

|eB]

Z ~2 2 2

For the vacuum part, we use the dimensional regularization
method by modifying the measure of three-momentum

integration
/ &k A2€/ &>k
- e
(27[)3 (271.)3—26

As a result, we get
3—2e¢
(1.8=0) _ 1 5. &k
Vb,e _EAQ /(27.[)3—26 K +mi
2
b

2 —€
my, [ m
Y <4;;A2> Fle-2)
4 2
__m |1 3_
=~ in 2{ yE+log(47r)+2 log( ﬂ

+ O(e).

(C24)

(C25)

The thermal part is given by

/12 2
_ T [ k= 4 mj,
Vi =53 /) dkk?log [1—exp | -4

T
(C26)
2. Computation of V}l)
In this case, we start from Eq. (C12),
L >L <2k2 >log[ + k2 4 2¢|q,B| + M?]
lq,B| ! /
(C27)

The frequency sum is performed following the same method as for the bosonic part, and the result is quoted below:

T Y loga} +Q%, ;| = Qus+ Tlog [1 + exp (—

n=—oo

Thus, we have

B dk, Qg —
(1): |qf |Z2 550/ o {Q/kf+Tlog{1+exp( %ﬂﬂ#—Tlog{l—i-exp(—

The zero temperature part is written as

(1,3) |q]cB| 2 / d1—2ek
\% A E 2-90 ———— Q7.
fe o ( f.,()) (27[)1_25 ¢.k.f

=0

Qf,kf —H

Qs+
’T )} + T'log [1+exp (—%ﬂﬂ
QrpyptHu
— .

(C29)

(C28)

(C30)
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The sum is performed, followed by the integration

B|? 2|qB|\ — M3
V;1;B) _ gy 2| [(e—1) gy 2| tle-1, f
A 21 4z 2|qB]

2
+C<1’°><—1,2Mf )}w@.

)

B| 1 M> B|?
L] LA BT
872 |e Az 2

1 M7 [ M;\"°
22|q;B| \4nA?

M7 \T1 2|q;B|
{""< 1 z|qu|> P‘”‘“g(zw) * 1]

(C31)

After applying the MS scheme, by virtue of which we drop the %— ve + log(4x) term, we get

2
(1.B) _ |q /B My
Vi 272 3 4 1 —log Az —lqsB||¢

The thermomagnetic part is written as

1.B
Vj(‘.Th)M =

|QfB| = o0
r ) ;(2—@,0)A dk.{log |1 +exp | —

2|qu|> |:1—10g<2|if23>] +¢09 <_1,2’1ﬁ3|)]}. (C32)

Q- Q
L= ”)] +log [1+exp (—;“’%ﬂ‘)]}. (C33)

The counterterms are determined from the vacuum stability condition [33]. It states that the tree-level value of the position
of minimum v, of the effective potential and the mass of the sigma meson” does not change after quantum correction.

Mathematically,
1dv
o vac 0’
2v dv |,_,
d?v
= =2a® + 3m2. (C34)
d/u 1/7110
Applying the above conditions to the quantum corrected potential in the vacuum, we determine da”> and 64 as
2 1 2 2 2 3 2
da® = % ~ 1670 {6&2(a2 +2m32) — g*(a® + m2) + 3a*2* {log< ) + log (%)} },
A m2 1 m2 2a% 4 3m2 2+ m2
o ==——"— 3% |1 3log| ———= 8g* lo . C35
st tor (2 [a(8) o () e (G) ) o

In the magnetic part of the one-loop effective potential of
pions as well as quarks, there is a scale factor A which we

2_ 2 .
took as a = \/™e=3" — 255 MeV since we choose m, =
2 b4

140 MeV and m, = 435 MeV.

3. Ring contributions

If we look at Egs. (C21), (C22), (C25), and (C26), we
notice that the argument of the logarithm in Eq. (C25), the
argument of the Hurwitch zeta function ¢ in Eq. (C21), and
Eq. (C32) can become negative due to negative m3 for
some values of v in the range 0 < v < vj,. This negative

*Note that the mass of the sigma meson is equal to Va

|

argument makes the potential imaginary which is not
acceptable as it can lead to the complex critical temperature
(Tepirar) Of chiral symmetry restoration [34]. Also, the
meson energy E,; and E; can become negative for a
similar reason.

Also, in the case of a small boson mass, their thermal, as
well as magnetic, correction becomes of the same order
as their original masses. As a result, perturbation theory
breaks down, and a resummation becomes necessary. It
is taken into account by incorporating the so-called ring
diagrams. By incorporating the resummation program
through the inclusion of the ring diagram, one takes the
effect of plasma screening into account as well shields the
effect of infrared divergence. The ring diagram contribution
is added via the following term [24]:
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Vi ng Z / slog 1 — 1Y (ko = i, k)Dp(ko = iw,. k. m,)]. (C36)
Now adding Egs. (C5) and (C36), we get
d3
Vi v = T Z / Slog [Dp(ky = iwy, k,my)™ =TI (kg = iw,,, k). (C37)
Here, we rewrite the full expressions of meson self-energies as follows:
A
1Y (ko k) = % [8ZF) (mye) + 12Z(myp) +4Z(m,)] + > 117 (ko k) (C38)
" 4 f=ud
(B) A e (B) (B)
I (ko. k) = 2 [16Z5) (m ) + 4L (myp) + 4Z(m,)| + 211,/ (ko. k), (C39)
(B) A (B) (B)
;" (ko k) = 1 8L (mye) + 4L (myp) + 122 (m,)] + 211,/ (ko k), (C40)
where the integrations Z(®) and 7 are defined as 1 ml+1I
+§(1,0>( s+ ¢ >}+O(e), (C44)
2|eB|
d3k
Vb,”I‘hM + Vb.iiing,ThM
&’k |eB \
=T ——=D(ko. k C42
m) ;/W(o) (c) S [ dkte
The computation of the RHS of (C36) is analytically very \/ K2+ (26 + 1)|eB| + m?2 + 11
challenging and numerically cumbersome. It is challenging —exp : b (C45)
T

to separate and regulate divergent contributions. Never-
theless, we can tackle it by invoking some educated
approximations:
(i) First, we discard the (kg, k) dependency of H,(?B) (ko =
iw,, k) and consider the static limit; i.e., we
take T\ (ko = iw,. k) ~ TP (kg = 0.k — 0).
(i1) Next, we observe that computing the right hand side
) defined
in Eq. (C5) with mlz7 being replaced by m% +
HEJB) (ko = 0,k — 0) to an excellent approximation.
(ii1)) We have taken Hfﬁ) ~ Hfft) g HS;B) since their order
of magnitude is more or less the same.
Thus, after substituting m? — m? + 11 in Egs. (C21),
(C22), (C25), and (C26), we get the full bosonic contri-
bution to Vg as

1.B 1.B |eB|* I omp+1
VEJ,E ) +V§7,Rir)1g,€: 872 {¢< Lo+ 2b|eB|

1 2leB|
- —yp—log +1 C43
( YE 4-71'/\2 ) ( )

of Eq. (C37) is the same as computing Vb

Since My = gv with g, v > 0, the quark contribution to the
effective potential never becomes imaginary. Consequently,
the resummation of the quark contribution is not necessary
at this point.

APPENDIX D: PERPENDICULAR
MOMENTUM INTEGRATIONS

In this section, we perform the general perpendicular
integration

o d*k 2k 2k 2k
7= [ oron ()t ) )
(”) |€1f | |Qf | |‘1f |

(D1)

where 7,n,a are integers, £,n,a>0, and d’k, =
dk'dk* = degdk, k, . After a change of variable & = 2k% /
lg,B|, we get
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@ _ lasBl (lasB[\“
7 = A (B
n T 8g 2

/ Y gzt (@)L (). (D2)

0

The generalized Laguerre polynomial satisfies the ortho-
gonality relation

oo " « I'n+a+1
/ dxx%e pr )(x)LS, )(x) = Qém,
0 n.
Thus, we get
B| (lg/B\"T(¢£ +a+1)
70 _ 1Bl (1o 5,,. (D3
Z.n 87 2 £\ Z.n ( )

The two most important perpendicular integrals in our
context are obtained by setting a = 0, 1 in (D3) as

d*k 2k> 2k> 2k2
o (o) (o) ()
(27) lg;B| lg;B| lq,B|

_ lq¢B|

Sy, D4
87 Z.n ( )
d*k 2k2 2Kk2 2k2
[rien (- m)t (om) - ()
(”) |Qf | |6]f | |61f |
B|?
- |qlf6 e+ 15, (D5)
T
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